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Abstract

Multi-winner approval-based voting has received considerable attention recently, as an election
format. A voting rule in this setting takes as input ballots in which each agent approves a
subset of the available alternatives and outputs a committee of alternatives of a given size
k. We consider the scenario when a coalition of agents can act strategically and alter their
ballots so that the new outcome is strictly better for some coalition member and at least as good
for anyone else in the coalition. Voting rules that are robust against this strategic behaviour
are called strongly group-strategyproof. We prove that, for k ∈ {1, 2, . . . ,m − 2}, strongly
group-strategyproof multi-winner approval-based voting rules which furthermore satisfy the
minimum efficiency requirement of unanimity do not exist, where m is the number of available
alternatives. Our proof builds a connection to single-winner voting with ranking-based ballots
and exploits the infamous Gibbard-Satterthwaite theorem to reach the desired impossibility
result. Our result has implications for paradigmatic problems from the area of approximate
mechanism design without money and indicates that strongly group-strategyproof mechanisms
for minimax approval voting, variants of facility location, and classification can only have an
unbounded approximation ratio.

1 Introduction

Approval voting offers a simple and easy-to-use format for running elections on multiple issues with
binary domains. This may involve either committee elections among a set of candidates (which is
the viewpoint adopted in this work), or elections for a set of topics that need to be decided upon
simultaneously, often referred to as multiple referenda. Under such a voting format, the voters are
allowed to express approval preferences, i.e., each voter can specify an approval set, with as many
candidates as she likes, with the interpretation that these are the candidates she is happywith, whereas all
other candidates are disapproved by her. In the last decades, many scientific societies and organizations
have adopted approval voting for their council elections, including, among many others, the American
Mathematical Society and the Game Theory Society.

We are interested in the strategic behavior of voters in approval-based elections. Namely, our work is
centered around the design of mechanisms for selecting a committee of a given (a priori fixed) size,
which falls under the broader umbrella ofmechanism design without money. To begin with, the first goal
one would pursue is to obtain strategyproof mechanisms, where no voter has an incentive to unilaterally
misreport her approval preferences to her own benefit. The famous Gibbard-Satterthwaite theorem
[12, 26] is not applicable in the approval voting domain, as it requires a different space of preferences
that express a strict ranking over the set of candidates. Some known extensions of this theorem to
weak rankings —e.g., a result by Beja [6]— are not applicable to approval voting either. Thus, it is
feasible to have strategyproof mechanisms (that are not necessarily dictatorial), as already pointed out
by Caragiannis et al. [9]. As an example, for committees of size k, the classic minisum rule (commonly
also referred to as the approval voting rule), which selects the candidates with the k highest approval
scores, is strategyproof subject to appropriate tie-breaking.

Going beyond strategyproofness, several works have also examined coalitional manipulations, where a
1A version of this work has been presented at the conference WINE 2024.
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group of voters may benefit from a joint deviation. This gives rise to two distinct notions of resilience,
depending on how we interpret what it means for a coalition to benefit from a joint deviation. In
particular, a standard class is that of weakly group-strategyproof (in short, weakly GSP, or sometimes
simply referred to as GSP) mechanisms, where no deviation can make all members of a coalition
strictly better off. A stronger definition is that of strongly GSP mechanisms where no deviation makes
some member of the coalition better off without worsening the other members. Our interest here
is in the latter notion of strong group-strategyproofness. Even though the definitions of weak and
strong group-strategyproofness may not seem to differ significantly at first sight, the current literature
conveys a different picture. There are positive results on the existence of weakly GSP mechanisms with
desirable properties (e.g., satisfying some form of economic efficiency or approximating some social
cost objective), both in voting [9], but also in other fields of mechanism design without money, such as
in facility location problems [24]. On the contrary, many of these results do not generalize for strongly
GSP mechanisms, and in some cases it has remained an open problem whether comparable results are
possible with strongly GSP mechanisms. This is precisely the focus of our work.

Our Results. We consider the problem of selecting a committee of a given fixed size, in elections where
voters submit approval ballots. Our main result is in Section 3, where we show that unanimous, strongly
GSP mechanisms do not exist. Unanimity is a very simple and minimal form of efficiency, requiring that
if all voters approve the same committee, this should also be the outcome of the election. We view this
as a severe impossibility result for strongly GSP mechanisms. Our proof is based on a construction that
exploits the Gibbard-Satterthwaite theorem; even though we are interested in approval-based elections,
we essentially provide a reduction from appropriately defined elections with ranking preferences, where
the non-existence of strategyproof mechanisms implies the impossibility of strongly GSP mechanisms
in our setting. We feel that our proof technique is of independent interest and could have further
applications. As a corollary, our result also yields an incompatibility between Pareto-efficiency and
strong group-strategyproofness under the approval voting format. Finally, we stress that our results
are not based on any computational complexity assumption and, hence, hold for exponential-time
mechanisms as well.

We proceed in Section 4, by demonstrating some further implications of our main result. Most impor-
tantly, we resolve one of the open questions posed by Caragiannis et al. [9], concerning the minimax
approval voting rule, proposed by Brams et al. [7] as an alternative to the minisum rule. Namely, we
prove that there is no strongly GSP mechanism that achieves a finite approximation for the minimax
solution. Within the voting domain, we also obtain an impossibility result for participatory budgeting
under approval ballots. Beyond voting, we also have implications for two other related problems. The
first one is a special case of binary classification, where we seek a classifier that labels a fixed number of
points as positive and the remaining ones as negative. Finally, the last one is a version of the constrained
facility location, where the facilities can be placed only in particular locations.

Further Related Work. For a more complete exposition of approval voting elections and their applica-
tions, we refer to the book of Lackner and Skowron [15]. Regarding resistance to manipulation, there
are several positive results for strategyproof mechanisms that generalize to weakly GSP mechanisms.
In fact, this connection has been studied more thoroughly by Le Breton and Zaporozhets [16] and
Barberà et al. [4], where sufficient conditions have been identified for domains in which strategyproof
mechanisms coincide with weakly GSP mechanisms. On a different line of works, there have been some
impossibility results when combining strategyproofness with proportional representation axioms and
efficiency guarantees, as in [23]. Follow up works on this include also [10, 13].

Regarding strongly GSP mechanisms in settings without monetary payments, the literature is rather
scarce. We are aware of characterization results for the case of two alternatives by Manjunath [19] and
by Barberà et al. [5]. In particular, for approval elections with two alternatives, Manjunath identifies
essentially two voting rules that are strongly GSP and Pareto-efficient. On a slightly different direction,
the work of Barberà et al. [5] establishes characterizations based on certain monotonicity properties.
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Finally, in terms of impossibility results, Filos-Ratsikas et al. [11] show that there are no anonymous,
strongly GSP mechanisms for a facility location problem, where the goal is to place a facility on a line,
under double-peaked preferences. This is a quite different domain however, and does not have any
implications for our voting setting.

2 Definitions

We begin by introducing our notation. We let N denote a set of n voters (or agents) and A a set of
m candidates (or alternatives). We consider elections where both the preferences and the ballots are
approval-based, i.e., an agent’s ballot expresses his approval for each alternative in the subset under
consideration. Hence, a voting profile P is a tuple P = (P1, . . . , Pn), where Pi ⊆ A denotes the
declared preference of agent i. Under this notation, an approval election is specified by a tuple (N,A, P ).
Our focus is on multi-winner elections for selecting a committee of some predetermined size. We let
k denote the committee size. So, for any voting rule in our setting, the outcome must be some set
S ⊆ A, with |S| = k. To distinguish with the rules discussed later in Section 2.2, we refer to them as
multi-winner approval-based voting rules.

We extend the notion of Hamming distance to subsets of A as follows. We say that the distance between
two sets Q and T is the total number of alternatives in which they differ, i.e.,

d(Q,T ) = |Q \ T |+ |T \Q| = |Q|+ |T | − 2|Q ∩ T |.

Note that this is precisely the Hamming distance of the sets when represented as binary vectors, where
the ith coordinate of each vector equals 1 if the ith alternative belongs to the set and equals 0 otherwise.

2.1 Resistance to Manipulation and Other Properties

We consider strategic agents who may misreport their preferences to the voting rule if this can be
in their interest. We assume that each agent prefers committees that include as many alternatives
from their approval preference as possible. Equivalently, agents evaluate a committee in terms of its
Hamming distance to their approval preference (with the smaller Hamming distance, the better).

Hence, it is desirable for voting rules to be resistant to possible manipulations by the agents. Given a
profile P and a voting rule R, we denote by R(P ) the outcome of the voting rule on profile P . We also
denote by P−i the preferences of all agents besides i. Hence, we can also write P as (Pi, P−i). Our first
property indicating resistance to manipulation is strategyproofness, which requires that no agent i has
an incentive to unilaterally change her preference so as to reduce the distance of Pi from the outcome
of the voting rule.

Definition 1. A voting rule R is strategyproof (SP) if for any election (N,A, P ), any agent i ∈ N , and
any set of alternatives P ′

i ⊆ A, it holds that

d(Pi, R(Pi, P−i)) ≤ d(Pi, R(P ′
i , P−i)).

Moving on, we can also consider deviations by coalitions of agents and define two analogous notions of
resistance to manipulation. In particular, the first such notion says that there is no deviation that can
make all deviating agents strictly better off. Given a profile P , in analogy to Pi and P−i, we let PS and
P−S denote the preferences of a set of agents S and of all agents except S, respectively.

Definition 2. A voting rule R is weakly group-strategyproof (weakly GSP) if for any election (N,A, P )
and any coalition S ⊆ N of agents, there is no profile P ′

S of the agents in S such that

d(Pi, R(PS , P−S)) > d(Pi, R(P ′
S , P−S)) ∀i ∈ S
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The notion that is the main focus of our work is a stronger requirement, defined as follows.

Definition 3. A voting ruleR is strongly group-strategyproof (strongly GSP) if for any election (N,A, P )
and any coalition S ⊆ N of agents, there is no profile P ′

S of the agents in S such that

d(Pi, R(PS , P−S)) ≥ d(Pi, R(P ′
S , P−S))

for every agent i ∈ S, with strict inequality for at least one agent of S.

The rationale behind this last concept is that we demand the voting rule to be resistant to coalitions in
which some of the agents may change their preference profile in order to help other members of the coali-
tion (without necessarily gaining something for themselves). Clearly, strong group-strategyproofness is
a stronger notion than weak group-strategyproofness.

Apart from resistance to manipulation, we will also examine two properties related to efficiency. The
first one is a very natural axiom for our setting.

Definition 4. We say that a voting rule R for selecting a committee of size k is unanimous if whenever all
agents approve the same set S of k alternatives (and nothing else), R outputs S as the selected committee.

Definition 5. A voting rule R is Pareto-efficient if, for every input profile P , it outputs a set S of k
alternatives, such that there is no other committee S′ of size k, with at least one agent being closer to S′

than S, and all other agents not being further off.

2.2 Voting by Ranking Ballots

Although our main focus is on approval voting, the proof of our main result is based on a construction
that involves elections where the ballot of each agent is a strict ranking of the alternatives in decreasing
order of preference. Hence, a preference profile in ranking-based voting is given by a tuple (≻1, · · · ,≻n),
where ≻i is the ranking of agent i on the set of alternatives A. For brevity, we use ≻ to denote the
entire preference profile (≻1, · · · ,≻n). Furthermore, for two alternatives p, q ∈ A, we will use p ≻i q
to denote that agent i prefers p to q (and, hence, p appears higher than q in the ranking of i).

Given a set of agents N , a set of alternatives A, and a preference profile ≻, a ranking-based election is
specified by a tuple (N,A,≻). We will consider single-winner ranking-based voting rules, which return
a single alternative as an outcome when applied to a ranking profile. Hence, for a voting rule T , we let
T (≻) denote the winning alternative of T when given the preference profile ≻ as input.

In analogy to Definition 1, we can also define the notion of strategyproofness in this setting as well. In
the definition below, for a profile ≻, we denote by ≻−i the preference profile of all agents except i.

Definition 6. A ranking-based voting rule T is strategyproof (SP) if for any ranking-based election
(N,A,≻), any agent i ∈ N , and any ranking ≻′

i of the alternatives in A, it holds that

T (≻) ≻i T (≻′
i,≻−i).

The classic impossibility result due to Gibbard and Satterthwaite, states that any SP and onto single-
winner ranking-based voting rule for elections with at least three alternatives is a dictatorship. Here,
a voting rule T is onto if, for every alternative p ∈ A, there exists a profile ≻ such that T (≻) = p. A
voting rule T is a dictatorship if there exists an agent i such that for every profile ≻, the outcome T (≻)
is the top choice of agent i.

Theorem 1 (Gibbard [12], Satterthwaite [26]). Any single-winner ranking-based voting rule for ranking-
based elections with at least three alternatives, which is SP and onto, must be dictatorial.
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3 Our Impossibility Result

Before we embark on our impossibility result, it is instructive to start with a discussion on the existence
of SP and weakly GSP voting rules. If we care only about strategyproofness, the minisum voting rule
(with appropriate deterministic tie-breaking) is SP. When it comes to coalitional manipulations, it would
be expected that some form of dictatorial mechanisms would be weakly, or even strongly GSP. One
crucial issue here with defining a dictatorial rule is that the outcome cannot always coincide exactly
with the dictator’s preferences, due to the constraint on the size of the committee being exactly k.
Therefore, a voting rule is dictatorial in our setting if it falls within the following class of voting rules
(referred to as k-completion by LeGrand et al. [17]).

Dictatorial k-completion: Pick an agent i as the dictator. If |Pi| < k, then output the
union of Pi together with k − |Pi| alternatives from A \ Pi (selected according to some
tie-breaking order); else if |Pi| > k, then output a subset of Pi of size k (again, according
to some tie-breaking order); else return Pi.

The k-completion rules do indeed satisfy some form of resistance to coalitional manipulation, but they
are still not strongly GSP.

Theorem 2 (Caragiannis et al. [9]). Any k-completion voting rule is weakly GSP but not strongly GSP.

The reason a k-completion rule is not always strongly GSP is that, dependent on the tie-breaking rule
used, the dictator could help some other agent by changing his approval ballot and steer the rule to
select a committee that makes some agents better off, while the dictator is not worse off.

A natural question, posed already a while ago by Caragiannis et al. [9], is whether non-trivial strongly
GSP voting rules exist. Our main result is the following theorem, where we obtain a negative answer,
as long as we demand the additional and seemingly harmless property of unanimity.

Theorem 3. Consider approval elections with m alternatives, where the outcome must always be a
committee of size k, with k ∈ [m − 2], and n ≥ 3(m − k) agents. Then, there is no multi-winner
approval-based voting rule that is both strongly GSP and unanimous.

The remaining section is devoted to the proof of this result. We start with the following lemma, which
connects unanimity, strong group-strategyproofness, and Pareto-efficiency.

Lemma 1. Any strongly GSP and unanimous multi-winner approval-based voting rule is Pareto-efficient.

Proof. Assume that the voting rule is not Pareto-efficient. Then, there exists an approval election
(N,A, P ), for which the voting rule returns a k-sized committee of alternativesK , while there exists
another k-sized committeeK ′ such that d(K ′, Pi∗) < d(K,Pi∗) for some agent i∗ ∈ N and d(K ′, Pi) ≤
d(K,Pi) for any other agent i ∈ N . But then, all agents have an incentive to form a coalition and
misreport their preferences by simply reporting the set of alternativesK ′. In that case, by the unanimity
property,K ′ should be selected as the outcome. The agent i∗ would then become strictly better off, and
the rest of the agents would not be worse off. This would contradict the fact that our voting rule is
strongly GSP.

Using Lemma 1, we will prove Theorem 3 by showing that no Pareto-efficient multi-winner approval-
based voting rule is strongly GSP. We first provide a high-level outline of our proof. We believe that the
technique can be of independent interest, potentially useful for establishing other impossibility results
as well. The backbone of the proof is a reduction that transforms a ranking-based election (as defined in
Section 2.2) into an approval election, so that any Pareto-efficient multi-winner approval-based voting
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rule for the latter is mapped naturally to a single-winner ranking-based voting rule for the former.
We show that if the multi-winner approval-based voting rule is furthermore strongly GSP, then the
single-winner ranking-based voting rule is SP and onto. Then, the Gibbard-Satterthwaite theorem
(Theorem 1) implies certain “dictatorship-like” properties for the multi-winner voting rule, eventually
leading to a contradiction.

Definition 7. [Construction of an approval election from a ranking-based election] Given a parameter k
and a ranking-based election I ′ = (N ′, A′,≻)with |N ′| = n′ and |A′| = m′, we construct a corresponding
approval election I = (N,A, P (≻)), as follows:

• For every agent i ∈ N ′, we introducem′−1 different copies of agents, indexed as (i, 1), . . . , (i,m′−
1). Hence, the approval-based election has a total of n = (m′ − 1) · n′ agents.

• The set of alternatives is A = A′ ∪D, where D consists of k − 1 dummy alternatives. Hence, the
approval election has a total ofm = |A| = m′ + k − 1 alternatives.

• For i ∈ [n′] and j ∈ [m′ − 1], agent (i, j) has the approval ballot P(i,j) defined as

P(i,j) = {top j ranked alternatives in ≻i} ∪D

Hence, the approval profile is given by P (≻) = {P(i,j)}i∈[n′],j∈[m′−1].

Example 1. Before we proceed, we demonstrate the construction with a simple example, when n′ and m′

are small. Consider the ranking-based election (N ′, A′,≻) with N ′ = {1, 2}, A′ = {x, y, z}, and with
≻ defined as x ≻1 y ≻1 z and y ≻2 z ≻2 x. The reduction of Definition 7 for k = 2 gives an approval
election with four agents N = {(1, 1), (1, 2), (2, 1), (2, 2)}, and four candidates A = {x, y, z, d1}. Here,
we have only one dummy candidate. The approval ballots are: P(1,1) = {x, d1}, P(1,2) = {x, y, d1},
P(2,1) = {y, d1}, and P(2,2) = {y, z, d1}.

Now, let (N ′, A′,≻) be a ranking-based election and let (N,A, P (≻)) be the corresponding approval
election defined by our reduction in Definition 7. Also, letR be a Pareto-efficient multi-winner approval-
based voting rule which outputs the committee R(P (≻)) of size k when applied on the profile P (≻).
We will show that R(P (≻)) \D is a singleton and will use it to define a corresponding single-winner
ranking-based voting rule for the ranking-based election.

Lemma 2. If the multi-winner approval-based voting rule R is Pareto-efficient, then R(P (≻)) \D is a
singleton.

Proof. For the sake of contradiction, assume that |R(P (≻)) \D| ≥ 2. Note that for every agent i ∈ N ′,
agent (i, 1) of N approves exactly one alternative outside D. Hence, there is at least one alternative
in the outcome R(P (≻)), say a∗, that this agent does not approve. Moreover, each alternative in
D \ R(P (≻)) is approved by all agents. Now, consider replacing a∗ in the outcome of R by some
alternative in D \R(P (≻)). Agent (i, 1) is strictly better off now, and all other agents are not worse
off. Hence, R is not Pareto-efficient, a contradiction.

Given Lemma 2, we now define the single-winner ranking-based voting rule T , which returns the
alternative contained in R(P (≻)) \D on input the profile of rankings ≻. We refer to T as the rule
induced by the approval-based ruleR. We will show that if the multi-winner approval-based voting rule
R is both Pareto-efficient and strongly GSP, the rule T satisfies the premises of the Gibbard-Satterthwaite
theorem (Theorem 1).

Lemma 3. IfR is a strongly GSP and Pareto-efficient multi-winner approval-based voting rule, the induced
single-winner ranking-based voting rule T is onto and SP.
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Proof. We first prove that T is onto, i.e., for every alternative a ∈ A′, there exists ≻ such that T (≻
) = a. We construct ≻ such that a is the top alternative in every agent’s ranking. Note that, in
the corresponding approval voting profile P (≻) defined by our reduction in Definition 7, the only
Pareto-efficient committee of size k is D ∪ {a}. Hence, this must be the outcome of R, and this means
that T is equal to the single alternative in R(≻) \D, i.e., alternative a.

Second, we show that T is SP. Assume towards a contradiction that T is not SP, i.e., there exists a
preference profile ≻, some agent i, and some ranking of alternatives ≻′

i such that

T (≻′
i,≻−i) ≻i T (≻i,≻−i). (1)

By our reduction, the approval ballots of the profiles P (≻i,≻−i) and P (≻′
i,≻−i) differ only in the

agents (i, 1), . . . , (i,m′ − 1). Hence, the main idea is to show that the unilateral deviation to ≻′
i by

agent i in the ranking-based election corresponds to successful deviations by the coalition of agents
(i, 1), . . . , (i,m′ − 1) in the approval-based election, from profile P (≻) to profile P (≻′

i,≻−i).

Let a = T (≻i,≻−i) and b = T (≻′
i,≻−i). Suppose that according to ≻i, alternative a is in position r

and b is in position r′. Observe that Equation (1) implies r′ < r. Since we assumed that, under rule T , b
is the winner in profile (≻′

i,≻−i) and a is the winner in profile ≻, this means that the outcome of rule
R in the approval voting election isD∪{a} for profile P (≻) andD∪{b} for profile P (≻′

i,≻−i). Note
that the agents (i, j) with r′ ≤ j < r approve alternative b but do not approve alternative a. Hence,
their distance from the outcome of R decreases in profile P (≻′

i,≻−i) compared to profile P (≻). The
remaining agents in the coalition are indifferent, since either they approve both a and b (this holds for
agents (i, j) with j ≥ r, if any), or they approve neither of them (this holds for agents (i, j) with j < r′,
if any). Hence, we have constructed a deviation, where at least one member of the coalition is better off,
and some are indifferent. This contradicts the assumption that the multi-winner approval-based voting
rule R is strongly GSP. Therefore, the single-winner ranking-based voting rule T is SP.

Notice that, according to our reduction in Definition 7, if the number of alternatives in the approval
election is at least k + 2, then the number of alternatives in the ranking-based election is at least 3.
Thus, by Lemmas 2, 3, and Theorem 1, we get the following corollary.

Corollary 1. Let R be a Pareto-efficient and strongly GSP multi-winner approval-based voting rule for
approval elections with m ≥ 3 alternatives, k ∈ [m− 2], and n ≥ 3(m− k) agents. Then, the induced
single-winner ranking-based voting rule T is a dictatorship, i.e., there exists an agent i∗ such that for every
profile ≻, T (≻) is the top preference of agent i∗.

The fact that T is a dictatorship implies that R also has some dictatorship-like attributes. We will show
that this contradicts the fact that R is strongly GSP, which implies that the intersection of strongly GSP
and Pareto-efficient multi-winner approval-based voting rules is empty.

Consider a unanimous (and, by Lemma 1, Pareto-efficient) and strongly GSP multi-winner approval-
based voting ruleR which outputs committees of size k ∈ [m−2] for elections withm ≥ 3 alternatives.
We use the reduction of Definition 7, with parameters2 k, m′ = m− k + 1 ≥ 3, and n′ = 3, and let T
be the single-winner ranking-based voting rule induced by R. By Corollary 1, T is a dictatorship, and
without loss of generality, let us assume that the dictator is agent 1.

Now, let x and y be two specific alternatives of A′ and consider the rankings ≻x and ≻y of the
alternatives of A′, which differ only in the two top positions, defined as follows. Ranking ≻x has
alternative x first, alternative y second, and then the alternatives of A′ \ {x, y} in some arbitrary order.
Ranking ≻y has alternative y first, alternative x second, and then the alternatives of of A′ \ {x, y} in

2These parameters introduce the restriction of n ≥ 3(m− k) in the statement of Theorem 3. Actually, our construction
yields exactly 3(m− k) agents in the approval-based profile. Additional indifferent agents may be added to get higher values
of n.
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the same order with ≻x. Based on these, we will construct three distinct approval profiles and argue
about their outcome under R, that will eventually lead to a contradiction.

Consider first the ranking profiles (≻x,≻x,≻y) and (≻y,≻x,≻y). The corresponding approval profiles
Px = P (≻x,≻x,≻y) and Py = P (≻y,≻x,≻y) differ only in the ballot of agent (1, 1), which is {x}∪D
in Px and {y}∪D in Py . Among the remaining agents in profiles Px and Py , the ones that are of interest
for the arguments below are agent (2, 1) with approval ballot {x} ∪D and agent (3, 1) with approval
ballot {y} ∪D. By the definition of our reduction, the fact that T is a dictatorship of agent 1, and the
relation between the voting rules R and T , we have that R(Px) = {x} ∪D and R(Py) = {y} ∪D.

Now, consider a third approval profile Pxy , differing from Px and Py only in the ballot of agent (1, 1)
which is now {x, y} ∪D. For convenience, the three profiles are depicted in Table 1, whenm′ = 3. We
remark that this profile is not produced by our reduction. Still, the Pareto-efficiency of voting rule R,
implies that D ⊂ R(Pxy), since the alternatives in D appear in the approval ballot of all agents in Pxy .
We distinguish between two cases regarding the single alternative in R(Pxy) \D.

First, if R(Pxy) \ D ̸= {x}, then the agents (1, 1) and (2, 1), with ballots {x, y} ∪ D and {x} ∪ D
under Pxy , have Hamming distance at least 1 and exactly 2 respectively, from the k-sized committee
R(Pxy). The deviation of these two agents to approval ballots {x} ∪D for both yields the approval
profile Px, for which rule R outputs the committee {x} ∪D. Its Hamming distance from the approval
ballots of agents (1, 1) and (2, 1) in profile Pxy is only 1 and 0, respectively, implying the existence of a
successful deviating coalition that contradicts the assumption that voting rule R is strongly GSP.

It remains to consider the case R(Pxy) = {x} ∪ D. Then, the agents (1, 1) and (3, 1), with ballots
{x, y} ∪ D and {y} ∪ D under Pxy , have Hamming distance 1 and 2 from the committee R(Pxy)
respectively. Their deviation to ballot {y} ∪D for both yields the approval profile Py , for which the
rule R outputs the k-sized committee {y} ∪D. Hence, this will yield a Hamming distance of 1 and 0
from the approval ballots of agents (1, 1) and (3, 1) in the approval profile Pxy . This again implies the
existence of a successful deviating coalition, contradicting the assumption that R is strongly GSP.

We conclude that R cannot be Pareto-efficient (and, hence, unanimous) and strongly GSP, completing
the proof of Theorem 3.

Table 1: An example of the profiles used in the final step of the proof of Theorem 3, when the ranking-based
election we start from has m′ = 3 alternatives. The profiles differ only in the approval ballot of agent (1, 1)
and any Pareto-efficient outcome of the rule R (i.e., either {x} ∪D or {y} ∪D) on profile Pxy violates strong
group-strategyproofness.

agent Px Py Pxy

(1, 1) {x} ∪D {y} ∪D {x, y} ∪D
(1, 2) {x, y} ∪D {x, y} ∪D {x, y} ∪D
(2, 1) {x} ∪D {x} ∪D {x} ∪D
(2, 2) {x, y} ∪D {x, y} ∪D {x, y} ∪D
(3, 1) {y} ∪D {y} ∪D {y} ∪D
(3, 2) {x, y} ∪D {x, y} ∪D {x, y} ∪D

outcome {x} ∪D {y} ∪D ?

4 Implications

We now discuss some implications of our impossibility result in other settings. We begin by answering
a question by Caragiannis et al. [9] about the “approximability” of the minimax approval voting rule.
Then, we discuss three problems, which are generalizations of multi-winner approval-based voting
(even though some may seem different at first glance).
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4.1 Approximating Minimax Approval Voting

Minimax approval voting has been proposed by Brams et al. [7], who argued about its use in comparison
to the minisum rule that is mostly adopted in practice. In particular, the k-minimax approval voting
rule takes as input a profile of approval ballots and returns a k-sized committee of alternatives that
minimizes the maximum Hamming distance from the ballots. Unfortunately, as proved by LeGrand et
al. [17], the rule has two important drawbacks. The first is that computing the winning committee is an
NP-hard problem, and the second is that the rule is not SP.

As a relaxation, LeGrand et al. [17], Caragiannis et al. [9], and Byrka and Sornat [8] studied approximate
mechanisms for k-minimax approval voting. Given an approval election (N,A, P ) and a k-sized
committee C , let D(C,P ) = maxi∈N d(C,Pi) denote the maximum Hamming distance of C from the
approval ballots of P . Also, let C∗ ∈ argminK D(K,P ) be a k-sized committee that would be returned
by the k-minimax approval voting rule on input the election (N,A, P ). A voting rule R approximates
the k-minimax solution within a factor of ρ ≥ 1, if D(R(P ), P ) ≤ ρ ·D(C∗, P ) for every profile P .
The quantity ρ is called the approximation ratio of mechanism R.

The papers by LeGrand et al. [17] and Caragianis et al. [9] present SP and weakly GSP voting rules,
which approximate k-minimax approval voting within a factor of 3− 2

k+1 . Among them, the minisum
rule with appropriate tie-breaking is SP, whereas the class of k-completion voting rules, presented in
Section 3, is weakly GSP. The question of whether such an approximation factor can be achieved by a
strongly GSP mechanism was left open.

To resolve this open question using our impossibility result, we make first the following claim.

Lemma 4. A non-unanimous voting rule has an infinite approximation ratio for k-minimax approval
voting.

Proof. Consider such a non-unanimous rule. Non-unanimity implies that there is a profile P in which all
agents approve the same k-sized committee of alternatives, say C∗, but the rule returns some different
committee, say C . Clearly, D(C∗, P ) = 0, i.e., the minimax solution has a Hamming distance of 0 to
all voters, whereas D(C,P ) > 0 in this case. This means that the rule has an infinite approximation
ratio.

The following statement now follows due to Theorem 3.

Theorem 4. Any strongly GSP approval-based multi-winner voting rule in elections with m ≥ 3 alterna-
tives, k ∈ [m− 2], and n ≥ 3(m− k) agents has an infinite approximation ratio for k-minimax approval
voting.

4.2 Participatory Budgeting with an Approval Voting Format

An important application of approval-based voting is in participatory budgeting [2, 25]. In the most
typical scenario, a municipality has a fixed budget and considers implementing several projects. Each
project has a known cost, but the total cost of all projects exceeds the available budget. Thus, only a
subset of projects can be selected for implementation. Participatory budgeting is used to delegate the
selection of projects to the citizens. Each participating citizen casts a ballot with their preferences, and
the municipality has to select, using a predefined mechanism, a subset of projects that are within the
budget. Among other formats that have been used for eliciting the citizens’ preferences, approval ballots
seem to be very popular, not only within municipalities, but also in programs offered by blockchain
communities or decentralized autonomous organizations (DAOs); e.g., see the recent related survey by
Talmon [29].
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Let us focus now on the case of projects with equal costs, so that for some integer k, all subsets of k
projects are the maximal sets of projects that are within the budget3. This setting can be easily seen to
be equivalent to multi-winner approval voting. In particular, we say that a mechanism is maximal if it
always returns a maximally feasible set of projects for funding (the addition of any other project violates
the budget constraint). For the case we are considering, a maximal mechanism would have to select a
set of exactly k projects (which can be viewed as a committee of size k in the approval voting election).
Assuming that each citizen aims to have as many of her favourite projects selected, our impossibility
result implies that unanimity and strong group-strategyproofness are not compatible for participatory
budgeting mechanisms that are maximal.

Theorem 5. Unanimous and strongly GSP maximal mechanisms for participatory budgeting with an
approval ballot format do not exist.

We remark that Theorem 5 applies to mechanisms which allow citizens to cast ballots with arbitrarily
many projects, even if their total cost exceeds the available budget. This is not an unusual practice
today.4 Whether Theorem 5 carries over for inputs, where each agent’s ballot respects the budget
restriction is an interesting open problem.

4.3 Classification with Shared Inputs

An important problem in supervised learning is, given a set of training examples that maps points from
an input space to labels, to select a classifier from a concept class that is as close to the data in the
training example as possible. The work of Meir et al. [21] studies strategic issues in binary classification
by considering the following multi-agent setting with an input space X , a concept classH and n agents.
The concept class contains classifiers; each classifier h ∈ H is a function mapping each point of X to a
label from {+,−}. The training set consists of a set of points X ⊆ X and data provided by n agents,
where agent i provides a labeling Yi : X → {+,−} of the points in X .

A classifier is evaluated for each agent i ∈ [n] by her loss function ℓi, returning the number of data
points for which the labeling of the classifier and the labeling provided by agent i differ. I.e., for a
classifier h ∈ H and agent i,

ℓi(h, Yi) =
∑
x∈X

I{h(x) ̸= Yi(x)}.

Furthermore, each agent i ∈ [n] has a positive weight wi, so that
∑

i∈[n]wi = 1, indicating the
importance of the agent for the classification task. A classification mechanism takes as input the dataset
Y = (Y1, Y2, ..., Yn), which consists of the labelings provided by the agents, along with their weight
vector w = (w1, w2, ..., wn), and returns a classifier from the concept class H. The outcome of the
classification mechanism, say h ∈ H, is evaluated using the global risk L(h, Y,w), defined as

L(h, Y,w) =
∑
i∈[n]

wi · ℓi(h, Yi).

The well-known empirical risk minimization (ERM) algorithm selects a classifier minimizing the global
risk, i.e.,

erm(Y,w) ∈ argmin
h∈H

L(h, Y,w).

3In fact, for our purposes, the project costs do not need to be the same, as long as any set of k projects is budget feasible,
and any superset is infeasible.

4The site https://en.wikipedia.org/wiki/List_of_participatory_budgeting_votes has information about the format of such
elections, held in the last ten years.
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Meir et al. [21] assume that agents are strategic and may decide to misreport their private data to the clas-
sification mechanism. Adapting the notions of strategyproofness and strong group-strategyproofness
to this setting, we say that a classification mechanism M taking as input the weight vector w and
the private labelings of the agents, Y = (Y1, ..., Yn), for the set of points X ⊆ X , is SP if there is
no agent i ∈ [n] and labeling Y ′

i : X → {+,−} so that ℓi(M(Y,w), Yi) > ℓi(M((Y−i, Y
′
i ),w), Yi).

The mechanism is strongly GSP if there is no subset of agents S ⊆ [n], agent i∗ ∈ S, and labelings
Y ′
i : X → {+,−} for i ∈ S, so that ℓi(M(Y,w), Yi) ≥ ℓi(M((Y−S , Y

′
S),w), Yi), for each i ∈ S

and ℓi∗(M(Y,w), Yi∗) > ℓi∗(M((Y−S , Y
′
S),w), Yi∗). A universally SP (resp., strongly GSP) random-

ized mechanism is a probability distribution over deterministic SP (resp., deterministic strongly GSP)
mechanisms.

Meir et al. [21] observe that ERM is not SP and aim to design SP mechanisms which approximate the
global risk of ERM. A (possibly randomized) ρ-approximate mechanism M in this context satisfies
E[L(M(Y,w), Y,w)] ≤ ρ·L(erm(Y,w), Y,w) for every datasetY . They present anO(n)-approximate
SP mechanism, which is also proved to be almost best possible among all deterministic SP mechanisms.
A randomized version of this mechanism, which first selects an agent proportionally to the agents’
weights and then selects the classifier of minimum loss to the selected agent, is universally SP and
has an approximation ratio of 3 − 2

n . This bound was proved to be best possible for randomized SP
mechanisms by Meir et al. [20].

We now demonstrate the relation between binary classification with shared inputs and approval voting.
Consider a set of m points X ⊆ X and the concept class H consisting of the classifiers that label k
points of X with + and the remaining with −, where k ∈ [m − 2]. Such classifiers can make sense
when there is a fixed number of points that can receive one of the two labels, due to capacity constraints.
E.g., classifiers for school admission or bank loan applications fit under this framework (where only a
predetermined number of the applicants will be admitted). Another natural example can be seen with
taking k = n/2, where the goal is to separate the points into an upper and lower half. We can then think
of each point as an alternative, classifiers as k-sized committees (containing the alternatives that the
classifier labels with +), and input data provided by the agents as approval ballots, where the approval
set corresponds to the alternatives labeled as + by the agent. Under this definition, the loss ℓi(h, Yi)
of agent i for classifier h is the Hamming distance between the k-sized committee corresponding to
the classifier h and the approval ballot corresponding to agent i. Thus, classification for this particular
concept class with agents aiming at minimizing their loss is equivalent to multi-winner approval voting
with agents aiming at minimizing their Hamming distance to the winning committee.

We will use now an argument similar to Lemma 4 in Section 4.1, so as to obtain a negative result that
extends also for randomized mechanisms. Consider a universally strongly GSP randomized mechanism
M which has a strongly GSP deterministic mechanism MR (corresponding to the multi-winner voting
rule R) in its support, i.e., it calls mechanismMR with positive probability. Then, Theorem 3 implies
that R is not unanimous, and hence, there is an approval ballot profile in which all agents agree on
k alternatives, but the rule R returns another k-sized committee. Equivalently, this means that there
exists a dataset Y = (Y1, ..., Y1), consisting of n copies of the same labeling Y1, so that when the
mechanismMR takes as input Y , it returns a classifier h, producing a labeling that is different from
Y1, i.e., ℓi(MR(h, Y,w), Yi) > 0 and L(MR(Y,w), Y,w) =

∑
i∈[n]wi · ℓi(MR(Y,w), Y1) > 0, thus,

E[L(M(Y,w), Y,w)] > 0. In contrast, the concept classH contains the classifier h∗ which agrees with
the labeling Y1 on the points of X and thus, L(erm(Y,w), Y,w) = 0. Therefore, the mechanism M
has infinite approximation ratio.

Theorem 6. Any universally strongly GSP randomized mechanism for binary classification with shared
inputs has an infinite approximation ratio.

We remark that we have silently assumed that the classification mechanism may take as input datasets
that are not necessarily realizable. This means that the labeling of the points in X provided by some
agent may not coincide with the labeling of any classifier from the concept class. This is crucial for
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proving Theorem 6. If the labeling provided by each agent is realizable by a classifier in the concept
class, then the two mechanisms presented by Meir et al. [21] are strongly GSP and universally strongly
GSP, respectively. A realizable dataset corresponds to an approval voting setting in which the outcome
can be any committee of alternatives. Clearly, any dictatorship is strongly GSP in this setting. For
realizable datasets, the mechanisms in [21] correspond to such dictatorships.

4.4 Constrained Facility Location in Networks

Facility location has played a key role in the field of approximate mechanism design with money [24].
The simplest version of the problem aims to locate a single facility on the line when strategic agents
report their private location and have single-peaked preferences. These results usually exploit a famous
result by Moulin [22], which characterizes the class of SP mechanisms. The results on the line have
been extended to multiple dimensions [3], multiple facilities [18], facility location in networks [1, 27],
and have addressed constrained versions of the problem; e.g., see [14, 28, 30].

We focus on the constrained version as well, regarding the allowed locations for placing a facility. The
problem we consider is how to locate a facility at a node of a graph, when agents report their private
locations in the graph. Our objective is to locate a facility at a node selected from a predefined subset of
allowable nodes so that the maximum or the total shortest-path distance of the facility from all agents is
minimized. A strongly GSP mechanism here means that if a misreport by any coalition of agents results
in an agent from the coalition coming closer to the facility, some other agent in the coalition will be
strictly further off. We evaluate the outcome of such a mechanism in terms of the maximum or the total
shortest-path distance compared against the optimal solution. We have the following negative result.

Theorem 7. Strongly GSP mechanisms for constrained facility location in graphs have infinite approxi-
mation ratio with respect to both the maximum and the total cost objectives.

The proof of the above theorem is in Appendix A. Clearly, it is again the restriction of the allowable set
of nodes that leads to the impossibility. When the allowable set contains all graph nodes, dictatorships
are strongly GSP and have a finite approximation ratio.

5 Discussion

Let us conclude by mentioning very briefly the few cases that escape from our impossibility. First,
notice that our construction has at least six agents. On the other hand, we can easily see that the serial
dictatorship mechanism —which returns a k-sized committee that has minimum distance from agent
2 among the k-sized committees of minimum distance from agent 1— is strongly GSP for approval
elections with two agents. The case of three, four, and five agents is left open. Furthermore, our
construction creates profiles with m ≥ 3 alternatives and uses committee size k ∈ [m− 2]. Also, recall
that, for two alternatives, Manjunath [19] provides a positive result with his consensus voting rules. So,
the case m ≥ 3 and k = m− 1 is left mysteriously open. Exploring whether our impossibility carries
over even for the simplest among these cases with three alternatives and committees of size 2 would
require a different construction.

Regarding some further directions for future research, note that the implications of our impossibility
results in Section 4 is for the existence of finite multiplicative approximations for the problems that
we study there. This does not exclude the existence of strongly GSP mechanisms with good additive
approximation guarantees. Yet another, very interesting problem is the characterization of weakly GSP
mechanisms. This however appears to be more challenging. We note that in contrast to our impossibility
result, weakly GSP and unanimous voting rules do exist, such as the k-completion rules described in
Section 3.
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A Proof of Theorem 7

Again, we resort to an argument analogous to Lemma 4. Consider instances, where the graph is the
m-dimensional hypercube and all nodes with k 1s (k ∈ [m− 2]) in their binary representation is the
allowable set of nodes for placing the facility. Then, the m dimensions correspond to alternatives,
each node in the allowable set corresponds to a k-sized committee, and each agent’s location in the
graph corresponds to an approval ballot. Clearly, the shortest-path distance between two nodes in
the hypercube is equal to the Hamming distance of the corresponding approval ballots to committees.
Theorem 3 then implies that every strongly GSP mechanism for locating the facility is non-unanimous.
Hence, there exists an instance in which all agents have the same preference, i.e., they are all located in
the same node of the allowable set, but the mechanism returns another node of the allowable set as
an outcome. Hence, the optimal solution has zero cost, both for the maximum and for the total cost
objective, while the mechanism returns a solution with positive cost.
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