From Independence of Clones to Composition Consistency:
A Hierarchy of Barriers to Strategic Nomination

Ratip Emin Berker, Silvia Casacuberta, Isaac Robinson, Christopher Ong,
Vincent Conitzer, and Edith Elkind

Abstract

We study two axioms for social choice functions that capture the impact of similar candidates:
independence of clones (IoC) and composition consistency (CC). We clarify the relationship
between these axioms by observing that CC is strictly more demanding than IoC, and investigate
whether common voting rules that are known to be independent of clones (such as STV, Ranked
Pairs, Schulze, and Split Cycle) are composition-consistent. While for most of these rules the
answer is negative, we identify a variant of Ranked Pairs that satisfies CC. Further, we show how
to efficiently modify any (neutral) social choice function so that it satisfies CC, while maintaining
its other desirable properties. Our transformation relies on the hierarchical representation of
clone structures via PQ-trees. We extend our analysis to social preference functions. Finally, we
interpret IoC and CC as measures of robustness against strategic manipulation by candidates, with
IoC corresponding to strategy-proofness and CC corresponding to obvious strategy-proofness.

1 Introduction

On November 6th, 1934, Oregonians took to the polls to elect their 28th governor. Earlier, in a contested
Republican primary, Senator J. Dunne had narrowly defeated P. Zimmerman, who then decided to run
as an independent. In the subsequent general election, each candidate received the following votes [48]:

Charles Martin | Peter Zimmerman | Joe Dunne
116,677 95,519 86,923

The Democratic candidate (Martin) won, even though the two Republicans collectively won nearly 60%
of the vote. This example motivates the following question: How can we ensure that similar candidates
in an election do not ‘spoil’ the election, preventing each other from winning?

Naturally, some winner determination rules, or social choice functions (SCFs), are more resilient to this
“spoilage” effect than others. The field of social choice offers a rich variety of SCFs and formulates
various desirable criteria (axioms) for them. In particular, Tideman [62] defines a clone set, i.e., a group of
candidates (clones) that are ranked consecutively in all voter’s rankings, and puts forward the axiom of
independence of clones (IoC), which asks that if a candidate is an election winner, this should remain the
case even if we add! or remove clones of her opponents. In the context of political elections, IoC means
that a political party need not be strategic about the number of party representatives participating
in an election, as long as it does not care which of its candidates wins. Conversely, if a rule fails IoC,
adding/deleting clones may be a viable strategy to change the outcome (Tideman himself recalls winning
a grade school election after nominating his opponent’s best friend). Moreover, Elkind et al. [22] show
that the algorithmic problem of purposeful cloning (i.e., to change the outcome of an election) is easy
for many common SCFs. Thus, the appeal of SCFs satisfying IoC goes beyond the theoretical.

In settings with abstract candidates, it is even easier to introduce clones. For example, when candidates
consist of drafts of a text—e.g., we are voting over drafts of the guiding principles of our organization—it

"For example, under veto/anti-plurality, a non-IoC SCF that picks the candidate(s) ranked bottom by the least number of
voters, introducing clones can help the cloned candidate, as the clones split the last places in votes.

is straightforward to introduce a near-duplicate of an existing draft. When candidates are Al systems—
e.g., we are ranking LLMs, as done for example on Chatbot Arena [13], to determine the best one—one
can introduce a second version of a model, one that is fine-tuned only slightly differently (as has already
been pointed out by Conitzer et al. [15]). Without IoC, such clones can critically affect the outcome.

On the other hand, IoC may not be enough to dissuade strategic cloning. While IoC dictates that the
cloning of a candidate should not change whether one of the clones wins, it does not specify which clone
should win, even though one of them can be significantly preferred to the others by the voters. As such,
even with an IoC rule, cloning can have a significant impact on the result by changing which candidate
among the clones wins. Moreover, a rule being IoC does not reveal how obviously robust it is against
strategic nomination. As demonstrated by Li [44] in the context of obvious strategy-proofness, the
benefits of a property of a mechanism might only be materialized if the agents actually believe that the
property indeed holds. Even when using an IoC rule, it is not clear that the average voter or candidate
can be easily convinced of this property—resulting, for example, in a candidate unnecessarily dropping
out of the race, either out of fear of hurting their party, or of being blamed by their voters for doing so.

These drawbacks of IoC might be one possible explanation for why major parties in the United States
still hold internal primaries to pick a single nominee for elections that pick a winner using single
transferable vote [53], which is IoC. This happens even though consolidating party support behind a
single candidate does not improve the chances of the party winning the election, and they could provide
voters with a wider range of choices by letting all their willing candidates run in the general election.

To this end, we turn to the stronger axiom of composition consistency (CC), introduced by Laffond et al.
[36], which dictates not just which clone sets win, but which clones among those sets win too. CC, as
we will argue, also exposes the obviousness of a rule’s robustness against strategic nomination. When
introducing CC, Laffond et al. were seemingly unaware of the IoC definition by Tideman [62], despite
using equivalent (but differently-named) concepts. This, among other factors, has led the literature
on IoC and CC to progress relatively independently, with few papers identifying them as comparable
axioms. By studying these axioms in a unified framework, we hope to help dispel this ambiguity.

1.1 Our Contributions

(1) We clarify the relationship between IoC and CC—which has historically been ambiguous (see
Appendix A.1 for an overview)—by formally showing that CC is strictly more demanding (Proposition 8).

(2) We provide (to the best of our knowledge) the first ever analysis of whether SCFs that are known to
be IoC (e.g., Ranked Pairs, Beatpath/Schulze Method, and Split Cycle) also satisfy the stronger property
of CC, thereby also establishing where each rule falls in our hierarchy of barriers to strategic nomination
(Section 3). While for most of these rules the answer is negative, we identify a variant of Ranked Pairs
that satisfies CC. We connect our results to the literature on tournament solutions (TSs) in Appendix B.

(3) We introduce an efficient algorithm that modifies any (neutral) SCF into a new rule satisfying
CC, while preserving various desirable properties, e.g., Condorcet/Smith consistency, among others
(Section 4). Our transformation relies on the fact that clone sets (which can be nested and overlapping)
can be represented by PQ-trees [23], allowing us to recursively zoom into the “best” clone set.

(4) We formalize the connection of IoC/CC to strategic behavior by candidates via the model of strategic
candidacy [19] (Section 5). We show that if the candidates’ preferences over each other are dictated by
their clone structure, IoC rules ensure running in the election is a dominant strategy, hence achieving
a stronger version of candidate stability. However, IoC is not enough for obvious strategy-proofness,
which we show can be achieved by CC rules using our PQ-tree algorithm.

(5) In Appendix C, we provide the first extension of CC to social preference functions (SPF) and prove
that many of our characterization results generalize. Nevertheless, we give a negative result showing
that no anonymous SPF can be CC, and discuss ways in which this can be circumvented.

2 Preliminaries

Profiles and clones. We consider a set of can-

didates A with |A| = m and a set of voters 6 voters | 5 voters | 2 voters | 2 voters
N = {1,...,n}. A ranking over A is an asym- b d a a
metric, transitive, and complete binary relation c c d d
> on A. Let £L(A) denote the set of all rankings a b b @
over A; a =, b indicates that a is ranked above d 7 c b

b in a ranking r. Each voter ¢ € N has a ranking
o; € L(A); we collect the rankings of all voters Figure 1: A preference profile. Columns show rankings,
in a preference profile ¢ € L£(A)". The next def- with the bottom row ranked last. The first row shows the

inition helps identify sets of similar candidates number of copies of each ranking (e.g., leftmost column
(according to voters) indicates 6 voters rank b > ¢ > a > d).

Definition 1 (Tideman [62, §I]; Laffond et al. [36, Def. 4]). Given a preference profile o over candidates
A, a nonempty subset of candidates K C A is a set of clones with respect to o if for each a,b € K and
each ¢ € A\ K, no voter ranks c between a and b.

All preference profiles admit two types of trivial clone sets:* (1) the entire candidate set A, and (2) for
each a € A, the singleton {a}. We call all other clone sets non-trivial. For example, for the profile in
Figure 1, the only non-trivial clone set is {b, c}.

Social choice functions and axioms. A social choice function (SCF) is a mapping f that, given a
profile o over candidates A, outputs a nonempty subset of A; the candidates in f(o) are the winners
under f. An SCF f is decisiveon o if | f ()| = 1. Table 1 gives the descriptions of the SCFs we consider.?

We list some desirable properties (axioms) for SCFs. For example, an SCF is neutral (resp. anonymous) if
its output is robust to relabeling the candidates (resp. voters); for a formal definition, see Zwicker [66,
Def. 2.4, 2.5]. The Smith set of o (denoted Sm (o)) is the smallest set of candidates who all pairwise
defeat (preferred to by a strict majority of voters) every candidate outside the set. An SCF f satisfies
Smith (resp. Condorcet) consistency if f(o) C Sm(o) for all o (resp. for all o with [Sm(o)| = 1).

Next, we will present two axioms that both aim to capture the idea of robustness against strategic
nomination. In what follows, we write o \ A’ to denote the profile obtained by removing the elements
of A’ C A from each voter’s ranking in o while preserving the order of all other candidates.

Definition 2 (Zavist and Tideman [65]). An SCF f is independent of clones (IoC) if for each profile o
over A and each non-trivial clone set K C A with respect to o,

(1)foralla € K,wehave KN f(o) # 0 < (K \ {a}) N f(o\ {a}) # 0;
(2)foralla € Kandallbe A\ K,wehaveb € f(o) = be f(o\ {a}).

Intuitively, IoC dictates that deleting one of the clones in a non-trivial clone set K must not alter the
winning status of K as a whole, or of any candidate not in K.

Example 3. In the profile o in Fig. 2 (left), K = {a1, a2} is a clone set. Plurality Voting (PV) outputs b as
the unique winner. However, PV (o \ {a2}) = {a1}, since with ay gone, a1 now has 5 voters ranking it
first (Figure 2, right). This violates both conditions (1) and (2) from Definition 2.

In contrast, STV eliminates aa (whose votes then transfer to ai), then c and finally b, so that a; is elected;
moreover, it produces the same result on o \ {as}. This is in line with the fact that STV is IoC [62].

Tideman [62] in fact excludes trivial clone sets. We use the definition from the work of Elkind et al. [23].
*While we describe some SCFs by their winner determination procedures, the SCFs themselves are the functions that
output the respective winners, and these functions may be computed by other—possibly more efficient—algorithms.

3 voters | 2 voters | 4 voters | 3 voters
5 voters | 4 voters | 3 voters

a1 as b c
a1 b &

an al C as
remove a2 b (@ aq

b b a9 aj
al b

c c al b

Figure 2: (Left) Example profile o. (Right) o \ {a2}.

5 voters | 4 voters | 3 voters 3 voters | 9 voters
K, K, K.
Kb Kc K, ay ag
K. K, Ky = -

Figure 3: (Left) 6, where clone sets from o in Figure 2 are condensed into candidates
K,, Kp, and K.. (Right) 0|k, , where o is limited to members of K,.

To define the second axiom regarding strategic nomination, we first introduce a few additional concepts.

Definition 4. Given a preference profile o over candidates A, a set of sets K = { K1, Ko, ..., Ky},
where K; C A foralli € [{], is a (clone) decomposition with respect to o if (1) K is a partition of A into
pairwise disjoint subsets, and (2) each K is a non-empty clone set with respect to o.

Every profile has at least two decompositions: the null decomposition KC,,,,;; = {A} and the trivial
decomposition Ky, = {{a}}4ca. Given a decomposition K with respect to o, for each i € N let O'ZK
be voter i’s ranking over the sets in KC; this is well-defined, since each clone set forms an interval in o;.
The profile o* = {Uf}ie ~ over K is called the summary of o with respect to the decomposition K.
For each K € K, we write 0| to denote the restriction of o to K, so that | = o \ (A \ K).

Definition 5. The composition product function of an SCF f is a function IIy that takes as input a
profile o and a clone decomposition K with respect to o and outputs I (0, K) = Uge p(ox) f(o] k).

Intuitively, II; first runs the input SCF f on the summary (specified by K), collapsing each clone set
into a meta-candidate K. It then “unpacks” each winning clone set, and runs f once again on each.

Example 6. For the profile o from Figure 2 (left), it holds that K = { K, K, K.} with K, = {a1, a2},
Ky, = {b}, K. = {c} is a valid clone decomposition with respect to o. Figure 3 shows e* and o|x,. We
have STV (%) = {K,} and STV (o|,) = {as}, implying g7y (o, K) = {as}.

Together, Examples 3 and 6 imply that STV (o) # Ilgrv (o, K) for this o and K; i.e., that STV does
not respect this clone decomposition—even though the winners are from the same clone set. We now
state the composition consistency axiom, which precisely requires a rule to respect all decompositions.

Definition 7 (Laffond et al. [36, Def. 11]). A neutral* SCF f is composition-consistent (CC) if for all
preference profiles o and all clone decompositions K with respect to o, we have f(o) = Il;(o, K).

CC rules choose the “best” candidates from the “best” clone sets. In contrast, [oC is much more permissive
for choosing a candidate from a best clone set. Indeed, in Proposition 8 we show that CC implies IoC.
On the other hand, Examples 3 and 6 demonstrate that the converse is false: they show STV, which is
IoC, is not CC. Later, we analyze other IoC rules to show whether they are CC (Section 3).

*Laffond et al. [36] define composition consistency (CC) for neutral SCFs; this is without loss of generality, as they treat
o as a profile over candidates {1,2,...,|K]}, in which case CC automatically implies neutrality by the trivial decomposition.
Brand] et al. [3] instead use a definition where o is simply o with all but one candidate removed from each K;; nevertheless,
they show that in this model too CC implies neutrality (their Lemma 1). We explicitly state this as a prerequisite for simplicity.

Social choice functions considered in this paper. Prior work has shown each SCF in Table 1
(with the exception of PV') to be IoC (cf: Holliday and Pacuit [31] for an overview). For some, winner
determination may require tie-breaking (e.g., under STV, candidates may tie for the lowest plurality
score). We define the output of such SCFs as the set of candidates that win for some tie-breaking rule,
also called parallel-universes tiebreaking [14]. Crucially, this variant of RP is not IoC [65], a nuance we
will address in detail in Section 3. Lastly, there exists tournament solutions that are known to fail or
satisfy CC. However, whether they satisfy CC as SCFs is a more subtle issue, addressed in Appendix B.

Name of SCF \ f \ Description of the SCF’s output on input profile o
Plurality PV | Outputs the candidate(s) ranked first by the most number of voters.
Single Transfer- At each round, the candidate ranked top by the fewest voters is eliminated.
STV :
able Vote Eventually a single candidate remains, becoming the winner.

Given a profile o over candidates A = {a; };c[;,), construct the margin
matrix M, whose ¢j entry is the number of voters who rank a; ahead

Rar[lgzed 61;? e RP | of a; minus those who rank a; ahead of a;. Construct a digraph over A

’ by adding edges for each M[ij] > 0 in non-increasing order, skipping
those that result in a cycle. The winner is the source node.

ool Construct M as in RP, and the corresponding weighted digraph over A

(Schulze BP without skipping edges! Let S[i, j] be the width (min. weight edge) of

the widest path from a; to a;, computed, e.g., with the Floyd-Warshall

Method) [56] algorithm. Then a; is a winner iff S[i, j| > S[j,] for all j € [m].

(1) Eliminate all candidates not in Sm(o). (2) In the remaining profile,
AS | eliminate the candidate ranked top by the fewest voters. Repeat (1)-(2)
until a single candidate remains; this is the winner.

Alternative-
Smith [61]

Construct M as in RP and the corresponding weighted digraph G’ over
A without skipping edges. For each simple cycle (cycles visiting each
Split Cycle [31] SC' | vertex at most once) in G, label the edge(s) with the smallest weight in
that cycle. Discard all labeled edges (at once) to get G’. The winners are
the candidates with no incoming edge in G'.

Table 1: SCFs considered in this paper. Second column indicates our notation for the SCF as a function.

T More generally, BP can be defined with various choices for edge weights [56]. We use the “margin” variant; our results
easily generalize to others.

3 Analysis of IoC Social Choice Functions

In this section, we analyze whether the IoC rules in Table 1 satisfy CC. The answer turns out to be
positive for RP with a specific tie-breaking rule by Zavist and Tideman [65], but negative for all other
SCFs. We first formalize the CC to IoC relationship (cf. Brandl et al. [3]), which has historically been
ambiguous (see Appendix A.1 for an extended discussion of the history of the axioms).

Proposition 8. If a given SCF is composition-consistent, then it is also independent of clones.

All omitted proofs are in the appendix. We show that the converse of Proposition 8 is not true.

Theorem 1. STV, BP, AS, and SC' all fail composition consistency.

Proof. The statement for STV follows from Examples 3 and 6. For o and K from these examples,
AS(o) = STV (o) and I145(0, K) = g7y (0, K); hence they also show AS is not CC. For BP and
SC, we use the profile from Fig. 1 (say, o), with K’ = {{a}, {b, ¢}, {d}}. We have BP(o”) = SC(o’) =
{b, ¢}, whereas IIgp (o', K) = IIgc(o’,K') = {b}. See Appendix D.2 for detailed calculations. O

Ranked Pairs Our definition of SCFs deals with ties by returning all candidates that win via some tie-
breaking method. In particular, for RP the margin matrix M may contain ties, so we need a tie-breaking
order over unordered pairs to decide the order of adding edges to the digraph. Tideman [62] originally
defined Ranked Pairs as returning all candidates that win for some tie-breaking order (we refer to this
rule as R P); later, Zavist and Tideman [65] showed that this rule is not IoC. By Proposition 8, this also
implies RP fails CC. Zavist and Tideman [65] propose breaking ties based on the vote of a fixed voter
1 € N, which makes RP satisfy IoC. Specifically, they use o; to construct a tie-breaking ranking >;
over unordered pairs in A as follows: (1) order the elements within each pair according to o;; (2) rank
the pairs according to ¢;’s ranking of their first elements; (3) rank pairs with the same first element
according to o;’s ranking of the second elements. For example, for A = {a,b,c} and 0; : a > b > c we
get Y, : {a,a} = {a,b} > {a,c} = {b,b} = {b,c} = {c, c}. Using ¥;, we can construct a complete
priority order L over ordered pairs: pairs are ordered (in non-increasing order) according to M, with ties
broken by ¥; (if M[a, b] = 0, we rank (a,b) >, (b, a) if and only if @ >; b). Then, Ranked Pairs using
voter i as a tie-breaker (which we call RP;) adds edges from M to a digraph according to £, skipping
those that create a cycle. Zavist and Tideman [65] show that RP; is IoC. We now strengthen this result.

Theorem 2. RP; is composition-consistent for any fixed i € N.

Proof sketch. The proof uses an equivalence between the topological orders of the final RP graphs and
stacks over A, which are rankings r where a >, bimplies there is a path in M from a to b consistent with
the ranking r and with each link at least as strong as M [b, a] [65]. We extend this equivalence to specific
stacks with respect to a priority order £, and show that this definition is satisfied by the RP; ranking,
its summary using any X, and its restriction to any clone set. This allows us to establish an agreement
between RP; and Ilzp,, proving RP; is CC. The full proof can be found in Appendix D.3. g

Moreover, RP; is poly-time computable, whereas the outputs of RP are NP-hard to compute [9].
However, for any fixed 7 this rule breaks anonymity, i.e., it fails to treat all voters equally. Holliday
and Pacuit [31] suggest (based on personal communication with Tideman) returning RPy (o) =
Uien RPi(0o), ie, declaring an a € A to be a winner if and only if a € RP;(o) for somei € N. This
modification recovers anonymity while preserving IoC and tractability, but we show that it loses CC.

Proposition 9. RP y is independent of clones, but not composition-consistent.

Thus, Ranked Pairs without tie-breaking (R P) is neither IoC, CC, nor tractable. Using a voter to break
ties (RP;), we get all three, but lose anonymity. Recovering anonymity via a union over all voters
(RP y) keeps IoC and tractability, but loses CC.° Figure 6 (Appendix B) summarizes this section’s results.

4 CC Transformation

All ToC SCFs considered in Section 3, except for RP;, fail CC. Having more CC rules would be desirable,
considering their strong guarantees against strategic behavior (Section 5). To this end, we prove any
neutral SCF can be efficiently modified to satisfy CC, while preserving its various desirable properties.

4.1 Background: Clone Structures and PQ-Trees

For a profile o, Elkind et al. [23] define the clone structure C(o) C P(A) as the family of all clone
sets with respect to . For example, for o from Fig. 1, C(o) = {{a}, {b}, {c},{d},{b,c},{a,b,c,d}}.
They identify two types of irreducible clone structures: a maximal clone structure (also called a string of

>For probabilistic SCFs (PSCFs), a tempting approach is to pick an i € N uniformly at random and return RP;(c). The
counterexample from Prop. 9 also shows that this variant fails the CC definition for PSCFs given by Brandl et al. [3].

DY
EDRNC 0 ©
@

Figure 4: (Left) The PQ-tree representing C(o) from Example 10 . (Right) The PQ-tree of o from Figure 2.

sausages) and a minimal clone structure (also called a fat sausage). A string of sausages arises when each
ranking in o is either a fixed linear order (say, o1 : a1 > ag > --- > a,,) or its reversal. In this case,
C(o) = {{ar}ti<k<; : © < j}, ie, all intervals in 1. The majority ranking of the string of sausages is
o1 or its reverse, depending on which one appears more frequently in o (breaking ties arbitrarily). A
fat sausage occurs when C(0) = {A} U {{a;} }ic[m), L.e. the structure only has the trivial clone sets.

Our CC transformation uses PQ-trees: a data structure first defined by Booth and Lueker [2] and later
used by Elkind et al. [23] to represent clone sets. Here, we present the definitions required for our
construction; for the full treatment, see Elkind et al. [23] (and our Appendix E.1). A PQ-tree T over A
is an ordered tree whose leaves correspond to the elements of A. To represent a clone structure C(o)
as a PQ-tree, we iteratively identify irreducible subfamilies of C(o), and collapse them into a single
meta-candidate. If the subfamily corresponds to a fat sausage, we group its members under an internal
node of type P, denoted as a ®-product of its children. On the other hand, if the subfamily corresponds
to a string of sausages, we group its members under an internal node of type Q, denoted as a &-product
of its children. In rankings compatible with C (o), the children of a P-node can be permuted arbitrarily;
the order of the children of a Q-node must follow its majority ranking or its reversal. Crucially, the order
of collapsing is not important, as the irreducible subfamilies of a clone structure are non-overlapping.

Example 10. Let o be a profileon A = {a, b, ¢, d} with two rankings: a = b > ¢ = dandd >~ ¢ > a > b.
Then, C(o) = {{a},{b},{c},{d},{a,b},{c,d},{a,b,c}, A}. Collapsing the irreducible subfamily
K, = {a,b}, the updated C(o) is {{c},{d},{K1},{c,d},{K1,c}, {K1,c,d}}. With size two, K is
both a string of sausages and a fat sausage; by convention we treat it as a fat sausage (i.e., of type P). The
updated C (o) is a string of sausages itself, so the algorithm terminates by picking the root of the tree as a
type Q node. The resulting PQ-tree is illustrated in Figure 4 (left).

We now formulate two useful properties of PQ-trees, as observed by Cornaz et al. [16].

Lemma 11 (Cornaz et al. 16). PQ-trees can be constructed in O(|N| - |A|?) = O(nm?) time. Further,
given o and its PQ-tree T, a set of candidates K C A is a clone set if and only if it satisfies one of the
following: (1) K exactly corresponds to the leaves of a subtree in'l’, or (2) K exactly corresponds to the
leaves of a set of subtrees the roots of which are adjacent descendants of a Q-node inT'.

Cornaz et al. [16] use PQ-trees to prove fixed-parameter tractability of computing a Kemeny ranking
of a profile, which obeys a special case of CC (see Appendix C for CC properties of social preference
functions, which return aggregate rankings over A rather than subsets). Similarly, Brandt et al. [5]
show that any CC tournament solution is fixed-parameter tractable with respect to the properties of
an analogous construct for tournaments (decomposition trees) by running the tournament solution
recursively on the nodes of the tree. Our key observation, which we show next, is that even if we start
with an SCF that does not satisfy CC (or any weaker version thereof), running it on the PQ-tree defines
a new SCF that is in fact CC, while maintaining many desirable properties of the original SCF.

4.2 CC-Transformed SCFs

We now present Algorithm 1, based on an implementation of CC tournament solutions by Brandt et al.
[5]. Given T' = PQ(o) (the PQ-tree for a profile o), we refer to its nodes by the subset of candidates in

Algorithm 1: CC transformation for SCF

Input: SCF f, preference profile o over candidates A
Output: Winner candidates W C A

W=0; // Winner list, initialized as empty
T = PQ(o); // Constructs the PQ-tree for o
Q= (A); // Queue of nodes, starting with root node
while |Q| # 0 do
B = Dequeue(Q);
if | Bl=1then W =WUB; // B is a leaf node, add it to winners
else
o, =0|p; K =decomp(B,T); // Each B’ € K is a child node of B
if is_p_node(B,T) then // B is a P-node
for K € f(o) do Enqueue(Q, K); // Run f on summary, enqueue winners
else // B is a Q-node
w’ :f(aoK|{B1(B,T),B2(B,T)}); // Run f on the first two child nodes
if W ={By(B,T)} then
Enqueue(Q, B1(B,T)) // Enqueue the first child of B
else if W' = {By(B,T)} then
Enqueue(Q, Bk |(B,T)) // Enqueue the last child of B
else // W' ={By(B,T),B2(B,T)}
for K € K do Enqueue(Q, K); // Enqueue all children of B

their subtrees. For B C A, is_p_node(B, T) returns True (resp. False) if the node corresponding to B in
T is a P- (resp. Q-) node, raising an error if no such node exists. decomp(B, T) returns the decomposition
IC corresponding to node B, where each K € K is a child node of B (these are clone sets by Lemma 11). If
T is the tree from Fig. 4 (left), decomp(A, T') = {{a, b}, {c},{d}}, and decomp({a, b},T) = {{a}, {b}}.
For a Q-node B, let B;(B,T') be the i-th child of B according to its majority ranking o7.

Definition 12. Given an SCF f, the CC-transform of f is an SCF f¢C that, on input profile &, outputs
the candidates consistent with the output of Algorithm 1 on input f and o.

Intuitively, f¢C recursively runs f on the PQ-tree of o, starting at the root. At every P-node B, f¢¢
runs f on the summary induced by that node (¢4¢°°™P(5: 7)) ‘and continues with the winner children. At
every Q-node B, it runs f on the summary of the node restricted to its first two child nodes (B1 (B, T)
and Bo(B,T)). If the winner is By (B, T) (resp. B2(B,T)), it continues with the first (resp. last) child
node of B; if both are winners, then f continues with all the children of B. The intuition for this is
that for any Q-node B of T, the pairwise relationship between B;(B,T') and B;(B,T) is the same
foralli < j, so if Bi(o, K) defeats By(o, K) according to f (in a pairwise comparison), it will also
defeat B;(o, K) for any j > 1 by the neutrality of f. If By(o, K) defeats By (o, K) according to f,
on the other hand, then B;(o, K) will defeat B;(o, K) for any j > i by the neutrality of f, naturally
leading us to the last child node. Lastly, if both B; (o, K) and By (o, K) are winners, this implies f
cannot choose between any pair of child nodes of B, which is why we continue with all child nodes.

We will shortly show that f CC gatisfies CC, even if f fails it. Of course, a useless transformation like
f€C () = Afor all & would also achieve this. As such, we want to show that f¢C preserves some of
f’s desirable properties. It is straightforward to see that anonymity and neutrality are preserved, as
Algorithm 1 is robust to relabeling of candidates and/or voters. Further, as we will show, Condorcet and
Smith consistency, as well as decisiveness, are among the preserved properties. Unfortunately, f¢¢
does not preserve monotonicity, independence of Smith-dominated alternatives (ISDA), or participation.
This is since changing an existing vote or adding a new candidate/voter can alter the clone structure
of o, and thus its PQ-tree. We introduce relaxations of these axioms that require robustness against

changes that respect the clone structure. We first define the relaxation of monotonicity.

Definition 13. An SCF f satisfies clone-aware monotonicity (monotonicity®) if a € f(o) implies a €
f(o") whenever (1) C(o) = C(0”) and (2) forall i € N and b,c € A\ {a}, wehave a =4, b= a =,/ b
and b ~,, ¢ = b=, c

The only difference between Definition 13 and the usual definition of monotonicity (i.e., promoting
a winner in some votes should not cause them to lose) is the requirement that o and o’ have the
same clone structure. ISDA and participation® are defined analogously; see Appendix E.3 for formal
definitions and examples showing why we need these relaxations. These new axioms implicitly assume
that clone structures are inherent, based on candidates’ location in some shared space (in line with the
original interpretation by Tideman [62]), so any “realistic” change to o will not alter its clone sets.

Lastly, in order to analyze the computational complexity of f©C, we introduce the decomposition degree
of a tree, which we adapt from the definition of the decomposition degree of a tournament introduced
by Brandt et al. [5]. Following their fixed-parameter tractability framework, we will state the runtime
of Algorithm 1 in terms of a parameter § (which corresponds to the decomposition degree of a PQ-tree,
formalized below in Definition 14) and the running time of the input SCF f.

Definition 14. Given a PQ-tree 7 for a profile o, let P denote the set of P-nodes in 7". The decomposition
degree 6(T) of T is defined as §(T') = maxpep |decomp(B,T)|if P # () and §(T") = 2 otherwise.

Intuitively, §(7") is the maximum number of candidates with which Algo. 1 will run f; e.g., if T' is the left
(resp. right) PQ-tree from Fig. 4, (7T") is 2 (resp. 3). We now present our main result on CC-transforms.

Theorem 3. For any neutral SCF f, f¢C satisfies: (1) If & has no non-trivial clone sets, f°C (o) = f(o);
(2) f€C is composition-consistent; (3) If f is composition-consistent, then f€C = f, i.e., they agree for all
o; (4) If f satisfies any of {anonymity, Condorcet consistency, Smith consistency, decisiveness (on all o),
monotonicity*®, ISDA®, participation®®), then fCC satisfies this property as well; (5) Let g(n, m) be an
upper bound on the runtime of an algorithm that computes f on profiles with n voters and m candidates;
then, f¢C (o) can be computed in time O(nm3) +m - g(n,5(PQ(e))).

FOCYCC =
fCC'

Taken together, (2) and (3) immediately imply that our CC transformation is idempotent, i.e.,
f€C for all o. Further, (5) from Theorem 3 implies if f is polynomial-time computable, then so is
Even if f is not polynomial-time computable, (5) in Theorem 3 gives us a running time that depends on
the decomposition degree §(T) of the PQ-tree. Therefore, we obtain fixed-parameter tractability for
fEC (in terms of §(T)) for all (neutral) SCFs f with runtime that is polynomial in n. For example, this
includes SCFs that are NP-hard to compute when the number of candidates m is arbitrarily large, but
is polynomial-time computable for constant m, such as the (anonymous) RP [9]. Moreover, by (3) in
Theorem 3, fixed-parameter tractability also holds for SCFs that are CC to begin with.

Despite the above theoretical guarantees of Algorithm 1 one can ask how useful our CC-transform is
in practice as it does not modify the SCF unless actual clone sets exist (by (1) of Theorem 3). While
clone sets are unlikely in political elections (where the number of candidates is reasonably bounded
anyway), they may easily occur in settings where candidates or voters are not human. For example,
if the candidates are Al outputs—e.g., for reinforcement learning from human feedback (RLHF)—it is
easy to introduce minorly tweaked versions of the same output into the evaluation process (Section 6
discusses why our results may be highly relevant for RLHF). Further, voters too could be not human [64].
For example, if voters are benchmarks against which we are testing Al models (and we are supposed to
choose a model by aggregating the ranking resulting from each benchmark) [37], variants of the same
model are likely to have similar performance on each benchmark. More classically, meta-search engines
aggregate results from various ranking algorithms, each of which plays the role of a voter [21], and
cloned webpages are likely to be ranked together by each algorithm. The guarantees of Theorem 3 can
be even more critical in settings such as these, as (a) the cost of cloning can be arbitrarily low, making

it all the more important that the SCF used cannot be manipulated by such clones, and (b) the number
of candidates can be very large due to such cloning, making tractability a significant concern.

Before ending our discussion of CC-transforms, it is worth comparing f¢“ to two similar notions from
prior literature. First, in addition to CC, Laffond et al. [36] defined the CC hull of an SCF f: the smallest
(by inclusion) CC solution containing f. However, the CC hull does not necessarily preserve Condorcet
consistency and achieves CC by adding candidates to the returned set, which sacrifices decisiveness.
Second, in an unpublished preprint, Heitzig [28] introduces a similar recurrent CC transformation for
SCFs. However, his transformation does not specify the order in which clone sets need to be collapsed
and requires the original SCF to satisfy additional axioms, e.g., Condorcet consistency and anonymity.

5 Obvious Independence of Clones

We now investigate strategic behavior under IoC/CC rules. Unlike Elkind et al. [22], who study strategic
cloning when each clone set has a central “manipulator,” we focus on strategies of individual candidates,
who can personally decide whether to run in the election. Our motivation for this is that, as seen in
Section 4, a single candidate can be a member of multiple non-trivial (potentially nested) clone sets of
different sizes, and its preference over these sets may vary. To formalize this intuition, given o, for each
a,b € A, define dy(a,b) = |Ky| — 1, where K is the smallest clone set containing both a and b.

Proposition 15. For any o, d, is a metric over the candidate set A.

Now, given o and an SCF f, consider a normal-form game T/, where the players are the candidates, and
each has two actions: run (R) and drop out (D). For simplicity, we assume f is decisive; i.e., it outputs a
single winner. If exactly S C A play R, the utility of any a € A is a (strictly) decreasing function of
ds(a, f(o|g)). This follows from the assumption that clones represent proximity in some space (e.g.,
for political elections, this could be ideological): the closer the winner is to a candidate, the happier that
candidate is. If all candidates pick D, the election is void, which gives everyone the worst utility.

An action is a dominant strategy of player a if it brings (weakly) higher utility than any other action, no
matter how a’s opponents play. A (pure) strategy profile s = (s,)qc 4 specifies an action s, € {R, D}
for each player a € A. We say s is a pure-strategy Nash equilibrium (PNE) if no player a € A can strictly
increase her utility by unilaterally changing her action [47].

The setting of T/, is a restriction of the more general strategic candidacy model introduced by Dutta et al.
[19], where candidates also have a preference over each other, and accordingly choose to run or not.
Since dg(a,b) = 0 if and only if @ = b, our setting fulfills the condition of self-supporting preferences
(i.e., all candidates like themselves the best), which is taken as a natural domain restriction by Dutta et
al. An SCF is called candidate stable if for all profiles, the action profile where all candidates are running
is a PNE. For example, in our setting with I’f;, PV is not candidate stable.

Example 16. Consider T'LV, where o is the profile from Figure 2 (left). In the strategy profile in which all
candidates play R (say s™), b wins. However, if ay deviates to D, then ay wins. Since dg(a1,a2) = 1 <
3 = dg (b, as), this deviation increases the utility of as, proving s is not a PNE.

Crucially, Dutta et al. [19] show that with no restrictions on the preferences of voters or of candidates
(except the latter being self-supporting), the only SCF that is both unanimous (a candidate is picked if
all voters rank her first) and candidate-stable is dictatorship (a single voter decides the outcome). As we
show next, this is not the case in our restricted setting where d, dictates the preferences of candidates.

Proposition 17. If f is IoC, then R is a dominant strategy in T for all candidates.

Thus, in our setting, IoC rules not only achieve candidate stability, but strengthen it, as all candidates
running is a dominant-strategy Nash equilibrium. Proposition 17 is in line with prior results showing

how restricting the preferences of voters and candidates (e.g., having a Condorcet winner [19], or
single-peaked preferences [55]) can circumvent the impossibility result by Dutta et al. [19]. We require
that all preferences are consistent with some clone structure, but since any voter profile has its own clone
structure, this effectively puts no restriction on the preferences of the voters, but only on those of the
candidates. Proposition 17 formalizes the interpretation of ToC as “strategy-proofness for candidates,” in
the sense that a candidate willing to run will not drop out due to fear of hurting like-minded candidates.®

However, as demonstrated by Li [44], the benefits of a property of a mechanism might only be material-
ized if the agents actually believe that the property does indeed hold. If it is not obvious to a candidate
that a given SCF is indeed IoC, she might still drop out of the race (even though running is her dominant
strategy), either out of fear of hurting her party, or of being blamed by the voters for doing so.

In order to characterize the “obviousness” of IoC, we turn to obviously dominant strategies [44], which
inherently deal with extensive-form games (EFG), where players take actions in turns. An EFG can be
represented by a rooted tree; at each node, the associated player takes an action, each leading to a child
node. The nodes of each player are partitioned into information sets; a player cannot tell apart nodes in
the same information set. Below, we introduce obviously dominant strategies informally for games
where each player acts once; the full definition (along with that of EFGs) is in Appendix F.3.

Definition 18 (Li [44], Informal). An action s is obviously dominant for player « if for any other action
s, starting from the point in the game when a must take an action, the best possible outcome from s’ is
no better than the worst possible outcome from s.

Here, the “best” and “worst” outcomes are defined over the actions of candidates that act along with or
after a. For example, interpreting I/ from above as an EFG where all candidates act simultaneously,
running (R) may not be an obviously dominant strategy, even if f is IoC, as the next example shows.

Example 19. Consider I'STV, where o is from Fig. 2. From the perspective of a1, the worst outcome
of running (R) is if az and c also play R, but b plays D, making c the winner. The best outcome of a;
dropping out (D) is if everyone else plays R, making as win. Since dg(a1,¢) =3 > 1 = dy(a1,a2), R is
not an obviously-dominant strategy for a,. A tree representation of STV is in Figure 8 (Appendix F.5).

What if we had used a composition-consistent SCF f instead? Recall that by (3) of Theorem 3, f can
be implemented using Algorithm 1, i.e., by running it on the PQ-tree of the input profile. The key
observation is that when running Algorithm 1, we can postpone asking a candidate if she is runnin,
until we reach the parent node of that candidate. More formally, consider then an alternate EFG Ay
where the actions and utilities are the same as I'%,, but the winner is determined by running Algorithm 1
on inputs f and o, with the following process after each node B is dequeued from O:

e If B is a P-node, then all the children of B that are actual candidates (i.e., leaf nodes) are asked
(simultaneously) to pick R or D. Given S’ are the child nodes that chose D, f is run on gd¢comp(5.T) \ S’
to decide which branch to follow. If this branch is a leaf, the game is over, with the leaf being the winner.

o If B is a Q-node, say W’ = f(UK)‘{Bl(B,T),BQ(B,T)}- If W' = By(B,T) and By(B,T) is an internal
node, then it is enqueued. Otherwise, the (single) candidate corresponding to By (B, T') is asked to pick R,
in which case it is the winner, or D, in which case the process is repeated with Bo(B,T), Bs(B,T), ...
until either an internal node or a candidate that plays R is encountered. If W’ = By (B, T), the identical
process is followed, except starting from B|gecomp(B,T)| (B, T) and moving backwards.

o In either case, if all the children of B are leaf nodes and all play D, the algorithm moves back to its
parent node, and repeats the computation there (without re-asking any leaf nodes) with B dropped out.

Intuitively, AL asks each candidate whether she is running only when this decision becomes relevant.
Just like in I/, each player in AL hasa single information set, since she is not aware of the actions

SThis is not the only advantage of an IoC/CC rule; e.g., candidates also cannot make their opponents’ clone set lose by
nominating more clones in this set. In our model, we focus on the choice of whether to run.

of the players that are acting before or simultaneously with her; she only knows her parent node is
reached. The winner in AL is precisely the winner of applying f¢¢ directly to o \ S’, where S’ are the
players that picked D.” If f is CC to begin with, this exactly corresponds to f(o \ S’) by Theorem 3(3).
Figure 9 in Appendix F.5 shows the game tree for AL for o from Figure 3 and f = STV C.

Crucially, this implementation of f¢C allows us to strengthen Prop. 17, achieving obviousness.

Theorem 4. For any neutral f, R is an obviously-dominant strategy in AL for all candidates.

The proof relies on the observation that in Aé, when a candidate is asked to decide between R and D,
Algorithm 1 has already reached her parent node, which is the smallest non-trivial clone set containing
her. Thus, the best case of D and worst case of R are both one of her second-favorite group of candidates
(after herself) winning, achieving obvious strategy-proofness (OSP). Theorem 4 has strong practical
implications: since any CC rule can be implemented with Algorithm 1, the decision of a candidate to
drop out of an election can be postponed until after she learns whether her smallest clone set has won.
Hence, using a CC rule, the election result will not change if we replace the candidates’ names on the
ballots with party names, and hold in-party primaries for the winners afterwards. In contrast, with
rules that are just IoC, the results within the party vary based on whether internal primaries are held
(Example 6). Without primaries, CC rules can also derive clone sets a posteriori from the votes.

Obviousness is also relevant for contexts where candidates (or, for settings with abstract candidates,
their deployers) are perfectly capable of reasoning about an SCF and its properties, but they worry
about manipulation of the SCF by the entity implementing it (agenda control [38]). As shown by Li [44],
choice rules that are OSP-implementable offer a significant advantage in these settings, as they are
exactly those that are supported by bilateral commitments (partial commitments by the planner such
that, if violated, those violations can be observed by the agents themselves without communicating).
In the context of Aé, instead of committing to using a specific SCF, the planner can commit to each
candidate he interacts with that, if she decides to run, the winner will be some member of her smallest
non-trivial clone set. This (1) is enough to convince the candidate to run and (2) ensures that a violation
of this commitment can be observed by the candidate (by looking at the outcome of the election).

In general, the connection we establish between IoC and CC yields new and natural interpretations of
the two properties: we can view CC as a way of exposing the obviousness of IoC.

6 Conclusion and Future Work

An exciting direction of future work is to study the role that IoC and CC can play in Al alignment. Meth-
ods such as reinforcement learning from human feedback (RLHF) require aggregating data representing
diverse human opinions, for which social choice methods are well-suited. It is relatively easy to copy Al
model responses, or even entire models, and perform small tweaks to them (e.g., via fine-tuning). Such
tweaks are unlikely to outperform other significantly better models, hence forming a clone set. Xu et al.
[63] demonstrate that using non-IoC aggregation rules for RLHF can result in egregious behavior,?
a result that is especially concerning as standard RLHF approaches implicitly use Borda Count [58],
which fails IoC. Thus, as pointed out by Conitzer et al. [15], IoC (and thereby CC) are highly relevant
for social choice for Al models. In line with this agenda, Procaccia et al. [52] have recently studied
how existing RLHF algorithms can be modified to increase their robustness against clones. A natural
strengthening of this goal for future work is developing RLHF approaches that implicitly use CC rules.

"There is a slight caveat here: the leaf nodes that are children of internal nodes that never got visited did not get to play
Ror D in Af. Any choice these candidates could have made does not change the result of f as long as at least one candidate
of each non-trivial clone set were to pick R. This is in line with the assumption made by Elkind et al. [22] that at least one
clone of each clone set will be in the election. This is not a far-fetched assumption: in practice, it is the leadership of a political
party that decides to participate in an election, before individual members of the party make up their mind about running.

8While the Xu et al. [63] present these undesirable outcomes as a failure to meet the independence of irrelevant alternatives
property by Luce [45], the demonstrated pathology would also be prevented if the aggregation rule being used was IoC.

References

(1]

[16]

[17]
[18]
[19]

[20]

Niclas Boehmer, Robert Bredereck, and Dominik Peters. Rank aggregation using scoring rules.
arXiv preprint arXiv:2209.08856, 2022.

Kellogg S Booth and George S Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3):
335-379, 1976.

Florian Brandl, Felix Brandt, and Hans Georg Seedig. Consistent probabilistic social choice.
Econometrica, 84(5):1839-1880, 2016.

Felix Brandt. Some remarks on Dodgson’s voting rule. Mathematical Logic Quarterly, 55(4):460-463,
July 2009.

Felix Brandt, Markus Brill, and Hans Georg Seedig. On the fixed-parameter tractability of
composition-consistent tournament solutions. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2011.

Felix Brandt, Christian Geist, and Dominik Peters. Optimal bounds for the no-show paradox via
SAT solving. Mathematical Social Sciences, 90:18—27, 2017.

Felix Brandt, Markus Brill, and Paul Harrenstein. Extending tournament solutions. Social Choice
and Welfare, 51(2):193-222, 2018.

Markus Brill and Vincent Conitzer. Strategic voting and strategic candidacy. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2015.

Markus Brill and Felix Fischer. The price of neutrality for the ranked pairs method. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2012.

Rosa Camps, Xavier Mora, and Laia Saumell. A continuous rating method for preferential voting.
the incomplete case. Social Choice and Welfare, 40(4):1111-1142, April 2012.

Christian Capelle, Michel Habib, and Fabien de Montgolfier. Graph decompositions and factorizing
permutations. Discrete Mathematics and Theoretical Computer Science, 5:55-70, 2002.

Ioannis Caragiannis, Christos Kaklamanis, Nikos Karanikolas, and Ariel D. Procaccia. Socially
desirable approximations for dodgson’s voting rule. In Proceedings of the ACM Conference on
Economics and Computation (EC), 2010.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios N. Angelopoulos, Tianle Li, Dacheng Li,
Banghua Zhu, Hao Zhang, Michael I. Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
an open platform for evaluating llms by human preference. In Proceedings of the International
Joint Conference on Artificial Intelligence (ICML), 2024.

Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score rankings and
maximum likelihood estimation. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2009.

Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H. Holliday, Bob M. Jacobs, Nathan
Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, Emanuel Tewolde, and
William S. Zwicker. Position: Social choice should guide Al alignment in dealing with diverse
human feedback. In Proceedings of the International Joint Conference on Artificial Intelligence
(ICML), 2024.

Denis Cornaz, Lucie Galand, and Olivier Spanjaard. Kemeny elections with bounded single-peaked
or single-crossing width. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2013.

Théo Delemazure and Dominik Peters. Generalizing instant runoff voting to allow indifferences.
In Proceedings of the ACM Conference on Economics and Computation (EC), 2024.

Arnaud Dellis and Mandar Oak. Multiple votes, multiple candidacies and polarization. Social
Choice and Welfare, 46(1):1-38, 2016.

Bhaskar Dutta, Matthew O. Jackson, and Michel Le Breton. Strategic candidacy and voting
procedures. Econometrica, 69(4):1013-1037, 2001.

Bhaskar Dutta, Matthew O. Jackson, and Michel Le Breton. Voting by successive elimination and

strategic candidacy. Journal of Economic Theory, 103(1):190-218, 2002.

[21] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for the
web. In Proceedings of the World Wide Web Conference, 2001.

[22] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Cloning in elections: Finding the possible
winners. Journal of Artificial Intelligence Research, 42:529-573, 2011.

[23] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Clone structures in voters’ preferences. In
Proceedings of the ACM Conference on Economics and Computation (EC), 2012.

[24] Edith Elkind, Piotr Faliszewski, Jean-Francois Laslier, Piotr Skowron, Arkadii Slinko, and Nimrod
Talmon. What do multiwinner voting rules do? an experiment over the two-dimensional euclidean
domain. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2017.

[25] Peter C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33(3):
469-489, 1977.

[26] Rupert Freeman, Markus Brill, and Vincent Conitzer. On the axiomatic characterization of runoff
voting rules. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2014.

[27] Donald B. Gillies. Solutions to General Non-Zero-Sum Games, pages 47-86. Princeton University
Press, 1959.

[28] Jobst Heitzig. Social choice under incomplete, cyclic preferences. arXiv preprint arXiv:0201285,
2002. Unpublished.

[29] Jobst Heitzig and Forest W. Simmons. Some chance for consensus: voting methods for which
consensus is an equilibrium. Social Choice and Welfare, 38(1):43-57, November 2010.

[30] Wesley H. Holliday. A simple condorcet voting method for final four elections (march 13, 2024).
SSRN Electronic Journal, 2024.

[31] Wesley H. Holliday and Eric Pacuit. Split cycle: a new condorcet-consistent voting method
independent of clones and immune to spoilers. Public Choice, 197(1-2):1-62, August 2023.

[32] Alexander Karpov. On the number of group-separable preference profiles. Group Decision and
Negotiation, 28(3):501-517, 2019.

[33] Alexander Karpov and Arkadii Slinko. Symmetric maximal condorcet domains. Order, 40(2):
289-309, September 2022.

[34] Semih Koray and Arkadii Slinko. Self-selective social choice functions. Social Choice and Welfare,
31(1):129-149, September 2007.

[35] Justin Kruger and Stéphane Airiau. Permutation-based randomised tournament solutions. In
Proceedings of the European Conference on Multi-Agent Systems (EUMAS), 2018.

[36] Gilbert Laffond, Jean Lainé, and Jean—FranAgis Laslier. Composition-consistent tournament
solutions and social choice functions. Social Choice and Welfare, 13(1):75-93, 1996.

[37] Marc Lanctot, Kate Larson, Yoram Bachrach, Luke Marris, Zun Li, Avishkar Bhoopchand, Thomas
Anthony, Brian Tanner, and Anna Koop. Evaluating agents using social choice theory. arXiv
preprint arXiv:2312.03121, 2025.

[38] Jérome Lang, Nicolas Maudet, and Maria Polukarov. New results on equilibria in strategic candidacy.
In Proceedings of the International Symposium on Algorithmic Game Theory (SAGT), 2013.

[39] Jean-Francois Laslier. Tournament Solutions and Majority Voting. Springer Berlin Heidelberg, 1997.

[40] Jean-Francois Laslier. Aggregation of preferences with a variable set of alternatives. Social Choice
and Welfare, 17(2):269-282, March 2000.

[41] Jean-Francois Laslier. And the Loser Is... Plurality Voting, pages 327-351. Springer Berlin Heidelberg,
2012.

[42] Jean-Francois Laslier and Karine Van der Straeten. Strategic voting in multi-winner elections with
approval balloting: a theory for large electorates. Social Choice and Welfare, 47(3):559-587, 2016.

[43] Patrick Lederer. Bivariate scoring rules: Unifying the characterizations of positional scoring rules
and kemeny’s rule. Journal of Economic Theory, 218, June 2024.

[44] Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):3257-3287,
November 2017.

[45] R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. John Wiley and Sons, New

[61]
[62]
[63]

[64]

York, NY, 1959.

Ross M McConnell and Fabien De Montgolfier. Linear-time modular decomposition of directed
graphs. Discrete Applied Mathematics, 145(2):198-209, 2005.

John Nash. Non-cooperative games. PhD thesis, Priceton University, 1950.

Andrew Needham. 1934 election oregon results. Technical Report APD/21/3845, Oregon Secretary
of State, Nov 2021.

Svetlana Obraztsova, Edith Elkind, Maria Polukarov, and Zinovi Rabinovich. Strategic candidacy
games with lazy candidates. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

Z. Emel Oztirk. Consistency of scoring rules: a reinvestigation of composition-consistency.
International Journal of Game Theory, 49(3):801-831, January 2020.

Maria Polukarov, Svetlana Obraztsova, Zinovi Rabinovich, Alexander Kruglyi, and Nicholas R.
Jennings. Convergence to equilibria in strategic candidacy. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). AAAI Press, 2015.

Ariel D. Procaccia, Benjamin Schiffer, and Shirley Zhang. Clone-robust ai alignment. arXiv preprint
arXiv:2501.09254, 2025.

Rob Richie, Jeremy Seitz-Brown, and Lucy Kaufman. The case for instant runoff voting. Constitu-
tional Political Economy, 34(3):367-377, January 2023.

Hiroki Saitoh. Characterization of tie-breaking plurality rules. Social Choice and Welfare, 59(1):
139-173, January 2022.

Yusuke Samejima. Strategic candidacy and single-peakedness. The Japanese Economic Review, 58
(4):423-442, 2007.

Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-
consistent single-winner election method. Social Choice and Welfare, 36(2):267-303, July 2010.
Thomas Schwartz. The logic of collective choice. Columbia University Press, 1986.

Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learn-
ing: Understanding and accounting for hidden context in RLHF. arXiv preprint arXiv:2312.08358,
2024.

John H. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):1027-1041,
1973.

Krzysztof Sornat, Virginia Vassilevska Williams, and Yinzhan Xu. Fine-grained complexity and
algorithms for the schulze voting method. In Proceedings of the ACM Conference on Economics and
Computation (EC), July 2021.

N. Tideman. Collective Decisions and Voting: The Potential for Public Choice (1st ed.). Routledge,
2006.

Thorwald Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice
and Welfare, 4:185-206, September 1987.

Wangiao Xu, Shi Dong, Xiuyuan Lu, Grace Lam, Zheng Wen, and Benjamin Van Roy. RLHF and
ITA: Perverse incentives. arXiv preprint arXiv:2312.01057, 2024.

Yixuan Even Xu, Hanrui Zhang, Yu Cheng, and Vincent Conitzer. Aggregating quantitative relative
judgments: From social choice to ranking prediction. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2024.

T. M. Zavist and T. N. Tideman. Complete independence of clones in the ranked pairs rule. Social
Choice and Welfare, 6(2):167-173, April 1989.

William S. Zwicker. Introduction to the theory of voting. In Felix Brandt, Vincent Conitzer, Ulle
Endriss, Jérome Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice,
chapter 2. Cambridge University Press, 2016.

Ratip Emin Berker

Foundations of Cooperative Al Lab, Carnegie Mellon University
Pittsburgh, PA, USA

Email: rberker@cs.cmu. edu

Silvia Casacuberta

University of Oxford

Oxford, UK

Email: silvia.casacuberta.puig@cs.ox.ac.uk

Isaac Robinson

University of Oxford

Oxford, UK

Email: isaac.robinson@univ.ox.ac.uk

Christopher Ong

Harvard University

Cambridge, MA, USA

Email: christopherong®@g.harvard.edu

Vincent Conitzer

Foundations of Cooperative Al Lab, Carnegie Mellon University
Pittsburgh, PA, USA

Email: conitzer@cs.cmu.edu

Edith Elkind

Northwestern University
Evanston, IL, USA

Email: eelkind@gmail . com

A Further Background

A.1 Related Work

Independence of Clones and Composition Consistency. In this section, we give a conceptual
overview of the literature on independence of clones (IoC) and composition consistency (CC), and point
out potential origins for some inconsistencies. We formalize these claims in Appendix A.2.

In order to identify candidates “close” to one another (at least according to voters), Tideman [62]
introduces the notion of clone sets and the property of independence of clones (IoC) for social choice

rberker@cs.cmu.edu
silvia.casacuberta.puig@cs.ox.ac.uk
isaac.robinson@univ.ox.ac.uk
christopherong@g.harvard.edu
conitzer@cs.cmu.edu
eelkind@gmail.com

functions (SCFs) that are robust to changes in these sets. Seemingly unaware of Tideman’s work,
Laffond et al. [36] tackle a similar question by introducing the concept of components of candidates and
the property of composition consistency (CC). Importantly, Laffond et al. provide two separate definitions
for components, one for a tournament (a single asymmetric binary relationship on candidates) and
one for a preference profile (individual preferences of voters over candidates), and thus two different
definitions of CC for tournament solutions and SCFs, which respectively map tournaments and profiles
to winners. While Laffond et al’s components for profiles is equivalent to Tideman’s clone sets, later
work has described the former as “more liberal”/“weaker” [15, 30], potentially due to focusing on the
definition of components of tournaments instead (See our Example 22).

The relationship between IoC and CC has been similarly unclear, despite the latter being strictly more
demanding for SCFs (Proposition 8). Potentially due to SCFs taking a relatively small space in the work
of Laffond et al. [36], subsequent papers have primarily studied CC tournament solutions [39, 5, 7],
even describing components/CC to be “analogue” of clones/IoC for tournaments [22, 18, 33]. Other
works, while identifying a link between IoC and CC, have not been precise on their relationship [4, 50,
34, 41, 43, 54, 24, 10, 42], describing them as “similar” notions [39, 29] or “related” [5].

There are papers that come much closer in identifying CC as a stronger axiom than IoC: working
in a more general setting where voters’ preferences are neither required to be asymmetric (ties are
allowed) nor transitive, Laslier [40] introduces the notion of cloning consistency, which he explains
is weaker than CC and is the “same idea” as Tideman’s IoC in voting theory. However, there are
significant differences between Laslier’s definition and IoC: first, his “clone set” definition requires
every voter being indifferent between any two alternatives in the set (as opposed to having the same
relationship to all other candidates), and his cloning consistency dictates that if one clone wins, then so
must every other member of the same clone set. Another property for tournament solutions named
weak composition consistency (this time in fact analogous to IoC) is discussed by Brandt et al. [7], Kruger
and Airiau [35], and Laslier [39], although none of them point out the connection to Tideman’s IoC.
Perhaps the work that does the most justice to the relationship between CC and IoC is by Brandl et al.
[3], who explicitly state that Tideman’s IoC (which they refer to as cloning consistency) is weaker
than Laffond et al’s CC. Since they work with the more general model of probabilistic social choice
functions (PSCF), their observation that CC is stronger than IoC applies to our setting (although the
adaptation is not obvious); we formalize this in Proposition 8. The PSCFs analyzed by Brandl et al. are
all non-deterministic; hence, to the best of our knowledge, no previous work has studied whether IoC
SCFs also satisfy CC, which we do in Section 3.

Strategic Cloning. Cloning and voting rules that are IoC are also of interest from a game theory
perspective due to their connection to strategic manipulation in elections [60, 23, 17, 12]. While most
of (computational) social choice research treats the set of candidates as fixed, cloning inevitably goes
beyond this assumption. To study manipulative behavior in settings with varying candidates, Dutta
et al. [19, 20] have initiated the study of strategic candidacy, where candidates too have preferences
over each other and may choose whether to run in the election. They define an SCF as candidate stable
if no candidate can benefit from not running given that all others are running, and show that this
property is failed by every non-dictatorial SCF satisfying unanimity. Subsequent work has analyzed the
computational aspects of strategic candidacy in extensions of this model, such as when candidates incur
a small cost for running [49], when candidates can decide to rejoin the election after dropping out (albeit
with possibly less support) [51], or when both voters and candidates are behaving strategically [8].
Many of these papers allude to, but do not formally define, a connection between strategic candidacy
and cloning. We do so in Section 5, where we use the model of strategic candidacy to analyze the
strength of robustness of IoC/CC rules against spoilage by clones.

Recently, Holliday and Pacuit [31] have introduced novel robustness criteria they call immunity to
spoilers and immunity to stealers, which study the impact of adding candidates that are not necessarily

clones (but must fulfill some other conditions). These criteria are incomparable in strength to IoC/CC,
and while we focus exclusively on the impact of similar candidates (i.e., clones), we believe the methods
we develop may be of future interest for studying different types of spoilers.

A.2 Extended Preliminaries

In this section, we give a more extended analysis of the concepts and definitions introduced by Tideman
[62] and by Laffond et al. [36]. To give a more complete picture, this section repeats some of the
information given in Section 2 (Preliminaries) of the main body of the paper.

Preference profiles and clones We consider a finite set of voters N = {1, ... ,n} and a finite set
of candidates A with |A| = m. A ranking over A is an asymmetric, transitive, and complete binary
relation > on A; we denote the set of all rankings over A by £(A). Each voter i € N has a ranking
o; € L(A); we write a >; b to indicate that 7 ranks a above b, and collect the rankings of all voters in a
preference profile o € L(A)". Given o, how can we identify candidates that are “close” to one another,
at least from the point of view of the voters? Tideman [62] addressed this question:

Definition 20 (Tideman 62, §I). Given a preference profile o over candidates A, a nonempty subset
of candidates K C A is a set of clones with respect to o if no voter ranks any candidate outside of K
between any two elements of K.

Note that all profiles ways have two types of trivial clone sets:’ (1) the entire candidate set A, and (2)
for each a € A, the singleton {a}. We call all other clone sets non-trivial. For example, in the preference
profile in Figure 5, the only non-trivial clone set is {b, c}.

Seemingly unaware of Tideman’s definition, Laffond et al. [36] tackled a similar question of identifying
similar candidates. First, they focused on the context of a tournament T', which is a complete asymmetric
binary relation on the candidates A (i.e., a ranking with the transitivity condition relaxed). For a
tournament, they defined:

Definition 21 (Laffond et al. 36, Def. 1). Given a tournament 7" over candidates A, a nonempty subset
of candidates C' C A is a component of T'if forall y,y/ € C andallz € A\ C:y =7 x = ¢ 1 2.

Of course, any preference profile o with odd number of voters (to avoid ties) can be interpreted as a
tournament 7, over the same set of candidates, where the binary relation is given by the pairwise
defeats of o; i.e., Va, b € A:

a7, be |{ieN:tas,, b} >|{ieN:b>,, a}|.

Considering the similarities between Definitions 1 and 21 (they both group up candidates that have an
identical relationship to other candidates), one might expect them to respect this transformation; that
is, for K to be a clone set of o if and only if it is a component of T,,. However, this is not the case, as
we demonstrate next.

Voter 1 | Voter 2 | Voter 3
b c a
c b c
a d b
d a d

Figure 5: A preference profile. Columns show rankings.

°Tideman [62] in fact excludes trivial clone sets. We use the definition followed by Elkind et al. [23].

Example 22. Consider again the profile in Figure 5. Here, {a, b} is a component in T (they both defeat
d and both lose to c), but they are not a set of clones in o, since, for example, Voters 1 ranks c between
them. The intuition behind this is that when interpreting a preference profile as a tournament, we lose
information about the preferences of individual voters. Indeed, it is easy to see that the implication holds in
one direction: if K is a set of clones of o, then it is a component of T, .

However, Laffond et al. [36] introduce a separate definition for components for a preference profile or,
more accurately, to the more general notion of a tournament profiles (T;);co, where voters are allowed
to submit tournaments (i.e., votes need not be transitive):

Definition 23 (Laffond et al. 36, Def. 4). Given tournament profile T' = (7;);c N, a nonempty subset of
candidates C' C A is a component of T if C' is a component of T; for all i € N.

One can see from Definition 21 that if a tournament is transitive (i.e., a ranking), then C' is a component
of T' if and only if it appears as an interval in that ranking. As such, given a tournament profile
T = {T;}ien where all voters submit transitive tournaments (i.e., rankings), C' is a component of 1" if
and only if it appears as an interval in the vote of every voter. As such, Laffond et al’s Definition 23
restricted to preference profiles is in fact equivalent to Tideman’s definition of a set of clones (Definition
1)! For instance, in the profile from Figure 5, {a, b} is not a component according to Definition 23, since
it is not a component of Voter 1’s ranking (or of any other voter’s, although one is enough to disqualify).

Social choice functions and axioms Of course, identifying “similar” candidates in a voting profile
is useless unless one can say something meaningful about their impact on the election result. This
impact depends on the voting rule we are using to compute the winners. More formally, say P(A) is the
power set of A (set of all subsets). Then, a social choice function (SCF) is a function f : L(A)" — P(A)
that maps each preference profile o to a subset of A, which are termed the winner(s) of & under f. In
an election without ties, the output of an SCF contains a single candidate.

Before introducing axioms for robustness against strategic cloning, it is worth noting that for SCFs that
are not robust, the exact influence of addition of similar candidates can vary: for example, introducing
clones of a candidate can hurt that candidate for an SCF like plurality voting (which simply picks the
candidate(s) ranked first by the most voters) by splitting the vote (as was the case from the Oregon
governor race from the introduction of the main body of the paper), making plurality what we call
clone-negative. On the other hand, having clones can somtimes help a candidate win if the SCF being
used is Borda count, which gives each candidate one point for every other candidate it beats in each
voter’s ranking, and picks the candidate(s) with the most points as the winners.

Example 24. Consider the following voting profile for candidates a and b:

62 voters | 38 voters
a b
b a

In this case, candidate a receives 62 Borda points, whereas candidate b receives 38 Borda points. Thus,
candidate a wins the election. Next we introduce a clone of b, obtaining the following voting profile:

62 voters | 38 voters
a b
b b
b2 a

Now candidate a receives 124 Borda points, b receives 138 Borda points, and by receives 38 Borda points.
Hence, candidate b now becomes the winner.

Example 24 shows that unlike with plurality voting, having a clone can positively impact a candidate
under Borda count, thus making Borda count clone-positive for this specific profile (in order profiles,
having clones can in fact hurt your Borda score). Either of these impacts are undesirable, considering
they incentivize strategic nomination, either of candidates similar to one’s opponents, or of candidates
similar to one’s self, both of which can be arbitrarily easy. As such, we would like to find axioms such
that if an SCF satisfies them, then they are in some way robust to this type of strategic nomination.

Along with their (equivalent) definitions for similar candidates in preference profiles, Tideman [62]
and Laffond et al. [36] each introduce their own axiom for identifying SCFs that behave “desirably”
in response to addition/removal of such candidates. Since we will deal with preference profiles (say
o) with some candidates (say A’ C A) removed, it will be useful to use o \ A’ to denote the profile
obtained by removing the elements of A’ from each voter’s ranking in o and preserving the order of all
other candidates.

We begin with the axiom by Tideman [62], who explicitly identified the goal of achieving robustness
against strategic nomination. Zavist and Tideman [65] later presented the definition with more precise
language, which is the version we use for clarity.

Definition 25 (Zavist and Tideman 65). A voting rule f is independent of clones (IoC) if the following
two conditions are met for all profiles o and for all non-trivial clone sets K C A with respect to o

1. Forall a € K, we have:
Knf(e)#0 < K\{a}nflo\{a}) #0.
2. Foralla € Kandallb € A\ K we have:
be flo)=be flo\{a})

Intuitively, IoC dictates that deleting one of the clones must not alter the winning status of the set of
clones as a whole, or of any candidate not in the set of clones. This is a desirable property in SCFs,
since it imposes that the winner must not change due to the addition of a non-winning candidate who
is similar to a candidate already present. This prevents candidates from influencing the election by
nominating new copy-cat candidates.

Example 26. Consider running plurality voting (PV') on the profile o in Figure 2 (left). We have
fpv (o) = {b}, as it is the top choice of 4 voters, more than any other candidate. Moreover, {a1,as} is
a clone set with respect to o. However, fpy (o \ {a2}) = {a1}, since with as gone, a; now has 5 voters
ranking it top, beating b (Figure 2, right). This violates both conditions 1 and 2 from Definition 25, as the
removal of a clone (ay from clone set {a1, as}) results in another clone (a1) winning, while previously none
did, and eliminates a previous winner outside the clone set (b).

Instead, consider running Single Transferable Vote (STV) on o, which is an SCF that iteratively removes
the candidates with the least plurality votes from the ballot, returning the last remaining candidate (see
Table 1). We have STV (o) = {a1} as az is removed with 2 plurality votes (causing a1 to now have 5
plurality votes), followed by the c with 3 plurality votes, and finally b with 4 plurality votes. Similarly,
STV (o \ {az2}) = {a1}, since ay was going to be the first candidate to be eliminates anyway. Hence, in
both cases, a member of the clone set {a1, as} wins. This is in line with the fact that STV is IoC [62].

Like Tideman’s presentation of IoC, Laffond et al. [36] were also concerned with the manipulability
of elections through cloning. However, the core of the presentation of their axiom, aptly named
composition consistency, focuses on the consistency between applying a rule directly, or applying it
through a two-stage mechanism. In order to formalize this mechanism, we introduce a few concepts.

Definition 27. Given a preference profile o over candidates A, a set of sets L = { K1, Ko, ..., K}
where K; C Aforalli € [] is a clone decomposition with respect to o if

1. K is a disjoint partitioning of A, i.e: A = Llie[é] K;and K; N K; = () for i # j, and

2. each K is a non-empty clone set with respect to o.

A given profile o can have multiple distinct clone decompositions. Indeed, every profile has at least two
decompositions: the null decomposition /C,,,,;; = { A} and the trivial decomposition Ky, = {{a}}eca.
Given a clone decomposition K with respect to o, for each i € N, say Jf is voter ¢’s ranking over
the clone sets in /C (which is well defined, since each clone set appears as an interval in ;). We call
ok = {af}ie[n] the summary of o with respect to decomposition K, which is a preference profile
treating the elements of K as the set of candidates. Lastly, for each K € K, say o|x is o with A\ K

removed (i.e, o|g = o \ (A\ K)). We are now ready to introduce composition products.

Definition 28 (Composition product). Given any SCF f, the composition product function of f is a
function Iy that takes as input a profile o and a clone decomposition X with respect to o and outputs

(o, K) = UKef(a"C) fa™).

Intuitively, II first runs the input voting rule f on the summary (as specified by K), “packing” the
candidates in each set to treat it as a meta-candidate K;. It then “unpacks” the clones of each winner
clone set, and runs f once again on each. We demonstrate this in the following example.

Example 29. Once again consider o from Figure 2. Notice K = {K,, Ky, K.} with K, = {a1, a2},
Ky = {b} and K, = {c} is a valid clone decomposition with respect to o. Figure 3 shows o and o%«.
We have STV (%) = K, (K. gets eliminated first followed by K;) and STV (o|k,) = {az}, implying
HSTv(O',]C) = {ag}.

Example 29 demonstrates that STV (o) # g7y (o, K) for this specific o and K, showing STV is
not consistent with respect to this decomposition, even though the winners in two cases are from the
same clone set. It is also easy to see that for all rules f and all o, we have f(o) = Il (o, K,u) =
II4(o, Kiriv). To satisfy composition consistency, a rule must satisfy this equality for all non-trivial
decompositions too.

Definition 30 (Laffond et al. 36, Def. 11). An SCF f is composition-consistent (CC) if for all preference
profiles o and all clone decompositions K w.r.t. o, we have f(o) = II¢(o, K).

Intuitively, an SCF is CC if it chooses the “best” candidates from the “best” clone sets [36]. While any
other member of the clone set winning after the removal of a winner clone is sufficient by IoC, CC
also specifies which exact clones should be winning. We formalize this hierarchy in Proposition 8 by
showing CC implies IoC. Example 29 already demonstrates that the other direction is untrue, as it
proves that STV, which is IoC, is not CC. In Section 3 of the main body, we analyze other IoC rules to
show whether they are CC.

B Majoritarian SCFs

While tournaments (complete and asymmetric binary relationships over A) are not the main focus
of this paper, it is worth briefly discussing how our results in Section 3 relate to prior results on CC
tournament solutions (TSs), which map tournaments to sets of winners. As noted in Appendix A.1,
Laffond et al. [36] introduce two separate definitions of components, in tournaments and in profiles
(see Definitions 21 and 23 in our Appendix A), and thus two separate definitions of CC for SCFs and

Name of SCF f Description of the SCF’s output on input profile o

Given o, we say that B C A is undominated if no a € A\ B pairwise
Sz | defeats (preferred to by a strict majority of voters) any b € B. The winners
are the union of minimal (by inclusion) undominated sets.

Schwartz [57]
set (GOCHA)

Smith [59] set 9m Outputs the smallest set of candidates who all pairwise defeat every
(GETCHA) candidate outside the set.

Given o and a, b € A, we say that a left-covers bif any ¢ € A that pairwise

UCgq | defeats a also pairwise defeats b. The winners are all @ € A such that

there is no b € A that left-covers and pairwise defeats a.

Uncovered Set
[27]

Table 2: Majoritarian SCFs considered in this paper (For non-majoritarian SCFs, see Table 1). Second column
indicates our notation for the SCF as a function.

for TSs. Subsequent work has primarily focused on the latter, showing TSs such as uncovered set, the
minimal covering set, and the Banks set are CC [36, 39].

Of course, if | N| is odd, the pairwise defeats in o define a tournament, so any TS can be thought of as
an SCF that maps o to the winners of this induced tournament. However, for a TS to be well-defined as
an SCF (without assuming odd | N|), it must be extended to cases where the pairwise defeat relationship
may contain ties (equivalently, to incomplete tournaments). Such induced SCFs are called majoritarian.
All three of the SCFs in Table 2 are majoritarian; additionally, like the SCFs in Table 1, they are all
known to be IoC (c¢f. Holliday and Pacuit [31]).

As we show next, the axiomatic properties of a TS extended to a SCF may depend on the specific
extension. For example, UC in Table 2 is an extension of the TS uncovered set. Another extension
of the same TS follows from the work of Fishburn [25], and is defined as follows (recall that we say a
left-covers b if any c that pairwise defeats a also pairwise defeats b):

UCr (o) = {a € A: b c Asuch that b left covers a but a does not left-cover b}.

It can be checked that UCr(o) = UCq (o) whenever pairwise defeats have no ties, i.e., they are
extensions of the same TS. Crucially, even though uncovered set is CC as a TS, UCF is not even
IoC [31]! This demonstrates that a TS being CC is not sufficient for its SCF extension to be CC.
As we show next, UCq (Table 2) in fact maintains the CC property.

Proposition 31. UCg is CC.

Proof. Recall from Table 2 that given o and a,b € A, we say that a lefi-covers b in o if any ¢ € A that
pairwise defeats a also pairwise defeats b. Then UCj; is defined as

UCg = {a € A: b € A such that b left-covers AND pairwise defeats a}.

Fix any profile o and clone decomposition K with respect to o. We will show that UCg (o) =
IIyc, (o, K). Equivalently, for any a € A, we will show that a ¢ UCq (o) < a ¢ llyc,(o,K).

(=) :Saya ¢ UCq(0o), then 3b € A such that b left-covers and pairwise defeats a in o. Say K, € K
is the clone set that contains a. We will consider two cases:

1. b € K,. For each ¢ € K, that pairwise defeats b in o |x,, we must have that ¢ pairwise defeats
a in o|k,, since b left-covers a in o and deletions of other candidates do not affect pairwise
victories of the remaining candidates. Hence, b left-covers and pairwise defeats a in o |k, . This
implies a ¢ UCq(o|Kk,)-

2. b¢ K,. Say K}, € K\ {K,} is the clone set containing b. Since b pairwise defeats a in o, K
pairwise defats K, in o by the clone set definition. Take any K € K that pairwise defeats K,

Satisfies neither CC nor IoC
eRP PV oUCk!

Satisfies IoC
STV eAS eBP eRPy eSC eSz' eSmf

Satisfies CC
oRP; ¢ UC!

Figure 6: Behavior of SCFs from Tables 1 and 2 w.r.t IoC/CC. } indicates majoritarian SCFs.

in 0. This implies there exists some ¢ € K that pairwise defeats b in . Since b left-covers a
in o, this implies ¢ pairwise defeats a in o and thus K pairwise defeats K, in o*. Hence, K,
left-covers and pairwise defeats K, in o, implying K, ¢ UCq (o).

This implies we either have a ¢ UCg(o|k,) or K, ¢ UCg(o”). By Definition 5, this implies
a ¢ yc,(o,K).

(<) :Saya ¢ Ilyc, (o, K) and K, € K is the clone set that contains a. This implies at least one of
the two following two cases must be true:

1. a ¢ UCq(o|Kk,). Then there exists b € K, that left-covers and pairwise defeats a in o |, . Since
pairwise defeats are not affected by the addition of other candidates, b also pairwise defeats a in
o. Take any c € A that pairwise defeats b. If c € K, then c must pairwise defeat a because b left
covers o|g,. If ¢ ¢ K,, then c must pairwise defeat a by the clone set definition, since a,b € K.
Thus, b left-covers and pairwise defats a in o, implying a ¢ UCq(o).

2. K, ¢ UCg(a™). Then there exists K € K that left-covers and pairwise defeats K, in o*. Since
K, cannot pairwise defeat itself, this implies K # K. Take any b € K. Since K pairwise defeat
K, in o, this implies b pairwise defeats a in o. Take any ¢ € A that pairwise defeats b in o.
We cannot have ¢ € K, since K pairwise defeats K. If ¢ € K, then ¢ must pairwise defeat a
since K pairwise defeats K,. If ¢ ¢ K, say K. € K\ {K,, K} is the clone set that contains c.
Since ¢ pairwise defeats b in o, K. pairwise defeast K in 0. Since K left-covers K, in o*, this
implies K. pairwise defeats K, and therefore c pairwise defeats a in o. Hence, b left-covers and
pairwise defeats a, implying a ¢ UCq (o).

Hence, a ¢ ¢, (o, K) implies a ¢ UC¢(o), completing the proof. O

The disparity between UCF and UCg motivates future work in investigating whether other TSs known
be CC can be extended into SCFs while maintaining CC (cf. Brandt et al. [7] for a conservative extension
of any TS that in fact preserves CC). Existing negative results for TSs, on the other hand, readily
generalize to any of their extensions. This is because Laffond et al. [36] show that for any tournament
and a decomposition K into its (tournament) components, there exists some preference profile (that
induces this tournament) for which X is once again a valid decomposition (their Prop. 1); this can be
used to show that the CC definitions for TSs and their SCF interpretations coincide under the odd | N|
assumption [36, Prop. 2]. Since Sm and Sz (Table 2) are both SCF extensions of the TS top cycle, which
is not CC, we get:

Proposition 32 (Consequence of Laffond et al. [36, Props. 2, 5]). Sm and Sz are not CC.

For a summary of our results from Section 3 and Appendix B, see Figure 6.

C Social Preference Functions

We now turn to social preference functions (SPFs), which, given input o, return a set of rankings of A,
rather than a subset of candidates. Indeed, SPFs may be more useful than SCFs in certain settings, such
as the meta-search engine example in the previous section. We will first present the definition of IoC
for SPFs as introduced by Freeman et al. [26].

For a ranking r over A and a non-empty K C A, let r—x_,, be the ranking obtained from r by replacing
the highest-ranked element of K" with a new candidate z and removing all other candidates in K. For
example, if r = (a = b = ¢ = d) and K = {b,d}, then 7y gy_,, = (a = z = c). For a set of rankings
R,let R—g_,, = {T_‘K—m re R}

Definition 33. [Freeman et al. 26, Def. 4] An SPF F' is independent of clones (IoC) if for all o, each
non-trivial clone set K, and a € K, we have F(0)—~k . = F(o \ {a})=(k\{a})—=-

Much like its SCF precursor, the IoC criterion for SPFs focuses on the performance of some clone in K,
which is not necessarily the clone that would have ranked the highest if the same SPF was applied to
members of K alone. Once again, we would like to strengten this property.

To the best of our knowledge, CC has not been studied for SPFs in prior work. Hence, we now
introduce a natural extension of Definition 7. Given rankings 7 and 7’ over different sets, where a
appears in r, let r(a — 1’) be r with a replaced by 7/, in order. For example, if = (a > b = ¢)
and " = (d > e), thenr(b — ') = a = d > e > c. For sets of rankings R, R/, and R", we write
R(a—- R)={r(a—7r"):re R,r" € R} and R(a — R',b - R") = R(a — R')(b — R").

Definition 34. [CC for SPFs] A neutral SPF F' is composition-consistent (CC) if for all o and all clone
decompositions K, we have F(o) = F (o) (K — F(o|x) for K € K).

If I is CC, clone sets must appear as intervals in F(¢) in the order(s) specified by F(o), and the
order(s) within each clone set K is specified by F'(o |k). Next, we show that the definition of ToC for
SPFs by Freeman et al. [26] and our novel definition of CC for SPFs are consistent with the ones for
SCFs.

Proposition 35. Let f be the SCF that corresponds to SPF F, i.e., f(o) = {top(r) : r € F(o)}. If F' is
IoC, then f is IoC. If F' is CC, then f is CC.

(All proofs of claims in this section are given in subsections further below).

It is straightforward to see that the reverse of Proposition 35 is false: given an SCF f that is CC/IoC, we
can always construct an SPF that picks the top ranked candidate according to f, and then orders the
remaining candidates according to some arbitrary order (e.g., by their plurality scores). Intuitively, such
an SPF cannot be expected to obey any reasonable definition of IoC/CC for SPFs. Further, there are also
more “natural” counterexamples, as we show in Appendix C.3.

Further, we show that the hierarchy between CC and IoC (Proposition 8) extends to SPFs.

Proposition 36. If a given SPF is CC, then it is also IoC.

We can interpret each version of RP as an SPF outputting the topological sorting(s) of the final graph(s);
Schulze [56] shows that BP, too, admits an interpretation as an SPF. Finally, we can view STV as an
SPF outputting candidates in reverse order of elimination; see Appendix C.1 for formal definitions. Our
results generalize to each of these SPFs.

Theorem 5. Each of {STV,BP,RP,RP;, RPN} satisfies IoC/CC (for all o) if and only if its SPF
version does.

While the above results are intuitive, they rely on a careful definition of CC/IoC for SPFs. For example,
Boehmer et al. [1, Appendix A] provide an alternative definition of IoC for SPFs where the bottom-
ranked clone is replaced in Definition 33 rather than the top-ranked one. They show that under this
alternative definition, an SPF that iteratively adds the veto winner (see our Footnote 1) to the ranking
and deletes it from the profile would be IoC (with bottom replacement), whereas STV would not.
Hence, both our Prop. 35 and Thm. 5 would fail under this alternative IoC definition.

Theorem 5 gives us a single CC SPF: RP;, which (like its SCF counterpart), fails anonymity. We next
give a (to us, surprising) negative result that this weakness is inevitable.

Theorem 6. No anonymous SPF can be CC.

Theorem 6 has strong implications. First, it shows that to design CC SPFs, a non-anonymous tie-
breaker (such as the one by Zavist and Tideman [65] for RP;) is not only sufficient but necessary.
Indeed, in Appendix C.3, we design a novel CC SPF that uses a similar tie-breaking rule, inspired by
a nested version of STV introduced by Freeman et al. [26]. Second, it shows that in settings where
anonymity is a must and ties are likely to occur, CC is too demanding for SPFs, and motivates studying
its relaxations. For example, as mentioned in Section 4.1, the Kemeny SPF (which returns the ranking(s)
with the minimum total Kendall-Tau distance to voters’ rankings) obeys a weaker form of CC, which
requires F'(o) and F(o)(K — F(o|k) for K € K) to have a nonempty intersection under certain
decompositions (where the summary is single-peaked or single-crossing), rather than being equal for
all decompositions [16]. Since Kemeny is not IoC as an SCF [62], this relaxation is incomparable with
IoC for SPFs by our Proposition 35.

We also observe that the impossibility in Theorem 6 can be circumvented if | V| is assumed to be odd.
In this regime, for a neutral SPF F, we can define F““ analogously to Definition 12 to obtain CC
(by forcing Q-nodes to output their majority ranking). We leave formalizing this transformation and
identifying which SPF-specific axioms (e.g., independence of the last-ranked alternatives) are preserved
by FEC for future work.

C.1 Definitions of social preference functions

Here, we give the descriptions of the SPF versions of several SCFs we have discussed in previous sections.
Below, the “RP procedure” refers to the process of locking in edges from M in non-increasing order,
skipping the ones that create a tie.

« RP: Return all rankings r that correspond to the topological ordering of the final graph con-
structed by the RP procedure for some tie-breaking order.

« RP;: Return the topological ordering of the final graph constructed by the RP procedure using
Y; as a tie-breaker.

« RPp: Return the union over RP; foralli € N

« STV: At each round, eliminate the candidate with the least plurality votes, until only one
candidate remains. Output the reverse order elimination (i.e., the candidate eliminated first is
ranked last).

« BP: Construct the strength matrix S as described in Table 1. Define relationship >pgp over
candidates as a >pgp bif S[a,b] > S[b,a] and a =pp bif S[a, b] = S[b, a]. As proven by Schulze
[56], = pp satisfies transitivity; hence, it gives a weak ordering over candidates A. Return all
strict rankings r that are consistent with the weak ordering of =g p. For example, for o’ with
the strength matrix given in the extended proof of Theorem 1 below in Appendix D.2, we have
a1 =pp az >pp b =pp c. This implies BP*(6”’) = {r1,r2} where BP* is the SPF version of
BP,withri:a1>as>=b>=candre:as > a; > b > c

C.2 Proof of Proposition 35

We first prove that our novel definitions of IoC/CC for SPFs are consistent with the ones for SCFs.

Proposition 35. Let f be the SCF that corresponds to SPF F, i.e., f(o) = {top(r) : r € F(o)}. If F' is
IoC, then f is IoC. If F is CC, then f is CC.

Proof. Say F' satisfies IoC, and pick any profile o, non-trivial clone set K with respect to o, and
any clone a € K. Note that for any ranking r over A and any candidate b € A\ K, we have
b = top(r) <= b = top(r—x—.), since relabeling/removing lower ranked candidates does not
change the fact that b is ranked top. Hence, we have

be f(o) < Tre F(o)st.b=top(r) <= Ir € F(o)~Kk—: s.t. b= top(r)

ToC
SLEYEN € F(o \ {a})~(k\{a})—= S-t. b = top(r)

<= Jre F(o\{a}) s.t. b =top(r)
> be f(o\{a}),

which give proves f satisfies condition (2) from Definition 2. Next, notice that by definition of the —
operator, for any ranking r we have top(r) € K <= z = top(r— k). This implies

KNnflo)#0 < 3re F(o)st.top(r) e K <= 3r € F(o) g, s.t. z = top(r) (1)
{3 ¢ F(o \ {a})(x\{a})—> st. 2 = top(r)

(2)

< Jre F(o\{a})st top(r) e K\ {a} (3)

— (K\{a})N f(o\{a}) #0, (4)

which proves f satisfies condition (1) from Definition 2. Hence, f is IoC.

Next, assume F’ satisfies CC. Take any profile o and clone decomposition X with respect to o. By
Definition 34, we have

F(o) = F(e®)(K — F(o|k) for K € K) = f(o) = top(F (o)) = U top(F(o|K))
Ketop(F(ok))
= U frelk)
Kef(ak)
Hence, we have f(o) = Il¢(o, K), so f satisfies CC. O

C.3 (Nested) nested runoff voting

In this section, we briefly discuss how non-anonymous tie-breakers (such as the one introduced by
Zavist and Tideman [65]) can be used to construct CC SPFs other than R P;. Freeman et al. [26] introduce
an SPF named Nested Runoff (/V R), which is a modification of STV at each round, instead of the
candidate with the lowest plurality score, the winner of STV (rev(o)) is eliminated, where rev(o)
is o with every voter’s ranking reversed. Freeman et al. show that VR is IoC as an SPF. By our
Proposition 35, this implies VR is IoC as an SCF too. However, since it is anonymous, it cannot be CC
as an SPF by Theorem 6. In fact, N R is not CC as an SCF either; to see this, consider the following
profile over 4 candidates with 3 voters:

b>1a2>1a1>1c
o=4qaz>2a1=2¢c=2b (5)
c>3b>3a1>3a2

Say K = {{ai1,a2},{b},{c}}. It can be checked that a; € NR(o) but a; ¢ IIygr(o,K) since
a1 ¢ NR(0|{a, a}) Which violates CC.

Now, say ST'V; is simply the version of STV that uses voter i’s vote as a tie-breaker (i.e., if multiple
candidates tie for the lowest plurality score at any point, the one ranked lowest by voter ¢ is eliminated).
It is straightforward to check that, much like STV, STV ; is IoC as an SPF and as an SCF, but CC as
neither. Unlike STV, however, STV ; is decisive on all o. Now, we define N R; using STV ; on the
reverse profile to decide on the order of elimination. We will show that N R; is CC as an SCF. Take any
profile o and any decomposition X with respect to o. Since we are using a decisive tie-breaker, we
will have |[INR;(o)| = |llxg, (o, K)| = 1, so it is sufficient to show containment in one direction. Say
lyg,(0,K) = {a} and K, € K is the clone set containing a. This implies NR;(¢*) = {K,} and
NR;(o|k,) = {a}. Say K1, K, ..., K;is the order in which clone sets are eliminated when N R; is run
on o, This implies STV;(rev(a®)) = {K1}. By successive application of the IoC for SCF property, we
must have STV, (rev(o)) = {b1 } for some b; € K7, implying that the first candidate eliminated by N R;
on input o belongs to K. If | K| > 1, this argument can be repeated again with STV (rev(o \ {b1})),
implying the next eliminated candidate too will belong to K;. Applying this argument repeatedly
gives us that N R; on input o will eliminate all elements of K before any other candidate. Now, by
the assumption on the order of elimination in N R;(o*) we have STV;(rev(e" \ K1)) = {K>}, and
the same IoC argument can be applied to show that STV;(rev(o \ K1)) = {ba2} for some by € Ko.
Inductively applying this argument gives that N R; will eliminate all candidates of K; before any
candidate of K; for all i € [¢], where Ky.1 = K, (since it never gets eliminated). Hence, at some

point in the execution of N R; on o, we will have o \ (Uie[e] K Z) left. However, this is precisely o|x,,

and by assumption we have NR;(o|k,) = {a}, showing that we must indeed have NR;(o) = {a},
proving that N R; is CC as an SCF.

To see that N RR; is not CC as an SPF, once again consider the profile from (5) and IV R3 (i.e., the SPF
version of N P; using i = 3 as the tie-breaker). It can be checked that NRj(o) = ¢ > b > a1 > as,
but NR3(0|{q,,a,}) = a2 = a1, hence violating CC as an SPF. Thus, N R; serves as a “natural”
counterexample showing that the reverse of Proposition 35 does not always hold.

Finally, let us use NR; to design a CC SPF. Define the nested nested runoff rule using voter i as a
tie-breaker (N N R;) as a modification of N R; that, instead of STV}, runs N R; on the reverse profile to
decide the next eliminated candidate. Given any profile o and decomposition K, say NN R;(c) =
Ky~ Ky_1 > ... Ky = Kj. This implies N R;(rev(c*)) = {K}}. Since NR; is CC as an SCF, it is
IoC as an SCF (by Proposition 8). Hence, we must have N R;(rev(o)) = {b1} for some b; € K. By
the CC property of N R;, this implies N R;(rev(o)|x,) = {b1}, implying that the candidate ranked at
the bottom of NN R (o |k,) is by, the same as the candidate ranked at the bottom of NN R (o). If
|K1| > 1, applying the same argument again gives us N R;(rev(o \ {b1})) = NR;(rev(o|x, \ {b1})).
Thus, all the candidates in K appear in the bottom of NN R;(o |k,), and they appear exactly in the
order they do in NN R;(o). Applying this argument inductively to all K; for i € [¢] gives us exactly
the CC definition for SPFs (Definition 34), completing the proof.

Hence, we have arrived at an interesting hierarchy. STV is IoC as an SPF and an SCF, but CC as
neither. N R;, which uses STV, to eliminate candidates, is CC as an SCF, but still only IoC as an SPF.
Lastly, NN R;, which uses N R; to eliminate candidates, is CC both as an SPF and an SCF. Based on
this observation, we believe studying the axiomatic properties of this type of (nested) nested rules is an
interesting future direction.

C.4 Proof of Proposition 36

We first prove that the CC to IoC relationship extends to the definitions for SCFs we have introduced.

Proposition 36. If a given SPF is CC, then it is also IoC.

Proof. Say F satisfies CC. By Definition 34, this implies that F' is neutral. Pick any profile o, non-trivial
clone set K with respect to o, a a € K. Consider the clone decomposition K = {K} U {{b} }sca\x
for o and the clone decomposition K’ = {K \ {a}} U {{b}}yca\k for o \ {a} (ie., the decomposition
which groups all existing members of K together, and everyone else is a singleton). Notice that o
and (o \ {a})X" are identical except the meta-candidate for K in the former is replaced with the meta-
candidate for K \ {a} in the latter. By neutrality, this implies: F(U’C)—'{K}_)K\{a} = F((o \ {a})X).
Each K’ € K\ { K} is a singleton, and hence F'(o|) is just a single ranking with the only element in
K'. For any b € A, say ry, is the trivial ranking over {b}. Using CC, we get
F(0)-k—: = (F(e®)(K' — F(o|x) for K’ € K)) =k
(F(e®)(K — F(o|k); {b} = 1o forb € A\ K)) =g
F(o™) (K — r.;{b} = r,forbe A\ K)
F((o\ {a))((K \ {a}) = 72 {b} = r forb € A\ K)
(\ {aD)* V(K \ {a}) = F(o|w\(a)); {b} = rpforbe A\ K)) “(K\{a})—=
F(o\ {a}) =\ fa))—

Hence, F satisfies IoC. O

C.5 Proof of Theorem 5

We now prove that for SCFs for which we described the SPF version above, our results generalize.

Theorem 5. Each of {STV,BP,RP,RP;, RPy} satisfies IoC/CC (for all o) if and only if its SPF

version does.

Proof. We prove the axioms satisfied by each SPF as a seperate Lemma.

Lemma 37. The SPF version of STV is IoC but not CC.

Proof. The fact that SPF version of STV is IoC is shown by Freeman et al. [26]. Since SCF version of
STV is not CC (Theorem 1), then the SPF version of STV is also not CC by Proposition 35. O

Lemma 38. The SPF version of BP is IoC but not CC.

Proof. Take any profile o, clone set K, and a € K. Say S and S’ (resp. M and M’) are the strength
(resp. majority) matrices that result from running the BP procedure on o and o \ {a}, respectively.
First, notice that for any b,c € A\ {a}, we have M [b, ¢c] = M’[b, c|, since the removal of candidate
does not change the pairwise relationship between the remaining candidates. Take any z € A\ {a}
and y, z € A\ K. We would like to show that:

Slz,y] = S'[x,y] Sy, x| = [y, 2] Sy, 2] = S'[y,] (6)

Since M’ is simply M with a removed, any path in M’ exists in M. This gives you the > direction
of all of the equalities in (6). For the reverse direction, consider any path P from « to y in M. If the
path does not contain a, then it exists in M’. If it does contain a, consider the alternative path P’ that
starts from the last element belonging to K in P, but replaces it with x (so P’ is also a path from x
to y). By the clone definition, the first edge in the path is equally strong, and the remaining edges are
the same. Since the strength of a path is the minimum weight over the edges in the path, this shows
that P’ is at least as strong as P. The same method can be applied for paths from y to z by replacing
the first occurrence of a member of K with x. Now take any path P in M from y to z. Again, if it
does not contain q, it still exists in M’. If it does contain it, then pick any b € K \ {a} (exists sicne

K is non-trivial) and construct path P’ by replacing the interval in P from the first occurrence of a
member of K to the last occurrence of a member of K with b. By the clone definition, the incoming
and outgoing edge of b will have the same weight as the incoming and outgoing edge to this interval.
Since the remaining paths are only subtracted, again P’ is at least as strong as P. This finishes the <
direction of all of the equalities in (6).

This implies that for any b,c € A\ {a} such that at least one of them is not in K, we will have
b=ppc <= b>zp c, where =pp and ='5, are the (weak) linear orderings resulting from running
BP on o and o \ {a}, respectively. This implies that BP* (o)~ . = BP*(o \ {a})~(k\{a})>2>
proving that BP* (the SPF version of BP) is IoC.

Since SCF version of BP is not CC (Theorem 1), then BP* is also not CC by Proposition 35. O

Lemma 39. The SPF version of RP neither IoC nor CC.

Proof. Since the SCF version of RP is not IoC [65] and therefore not CC (by Proposition 8), SPF version
of RP is neither IoC nor CC Proposition 35. O

Lemma 40. The SPF version of RP; is both IoC and CC.

Proof. The proof that RP; satisfies CC follows easily from the proof of Theorem 2. There, (using
Lemma 43) we showed that given any decomposition /C the RP ranking resulting from running RP; on
o has each clone set in K as an interval, in the order specified by the RP ranking resulting from running
RP; on 6. Moreover, we showed that the clone set ranked first in this ranking (say K1) appeared in
the order specified by the RP ranking resulting from running RP; on 0|k, . This last proof did not use
the fact that K was the first clone set to appear in the ranking, but only that it appeared as an interval.
Hence, the same proof can be easily applied to all K € K, since each appear as an interval. As a result,
we have RP} (o) = RP(o")(K — RP} (o) for K € K), where RP}* is the SPF version of RP;. [

Lemma 41. The SPF version of RPy is IoC but not CC.

Proof. Say RPy; and RP; are the SPF versions of RPy and RPF;, respectively. Fix any profile o, non-
trivial clone set K, and a € K. Since RP;" is IoC for each ¢ € N by Lemma 40 and by definition of the
— operator, we have

RP}(0) k- = (U RP} (o) “koz= | RPf(0) ko = | RP (0)-ko-
iEN iEN iEN

= | RP (0 \ {a})~(x\ o))z = (U RFP; (o \ {a})> (K \{a}) 2
1EN 1EN
= RPN(\ {a’}) (K\{a})—2>

proving RPy; satisfies IoC. Since the SCF version of RPy does not satisfy CC (Proposition 9), this
proves that R Py is not CC by Proposition 35. O

Lemmata 37 to 41, together with our result from Theorems 1 and 2, prove the theorem statement. [

C.6 Proof of Theorem 6

We next prove a surprising negative resulting showing the incompatibility of anonymity and composition
consistency for SPFs.

Theorem 6. No anonymous SPF can be CC.

Proof. Assume for the sake of contradiction that we have an SPF F that is CC and anonymous. By
Definition 34, this implies F is also neutral. Consider a profile o over A = {a, b, ¢} with two votes.
Voter 1 ranks a 1 b 1 ¢ and Voter 2 ranks ¢ 2 b 2 a. Define K1 = {a,b} and Ky = {b, ¢}, which
are both clone sets with respect to . Further, define K1 = {K7, {c}} and Ky = {{a}, K2}, which
are both clone decompositions with respect to . Consider o, which consists of K7 =1 {c} and
{¢} =2 K. Since F is neutral and anonymous, we must have F(c*1) = {K; = {c},{c} = K1},
otherwise permuting Voter 1 with Voter 2 and K with {c} gives a contradiction. By the same reasoning,
we must have F'(o|x,) = {a > b,b > a}. By composition consistency (Definition 34), we must have

a>b>c,
b>a s c,

F(o) = F(@®)(K - Flolx) for K e ki) ={ 7%,)
c>a>b,

c=b>=a

Similarly, o2, which consists of {a} =1 K5 and K3 =2 {a}. By neutrality and anonymity, we must
have F(6?) = {{a} =1 Ko, K3 =2 {a}}, otherwise permuting Voter 1 with 2 and {a} with K, gives
a contradiction. By the same reasoning, we must have F(o|x,) = {b > ¢,c¢ > b}. By CC, we must

have
a>b>c,
a>b>c,
F(o) = F(6™)(K = F(o|k) for K € K1) =) (8)
b>c>a,
c>=b>a
Comparing (7) with (8), we immediately get a contradiction. =

D On Section 3 (Analysis of IoC Social Choice Functions)

In this section, we provide the proofs omitted from Section 3 of the main body.

D.1 Proof of Proposition 8

We first prove the relationship between CC and IoC:

Proposition 8. If a given SCF is composition-consistent, then it is also independent of clones.

Proof. For a CC rule f, take any profile o over candidates A, non-trivial clone set K’ C A, and candidate
a € A. Consider the clone decomposition K = { K'} U {{b} };c 4\ i for o and the clone decomposition
K'={K\{a}} U{{b}}sca\k for o\ {a} (ie. the decomposition which groups all existing members

of K together, and everyone else is a singleton). Notice that o and (o \ {a})*" are identical except
the meta-candidate for K in the former is replaced with the meta-candidate for K \ {a} in the latter.
Since f is neutral by Definition 7, this implies:

Kef(oX) < K\{a} € f((c\{a})") ©)
Vbe A\ C':
P} e f(eX) « e f((@\{ah") (10)

By Definition 5, it is easy to see that for any K € K, we have K N1Il;(0,K) # 0 <= K € f (o).
Based on this, (9) and (10) respectively imply:

KOTy(o,K) £ 0 <= K\ {a}nTT(o\ {a},K') £ ()
Vhe A\ K :
bellf(o,K) < bellf(o\{a},K') (12)

Since fis CC, we haveIl¢ (o, K) = f(o) andII (o \{a},K') = f(o\{a}) so (11) and (12) respectively
imply conditions 1 and 2 in Definition 2, proving that f is IoC. O

D.2 (Extended) Proof of Theorem 1

The proof of Theorem 1 is given in the main body of the paper, but the winners under each SCF are
stated without detailed calculations. Here, we give a more extensive proof that walks through the
implementation of each SCF.

Theorem 1. STV, BP, AS, and SC all fail composition consistency.

Proof. Since CC implies f = II¢(o, K) for all profiles o and clone decomposition /C, a single coun-
terexample is sufficient to show a rule failing CC.

For STV and AS, we will be using o over A = {a1,a2,b,c} from Figure 2. Consider £ =
{K,, Ky, K.}, with K, = {a1,as}, K;, = {b}, and K, = {c}. Figure 3 shows o and o|x,. The
procedure for STV is detailed in Examples 3 and 6. To run AS on o, we will alternate between
eliminating all non-Smith candidates and eliminating the candidate with the least plurality score:

« First, we have Sm (o) = A due to the cyclicity of the profile, hence no one gets eliminated.
« Then, we eliminate a9, the candidate with the least plurality score.

« Once again, Sm(o \ {az2}) = A\ {a2}, so no candidate is eliminated.

« c gets eliminated as the next candidate with least plurality scores.

« Sm(o \ {b,a2}) = {a1} since a; pairwise defeats b.
Therefore AS(o) = {a1}. Running AS on o, on the other hand, we get:

« We have Sm (o) = K due to the cyclicity of the profile, so no (meta-)candidate is eliminated.
+ Then, we eliminate K, the candidate with the least plurality score.

« Sm(o®\ {K.}) = {K,} since K, pairwise defeats K.

Therefore AS(o™) = {K,}. Further, AS(o|x,) = {az} since a; is pairwise defeated by ay and
therefore eliminated in the first step. Thus, we have AS(o) = {a1} # {a2} = 14a5(0, K), proving
AS is not CC. For both STV and AS, the main idea is that as gets eliminated first even though it is a
majority winner over ay, since the few voters that prefer a; over as happens to put them to the top of
their ballot, giving a; more plurality votes than as.

For BP and SC, consider the following profile o’ (the same as the one from Figure 1, with relabeled
candidates):

6 voters | 5 voters | 2 voters | 2 voters
al c b b
a2 az c c
b aq al as
C b as aq

To find BP(o”’) and SC(o”), we construct the margin matrix M, below:

Ma-/ al as b Cc
al 0 1 7T -3
as | —1 7 | =3
b | =7 =710 5
& 3 3 1-5] 0

Notice that there are 3 simple cycles in M,: (a1, b, ¢), (az, b, ¢), and (a1, az, b, ¢), with smallest margins
[c, a1], [c, az], and [a1, as], respectively. Removing these three edges form the graph leaves a1 and as
without any incoming edges, indicating SC(o’) = {a1, as}.

Similarly, M, induces the following strength matrix S,/, which shows that BP(¢”) = {a1, as}, since
Slz,y] > Sy, z] for x € {a1,as2} and all y € A.

Ser | a1 | as | b | ¢
ap | 0O 3 | 7|5
az | 3 0715

b 3 3 1015
c 3 3 1310

However, using clone decomposition K from above (which is also a valid decomposition with respect
to o’), the graph for M is composed of a single simple cycle, with M [K,, K] =7, M[Ky, K.] =5
and M [K,, K,] = 3. Clearly, we have SC(c'*) = BP(¢") = {K,}. However, a; is the majoritarian
winner against as in 0’|, , without any cycles. Hence [[¢ (07, K) = [[zp(0”’,K) = {a1}, showing
both rules fail CC. Intuitively, both BP and SC, while picking their winners for o/, ‘discard’ the
relationship between a; and ag, BP since neither the strongest path from a; to ag nor vice versa go
through the (a1, az) edge, and SC since the (a1, az) edge forms the weakest margin in a 4-candidate
cycle. As a result, both rules pick both candidates as winner, even though they both agree a; wins over
ay when applied to 0’|, alone. O

D.3 Proof of Theorem 2

We now prove our main positive characterization result from Section 3.

Theorem 2. RP; is composition-consistent for any fixed i € N.

Without loss of generality, fix 1 € N. We will show that RP; satsifes CC. The same proof follows for
RP, for any i € N. We write {a, b} >x, {c,d} if ¥ ranks {a, b} before {c, d}. Zavist and Tideman
show that ¥ is impartial; that is, for all a,b,c,d € A, if {a,c} >%, {b,c} then {a,d} >x, {b,d}.
Using X1, we construct a complete priority order L over ordered pairs: pairs are ordered (in decreasing
order) according to M, and ties are broken by ¥; (and according to o1 when M|a, b] = 0). Formally,
given distinct ordered pairs (a,b) and (c, d) such that (¢, d) # (b, a), we have:

Mia,b] > Mc,d] or

(a,b) = (c,d) iff: {M[a, b] = Mle,d], {a,b} >x, {c,d},

and if (¢, d) = (b, a) we have:

Mla,b] > M|b, a] or
Mla,b] = M[b,a] =0,a =4, b.

V

(a,b) = (b, a) iff: {

Then, the Ranked Pairs method using voter 1 as a tie-breaker (hereon referred to as RP;) add edges from
M to a digraph according to £, skipping those that create a cycle.

Zavist and Tideman [65] show that RP is indeed IoC. We now strengthen this result:

Proof. Zavist and Tideman [65] show that the original RP rule (without tie-breaking) has an equivalent
definition using “stacks”. We introduce an analogous notion and equivalency with respect to a specific

L.

Definition 42. Given a complete ranking R over candidates A and a priority order over ordered pairs L,
we say ¥ attains y through R and with respect to £ if there exists a sequence of candidates a1, as, ..., a;
such that a; = z, a; = y and for all i € [j — 1], we have a; >r a;4+1 and (a;, aiy1) >¢ (aj,a1). We
say R is a stack with respect to L if x g y implies x attains y through R with respect to L.

Lemma 43. RP) with ¥ as a tie-breaker will pick candidate a as a winner if and only if there exists a
stack with respect to L that ranks a first, where L is the priority order over ordered pairs constructed using
Y1 as a tie-breaker.

Proof. (=) : Say a is the RP; winner with £ as the priority order over ordered pairs (constructed from
31). Notice that the final graph from the RP procedure will be a DAG. Say R is the topological ordering
of this DAG and a is the source node (hence ranked first by R), which we call the winning ranking. By
definition, the rule will pick a as the winner. For any x,y € A such that = > y, the edge (y, z) was
skipped in the RP procedure, implying it would have created a cycle. Hence, there exists candidates
ai,...a; such that a; = x and a; = y, and each (a;, a; 1) was locked in the RP graph before (y,)
was considered, implying (a;, ai+1) > (y,) = (a;, a1). Moreover, since each (a;, a;+1) was locked,
we must have a; > g a;4+1 in the final ranking. This implies R is indeed a stack with respect to £, with
a ranked first.

(<) : Say R is a stack with respect to £, with a ranked first. We argue this is the final ranking produced
by running RP; with £ as priority order (constructed using 7). Assume instead that RP outputs final
ranking R* with R* # R. Then there exists at least one pair x, y such that x >~ y but y > z, so
(y, x) was locked by the RP procedure. Of all such pairs, say *, y* is the one where (y*, x*) was locked
by the RP procedure first. Since ™ > y* and since R is a stack with respect to £, there exists a series
of candidates ay, ...a; such that a; = 2%, a; = y*, and for all ¢ € [7 — 1], we have a; =g a;4+1 and
(@i, aiv1) = (aj,a1) = (y*,z*). Since (a;, a;y1) >, (y*, ") for all 7, all such edges were considered
by the RP procedure before (y*,z*). At least one of these edges must have been skipped, otherwise
locking (y*, z*) would have caused a cycle. Say (ag, ai+1) was the first edge that was skipped. This
implies locking this edge would have caused a cycle with the already-locked edges; however, since
ax >R ap+1, this cycle must contain an edge (z,) such that ¢ > z. However, this implies z >/ ¢ in
the final ranking and that (z,¢) >, (ag, art+1) = (y*,z*). Since (y*, x*) was assumed to be the first
such edge to be considered, this is a contradiction. O

Note that since R P results in a single unique ranking over candidates (as a single tie-breaker is fixed),
the proof of Lemma 43 also shows that there is a unique stack with respect to £. We also use an existing
lemma by Zavist and Tideman [65].

Lemma 44 (Zavist and Tideman 65, §VII). Say C' is a clone set with respect to profile o. The winning
ranking R resulting from running RP) on o with an impartial tie-breaker 31 based on a ranking o1 will
have no element of A\ C' appear between two elements of C' in R.

We will now prove that RP; is composition consistent. Given o, say K = {K1, K»,..., Ky} isa
clone decomposition. Say o is the summary of & with respect to K (where the clone sets in each
0; is replaced by the meta candidates { K; };c(x) and ok, is o restricted to the candidates in K;. We
would like to show that RPi(0) = Ugcpgp, (ox) BP1 (0| k). Since RP with a specific tie-breaking order
always produces a single unique winner, showing containment in a single direction is sufficient.

Say RP; (o) = {a}, implying a comes first in the winning ranking R. By the proof of the forward
direction of Lemma 43, R is a stack with respect to £ (the order that the RP procedure follows, which
uses tie-breaking order ¥; based on vote o). By Lemma 44, each K; € K appears as an interval in R,
hence we can define a corresponding ranking R over clone sets in K. We would like to show that R*
is a stack with respect to £X, which is the order of ordered pairs in K according to decreasing order of
M (the margin matrix of o), using o} (voter 1’s vote in the summary) as a tie-breaker.

We can relabel the clone sets in K such that R* = (K; = Ky = ... = K}). Since a is the ranked
first in R, we have a € K. Notice that if k = 1, then R* vacously. Otherwise, take any K, K, such
that K, > pc K. Say x is the element of K, that appears last in 12 and y is the element of K, that
appears first in R. Since R is a stack with respect to £, and since z >pg ¥, there exists a sequence
of candidates a1, ...a; and for all i € [j — 1], we have a; > a;11 and (a;, ai+1) >£ (a;,a1). Since
the a; in this sequence appear according to their order in R, by Lemma 44, consecutive candidates
in the sequence a1, ..., a; can be grouped up to form a sequence K7, ... K}, such that K, € K for
each ' € [j'], K| = K, K, = Ky, and K, »px K}, for each i’ € [j" — 1]. Notice that since
x and y are in different clone sets, j* > 1. Take any i’ € [j’ — 1] and consider the last element
K;, and the first element of K7, , to appear in (a1,az, .. .,a;). By construction, these two elements
appear consecutively in (a1, as, ..., a;), so they are a; and a;1, respectively, for some i € [j]. Since
(@i, ait1) = (aj,a1) = (y,x), based on the way £ was constructed, there are two possible cases:

1. Mla;,a;+1] > My, x], in which case we must have M’C[Kg,,Kg,_H] = Mla;, ait1] > My, z] =
MN[K,, K,] by definition of clones, and hence (K}, K/,) =« (K, K;) = (K, K7).
2. Mla;, ai+1] = M|y, z). In this case, we also have M*[K/,, K},] = M*[K,, K| by definition

of clones. However, since (a;, ai+1) > (y, z), there are four options:

(@ i/ =1landé +1 = j/,s0a; = x and a;41 = y. In this case, (a;, ai+1) =2 (y,) implies
x =g, Yy and hence K, ok K, by definition of clone sets, and hence: (K, KZ(,_H) =
(Ko, Ky) =g (Ky, Ko) = (K}, K1)

(b)i =1landd +1 # j', s0oa; = = and a;4+1 # y. In this case, (a;,a;+1) >z (y,z)
implies a;41 >4, ¥ and hence K, , ok K, by definition of clone sets, and hence:

7 K2
(c) i #1andi +1=j',s0a; # x and a;+1 = y. In this case, (a;,a;+1) =, (y,) implies
a; >4, = and hence K/, > ok Ko by definition of clone sets, and hence: (K, K}) =
(K}, Ky) = pr (Ky, Kz) = (K, K7).
(d) i/ #1andi' +1+# j/,s0a; # x and a; 11 # .
In this case, (a;,a;+1) >, (y,x) implies for some a € {0, 1}, we have a;1, >, z for
each z € {x,y,a,+1—o}, and hence K, ~qk Z for each Z ¢ {K+, Ky, K}, o} by

v+ 1

definition of clone sets, and hence: (K, K, ;) =,x (K, K) = (K, K7).

]

In each case, we end up having (Kj,, K,) =« (K7, K1), which proves that K attains K, through

RX with respect to £, and hence that R* is a stack with respect to £X. By Lemma 43, this implies
RP;(6%) = {K,}, as K| comes first in R*.

Since a € K1, a will be a competing candidate in o|x, . Again by Lemma 44, we know that all elements
of K appears as a block in the start of R. Say R|f, is this section of R. We would like to show that

R|k, is a stack with respect to £, which is the priority order of ordered pairs in K according to
decreasing order of M (the margin matrix of o,), using 01|, (voter 1’s vote restricted to K7)
as a tie-breaker. Note that for any a,b,c,d € Ky, (a,b) >, (c,d) implies (a,b) > &, (c,d), since
L is entirely based on pairwise comparisons and the relative ranking of candidates in o, neither of
which is affected by the deletion of candidates in A \ K and hence is directly carried to £L51. Now
take any =,y € K such that " R|x, Y- Since R|k, is just an interval of R, we must have z > y.
Since R is a stack, this implies there exists a sequence of candidates a1, as, ..., a; such that a1 = x,
a; =y and for alli € [j — 1], we have a; g a;11 and (a;, ai+1) > (a;,a1). Since all elements of
K appear as an interval in R by Lemma 44, z = a1 =g a2 ~r ... =r a; = y and x,y € K; implies
a; € K; for all i € [j]. This implies a; = Rlg, Gitl and (a;, ai+1) > ,x; (aj,a1), implying R|, is a
stack with respect to £X1. Since a is first in R|x,, by Lemma 43, this implies RP; (0|,) = {a}. Since
= RP(6") = {K}, we have Ukerp (ox) f(e]k) = {a} = RPi(o), completing the proof. O

D.4 Proof of Proposition 9

We next prove that RPy (o) = U RP; (o), which recovers anonymity for RP; while preserving
independence of clones, loses composition-consistency.

Proposition 9. RP y is independent of clones, but not composition-consistent.

Proof. ToC holds as RP; is IoC for all i € N. For CC, consider o with n = 2, A = {a,b,c}, and
a>1b>1candc >3 b >3 a. Wehave RPy(o) = {a,c}. Using K = {K, {c}} with K = {a, b}, we
get RPy (™) = {K,{c}}and RPy(o|k) = {a,b}. Hence, Igp, (o, K) = {a,b,c} # RPy(a). O

E On Section 4 (CC Transformation)

In this section, we provide the proofs omitted from Section 4 of the main body, as well as an extended
discussion of PQ-trees and clone-aware axioms.

E.1 Extended discussion of clone structures and PQ-trees

Here, we expand on our discussion of the PQ-trees, first defined by Booth and Lueker [2] and later used
by Elkind et al. [23] for representing clone sets. For the full set of formal definitions, see Elkind et al.
[23].

Given o we can use a PQ-tree to represent its clone structure C(o) C P(A), which is the col-
lection of all clone sets on o. For example, if o is the profile from Figure 1, then C(o) =
{{a},{b},{c},{d},{b,c},{a,b,c,d}}. Given a set of candidates A = {a;};cn), @ PQ-tree T over
A is an ordered tree where the leaves of the tree correspond to a particular permutation of the elements
of A. Each internal node is either of “type P” or of “type Q. If a node is of type P, then its children can
be permuted arbitrarily. If a node is of type Q, then the only allowable operation is the reversal of its
children’s order.

Elkind et al. [23] begin by defining two special types of clone structures: a maximal clone structure
(which they also call a string of sausages) and a minimal clone structure (also called a fat sausage). A string
of sausages corresponds to the clone structure that arises when all rankings in the profile o consist of a
single linear order (WLOG, 01 : a1 > az > - -+ > ay,) or its reversal. Then C(o) = {{ay }i<j : 7 < j},
meaning that the clone structure contains all intervals of candidates in o;. The majority ranking of the
Q-node is o or its reverse, depending on which one appears more in o. The “opposite” scenario (a fat
sausage) is when C (o) = { A}U{{a;} }ic|m), meaning we only have the trivial clone sets in our structure.

This arises, for example, when o’ corresponds to a cyclic profile on 4, i.e, o’ = (¢],...,0,), and the
preferences of the i-th voter are given by 0/ : a; >4, Git1 =0, "+ =0, Gm =0, A1 =0, *** >=0i Ci1-

We need a few more definitions before describing the construction of the PQ-tree. Let F be a family of
subsets on a finite set I, and likewise £ for E, where ' N E = (). Then, we can embed F into £ as
follows: given e € E, we replace each set X containing e with (X \ {e}) U F'. The resulting family of
subsets is denoted by £(e — F). The inverse operation of embedding is called collapsing; note that for
a family of subsets C on A to be collapsible, it should contain a set that does not intersect non-trivially
(i.e., not as a sub/superset) with any other set in C), which motivates the definition of a proper subfamily

of F:

Definition 45. Let F be a family of subsets on a finite set F.. A subset £ C F is called a proper
subfamily of F if there is a set E € F such that (i) € = {F € F | F C E}; (ii) forany X € F\ &,
either E C X or X N E = &, (iii) £ is a proper subset of F'. A family of subsets with no proper
subfamily is called irreducible.

The key result that we require in the construction of a PQ-tree is that any irreducible clone structure
is either a fat sausage or a string of sausages [23, Thm. 3.10]. Given a clone structure C C P(A), we
construct its corresponding PQ-tree T'(C) iteratively:

1. Pick some non-singleton, irreducible minimal set of clones £&; C C. By Definition 45, there exists

Cy €CsuchthatE = {F e F|F CC1}.

2. Update C to C(&€; — (), i.e., substitute all appearances of the members of C; in C by a meta-
candidate C1, and remove the sets in C that correspond to subsets of C;. Since C is either a
subset of a superset of each K € C is overlaps with, this transformation is well-defined.

3. Build the subtree for C';. By Theorem 3.10 in Elkind et al. [23], (] is either a fat sausage or a
string of sausages. If it is a fat sausage, then (] is set to be of type P- and label it as the ®-product
of the candidates in Cy. If |C1| = 2, then it is both a fat sausage and a string of sausages. In this
case, we treat it as a string of sausages sausage (following the convention by Elkind et al. [23]).
The candidates in C] are placed as the children leaves in the subtree. If it is a string of sausages,
then C is of type Q-, and we label it as the @-product of the candidates in C. The candidates in
(1 are similarly placed as the children leaves in the subtree, following the order dictated by C1.

4. We repeat the previous three steps for C;, with ¢ = 2, .. ., until we cannot find any non-singleton,
irreducible, minimal set. For any child node of C; that corresponds to a previously-collapsed subset
C; with j < i, the node is replaced with the subtree of C;, already constructed by assumption.
For child nodes of C; that correspond to original candidates from A, the node is a leaf.

5. Eventually, no proper irreducible subfamilies are left, and all of the remaining candidates form
either a string of sausages or a fat sausage, so we place them as children of the root of 7'(C),
similarly labeling it as type P or Q.

The order in which we choose C; does not impact the final construction, as the irreducible proper
subsets of a clone structure C is non-overlapping [23, Proposition 4.2.], implying a unique decomposition
of candidates into irreducible proper subsets at each step. This ensures that the PQ-tree of a preference
profile is unique [32].

E.2 Discussion of PQ-tree algorithms

The original PQ-tree algorithm is due to Booth and Luecker, who introduced it as a way to represent
a family of permutations on a set of elements [2]. Later, Elkind et al. [23] showed its use in the

context of computational social choice. Cornaz, Galand, and Spanjaard carefully analyze the Booth and
Luecker algorithm in the context of voting rules and establish the runtime of O(nm?) that we use in
Lemma 11 [16]. In this section, we provide some more context on the general relationship between
PQ-tree constructions (and tournament decomposition tree constructions) with the graph theoretic
literature on modular tree decomposition (particularly with the modular tree decomposition algorithm
by Capelle et al. [11], following the observations made by Brandt et al. [5].

Brandt et al. [5] study CC tournament solutions, following the definition of composition consistency
for tournaments first given by [36]. They provide a decomposition tree of a tournament T' meant for
efficiently implementing CC tournament solutions. In their analysis, they use what they call the
decomposition degree of a tournament, which is a parameter that reflects its decomposability (the lower
the degree, the better well-behaved its decomposition). Their decomposition tree is the tournament
version of the PQ-tree construction of Elkind et al. [23]: both use trees with two different types of
internal nodes as a suitable way of representing clone structures. The correspondence between the two
constructions is the following:

1. Elkind et al. [23] use a PQ-tree to represent clone structures given a profile o, while Brandt et al.
[5] use a decomposition tree to represent components (Definition 21) given a tournament 7.

2. Elkind et al. [23] divide the internal nodes into types P and Q, whereas Brandt et al. [5] calls them
irreducible and reducible, respectively (but the definition is the same one).

Besides the naming of the internal nodes and the difference between having a profile o versus a
tournament 7" as input, given the equivalence between components in 7" and clones in o, Brandt et al.
[5]’s definition of a decomposition tree of 7" is equivalent to Elkind et al. [23]’s definition of a PQ-tree
for . In particular, claims relating to the running time required to compute a decomposition tree of a
tournament can be transferred to the running time required to compute PQ-trees.

Brandt et al. [5] make the following two observations about the running time required to compute the
decomposition tree of a tournament 7"

1. First, we compute a factorization permutation of T', which is a permutation of the alternatives in
A such that each component of T is a contiguous interval in the permutation. McConnell and
De Montgolfier [46] provide a linear time algorithm for computing a factorizing permutation of a
tournament in linear time

2. Second, given T" and a factorization permutation of 7', we can use the graph theoretic algorithm
by Capelle et al. [11] to obtain the decomposition tree of T'.

In our settings of profiles, we can adapt the running time argument from [5] as follows:

1. In the case of profiles o, we do not need to do more work to compute the factorization permutation
of T'; we can read it directly from o (from any one voter’s ranking). By definition of a clone set,
every voter ranks the members of a clone set continguously in their ranking. Therefore, every
single voter’s ranking is a factorization permutation of o. Thus, computing the factorization
permutation requires O(|A|) running time.

2. The graph theoretic algorithm Capelle et al. [11] that Brandt et al. [5] use for computing de-
composition tree tournaments is not directly related to tournaments (or to computational social
choice). Rather, Capelle et al. [11] deal with a broad definition of a modular decomposition of a
directed graph. Zooming out from tournaments, for a given graph G = (V, E), a decomposition
tree T is such that the vertices of G are in one-to-one correspondence with the leaves of T¢,
and the internal nodes correspond to subsets of V. They call the nodes of a decomposition tree
(and the sets of vertices they induce) decomposition sets. They study the general case where the
decomposition sets correspond to modules:

Definition 46. A module in a graph G = (V, E) is a set X of vertices such that 1) if y € V' \ X,
then y has either directed edges to all members of X or to none of them, and 2) all members of
X have either directed edges to y, or none of them do.

Intuitively, a set of vertices in a graph forms a module if every vertex in V' \ X has a “uniform”
relationship to all members of X [46]. Note that the definition of a module imposes no require-
ments on whether the vertices in X should be connected or not. Observe also that connected
components are a particular case of modules. A module is strong if it does not overlap with
any other module. Then, Capelle et al. [11] call the decomposition tree of a graph G into its
strong modules the modular decomposition tree of G, and they provide a (complicated) linear time
algorithm for computing it (which we can treat as a black-box algorithm).

The literature on modular decomposition graphs is extensive and a popular topic in graph theory.
However, as noted in Brandt et al. [5], the literature on composition-consistency (and in social
choice more broadly) and on modular decompositions in graph theory is not well-connected. In
this section, we help clarify part of this connection by detailing how we can use the modular
decomposition algorithm by Capelle et al. [11] to compute the PQ-tree. Given that the notion
of a module is the graph-theoretic generalization of clone sets in profiles and components in
tournaments, we hope that there can be further interesting connections between the two fields.

As observed by Brandt et al. [5], to compute the decomposition tree of a tournament, we can simply
input the graph induced by the tournament (i.e., we draw an edge from a to b if a beats b) to the modular
decomposition tree algorithm of Capelle et al. [11]. In our case, for computing the PQ-tree using the
algorithm of [11], we need to input a graph G built from o such that the modules of GG are in bijection
with the clone sets of o.

E.3 Clone-aware axioms

First, we introduce three axioms show that they are not necessarily satisfied by f¢C (Definition 12),
even if f satisfies them, implying our CC transformation does not preserve them. We will then introduce
clone-aware relaxations of these axioms, which are in fact preserved by the CC transformation (see
Theorem 3).

Definition 47. An SCF f satisfies monotonicity if a € f(o) implies a € f(o') if foralli € N and
b,ce A\{a}, wehavea =5, b= a =, bandb =, c = b, c.

Inuitively, monotonicity dictates that promoting a winner in a profile while keeping all else constant
should not cause them to lose. We see that monotonicity is not necessarily preserved by our CC
transformation.

Example 48. Consider Plurality Voting (PV'), which is monotonic, and the profile o from Figure 7a.
Notice {a1, az,as} is a fat sausage and is grouped up by the PQ tree. {a1, as, a3} wins against b in the
root, and the a; wins against as and az with 5 plurality votes, hence PV (a) = {a1}. However, say
one of the rightmost voters move a1 up, submitting a; > b > as > a3 instead. Then there are no longer
any nontrivial clone sets, and a3 wins with 4 plurality votes (a1 only has 3). Hence, with this new profile
(call it &), we have PV (a') = PV (0') = {a3}, showing that PV is not monotone.

Given a preference profile o = (01,09,...,0,) € L(A)" over voters N = [n] and a new (n + 1)th
voter with ranking o, 1 over A, we denote by & 4 0,11 the profile (01,09, ...,0n,0n11) € L(A)"TL,
Also, given any voter i € N U {n + 1} with ranking o; over A and a non-empty subset B C A, we
denote by max;(B) the candidate in B that is ranked highest by ;. For example, if o0, = a > b > ¢ > d,
and B = {b, ¢, d}, then max;(B) = b.

6 voters | 5 voters | 2 voters | 2 voters
2 voters | 4 voters | 2 voters | 3 voters a1 c b b
ai as a b as as @ c
as al as al b al al as
as a9 aq a9 C b z aj
b b b as z % as z
(a) Example profile o (b) Example profile o

Figure 7: Two example profiles

Definition 49 (Brandt et al. 6). An SCF f satisfies (optimistic) participation if given any profile o €
L(A)™ and any ranking 0,11 € L(A), we have max,,11(f (o)) =n+1 max,1(f(o + opt1)).

Participation dictates that a new voter cannot hurt themselves (in terms of their most preferred winner!?)
by participating in the election.

Example 50. Once again, Plurality Voting (PV'), which satisfies participation, and the profile o from
Figure 7a. As explained in Example 48, we have PVC () = {a;}. Consider o, 41 : a1 = b = as = a3
and o' = 0 40,41. Since there are no non-trivial clone sets in o', we have PV “ (a') = PV (o') = {as}.
Since a1 >py1 as, this shows PVCC violates participation, and that someone ranking oy is better off
staying away from this election.

Given a set E and a family of its subsets £ C 2F, forany a € E, we denote £—{a} = {K\{a} : K € &}

Definition 51. An SCF f satisfies independence of Smith-dominated alternatives (ISDA) if given any
profile o € L(A)" over candidates A and any candidate a € A such that a ¢ Sm(o) andC(o \ {a}) =

C(o) —{a}, we have f(o) = f(o \ {a})

In words, the winner(s) under any rule satisfying ISDA is not affected by the addition of a non-Smith
candidate.

Example 52. Consider Beatpath (B P), which satisfies ISDA [56] and the profile o from Figure 7b, which is
a minor modification from the counterexample for BP in the proof of Theorem 1. With z in the ballot, there
are no non-trivial clone sets, so BP““ (o) = BP(o) = {a1,az2}. Notice also that Sm(a) = A\ {z}, so
2 is indeed a non-Smith candidate. With z gone however, {a1, az} is a clone set again, and hence BPYC
first groups them up, picks {ay, as}, and then picks a; in the restriction. Hence, BP°“ (o \ {2}) = {a1},
showing that the CC-transformation does not necessarily preserve ISDA.

The common thread in Examples 48, 50 and 52 is that the changes in profile (whether promoting a
winner on a ranking or the addition/removal of a voter/candidate) significantly alters the clone structure
of the profile, causing the behavioral of any f© to significantly change. Instead, we can relax each of
these axioms by limiting the changes they consider to those that leave the clone structure unaffected.
We present these relaxations (called the clone-aware version of each axiom) below. These new axioms
implicitly assume that the clone structures are inherent, based on the candidates’ location is some
perceptual space (which is in fact the interpretation put forward by Tideman [62]), so any “realistic”
change we will do to the profile will not alter the clone sets.

Definition 13. An SCF f satisfies clone-aware monotonicity (monotonicity®) if a € f(o) implies a €
f(o") whenever (1) C(o) = C(0”) and (2) forall i € N and b,c € A\ {a}, wehave a ¢, b= a =,/ b
and b >q, c = b >, c.

'One can alternatively use a pessimistic definition focusing on the new voter’s lowest ranked candidate in the winner set.

Definition 53. An SCF f satisfies clone-aware (optimistic) participation (participation®®) if given
any profile o € L(A)" and any ranking 0,11 € L(A) such that C(o) = C(o + opt1), we have
maxp1(f(0)) Zni1 maxn1(f(0 + ony1)).

Definition 54. An SCF f satisfies clone-aware ISDA (ISDA®) if given any profile o € L(A)"™ over
candidates A and any candidate a € A such that a ¢ Sm(o) and C(o \ {a}) = C(o) — {a}, we have

flo) = flo\{a})

E.4 Proof of Theorem 3

In this section, we prove the theoretical guarantees of our CC-transform for SCFs.

Theorem 3. For any neutral SCF f, f€C satisfies: (1) If o has no non-trivial clone sets, f¢C (o) = f(o);
(2) f€C is composition-consistent; (3) If f is composition-consistent, then f€C = f, i.e., they agree for all
o; (4) If f satisfies any of {anonymity, Condorcet consistency, Smith consistency, decisiveness (on all o),
monotonicity*®, ISDA®, participation®®), then fCC satisfies this property as well; (5) Let g(n, m) be an
upper bound on the runtime of an algorithm that computes f on profiles with n voters and m candidates;
then, f©C (o) can be computed in time O(nm3) +m - g(n, 5(PQ(e))).

Proof. We prove each condition one by one.

Condition 1. We first prove an intermediary lemma.

Lemma 55. Given neutral SCF f and profile o over candidates A, we have f (o) = Il;(o, Kiir), where
ICtm'v = {{a}}aeA-

Proof. Note that o™triv is isomorphic to &, with each a € A replaced with {a}. By neutrality, we
must have f(o’riv) = {{a}},e (o). Moreover, since an SCF always returns a non-empty subset,
f(oliqy) = {a} for any a € A. This gives us

Op(o,Kui)= | flolx)= U flolw) = U {a}=fle

Kef(oktriv) acf(o) acf(o)

O]

If o has no non-trivial clone sets, then C(o) is a fat sausage, so the PQ tree of o (say 7T') is simply a
single P-node (say B) with all of the candidates in A as its children leaf nodes. Since decomp(B,T') =
{{a}}aca = Kiriv, Algorithm 1 simply outputs f¢C (o) = II4(o, Kiriv). By Lemma 55, this implies
/(o) = f(o).

Condition 2. The fact that f©C is neutral follows from the neutrality of f and that Algorithm 1 is
robust to relabeling of candidates. To prove fCC satisfies CC, we first prove an important lemma.

Lemma 56. Given neutral SCF f and profile o, say K, K’ are two clone decomposition with respect to
o, such that K = {K1, Ko, ..., K.} U {{a}}aeA\(oK) for some z € Zx>q, and there exists some

K CA\ (Uze[z z) with | K| > 1 that satisfies K' = K\ DU {K}, where D = {{a}}scK. In words,

K' is the same decomposition as K, except a group of singleton clone sets in K is now combined into a
single new clone set K. Then Il scc (o, K) = Il scc (o, K').

The proof of Lemma 56 relies on the observation that the PQ trees for o and 6" are identical, except
the subtree(s) corresponding to D in the former (by Lemma 11) is replaced by a single leaf node K in
the latter. Hence, we first show that Algorithm 1 proceeds identically on inputs o and ok, picking
the same set of leaves from K \ D in both cases and returning some descendants of D in the former
case if it returns K in the latter. We then show that if some descendants of D are returned by the
algorithm on input o, these are exactly the same as the output of the algorihtm when run on input
0| k. Combining these gives us the lemma statement.

Proof of Lemma 56. Say K, K’ satisfies the conditions in the lemma statement. Say 7" and T’ are the
PQ trees of o and o, respectively.!! Given an interval node B C K (resp., B’ C K')in T (resp.,
T"), we denote by T'(B) (resp., T'(B')) the subtree of T (resp., T") rooteed at B (resp.,). We will be
comparing the structure of 7" and 7", using the fact that PQ trees are built by iteratively collapsing
irreducible subfamilies (see Appendix E.1 above, and also Elkind et al. [23]). Since D = {{a}}4cx isa
clone set with respect to o (which follows from the assumption that K is a clone set with respect to
o), by Lemma 11, there are two options:

+ Disanode of T, in which case its members are leaves of a subtree (7'(D)). In this case, the tree
T" is identical to T', except T'(D) is replaced by a single leaf node K. The PQ tree for o|x, on the
other hand, is exactly 7'(D) (except the leaf for each singleton {a} is replaced with the leaf for a).

« D union of an interval of nodes ({ By (B,T') }i<k<; for some i < j) that are adjacent children of
the same Q-node B C K, in which case its members are leaves of the same interval of subtrees
({T(Br(B,T))}i<k<j) - In this case, the tree T” is identical to 7', except the children of B
corresponding to D ({T'(Bj(B,T)) }i<k<;) are now replaced by a single leaf node K, placed in
appropriate place in the majority ranking of B (in this case, ¢th position), which is well-defined,
since the replaced children formed an interval. The PQ tree for o|x, on the other hand, is exactly
{T(Br(B,T))}i<k<j, united by a single Q-node that is the root of the tree (except the leaf for
each singleton {a} is replaced with the leaf for a).

Now take any internal node B C K of the tree T" such that either D C B or DN B = () (in words, T'(B)
either strictly contains D, or is not overlapping with it D at all). In both cases, there is (by the analysis
above) a corresponding node B’ in the tree 7": if D C B, then B/ = B\ DU{K},andif DN B =)
then B’ = B. We would like to compare the children node that are enqueued by Algorithm 1 if (case
(a)) it enqueues B when run on input o versus if (case (b)) it enqueues 3 when run on input o
We consider each possible scenario:

1. If DN B = (. In this case, B’ = B so the algorithm proceeds the same way in both cases (a) and
(b) , enqueing the same children regardless of whether 3 is a Q-node or a P-node.

2. If D C B, and B has a child node £ such that D C £. In words, B is either a non-immediate
ancestor of the subtree(s) corresponding to D or the parent node of a single subtree 7'(D). In this
case, decomp(B’, T")= decomp(B, T) \ {£} U {£}, where £ = £\ D U {K }. Then, gdecomp(B.7)
and gdeomP(B"T") are isomorphic (with & relabeled as £'). Hence, the algorithm proceeds the
same way in both cases (a) and (b) , enqueing the same children regardless of whether B is a
Q-node or a P-node, since f is neutral. In other words, any child node F # &£ will be enqueued in
case (a) iff it is enqueued in case (b) ; £ will be enqueued in case (a) iff £’ is enqueued in case (b) .

3. If D C B and no child node of B entirely contains D. By Lemma 11, this implies that B is a
Q-node and 3i, j : 0 < i < j < [decomp(B, T)| such that D = {Jy;<4<; Bx(B,T). In words,

"t is worth making a notational point here: when dealing with PQ trees of a profile o over a candidates A, and each leaf
node corresponded to a candidate in a € A and each internal node could be represented as a subset B C A. Since T (resp.,
T") is the PQ trees of a summary o (resp., O'K/), each leaf node now corresponds to a clone set K € K (resp., K’ € K') and
each internal node can be represented as a subset B C K (resp., B’ C K').

D corresponds to the leaves of multiple (specifically, j — i 4 1) subtrees ({T'(Bx(B,T)) }i<k<;)
whose roots ({ By, (B, T') }i<k<;) are an interval of children nodes of 5. We cannot have j —i+1 =
|decomp(B,T)|,
of B. Hence, B’ (the node in 7" corresponding to B) is a Q-node with |decomp (B, T)| — (j —)
children nodes,'* with {T'(By (B, T)) }i<k<; replaced by a single leaf node K (respecting the rest
of the order). Say ¢ = |decomp(B,T')| and ¢' = |decomp(B’, T")| = |decomp(B,T)| — (j —).
By the clone set definition, we have that o \{ Bi(B,T),Bs(B,T)} and o [(B.(B,7),Bs (B, T7)} AT€
isomorphic, and since f is neutral, we have

Bi(B,T) € f(o™|(p,(8,1),:051)}) < Bi(B,T') € f(UK/|{B1(B’,T’),BQ(B’,T’)})
for i € {1,2}. Then we consider the three possible cases separately:

3a. If f(UK’{Bl(B,T),BQ(B,T)}) = {Bi(B,T)}, then B1(B,T) gets enqueued in case (a) , and
By (B',T") gets enqueued in case (b) . If i > 1 (i.e, B1(B,T) ND = () then B1(B,T) =
By (B',T"), so the same node gets enqueued in both cases. If i = 1, then By (B, T") = {K},
so B1(B,T) C D gets enqueued in (a) and { K'} gets enqueued in (b) .

3b. If f(o ’{Bl (B,T),B(B,T)}) = 1B2(B,T)}, then By(B,T) gets enqueued in case (a) and
By(B',T") gets enqueued in case (b) . If j < ¢ (i.e., B¢(B,T) N D =) then By(B,T) =
By (B',T"), so the same node gets enqueued in both cases. If j = ¢, then By (B',T") = {K},
so By(B,T) C D gets enqueued in (a) and { K'} gets enqueued in (b) .

3c. f(C’JC|{Bl(B,T),Bg(B,T)}) ={B1(B,T), Bo(B,T)}, then all the children nodes get enqueued
in both cases

Together, the cases above imply that starting from corresponding nodes B and B’ in T and T” (respec-
tively) that either contain D and { K} (respectively) or do not overlap with them,

« Algorithm 1 enqueues any child node of B that either contains D or do not overlap with it in (a)
if and only if it enqueues corresponding childnode of B’ in (b)

« Algorithm 1 enqueues some subtree(s) corresponding to D in (a) if and only if it outputs | K| as
one of the winners in (b) .

Since Algorithm 1 run on both input o* or input o start at their root nodes (which indeed contain D
and { K }, respectively), inductively applying this argument implies that for all K’ € K \ D, we have:

K' € f¢“(o’) = K' e (o) (13)
DN fO% ") #£0 —= K e f“(o") (14)

What remains to be shown is if D N f¢C(aX) #), then D N f€¢ (o) = Ha}tacsoo(o|y)- In words,
we must show that if Algorithm 1 outputs any descendants of D in case (a) , then these decedents are
the same as those that are output by the algorithm on input o|x. Consider the three cases, assuming

DN fOC(X) # 0:

« D corresponds to a single subtree 7'(D). Then by case (2.) above, we have that D will be enqueued
by Algorithm 1 when running on input o annd { K'} will be enqueued by the algorithm when
run on input o', Since the PQ-tree for K| is identical to T'(D), the descendants of D that will
be output by Algorithm 1 when running on input o (after dequeuing D) are the same as the
ones the algorithm would output on input o| .

1f |decomp(B, T)| — (j — i) = 2, then B’ is technically both a Q- and a P- node, which does not affect our analysis since
Algorithm 1 treats these cases identically.

+ D corresponds to an interval of children nodes ({ Bx(B,T) }i<k<;) under a Q-node (B) in T and
f(o'lc|{31(B,T),BQ(B,T)}):{Bl(B,T),Bg (8,7)}- Then by case (3c.) above, Algorithm 1 will enqueue
all of these children nodes when running on input o and will enqueue { K} when running
on input o', The root of the PQ tree of 0|k (say Tk) is a Q-node (denoted K') connecting
these subtrees ({7'(Bj(B,T)) }i<k<;)- Since f is neutral, we have f(oJC|{31(K’TK)VB2(K’TK)}) =
{B1(B,Tk), B2(B,TK)} as, by definition of Q-nodes, any voter i € N will have B;(B,T) >;
By(B,T)ifand only if B1 (K, Tk) >; B2(K, Tk). Hence, once again all of these subtrees will be
enqueued on the first step of Algorithm 1 when it is run on input o | . The rest of the algorithm
will follow identically in both cases.

« D corresponds to an interval of children nodes ({ By (B, T) }i<k<;) under a Q-node (B) in T" with
F(o™(Bus1),BaBI) =18 (8,1)) €esp., [(0™ 5, (8,7),B2(8,1)})={Ba(8,7)})- Then by case (3a.)
(resp., (3b.)) above, Algorithm 1 will only enqueue £ = B1(B,T) C D (resp., £ = B;(B,T) C D).
Then, the root of the PQ tree of o |k (say T}) is a Q-node (denoted K) with By (K, Tk) (resp.,
Bj_i+1(K,Tk)) corresponding to £. By neutrality of f, we have f(o'lc|{BI(K,TK),BQ(K,TK)}) =
{Bl(B, TK)} (resp., f(o'lc‘{Bl(K,TK),Bg(K,TK)}) = {BQ(B, TK)}). Therefore, the first step of
Algorithm 1 when it is run on input |k will pick the subtree corresponding to €. The rest of the
algorithm will follow identically in both cases.

Together, these cases show that the if any descendent of D will be output when Algorithm 1 is run on
o”, then they are the same as those output when its run on | . In other words, if D N f¢ (o) # 0,
then D N f€¢ (o) = {{a}}acfoo(o|y)- Combined with (13) and (14), this gives us

DN M) == Tec(o,K)= | f“lolx)
K’EfCC(G'K)
= U % o) = I cc (o, K'), and
KlefCC(o.IC’)

DN ") #£ 0= e (o, K) = U 9 elkr) | U U el k)
K’chc(a"c)\D K’GfCC(U’C)OD
= U oIk | U U el
K'efeC (e)\{K} acf“ (oK)
= U F k) | U FCel)

K'efOC (oK)\{K}
= |J 9 0lx) =Tjec(o,K).

K’efcc (a-’C')

In both cases, we have Il ;cc (07, K) = Il ;cc (o, K'), completing the proof of the lemma. O

We now turn to proving f¢C satisfies CC for any neutral f. Now, given any neutral SCF £, profile o

over A, and decomposition K = {K1, K>, ..., K;} with respect to o, define K; = { K1, Ko, ..., K;} U

{{a}}aeA\(U» oK) for each ¢ € [¢] U {0}. In words, ; is the decomposition with the first i clone
Jel

sets in KC, and the remaining candidates are left as singletons. We have Ky = {{a}}aca = Kiri» and
K¢ = K. Then

1% (o) = Moc(0,Ko) = Hjoc(0,K1) = ... =ec(o, K1) = Mec (o, K¢) = co (0, K),

where first equality follows from Lemma 55 and subsequent inequalities follow from Lemma 56. Since
IC was arbitrarily chosen, this proves that f¢ satisfies CC.

Condition 3. Say f is a composition-consistent SCF. By Definition 7, f must be neutral. We will
prove f(o) = f¢“(o) by inducting on the depth of the PQ-tree of o (say T). As a base case, say T
has depth one (i.e, it is a single leaf node). This implies there is a single candidate in &, so both f and
fE€ will return that candidate. Now, assume f and f©C agree on all profiles with PQ-trees of depth
1,2,...,i-1, and say o has a PQ-tree (say 1) of depth i. Say A is the root node of 7" and consider two
cases:

1. Ais aP-node. Say K =decomp(K,T). By the recursive construction of Algorithm 1, we will
have f¢¢ (o) = Uses(ox) f€%(a|p). Since f is CC, we must also have f(o') =1Il(o,K) =
Upey(oxy f(o|B). For each B € K, o5 can have a PQ-tree of depth at most ¢ — 1. Thus, by the
inductive hypothesis we have f¢“(o|g) = f(o|g), implying f¢“(a) = f(o), as desired.

2. AisaQ-node. Say K =decomp(K,T) and ¢ = |K|. For each i, j € [{], say B; = B;(A,T) and

B; j = Ujgeli,j) Bi- Consider three cases:

(2a) f(o™|(p, Bo}) = {B1}. By Algorithm 1, we have f¢“ (o) = f““(o|p,). Consider the
decomposition Ky = {B1, By ¢} (thisis indeed a valid decomposition by the definition of a Q-
node). Since f is CC and neutral, we must have f (o) = Il;(0, K1) = Upepora) f(olB) =
f(o|B,)- Since o| g, must have a PQ-tree of depth at most ¢ — 1, by the inductive hypothesis
we must have f¢C(a|p,) = f(o|p,), implying f¢C (o) = f(o), as desired.

(2b) f(6™|¢p,,B,1) = {B2}. By Algorithm 1, we have f““(o’) = f“(o|p,). Consider the de-
composition /Cy = { B ¢—1, B} (this is indeed a valid decomposition by the definition of a Q-
node). Since f is CC and neutral, we must have f (o) = Ily(0, K2) = Upes(or2) f(o]B) =
f(o|B,). Since o|p, must have a PQ-tree of depth at most ¢ — 1, by the inductive hypothesis
we must have f¢C(a|p,) = f(o|p,), implying f¢C (o) = f(o), as desired.

(2¢) f(o"C]{Bl,Bﬂ) = {By1, By}. By Algorithm 1, we have f¢“ (o) = Uieg f¢“(a|p,). For
eachi € [¢ — 1], define K; = {B;, B;11,¢} as a decomposition of g, ,. By successively
using the fact that f is CC and neutral, we get

flo)=To,K1)= |J flols)=flols)Uflols,,) = f(ols) Ul (o], K2)

Bef(a"f)
= f(olp,) U f(o|,) U f(alp,,) = f(o]s,) U flalp,) Ull(o|p,,, K3) = ...

= U f(ols).

€[4

For each i € [{], o|p, must have a PQ-tree of depth at most ¢ — 1. Thus by the inductive
hypothesis we must have fC (o |p,) = f(o|p,), implying f¢C (o) = f(o), as desired.

The inductive proof above shows that in all cases, we have f(o) = f©“(o) for all 7, as long as f is

CC.

Condition 4. The statement that f being anonymous implies f¢¢ being anonymous follows from
the fact that Algorithm 1 is robust to relabeling of voters. For each of the remaining properties, we
will prove that it is preserved as a separate lemma. We start with Condorcet consistency. Recall that f
is Condorcet-consistent if it returns Sm(o) whenever |[Sm(o)| = 1, where Sm is defined in Table 2.
In words, if there is a candidate a € A that pairwise defeats every other candidate in o (i.e., a is the
Condorcet winner), then we must have f(o) = {a}.

Lemma 57. If (neutral) f is Condorcet-consistent, then fCC is Condorcet-consistent.

Proof. Consider running Algorithm 1 on input SCF f, which is Condorcet-consistent, and profile o,
where a € A is the Condorcet winner.

Assume the algorithm dequeues node B C A whose subtree contains a. If | B| = 1, then B is the leaf
corresponding to {a}, and a is added to the winner list W. If | B| > 1, then say KX =decomp(B, T).
Since |B| is an internal node, we have || > 1 (all internal nodes in the PQ-tree has at least two
children—see Appendix E.1 above). We would like to the show that only the child node that contains
a (say K, € K) will be enqueued by the algorithm. Given any K’ € K \ {K,} and b € K’, we have
M]la,b) = M*[K,, K'] by the clone definition (i.e., the majority relationship between a and b is the
same as the majority relationship between their clone sets). Since a pairwise defeats all b € A\ {a},
this implies K, pairwise defeats all K’ € K\ {K,}, i.e., K, is the Condorcet winner of o . Then, there
are two options:

1. If B is a P-node: since K, is the Condorcet winner of o and f is Condorcet-consistent we have
that f(o) = {K,}. Hence, only K, is enqueued by the algorithm among the children nodes of
K,.

2. If B is a Q-node: since K, is a Condorcet winner of o, we must have K, = Bi(B,T).
Moreover, since f is Condorcet-consistent, we must have f (O'IC|{ Bi(B,T),B2(B,T)}) = {B1(B,T)}
(as B1(B,T) = K, pairwise defeats By(B,T)). Hence, only K|, is enqueued by the algorithm
among the children nodes of B.

This implies that starting from a node whose subtree contains a, Algorithm 1 will iteratively pick
only the children node containing a, until arriving at a’s leaf node and adding it to the winner list.
Since the queue Q initially has only the root node (denoted A), whose subtree (7') indeed contains
a, this implies only a will be added to W by the algorithm. Hence, f¢“(o) = {a}, ie, f€¢ is
Condorcet-consistent. 0

Before proving the preservation of the stronger axiom of Smith consistency, which dictates f(o) C
Sm(o) for all profiles o, we first prove a useful intermediary lemma.

Lemma 58. Given any profile o and clone set K with respect to o, it must be that K and Sm(o) cannot
intersect nontrivially. That is, it must be that either Sm(o) C K, K C Sm(o), or Sm(o) N K = ().

Proof. Suppose K and Sm/(o) intersects nontrivially. Take any a € K \ Sm(o),b € K NSm(o), and
c € Sm(o) \ K. We must have that ¢ pairwise defeats a, since a ¢ Sm(o) and ¢ € Sm(o). By the
clone definition this implies ¢ also pairwise defeats b. Thus each candidate in Sm(o) \ K pairwise
defeats any candidate out of it, and is strictly smaller than Sm(co). This contradicts the definition of

Sm(o). O

Corollary 59. If K is a clone decomposition with respect to o, either there exists K € K such that
Sm(oa) C K, or there exists K' C K such that Sm(o) = | |gcx K.

Lemma 60. If (neutral) f is Smith-consistent, then f¢C is Smith-consistent.

Proof. We first show that when run on SCF f (which is Smith-consistent) and profile o (with PQ tree T'),
for any node B C A whose subtree contains the entirety of Sm(o), Algorithm 1 either only enqueues
a single child node that is also a superset of Sm(o), or only enqueues (possibly multiple) children
nodes that are subsets of Sm(o). By Corollary 59, when the algorithm is at node B that is a superset
of Sm(o), the corresponding decomposition K =decomp(B, T') will satisfy one of two cases:

1. One child node (Kg € K) will contain all candidates in the Smith set. By the clone definition,
this implies K'g pairwise defeats every other clone set in . This means that { s} is the Smith
set of . Consider the cases for B:

(1a) If B is P-node, then because f is Smith-consistent, we have that f(6X) C Sm(a”) = {Ks}.
Hence, again, only Kg gets enqueued.

(1b) If B is a Q-node, then we must have Bi(B,T7) = Kg, which is the only
child that gets enqueued. Moreover, since f is Smith-consistent, we must have
f(OJC|{Bl(B,T),BQ(B,T)}) ={B1(B,T)} (as B1(B,T) = K, pairwise defeats Ba(B,T), so
Sm(U’C’{Bl(B,T),BQ(B,T)}) = {B1(B,T)}). Hence, only Ky is enqueued by the algorithm
among the children nodes of B.

2. There exists some K’ C K such that Sm (o) = | |cx K. In this case, K’ is the Smith set of
(since Sm(o) C K’ by the clone definition, and K’ C Sm(o”) by the minimality of Sm/(a)).
Consider the cases for B:

(2a) B is a P-node. Since f is Smith-consistent, it must be that f(o*) C Sm(e") = K.
Therefore, only child nodes that are subsets of Sm(o) will be enqueued.

(2b) BisaQ-node and K \ K’ = (). Then we have B = Sm(o), so any children of B that is
enqueued is a subset of Sm (o) by definition.

(2c) BisaQ-node and K \ K’ # (. Since any K € K’ must pairwise any K’, we must have
K" = {B;(B,T)}]_, for some j < |K|. Further, we must j = 1, as otherwise B1(B,T)
also pairwise defeats the remaining members of K’ = Sm(o™), which contradicts the
minimality of Sm. Therefore this case is identical to that of (1b), and only the Smith set gets
enqueued.

Starting from a node B that is a superset of Sm (o), there can only | B \ Sm(o)| number of subsequent
nodes that falls into case (1) above, since each time this happens at least some non-Smith candidates are
dropped by the algorithm. Hence, starting from a node B that is a superset of Sm (o), the algorithm
will eventually come to a node that fulfills case (2) above, in which case only the child nodes that are
entirely subsets of Sm(o) are enqueued, after which it is impossible for any B \ Sm(o) to win. Since
the root node of the tree (A), where the algorithm starts, is by definition a superset of Sm(o), this
implies that f¢“(a) C Sm(0o), i.e, f€C satisfies Smith-consistency. O

Recall that unlike the other axioms, we have so far only defined decisiveness on a specific profile o, i.e.
|f(o)| = 1 (see Section 2). Having fixed the voters N and candidates A, we say f is (overall) decisive if
it is decisive on all & € L(A)"™.

Lemma 61. If (neutral) f is decisive, then f€C is decisive.

Proof. When run on f and any profile o (with PQ-tree T'), for each node B that is dequeued, Algorithm 1
will always enqueue a single child node of B: if B is a P-node, this is f(o*) (where K =decomp(B, T)),
which has cardinality 1 since f is decisive; if B is a Q-node, this is B1(B,T') or B |(B,T) (we
cannot have f(U’C|{Bl(B,T),Bg(B,T)} = {B1(B,T),B2(B,T)} since f is decisive). This implies that
Algorithm 1 will start from the root node of 7" and go down one child node at a time, until reaching
a leaf node, which will be the single winner added to . Hence, | f¢“(o)| = 1 for all &, i.e. f©C is
decisive. O

We now move to the clone-aware axioms, formally defined in the preceding section.

Lemma 62. If (neutral) f satisfies monotonicity® (Def. 13), then f€C satisfies monotonicity*®.

Proof. Fix a profile o, a candidate a € f©“(o), and a second profile o’ with (1) C(o) = C(o’) and
(2)foralli € Nandb,c € A\ {a}, wehavea >, b= a >, band b ~;, ¢ = b -,/ c. We would
like to show that a € f¢“ (o). Since, C(or) = C(o”') the node structure of the PQ-trees of the two
profiles (say T and 7", respectively) are identical, but the number of each vote in o and o’* might be
different for a given K. Hence, we only need to show that at each node B C A that contains a, the
child node containing a (and possibly others) will be enqueued. Fix an internal node B cotaining ¢ in
the PQ-tree, and say K = decomp(B, T))=decomp(B, T") and K, is the clone set in K containing a (i.e.,
a € K, € K). Consider two options:

1. B is a P-node. Since a € f°“(a), we must have K, € f(o*). Furthermore, for any two
clone sets K, K. € K\ {K,}, it must be that K, > ok K, — K, ~ oK/ Ky and Kp, = ok

K. = K > oK K, for all © € N by the clone set definition, since the only difference

between o and o is a moving up in some rankings. As f satisfies clone-aware monotonicity,
K, € f(e®) = K, € f(o'"), implying K, is enqueued in both cases.

2. Bis a Q-node. This implies everyone in o has either ranked By (B,T) = Ba(B,T) = ... =
Bix|(B,T) or By|(B,T) = Bjg|-1(B,T) = ... = Bi(B,T). Say K, = By(B,T) for some
k € [|K]]. Consider two cases:

(2a) || > 2. For any i € N, we will show that ch = Jé’c. By construction, the order in
which all B;(B,T) for i € [|K|] \ {k} are the same in the two rankings, as only K,
can move up. Assume for the sake of contradiction ag’c ranks K, in the jth position
for some j < k. If j > 1, this implies {B;_1(B,T), B;(B,T)} is a clone set in o
(by definition of a Q-node) but not a clone set in o'~ (as they are interrupted by K,
in o/)), and therefore B;_1(B,T) U B;(B,T) € C(o) \ C(a’), which contradicts the
assumption that C(o) = C(o”). Similarly, i (B,T)U By1(B,T) €
C(o) \ C(o’), once again leading to a contradiction. Lastly, if j = 1 and k = |K|, we have
Br—1(B,T) U Bk(B,T) € C(o) \ C(g’), as they are now interrupted by B1(B,T') (we
have k — 1 > 1 since k& > 2). In all cases, assuming j < k leads to a contradiction. Hence,

K ranks K, in the kth position, implying o = ¢/* and therefore o* = o’*. Thus,
Algorithm 1 enqueues the same children nodes (and by assumption K,) in both cases.

(2b) |K| = 2, in this case, B is a P-node and a Q-node at the same time (Q-nodes with two
children are treated identically to P-nodes by Algorithm 1), therefore we have this case is
identical to case (1) above.

Therefore, at every step in the PQ-tree, since the clone set that contains a is enqueued when running
Algorithm 1 on o, it will also be enqueued when running Algorithm 1 on ’. Hence, a € f¢“(6”), as

desired. O

Lemma 63. If (neutral) f satisfies ISDA® (Def. 54), then f€C satisfies ISDA®.

Proof. Assume f satisfies ISDA?, and take any profile o € £(A)™ over candidates A and any candidate
a € Asuchthata ¢ Sm(o)and C(o \ {a}) = C(o) — {a}. Denote 6’ = o \ {a}. Say T is the PQ-tree
ofo and K = {K1, Ko, ..., Ky} =decomp(A, T) are children nodes of the root node of 7. WLOG, say
a € K. Since C(0’) = C(o) — {a}, we have that K' = {K1, ..., K; \ {a}} is a clone decomposition
with respect to ’. We will argue f¢ (o) = f¢“(o \ {a}) by induction on the depth of the PQ-tree of
o (say 7T).

Base case: Say T has depth 2 (depth 1 is impossible, since a ¢ Sm(o) implies o is over at least 2
candidates). In this case, [(]. If the root is a P-node, this implies o has no

non-trivial clone sets. Since C(o’) = C(o) — {a}, this implies ¢’ also has no non-trivial clone sets.
Then:

o) = flo) = f(o’) = f7(")

where the first and last inequality follows from Condition 1 of Theorem 3 proven above, and the second
inequality follows from the assumption that f satisfies ISDA. If the root of T" is a Q-node (with
majority ranking o) on the other hand, it must be an untied Q-node (i.e., strictly more voters rank
o than its reverrse), otherwise we would have had Sm(o) = A, which contradicts the assumption
that a ¢ Sm(o). Since f satisfies ISDA®, we must have f(OJC|{Bl(B,T),BQ(B,T)} = {B1(B,T)},
otherwise removing By (B, T')}, which is not in the Smith set of O'IC|{ B1(B,T),Bs(B,1)} Would change
the election result. Therefore, f©“ () = By(A,T). Since a is not in the Smith set, this implies
Ky, = {a} # B1(B,T). Since the removal of a does not change the clone structure, the PQ tree of o’
(say T") is either a single leaf node corresponding to By (B, T) (if £ = 2) or is also a single Q-node with
¢ — 1 children nodes that are all leaves and margin matrix o \ {a} (if £ > 2). Since a did not come first
in o, this implies f¢¢(a’) = B1(A\ {a},T") = B1(A,T) = f“(o). This finishes the base case.

Inductive: Assume that ¢ (o) = f¢C(o’) if the depth of T'is 1,2, ... k — 1. Fix a profile & such that
T has depth k. Since f¢C satisfies CC by Condition 2 proven above, we have f¢C (o) = Hcc(o,K)
and f¢C (o) = [l;cc(o’,K'). Hence, it is sufficent to prove that I;cc(o,K) = Tlscc(a’,K').
Consider two cases:

1. If |Ky| = 1, then K; = {a} is a Smith-dominated candidate within . Moreover, K’ =
{K1,Ka,...,Ky_1}. Since K correspond to the children of the root node of 7', the PQ-tree of
ok (say TX) is either a single P-node or a Q-node. Since o/~ = X \ {K,}, it follows by the
base case above that fCC (oK) = f¢C(6’X"). Then we have:

Hiee(o,K)= | flelk)= | flolk) =Tee(d’,K)
KefCC (oK) KefC’C(a./IC’)
and we are done.
2. If |[Ky| > 1: Then 6* and o’X" are isomorphic, where the meta-candidate K in o'
with the meta-candidate K, = K, \ {a} in o’X". Consider two options:

is replaced

(2a) K; ¢ fC€C(oC). Then, by neutrality, we have f¢C (o’X") = f¢C (oK), and we have

Mpee(o,K)= | flolx)= | flolk) =Tee(d’,K).

KefCel(ak) KefCC(o./IC’)

(2b) K, € f€C(a®). Then, by neutrality, we have €€ (a’%') = fOC (o) \ {K/,} U {K}}. We
argue that Sm (o) N Ky # (). Assume for the sake of contradiction that Sm (o) N Ky = ().
Then K, ¢ Sm(c®). If the root of TX is a Q-node, this contradicts K, € f¢¢(a*), since
it cannot not be By (IC, TX), which is the only enqueued child node since f is ISDA®. If the
root of TX is a P-node, then by Condition 1 of Theorem 3, we have f (o) = f¢¢ (o), so
K, € (o) violates the assumption that f satisfies ISDA?, since by definition removing K
(which is not in Sm(a™)) will change the outcome. Therefore, we must have Sm(o) N K, #
(). By Lemma 58, this implies Sm(o) C Ky, since a € Ky \ Sm(o). Then, a ¢ Sm(o|k,).
Moreover, the PQ-tree of o |k, has depth at most £ — 1. By the inductive hypothesis, this

implies that f°C (o|k,) = f¢C(a|k, \ {a}) = fCC(0'|K2). Therefore

e (o, K) = U flolx) | Uf(alk,)
KefoC(a®)\{K,}

— U Flelx) | U alx,)

Kefoe (o)\{K}}

= U flolk) = Uec(a’,K).

KEfCC(U’K/)

In each case, we have shown that IT;cc (o,K) = 10 oo (¢/,K'), which, by Condition 2, implies
f¢¢(a) = f¢“(a'), thus completing the inductive case. O

Lemma 64. If (neutral) f satisfies participation®® (Def. 53), then fCC satisfies participation®®.

Proof. Fix any profile o € £(A)™ and any ranking 0,11 € L(A) such that C(o) = C(o + op+1),
implying that the PQ tree of both (say 7" and 7, respectively) have the same structure. We denote
o' = o + 0,41. Fixanode B in the PQ-tree that was dequeued by Algorithm 1 at some point when
run on input o. Say K = decomp(B, T')=decomp(B, T”) and that £* C K are the child nodes that were
enqueued by the algorithm. We will show that if Algorithm 1 on input o’ ever dequeues B, then it will
either enqueue max,,1(K*) or a child node preferred by o 1. Consider two cases:

1. Bis aP-node. In that case, K* = f(o) by construction of Algorithm 1. Similarly, if dequeued
when run on input ¢’, Algorithm 1 will enqueue f(o'*). Since f satisfies clone-aware partic-
ipation, we must have max, 1 (f(6'%)) =,41 max,,1(f(c*)), so the algorithm does indeed
enqueue max,,1(K*) or a child node preferred by o ;.

2. B is a Q-node, with majority ranking o* over K. Moreover, since C(o’) = C(0”), o/, | must
either be o* or its reverse. Consider three subcases:

(2a) f(o™| (B, (B1).ByBYy) = {B1(B,T)}. I ok, | = 0%, then o' 5, (51 B, (5,77} s sim-
ply U}C‘{B1(B7T)7BQ(B,T)} with an additional (B1(B,T) > B2(B,T)) vote. Since f satisfies
participation®®, we must have f(a'/’c]{Bl(BvT/)7B2(B7T/)}) ={Bi(B, T} = {B:(B,T)}.
Thus B1(B,T) get enqueued on input o/, which is the top ranked candidate in o - IF
UZEH is the reverse of o*, on the other hand, the child node enqueued at B on input o
(B1(B,T)) is the bottom ranked candidate in o "1, S0 it cannot possibly be ranked above
the child node enqueued at B on input o’

(2b) f(a"C]{Bl(Bj),BQ(RT)}) ={B(B,T)}. If afgﬂ = o*, the child node enqueued at B on
input o (Bj|(B,T)) is the bottom ranked candidate in 07’1&1, so it cannot possibly be
ranked above the child node enqueued at B on input o”. If o 1 is the reverse of 0%, on
the other hand, G/K’{B1(B,T/),BQ(B,T/)} is simply U’C‘{Bl(B,T),Bg(B,T)} with an additional
(B2(B,T) = B1(B,T)) vote. By assumption f satisfies participation®; thus, we must have
F(o™ (B, BaBy) = {B2(B, T")} = {B2(B, T)}. Thus Byx|(B,T) get on input
o', which is the top ranked candidate in U,’LC 1

20) f(e™p, (81,825)y) = {B1(B,T),Ba(B, 1)} I 0k, | = 0%, ™| 5, 5.1), 825,77}
is simply U’C|{Bl(B7T),BQ(B,T)} with an additional (By(B,T) = B2(B,T)) vote. Since
f satisfies participation®®, we must have By (B,T’) € f(U/IC|{Bl(B,T'),Bg(B,T')})- Thus
B1(B,T) is one of the child nodes that get enqueued on input o, which is the top ranked
candidate in JS_H. If 01’%_1 is the reverse of o*, on the other hand, U/K|{Bl(B,T'),BQ(B,T')}

is simply UK‘{B;[(B,T),BQ(B,T)} with an additional (B2(B,T) = Bi(B,T)) vote. Since
f satisfies participation®, we must have Bo(B,T) € f(U/’C‘{Bl(B,T/),BQ(B,T/)})‘ Thus
By|(B, T) is one of the child nodes that get enqueued on input ', which is the top ranked
candidate in o’ ;.

In each case, we see that if Algorithm 1 is considering B when run on o’, it will either enqueue
max,, 41(K*) or a child node strictly preferred by o 1

Say B is the root node (A), which is indeed dequeued by the algorithm when run on either input.
If a K > max,;1(K*) is enqueued (i.e., a strictly preferred child node) when run on input ¢/, then
we are done, since this implies f©“(o’) N K # () and each element of K is preferred to all elements
in f¢“ (o) by 0,1 1. Otherwise, max,,; 1 (K*) must have been enqueued, and we can apply the same
argument to that node, since it will be considered by the algorithm on both inputs. We repeat following
the max,,+1(K*) on each step until we reach a strictly preferred child node that is enqueued, or we
reach a leaf node, in which case max,,11(f¢“ (o)) = max,,1(f°“(0’)). In either case, we have
max, ;1(f9C(a")) =py1 max,1(fCC(a’)), proving fCC satisfies participation®?. O

Together Lemmata 57 and 60 to 64 prove Condition 4 of Theorem 3.

Condition 5. We analyze the running time of Algorithm 1: CC transformation for SCF f. First, we
construct the PQ-tree T' = PQ(o) for 0. By Lemma 11 (shown by Cornaz et al. [16]), this requires
O(nm?) time. Next, whenever Algorithm 1 encounters a node B that is of type P-, it runs f on o,
where K = decomp(B, T). By definition of §(T'), we can upper bound the runtime of running o for
each node B of type P- by g(n, d(T")). Hence, overall, this requires at most |P| - g(n,d(7")) runtime,
where recall that P denotes the set of P-nodes in PQ-tree 7". On the other hand, whenever Algorithm 1
encounters a node B that is of type Q-, it only runs f on the first two child nodes; i.e,, it runs f with at
most two candidates. Again by definition of function g, each encounter of a Q-node in Algorithm 1 thus
adds a running time of at most g(n, 2). Overall, this requires |Q| - g(n, 2) runtime, where Q denotes

the set of Q-nodes in PQ-tree 7.

Hence, the total runtime of Algorithm 1is O(nm3)+|P|-g(n, §(T))+|Q|-g(n, 2). By definition of §(T),
and excluding the trivial case where m = 1, it follows that §(7") > 2, and thus g(n,2) < g(n,d(T)).
Moreover, since all nodes of a PQ-tree are of either type P- or type Q-, it follows that |P| + |Q| < m, as
the number of internal nodes in a tree with m leaves is bounded by m.

Therefore, the total running time of Algorithm 1 is upper bounded by O(nm?) + m - g(n, §(T)).

F On Section 5 (Obvious Independence of Clones)

In this section, we provide the proofs omitted from Section 5 of the main body, as well as a formal
definition of extensive games and obviously-dominant strategies (in the restricted setting where each
agent has a single information set).

F.1 Proof of Proposition 15

Given o over candidates A with | A| = m, consider d, : B x B — [m]U{0} defined for each a;,a; € A
as:
da(ai,aj) = min ’K| -1

KCA:a;,0;€K,
K is a clone set w.r.t. o

Proposition 15. For any o, do is a metric over the candidate set A.
Proof. We prove d satisfies all axioms of a metric:

« (Zero distance to self) For each a € A, {a} is a clone set, so d(a,a) = |[{a}| —1 = 0.

« (Positivity) If a # b, then any clone set K that contains both of them must have |K| > 2, so
d(a,b) >2—-1=1>0.

+ (Symmetry) Clearly, d(a, b) = d(b, a).

« (Triangle inequality) Given any a, b, ¢ € A, say K is the clone set that includes a, b with | K| =
d(a,b) + 1 and K3 is the clone set that includes b, ¢ with | K| = d(b, ¢) + 1. Since b € K1 N Ko,
we have K1 N Ky # () so by Axiom (A1) by Elkind et al. [23], we have that K1 U K is a clone set.
Notice ’K1UK2’ = \Kl\—l—]KQ]—\KlﬂKQ] < (d(a, b)+1)+(d(b, C)+1)—1 = d(a, b)+d(b, C)+1.
Since a, ¢ € K1UK», wehaved(a,c) < |K1UKz|—1 < d(a,b)+d(b,c)+1—1 = d(a, b)+d(b, ¢),
satisfying triangle inequality.

F.2 Proof of Proposition 17

Next, we prove that in the strategic candidacy setting where the preferences of candidates are dictates
by dg, IoC rules not only achieve but strengthen candidate stability.

Proposition 17. If f is IoC, then R is a dominant strategy in I/ for all candidates.

Proof. Given any a € A, say u,(5) is the utility of this player in I/, when exactly the candidates in
S C Aplay R, and all candidates in A \ S play D, which is a decreasing function of d(a, f(o|s))
(and minimized at u,(0)). Fix any a € A and a pure action for every other candidate. Say S are the
candidates among A \ {a} that played R. To show that R is a dominant strategy for a, we would like
to show u, (S U {a}) > u,(S). Consider three cases:

1. Case I: If f(o|sufa}) = {a}, thenug(SU{a}) > uy(S) sincea ¢ f(ols),sods(a, f(ols)) >0,

and we are done.
2. Case 2: f(o|sufay) = f(a|s), then uy (S U {a}) = u.(S) and we are done.

3. Case 3: S = (). Then u,(.S) is the minimizer of u, and u, (S U {a}) = u,({a}) is the maximizer,
so we are done.

4. Case 4: If Cases 1-3 are false, we must have f(o|gu(q}) = {b} and f(o|s) = {c} for some b # a
and ¢ # b. Take any clone set K C A with respect to A containing both a and ¢; we would like
to show b € K (which will automatically apply dy(a,b) < ds(a,c)). Say K/ = K N (S U{a}),
which is a clone set in o[gy, by Definition 1. Since f is IoC, we have

K'N f(olsoay) £ 0 K\ {a} 1 f(ols) # 0.

Since the right hand side is true (as ¢ € K’ \ {a} N f(os)), we must have K’ N f(o|sufay) # 0,
implying b € K’ C K and therefore dy(a,b) < dg(a,c) and uy(S U {a}) > uq(S).

F.3 Definitions for extensive-form games and obviously dominant strategies

In this section, we introduce extensive-form games and obviously dominant strategies, which we use to
argue that CC exposes the obviousness of IoC.

Definition 65. We can define an extensive-form game I as follows:

1. I is represented by a rooted tree structure. The set of all nodes in this tree is denoted by H with
each edge of the tree representing a single game action. The game begins at the root, and each
action traverses down the tree, until the game finishes at a leaf which we call a terminal node. The
set of terminal nodes is denoted by Z C H, and the set of actions available at any nonterminal
node h € H \ Z is denoted by Ay,

2. A finite set of strategic and chance players |V U {c}| = N + 1 with N > 1. The set N contains
the strategic players, and c stands for a chance “player” that models exogenous stochasticity. Each
nonterminal node / is assigned to either a strategic player or the chance player, who chooses an
action to take from Aj. We call the set of nodes assigned to Player i H,;.

3. For each chance node h € H., a probability distribution P.(- | h) on A}, with which chance elects
an action at h.

4. For each strategic player i € N, a (without loss of generality) nonnegative utility (payoff) function
u; : Z — R>(which returns what ¢ receives when the game finishes at a terminal node. Player ¢
aims to maximize that utility.

5. For each strategic player i € N, a partition H; = Ujez, I of the nodes of 7 into information sets
(infosets). Nodes of the same infoset are considered indistinguishable to the player at that infoset.
For that, we also require Ay, = Ay for h, h’ € I. This also makes action set A; well-defined.

Strategies and utilities. Players can select a probability distribution—a randomized action—over
the actions at an infoset. A (behavioral) strategy m; of a player i € A specifies a randomized action
mi(- | I) € A(Ar) at each infoset I € Z;. We say m; is pure if it assigns probability 1 to a single action
for each infoset. A (strategy) profile m = (m;);cnr specifies a strategy for each player. We use the
common notation 7_; = (71, ..., M1, Tit1, ...,). We denote the strategy set of Player i with .S;,

and S = Xien S;.

We denote the reach probability of a node A’ from another node h under a profile w as P(h’ | 7, h). It
evaluates to 0 if & ¢ hist(h'), and otherwise to the product of probabilities with which the actions on
the path from & to h’ are taken under 7 and chance. For any infoset, let I'* refer to the nodes i € I for
which I does not appear in seq(h). Then the reach probability of I'is P(I | 7, h) :== 3, /cpa P(R | 7,).
We denote with u;(7 | h) == > .z P(z | m, h) - u;(2) the expected utility of Player i given that the
game is at node h and the players are following profile 7. Finally, we overload notation for the special
case the game starts at root node hg by defining P(h | 7) := P(h | 7, ho) and w;(7) := u; (7 | hg).

We now introduce obviously dominant strategies. Since we will focus on games with no exogenous
stochasticity (i.e., no chance nodes) and where every player will have a single infoset, our definition is
a simplified version of the original definition by Li [44].

Definition 66 (Li 44, Obviously Dominant Strategy). Given an EFG I" with no chance nodes and a
single infoset per player (i.e., Z; = {I;} for each j € N) and a player i € N, an action s € Ay, is
obviously dominant if:

vs' eI, : sup wi((7f,7m_) | h) < inf wi((75, i) | h)
hel;,m—; hel;,m—;

where 7} is the player ¢ strategy that plays action s with probability 1.

Inutitively, an action s is obviously dominant for player a if for any other action s, starting from when
a must take an action, the best possible outcome from s’ is no better than the worst possible outcome
from s. The sup / inf over h € I; allows us to compare the best and worst possible for i given what
she knows at the point where she must act (I;), and the sup / inf over 7_; allows us to best and worst
possible outcomes based on the strategies of all other players (again, given that I; is reached), including
those that have not acted yet.

For example, I" J from the main body of the paper can be interpreted as an EFG where players act
simultaneously. In this case, even if the f is IoC, running (R) is not an obviously dominant strategy,
due to the uncertainty of the actions of every other candidate:

Example 67. Consider 'SV, where o is from Figure 1. For b, the worst outcome of running (R) is that
every other candidate plays R too, making d the winner. The best outcome of dropping out (D), on the
other hand, is for c to play R and d to play D, in which case c wins regardless of what a does. Since
2 = dg(b,c) < do(b,a) = 4, candidate b strictly prefers the latter outcome, showing that R is not an
obviously-dominant strategy for her, even though it is a dominant strategy by Prop. 17.

F.4 Proof of Theorem 4

Finally, we prove that in the process of implementing a rule f©, AZ achieves obvious strategy-proofness
for candidates.

Theorem 4. For any neutral f, R is an obviously-dominant strategy in AL for all candidates.

Proof. Take any candidate ¢ € A and consider the point in AL where a must decide R or D. This
happens when Algo. 1 is on the parent node of a, say B. If B is a Q-node, the worst possible outcome of
playing R is a winning herself, which is her optimal outcome, and hence the best outcome of D cannot
be any better. If is a P-node, then B is the smallest non-trivial clone set that contains a by Lemma 11 (in
other words, the members of B are exactly a’s second-favorite candidates after herself). Then the worst
possible outcome of a running (R) is some other candidate b € B \ {a} winning (since Algo. 1 will
move out of B only if all the candidates in B, including a, play D), whereas the best possible outcome
of a dropping out (D) is, again, some other candidate ¢ € B \ {a} winning. Since d(a,b) = d(a, c)
(both pairs are united by B as the smallest clone set), the latter outcome is no better than the former,
proving that R is an obviously-dominant strategy for a. O

F.5 Example representations for I 5 and A£

Figure 8 shows the tree representation of I'5”" from Example 19.

f } (......................... }

R R D R
N N

@ Qe @ Qe @
R'D R D D R D R D _R'D
C a

. R R D
7 7
al as al b ¢ a

D@
R D

o a1 0

\C \C a9 \2 aj b a
Figure 8: EFG representation of I'S”" for o from Fig. 2. Terminals show the winner under that action profile.
Information sets are joined by dotted lines. For a;, the worst outcome of running is ¢ winning, and the best

outcome of dropping out is as winning, so running is not an obviously dominant strategy for a;.

Q(................... }
6{)?{) Réob[)g?)

Figure 9: AgTVcc, for o from Fig. 2, the PQ-tree of which is in Fig. 4 (right). For a;, best outcome of not running
is a2 winning, which is no better than the worst outcome of running, which is also as winning. Therefore,
running is an obviously dominant strategy for a;. A similar analysis applies for all other candidates.

	Introduction
	Our Contributions

	Preliminaries
	Analysis of IoC Social Choice Functions
	CC Transformation
	Background: Clone Structures and PQ-Trees
	CC-Transformed SCFs

	Obvious Independence of Clones
	Conclusion and Future Work
	Further Background
	Related Work
	Extended Preliminaries

	Majoritarian SCFs
	Social Preference Functions
	Definitions of social preference functions
	Proof of prop:SPFtoSCF
	(Nested) nested runoff voting
	Proof of prop:cctoiocspf
	Proof of thm:spftaxonomy
	Proof of thm:anonspf

	On sec:iocrules (Analysis of IoC Social Choice Functions)
	Proof of prop:cctoioc
	(Extended) Proof of thm:ccfails
	Proof of thm:rp
	Proof of prop:rpn

	On sec:cctransform (CC Transformation)
	Extended discussion of clone structures and PQ-trees
	Discussion of PQ-tree algorithms
	Clone-aware axioms
	Proof of thm:cctransform

	On sec:oioc (Obvious Independence of Clones)
	Proof of prop:metric
	Proof of prop:iocds
	Definitions for extensive-form games and obviously dominant strategies
	Proof of thm:ccods
	Example representations for bold0mu mumu subappendixf and fbold0mu mumu subappendix

