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Abstract

In real-world elections with ranked preferences, the Single Transferable Vote (STV) is the most
widely used proportional voting method. STV is considered proportional because it satisfies
an axiom known as proportionality for solid coalitions (PSC), requiring that large enough “solid
coalitions” of voters are adequately represented. Using real-world data from local Scottish
elections, we observe that solid coalitions of the required size rarely occur in practice. This
observation challenges the importance of proportionality axioms and raises the question of how
the proportionality of voting methods can be assessed beyond their axiomatic performance. We
address these concerns by developing quantitative measures of proportionality. We apply these
measures to evaluate the proportionality of voting rules on real-world election data. Besides
STV, we consider the Single Non-Transferable Vote, the Expanding Approvals Rule, and Sequential
Ranked-Choice Voting. We also study the effects of ballot truncation by artificially completing
truncated ballots and comparing the proportionality of outcomes under complete and truncated
ballots.

1 Introduction

Proportional representation is a core principle of modern electoral systems, its goal being to ensure
that elected officials proportionally represent the composition of the electorate. Most countries aim
to achieve proportional representation through party-list systems, where voters cast their ballots for
political parties rather than individual candidates, and legislative seats are allocated in proportion
to the number of votes each party receives. However, several countries—mostly from the former
British commonwealth—use a system in which voters can vote for individual candidates using ranked
preferences. In such settings, the electorate is usually divided into a number of districts, each of which
elects a few (usually 2–6) candidates to represent the district in the given governing body. To achieve
proportional representation in district elections which do not use a party-list system, many localities
use the Single Transferable Vote (STV) [35]. STV is generally considered to be proportional because it
satisfies the axiom proportionality for solid coalitions (PSC) formulated by Dummett [19]. In essence, PSC
guarantees that any sufficiently large group of voters that rank the same candidates (not necessarily in
the same order) above all other candidates is given an amount of representation commensurate with its
size. Such groups are referred to as solid coalitions.

Despite the prominence of PSC in the literature, some have challenged the idea that PSC is a good
way to capture the notion of proportional representation rigorously. For instance, the requirement
that voters in a solid coalition must all share the exact same candidate set in their ballot prefix makes
PSC highly non-robust [36]. This issue has been considered from a purely theoretical point of view
[2, 13], as well as through experiments on synthetic data [13]. There exist several other properties that
seek to guarantee proportional representation in ways similar to that of PSC [6, 13], and that, from the
aforementioned perspective, are more robust [13]. However, such properties are purely qualitative, and
like PSC they usually rely rigidly on a “threshold of representation,” making them blind to groups of
voters that come close to being “sufficiently large.”

While proportionality axioms have received much attention in the theoretical literature, empirical
investigation of the force of axioms formulated to guarantee proportional representation has been

1This paper has been presented at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025).
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limited due to a scarcity of real-world ballot data. However, McCune and Graham-Squire [31] recently
compiled a real-world dataset consisting of 1070 Scottish local council elections from the period 2007–
2022. In these elections, STV is used to elect members for local councils in Scotland. We observe that
in this data, solid coalitions of sufficient size rarely occur. Consequently, for most elections in the
dataset, PSC places no or few restrictions on the winning committee, and most possible committees
are therefore proportional according to the property. Since PSC often undergirds the claim that STV is
proportional, the toothlessness of PSC in practice raises the question of how proportional the method
really is.2 More generally, we consider the issue of how to assess the proportionality of a committee
when axioms have little to no effect on the outcome. As a first step towards answering this question, we
define quantitative versions of several proportionality axioms suggested in the literature, based on the
idea that we should be able to relax size-requirements imposed on groups of voters whenever there are
few or no groups of sufficient size. This approach not only allows us to measure the extent to which an
axiom is satisfied, but also makes it possible to strengthen axioms in situations where they have little to
no effect. We furthermore use the data from the Scottish local council elections to assess experimentally
the proportionality of different voting rules according to our measures.

In the Scottish elections, voters are allowed to only rank some candidates, i.e., they may top-truncate
their ballots. This may impact the number and size of cohesive groups. The issues of ballot truncation
and small cohesive groups have been discussed previously [13, 25, 30], but such work did not have
access to actual ballot data. In order to understand the effect of ballot truncation on our proportionality
measures, we generated ballot data with complete rankings based on the Scottish election data and
reran all our experiments on this generated data (see Section 6).

Related Work The formal study of proportional representation in multiwinner voting was initiated
by Dummett [19]. In recent years, proportional representation has been studied as a fairness criterion
in several different decision-making scenarios. Most prominently, starting with Aziz et al. [5] and
their notion of extended justified representation (EJR), a wide body of work covers proportionality in
approval-based multiwinner voting [29]. Proportionality for ordinal elections has been studied by
Aziz and Lee [2, 3, 4], Brill and Peters [13], and Delemazure and Peters [18]. Varying the size of voter
groups that deserve representation has been considered by Janson [26], who focuses on worst-case
bounds, and Jiang et al. [27], who focus on relaxations of axioms. By contrast, in this paper, we focus
on strengthening axioms and on bounds that are specific to an instance (rather than worst-case over all
instances).

There are a number of works focused on the experimental evaluation of (proportional) multiwinner
voting rules. For instance, Boehmer et al. [10] experimentally evaluate the use of proportional multi-
winner voting rules on the Polkadot blockchain, based on real-world data from Polkadot. Further, in
the participatory budgeting literature, several papers have analyzed and compared rules on real-world
datasets [9, 22, 12]. Besides this, most experimental papers have so far focused on synthetic data; see
the survey by Boehmer et al. [11]. For instance, Elkind et al. [20] evaluate voting rules on randomly
selected 2-dimensional Euclidean instances.

Finally, the issue of ballot truncation in multiwinner ranked-choice elections has been considered by
Hoffman et al. [25], but has otherwise received little attention. In the single-winner instant runoff
setting, Kilgour et al. [28] and Tomlinson et al. [37] study the effect on the election winner as we vary
the amount of truncation, while Burnett and Kogan [15] and Graham-Squire and McCune [23] analyze
how ballot exhaustion can cause the election winner not to secure a majority of total votes cast.

2As demonstrated by Brill and Peters [13], STV fails proportionality axioms that are stronger than PSC.
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2 Preliminaries

For t ∈ N, let [t] = {1, . . . , t}. Throughout the paper, we assume that we are given a set N = [n] of
voters and a set C = {c1, . . . , cm} of candidates. The preferences of voters are top-truncated. That
is, each voter i ∈ N chooses a set Ai ⊆ C of candidates and a strict ranking ≻i : Ai ×Ai over these
candidates, where |Ai| may be less than m. For notational purposes, we assume that c ≻i c

′ for any
c ∈ Ai and c′ /∈ Ai, while voters are indifferent among candidates they do not rank. Finally, let k
denote the number of candidates that need to be selected. We refer to subset W ⊆ C of candidates
of size |W | = k as a committee. A (multiwinner voting) instance I is a collection of voters, candidates,
voter preferences, and the committee size.

2.1 Proportionality Axioms

For ℓ ∈ [k], we say that a group N ′ ⊆ N of voters is ℓ-large if |N ′| ≥ ℓnk . Generally speaking, in
proportional multiwinner voting if N ′ is ℓ-large and N ′ is “cohesive” in some sense, then ℓ of the
candidates supported by N ′ should receive seats on the winning committee.

The most prominent proportionality axiom for ranked preferences is proportionality for solid coalitions
(PSC) introduced by Dummett [19]. Given a subset N ′ ⊆ N of voters and C ′ ⊆ C of candidates, N ′

forms a solid coalition over C ′ if for any pair of candidates cj ∈ C ′ and cr ∈ C \ C ′, it holds that
cj ≻i cr for all i ∈ N ′. In other words, C ′ forms a prefix of the ranking ≻i of every voter in N ′. Using
the notion of solid coalitions, we can now define PSC.3

Definition 1 (PSC). A committee W satisfies proportionality for solid coalitions (PSC) if for any
ℓ ∈ [k] and any ℓ-large group N ′ ⊆ N of voters forming a solid coalition over C ′ ⊆ C , it holds that
|C ′ ∩W | ≥ min(|C ′|, ℓ).

As a potential alternative to PSC and possible generalization of the Condorcet principle to proportional
representation, Aziz et al. [6] introduced the concept of local stability. Intuitively, local stability
postulates that no group of voters of size at least n

k should find an unselected candidate they all prefer
to everyone in the committee.4 Notably, committees satisfying local stability need not exist.

Definition 2 (LS). A committee W satisfies local stability (LS) if there is no 1-large group of voters
N ′ ⊆ N and candidate c /∈ W with c ≻i c

′ for all i ∈ N ′ and c′ ∈ W .

There are several axioms that have been proposed in the setting of approval-based multiwinner voting
which can be translated to the ordinal setting using a construction due to Brill and Peters [13]. We first
define EJR+ [13].5 Note that EJR+ is not always satisfiable.

Definition 3 (EJR+). A committeeW satisfies EJR+ if there is no ℓ ∈ [k], ℓ-large groupN ′ ⊆ N of voters,
unselected candidate c /∈ W , and rank r ∈ [m] such that

(i) rank(i, c) ≤ r for all i ∈ N ′

(ii) |{c′ : rank(i, c′) ≤ r} ∩W | < ℓ for all i ∈ N ′.
3A related axiom is generalized PSC [2], which generalizes PSC to the case of weak orders. For top-truncated preferences,

PSC and generalized PSC are equivalent.
4The same concept was independently studied by Jiang et al. [27] in the more general context of core stability.
5Since we are only dealing with ordinal preferences in this paper, we omit the “rank” prefix used by Brill and Peters [13].

We do not consider the axiom (rank-)PJR+ for computational reasons.
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As an alternative to EJR+ we take priceability as defined by Brill and Peters [13] and Peters and Skowron
[34]. Priceability is always satisfiable, and in essence tries to compute a fractional matching between
voters and candidates.6

Definition 4 (Priceability). A committee W is priceable if for each voter i ∈ N there is a price function
pi : C → [0, 1] and a price p ∈ R+ such that

•
∑

c∈C pi(c) ≤ 1 for all i ∈ N

•
∑

i∈N pi(c) ≤ p for each c ∈ W

•
∑

i∈N pi(c) = 0 for each c /∈ W

•
∑

i∈N : rank(i,c)≤r(1−
∑

c′∈W : rank(i,c′)>r pi(c
′)) ≤ p for all r ∈ [m] and c /∈ W .

2.2 Voting Rules

A voting rule maps each instance to one or more winning committees. We briefly introduce the voting
rules we study. For more detailed descriptions, we refer to Appendix A.

The Single Transferable Vote (STV) is a family of rules, with different versions of STV used in different
jurisdictions [35]. Following McCune and Graham-Squire [31], we describe the version that is used
in Scottish local elections. STV proceeds in rounds and starts by assigning each voter i ∈ N a weight
wi = 1. In each round, STV checks whether the candidate with the most weighted first-place votes
has at least q (weighted) first-place votes, where q = ⌊ n

k+1⌋ + 1 is the quota. If that is the case, this
candidate is elected and the voters ranking this candidate first are reweighted proportionally such that
the total weight of the election decreases by exactly q. If there is no such candidate, the candidate with
the least weighted first-place votes is removed. Besides this version of STV, which we refer to as as
Scottish STV, we also consider Meek-STV [24].

The Expanding Approvals Rule (EAR) is another family of proportional multiwinner voting rules [2].
Just like STV, it uses a quota q and starts by assigning each voter a weight wi = 1. It then iterates
over all possible ranks from first to last. For each such rank and so-far unselected candidate c it checks
whether the total weight of the voters giving a rank of at most r to c is at least q. If there is such a
candidate, it takes any such candidate into the committee and decreases the collective weight of the
corresponding voters by q. In our implementation of the rule we select the candidate with the largest
total weight and decrease the weights as in Scottish STV. If there is no such candidate, r is increased.7

The Single Non-Transferable Vote (SNTV) selects the k candidates with the highest first-place vote count
[21]. SNTV is sometimes referred to as k-plurality.

Sequential Ranked-Choice Voting (seq-RCV), which is currently used in the US state of Utah [33], executes
the single-winner RCV procedure k times. Single-winner RCV (a.k.a. instant runoff voting) iteratively
deletes the candidate with the fewest first-place votes until only a single candidate is left.

We include seq-RCV in the rules we examine because it is not proportional but majoritarian, and
therefore can provide context for our results around methods like STV. We note that across all 1070

6We minimally deviate from the original definition of Peters and Skowron [34] by requiring that at most p can be paid for
a candidate (instead of exactly p). This allows us to associate a price p with any committee. In particular, a price p ≥ n

k
is

now also possible, which will allow us to use priceability to quantify the proportionality of “disproportional” committees as
well. Using the same proof as Brill and Peters [13] it follows that if a committee is priceable with a price p < n

k
the committee

also satisfies the axiom PJR+ [13].
7The treatment of unranked candidates in EAR allows for different interpretations, as noted in Remark 3 by Aziz and Lee

[2]. When a voter ranks a strict subset Ai of candidates, the set C \Ai of unranked candidates (i.e., the last equivalence class)
can be included either (i) as soon as the ranked candidates are exhausted, or (ii) only in the final step of the method. We
tested both variants in our experimental analysis. The performance differences between the two versions were minor, with
variant (ii) performing slightly better. Therefore, we focus on variant (ii) here.
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Necessary fixed candidates
0 1 > 1

PSC 294 (27.5%) 592 (55.3%) 184 (17.2%)
EJR+ 65 (6.1%) 697 (65.1%) 308 (28.8%)
LS 9 (0.9%) 441 (41.2%) 620 (57.9%)
Priceability 67 (6.3%) 702 (65.6%) 301 (28.1%)

Table 1: For each axiom, the table shows the number of elections (i) where the axiom imposes no constraints at
all, (ii) where it is possible to satisfy the axiom by fixing one winning candidate and filling the remaining seats
arbitrarily, and (iii) where it is only possible to satisfy the axiom by fixing multiple winning candidates on the
committee. Equivalently, the “0” column gives the number of elections where all

(
m
k

)
outcomes satisfy the given

axiom, the “1” column gives the number of elections where the number of outcomes satisfying the axiom lies in
the interval [

(
m−1
k−1

)
,
(
m
k

)
), and the “> 1” column gives the number of elections where the number of outcomes

satisfying the axiom is strictly lower than
(
m−1
k−1

)
.

multiwinner Scottish elections in our dataset there are only nine in which seq-RCV chooses a winner
set incompatible with PSC. Thus, if PSC is the standard by which a rule is judged to be proportional,
seq-RCV is virtually proportional in practice. However, seq-RCV often produces outcomes which are
wildly non-proportional under any intuitive notion of “proportional” [33], and this provides additional
motivation for why we should explore alternatives to standard PSC in practice. While SNTV does not
satisfy any of the axioms discussed in Section 2.1, it is considered a “semi-proportional” method [1].
Such methods aim to give some representation to minorities, albeit not proportional to their support.
The remaining three voting rules are proportional: Both versions of STV satisfy PSC, and EAR satisfies
the axiom (rank-)PJR+, introduced by Brill and Peters [13], which is stronger than PSC. Furthermore,
committees chosen under EAR are always priceable [13].

3 Scottish Local Council Elections

For local governance, Scotland is partitioned into 32 “council areas,” each of which is governed by a
council. In turn, each council area is divided into wards, each of which elects a number of councilors to
represent the ward on the council. The number of candidates running and the number of seats available
in a typical election are not large; most elections satisfy m ∈ {6, 7, 8, 9} and k ∈ {3, 4}. Since 2007, all
wards have used Scottish STV to choose their representatives. Elections are held every five years.

McCune and Graham-Squire [31] collected ballot data from 1100 Scottish local council elections between
the years 2007 and 2022. Out of the 1100 elections, 1070 satisfy k > 1; we only consider these 1070
instances.

Notably, voters are not required to provide full rankings and ballots are often heavily truncated: across
the 5,485,379 total ballots cast from all elections, approximately 14% rank only a single candidate, and a
majority, 58%, rank fewer than k. In contrast, only 13% of ballots are complete (where by “complete” we
mean a ballot that contains m− 1 or m candidates). We refer to McCune and Graham-Squire [31] for
more details about the dataset.

We evaluated the force of proportionality axioms on the ballot data from the elections by calculating
the number of outcomes excluded by the axioms on each instance. Out of 1070 elections, there are
294 (27.5%) for which every committee of size k satisfies PSC, 592 (55.3%) where there is only one
solid coalition which earns a single seat under PSC, and 184 (17.2%) where multiple solid coalitions are
deserving of seats by PSC. Thus, in real-world elections PSC does not place significant restrictions on
the winning committee. The other axioms we consider are more discerning than PSC, but all exhibit
some degree of toothlessness. We give an example to illustrate both how PSC may fall short in excluding
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outcomes and how the number of compatible committees may differ between axioms. An overview of
the number of outcomes that satisfy each of the axioms considered over all elections in the dataset can
be found in Table 1.

Example 1. Consider the 2012 council election of Midlothian, ward 2, with n = 5132 voters, m = 7
candidates, and k = 3 seats. The candidates, their party affiliations, and their first-place vote counts are
listed in Table 2.

Candidate Party First-Place Votes

D. Milligan (DM) Labour 1,574
L. Milliken (LM) Labour 525
J. Aitchison (JA) Independent 382
B. Constable (BC) SNP 1,257
T. Munro (TM) SNP 358
I. Baxter (IB) Greens 671
E. Cummings (EC) Conservative 365

Table 2: Candidates and vote counts for Example 1.

There are
(
m
k

)
=

(
7
3

)
= 35 possible outcomes in this election. The largest (non-trivial) solid coalition

is over the two Labour candidates DM and LM and has size 1624. This coalition consists of the 1218
voters who cast a ballot of the form DM ≻ LM ≻ . . . and of the 406 voters who cast a ballot of the form
LM ≻ DM ≻ . . . . Interestingly, the size of this coalition is much smaller than the total number of voters
who ranked a Labour candidate first. The reasons are that some Labour voters rank only one candidate on
their ballots and many voters cast split-ticket ballots. The next largest solid coalition has size 1277 and is
over the two SNP candidates BC and TM, again barely more than the first-place votes of BC. The largest
solid coalition over more than two candidates consists of 554 voters who support the two SNP candidates as
well as IB. Solid coalitions over four or more candidates are extremely small. The threshold for a coalition
to be 1-large is ⌈nk ⌉ = 1711, and therefore any of the 35 possible winning committees satisfies PSC. In
comparison, 24 out of 35 committees satisfy rank-EJR+ and priceability, while 12 out of 35 outcomes are
locally stable.

4 Quantifying Proportionality

In this section, we turn proportionality axioms into quantitative proportionality measures. The main
idea behind the construction of measures consists in (1) defining a parameterized version of the
proportionality axiom by introducing a multiplicative factor on the size constraint, and (2) identifying
the smallest parameter for which the parameterized axiom is satisfied by the given committee. We start
with PSC and consider other axioms in Section 4.4.

4.1 Quantifying PSC

Recall that a group N ′ ⊆ N of voters is called ℓ-large if |N ′| ≥ ℓnk . A parameterized version of this
notion can be obtained by introducing a multiplicative factor.

Definition 5. Consider an instance with n voters and committee size k. For α ∈ R+ and ℓ ∈ [k], a group
N ′ ⊆ N of voters is ℓα-large if |N ′| ≥ α · ℓnk .

That is, the value of the parameter α changes the size requirement a group needs to fulfil in order to
be deemed worthy of ℓ representatives. If α < 1, then the size constraint is relaxed, as groups of size
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smaller than ℓnk deserve ℓ representatives. On the other hand, if α > 1, then a group of voters must
have larger size to deserve representation. PSC requires that ℓ-large groups need to be represented
appropriately; consequently, replacing “ℓ-large” with “ℓα-large” in the definition of PSC makes the
axiom more demanding for α < 1 and less demanding for α > 1.

Definition 6 (α-PSC). Let α ∈ R+. A committee W satisfies α-PSC if for any ℓ ∈ [k] and any ℓα-large
subset N ′ ⊆ N of voters forming a solid coalition over C ′ ⊆ C , it holds that |C ′ ∩W | ≥ min (|C ′|, ℓ) .

Clearly, 1-PSC is equivalent to (original) PSC and lowering the value of α makes the axiom more
demanding: If α1 ≤ α2, then α1-PSC implies α2-PSC. For a given committee W , we are therefore
interested in the smallest value of α such thatW satisfies α-PSC. Formally, let8

αPSC(W ) = inf{α : W satisfies α-PSC}.

We refer to αPSC(W ) as the PSC value of W . Observe that W satisfies PSC if and only if αPSC(W ) < 1.

Furthermore, we call the minimum achievable α-value for an instance I the PSC value of I and denote
it with

α∗
PSC(I) = min

W⊆C : |W |=k
αPSC(W ).

Choosing a winning committee which achievesα∗
PSC(I)might be normatively desirable in a proportional

context because such a committee fulfills the spirit of PSC in the absence of large solid coalitions.

Example 2. Consider again the instance from Example 1. Here, 1624 voters form a solid coalition over
{DM, LM}, followed by solid coalitions of size 1574, 1277, 1257, 671, over {DM}, {BC,TM}, {BC}, and
{IB}, respectively. The α-values at which the solid coalitions become ℓα-large for ℓ ∈ {1, 2} are given in
the table below.

ℓ {DM,LM} {DM} {BC,TM} {BC} {IB}

1 0.949 0.920 0.746 0.734 0.392
2 0.474 – 0.373 – –

Table 3: The largest solid coalitions with corresponding α-values in the election from Example 1. A full overview
of all solid coalitions in the election can be found in Appendix B.

Consider the committees W = {DM, LM,BC} and W ′ = {DM,BC, IB}. Committee W is chosen by
Meek-STV and EAR, while W ′ is chosen by Scottish STV. Both committees satisfy PSC, however we can
distinguish the committees based on their PSC values: αPSC(W ) = 0.392 and αPSC(W

′) = 0.474. In fact,
W achieves the PSC value for the instance (i.e., α∗

PSC(I) = 0.392), as any smaller value would additionally
force candidate IB to be included. From the point of view of solid coalitions, W is perhaps the better choice
of winning committee because the solid coalition {DM, LM} is more than double the size of any solid
coalition containing IB.

4.2 Computing the PSC Value of a Committee

As already noted, decreasing the value of α leads to more representation demands by solid coalitions.
We can identify exactly the values of α that makes a group ℓα-deserving:

N ′ is ℓα-large ⇔ α ≤ |N ′|
n

· k
ℓ
.

8We use infimum rather than minimum since the set of values for which α-PSC holds is an open interval of the form
(αPSC,+∞).
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Let αℓ
(N ′,C′) =

|N ′|
n · k

ℓ denote the value of α for which the solid coalition (N ′, C ′) becomes ℓα-large.
Then, the values

α1
(N ′,C′), α

2
(N ′,C′), . . . , α

|C′|
(N ′,C′)

are exactly the thresholds of α-values for which the group starts to become deserving of 1, 2, . . . , |C ′|
many representatives under α-PSC. (Values αℓ

(N ′,C′) with ℓ > |C ′| are irrelevant because the group’s
deservingness is upper bounded by |C ′| according to the definition of α-PSC.)

In our algorithm for computing the PSC value of a committee, we compute these values for all solid
coalitions. For each subset C ′ ⊆ C , there is a uniquemaximal groupNC′ of voters that solidly supports
C ′. The group NC′ consists of all voters ranking all candidates in C ′ over all other candidates. Clearly,
it is sufficient to consider only maximal solid coalitions. Let S denote the set of all maximal solid
coalitions. It is not hard to see that |S| is polynomial in the size of the profile and that we can efficiently
enumerate all maximal solid coalitions by iterating over the prefixes of the voters.

Given the set S of all maximal solid coalitions, we can now collect all threshold values for α. Define T
as the set that contains the relevant values for each solid coalition, i.e.,

T =
⋃

(N ′,C′)∈S

{α1
(N ′,C′), α

2
(N ′,C′), . . . , α

|C′|
(N ′,C′)}.

Here, each threshold value αℓ
(N ′,C′) is associated with a “PSC constraint” of the form |W ∩ C ′| ≥ ℓ.

Theorem1. Given an instance and a committeeW, the PSC value of W can be computed in polynomial time.

Proof. First calculate the set S of all maximal solid coalitions and the set T of relevant thresholds.
Consider the threshold values in T in non-increasing order. When considering αℓ

(N ′,C′), check whether
|W ∩C ′| ≥ ℓ. If yes, go to the next threshold value. If not, we know that αPSC(W ) = αℓ

(N ′,C′), because
αℓ
(N ′,C′) is the largest value of α for which the corresponding PSC constraint is not satisfied byW .

4.3 Computing the PSC Value of an Instance

Computing the minimal possible α-value that is achievable in an instance by any committee is more
challenging. We first show that the problem is NP-hard.9

Theorem 2. Given an instance and a value α < 1, deciding whether α-PSC is satisfiable is NP-complete.

As a consequence, computing the PSC value of an instance is NP-hard. In order to compute PSC values
in our experiments (see Section 5), we employ integer linear programming (ILP). The approach is similar
to the one used in Section 4.2: We compute the set T of threshold values and then consider these values
in non-increasing order. When considering αℓ

(N ′,C′), we add the constraint |W ∩ C ′| ≥ ℓ to our ILP
and check whether the resulting ILP is feasible. If yes, we consider the next threshold in T . If not, we
have found the PSC value of the instance, as αℓ

(N ′,C′) is the largest value of α for which α-PSC is not
satisfiable.

Formally, the ILP has a binary variable xc ∈ {0, 1} for each candidate c ∈ C and a constraint
∑

c∈C xc ≤
k ensuring that at most k candidates are selected. Constraints of the form |W ∩C ′| ≥ ℓ can be encoded
as

∑
c∈C′ xc ≥ ℓ.

We remark that this algorithm has similarities to the D’Hondt apportionment method [8]. In Appendix D,
we develop a description of the algorithm which gives rise to the idea of “apportionment for non-disjoint
parties,” which might be of independent interest.

9The proof can be found in Appendix C. The problem is trivial for α ≥ 1, as a committee satisfying PSC always exists.
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M-STV EAR SNTV seq-RCV

S-STV 108 (10.1%) 262 (24.5%) 277 (25.9%) 485 (45.3%)
M-STV – 230 (21.5%) 333 (31.1%) 415 (38.8%)
EAR – 452 (42.2%) 459 (42.9%)
SNTV – 599 (56.0%)

Table 4: Number of instances on which the rules disagree.

4.4 Quantifying Other Axioms

Generalizing the quantification approach to local stability and EJR+ is straightforward. Similarly to
PSC, we can replace each ℓ-large group by an ℓα-large group leading to the following two definitions.

Definition 7 (α-LS). A committee W satisfies α-local stability (α-LS) if there is no 1α-large group
N ′ ⊆ N of voters and c /∈ W such that c ≻i c

′ for all i ∈ N ′ and c′ ∈ W .

While committees satisfying local stability (i.e., 1-LS) do not necessarily exist, Charikar et al. [16] have
recently shown that every instance admits a 9.8217-LS committee.

For the definition of α-EJR+, we let rank(i, c) = |{c′ ∈ Ai : c
′ ≻i c}|+ 1 denote the rank that voter i

assigns to candidate c ∈ Ai. For unranked candidates c /∈ Ai, we let rank(i, c) = m.

Definition 8 (α-EJR+). A committeeW satisfies α-EJR+ if there is no ℓ ∈ [k], ℓα-large group N ′ ⊆ N
of voters, unselected candidate c /∈ W , and rank r ∈ [m] such that rank(i, c) ≤ r for all i ∈ N ′ and
|{c′ ∈ C : rank(i, c′) ≤ r} ∩W | < ℓ for all i ∈ N ′.

The definition of priceability is already parameterized, with a price of p < n
k implying PSC [13]. It

is easy to generalize this implication to show that if the lowest possible price is p, the corresponding
committee satisfies pn

k -PSC. Thus, we say that a committee satisfies α-priceability if the smallest price p
for which the committee is priceable satisfies p ≤ αn

k .

For all three notions, the minimalα-value achieved by a given committee can be computed in polynomial
time. For local stability and EJR+, it is sufficient to iterate over the unchosen candidates and compare the
size of the coalitions that would want to deviate to these candidates. The optimal price for priceability
can be computed via a linear program.

We note that it is already NP-complete to decide whether any locally stable committee exists [6]. Further,
the construction in the proof of Theorem 2 also applies to both priceability and EJR+, showing that
computing the minimal α-value for these two measures is also NP-hard.

5 Experimental Results

To assess the measures defined in Section Section 4, we conducted several experiments on the 1070
election instances from the dataset discussed in Section 3. We highlight some of our results in this
section, mostly focusing on PSC; all remaining results can be found in Appendix E.

We considered the following voting rules: Scottish STV (S-STV ), Meek STV (M-STV ), EAR, SNTV, and
seq-RCV. Table 4 shows how often these rules disagree with each other (i.e., choose different committees)
on our data. We observe that S-STV and M-STV agree very frequently, but not in all elections. Further,
both STV variants agree with SNTV in nearly 70% of the elections, i.e., in most elections both STV
variants simply select the k candidates with the most first-place votes. This is slightly less for EAR,
which agrees with SNTV in only 58% of the elections. Further, seq-RCV seems to be the rule that is
most different from the other rules, agreeing with SNTV in only 45% of the cases.
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Figure 1: Histograms of optimal α-values achievable in our elections, rounded to one decimal place.

PSC EJR+ Priceability LS
opt. dist. opt. dist. opt. dist. opt. dist.

S-STV 856 0.20 826 0.23 870 0.19 829 0.23
M-STV 819 0.24 842 0.22 840 0.22 754 0.30
EAR 677 0.38 737 0.33 709 0.35 656 0.40
SNTV 901 0.16 752 0.30 832 0.23 935 0.13
seq-RCV 552 0.50 646 0.40 586 0.46 459 0.60

Table 5: For each rule and each axiom, (i) “opt.” refers to the number of instances for which the rule achieves the
optimal α-value and (ii) “dist.” refers to the average distance between the outcome of the rule and the outcome
with optimal α-value (measured in terms of number of candidates that need to be exchanged). The best values in
each column appear in bold.

Minimal Values For each instance, we computed the optimal α-value for each measure (see Figure 1
for histograms of values). For all measures, the majority of minimal α-values lie roughly in the range 0.4
to 0.6, the PSC values overall being somewhat lower than for the other measures (EJR+ and priceability
in particular). Interestingly, we observe that while a 1-LS or 1-EJR+ committee is not guaranteed to
exist in general, they always exist for the instances in our dataset. This observation is similar in spirit
to the observation that Condorcet winners almost always exist in real-world elections [32].

Distance from Optimality For each voting rule, we counted (i) how often the rule achieves the
optimal α-value and (ii) the average distance between the committees chosen by the voting rule and
the committees optimizing the α-value.10 The results, presented in Table 5, reveal which voting rules
are “most aligned” with each of the four measures. In particular, SNTV is most aligned with the PSC
and LS measures, and the STV rules are most aligned with the EJR+ and priceability measures. The
strong performance of SNTV can be considered surprising insofar as the rule does not satisfy any
proportionality guarantees. A possible explanation for the good values achieved by SNTV (which
outperforms EAR according to all four measures) can be found in the structure of our data: often,
most of the constraints that a quantified proportionality axiom like α-PSC imposes involve top-ranked
candidates only, and SNTV—by definition— selects the candidates with the most first-place votes.

Values Achieved by Rules We furthermore computed the spread of α-values achieved by different
voting rules over the set of all instances and compared these values to the spread of optimal α-values.
For PSC and EJR+ values, the results are presented as box plots in Figure 2. Overall, all proportional
rules— and the semi-proportional SNTV—perform similarly in terms of approximating optimal values,
with the range of values for each of the rules coming close to those of the optimal values.11 Somewhat

10For (ii), we define the distance between two committees as half of their symmetric difference.
11The outlier value at α ≈ 0.08 stems from the 2012 election of North Lanarkshire, Ward 9, where 3 out of 4 candidates

needed to be elected. In this election, all rules and measures choose the same committee and the only unselected candidate is
greatly unpopular.
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Figure 2: Left: The PSC values achieved by voting rules, together with optimal PSC values (shown in the leftmost
column). Right: The EJR+ values achieved by voting rules, together with optimal EJR+ values (shown in the
leftmost column).

surprisingly, EAR— the rule satisfying the strongest proportionality axioms (see Section 2.2)— does
slightly worse than the other proportional rules. (This is also apparent in Table 5.)

Furthermore, SNTV does slightly better than the other rules w.r.t. PSC values (and the same is true for
LS). A reason for that, as already discussed in the context of Table 5, is that the measures often require
the k most popular candidates to be chosen: on average, 57% of the constraints corresponding to the
optimal PSC value are over singleton sets of candidates, and thus correspond directly to first-place
votes.

Pairwise Comparisons Finally, we considered pairwise comparisons of voting rules w.r.t. the α-
values they achieve. In these comparisons, we only consider instances on which the two rules under
consideration output different committees. We focus on two comparisons w.r.t. PSC values: S-STV vs.
seq-RCV and S-STV vs. EAR (Figure 3). In both of these cases, S-STV does better in terms of PSC values.
However, as one might expect, the overall difference in values between S-STV and the non-proportional
seq-RCV is much more pronounced than the difference between S-STV and EAR. In particular, seq-RCV
fails 1-PSC in 9 instances.
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Figure 3: Left: PSC values achieved by Scottish STV and seq-RCV for the 485 elections where the rules disagree.
Right: PSC values achieved by Scottish STV and EAR over the 262 elections where the rules disagree. Elections
are ordered by increasing optimal PSC value.

6 The Effect of Ballot Truncation

To understand how ballot truncation affects our results, we created ballot data with complete rankings
based on the Scottish data. To create this synthetic data, we employed an iterative process that is
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Necessary fixed candidates
0 1 > 1

PSC 233 (21.8%) 609 (56.9%) 228 (21.3%)
EJR+ 40 (3.7%) 642 (60.0%) 388 (36.3%)
LS 4 (0.4%) 343 (32.0%) 723 (67.6%)
Priceability 34 (3.2%) 570 (53.3%) 466 (43.5%)

Table 6: Analog of Table 1 for completed ballots.

described in Appendix F.1. Basically, when extending partial ballots of length r to length r + 1, we
consider the frequency of ballots of length at least r + 1 which agree on the first r entries.

We then reran all experiments from Section 5 for the 1070 synthetic election instances with complete
rankings. Overall, the results for completed instances are very similar to the results for the original
(truncated) instances. For instance, in 21.8% of these elections any committee of size k is compatible
with PSC (compared to 27.5% in the truncated case; see Table 6). This implies that the effect of ballot
truncation is rather limited for the elections we study. This is a bit of a surprise, as the results suggest
that the primary reason PSC has little discriminatory power in these elections is not that voters truncate
their ballots; rather, even if preferences are completed, voters do not form sufficiently large cohesive
groups. Note, though, that our completion method attempts to extend the original data in a faithful
manner, and that the results could be sensitive to the choice of completion method.

In general, as expected, the achieved α-values are slightly larger in the completed instances, with, for
instance, SNTV also sometimes violating EJR+. Further, we observe that in most instances k

k+1 is a
lower bound on the lowest possible priceability value, and that most priceability values achieved by the
rules are clustered around that threshold.

With completed preferences, seq-RCV violates PSC in 55 elections and achieves α-values of up to
1.6 for local stability. This suggests that non-proportional methods become even more noticeably
non-proportional when preferences are not truncated.

7 Conclusion

Given the absence of large cohesive groups of voters in real-world political elections, we proposed
adaptations of several established proportionality axioms in which we loosen size constraints of cohesive
groups, thereby creating new ways to quantify proportionality in practice. Our results show that while
delivering separations in theory, in practice these proportionality measures seem to behave similarly for
proportional rules. A majoritarian method like seq-RCV, on the other hand, performs poorly w.r.t. our
measures. We also found that SNTV, a very simple rule without proportionality guarantees, performs
well in practice in most cases. This study is a first attempt to grapple with the meaning of empirical
proportionality using a large real-world dataset.

There are multiple ways to build upon our work. First, one could try to reconcile theory and practice by
coming up with an axiomatic explanation for the performance of STV that goes beyond PSC. Second,
our results motivate the search for proportionality axioms (or measures) that are better suited for
assessing the real-world performance of voting rules. Finally, it would be interesting to obtain ballot
data from some of the various other jurisdictions that use STV and to check whether those elections
exhibit the same effects that we observed in the Scottish election dataset.

12



References

[1] D. J. Amy. Behind the Ballot Box: A Citizen’s Guide to Voting Systems. Bloomsbury Academic, 2000.
[2] H. Aziz and B. E. Lee. The expanding approvals rule: improving proportional representation and

monotonicity. Social Choice and Welfare, 54:1–45, 2020.
[3] H. Aziz and B. E. Lee. Proportionally representative participatory budgeting with ordinal prefer-

ences. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 5110–5118.
AAAI Press, 2021.

[4] H. Aziz and B. E. Lee. A characterization of proportionally representative committees. Games and
Economic Behavior, 133:248–255, 2022.

[5] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in
approval-based committee voting. Social Choice and Welfare, 48(2):461–485, 2017.

[6] H. Aziz, E. Elkind, P. Faliszewski, M. Lackner, and P. Skowron. The Condorcet principle for
multiwinner elections: from shortlisting to proportionality. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), pages 84 – 90, 2017.

[7] M. L. Balinski and H. P. Young. The webster method of apportionment. Proceedings of the National
Academy of Sciences (PNAS), 77(1):1–4, 1980.

[8] M. L. Balinski and H. P. Young. Fair Representation: Meeting the Ideal of One Man, One Vote. Yale
University Press, 1982.

[9] N. Boehmer, P. Faliszewski, Ł. Janeczko, andA. Kaczmarczyk. Robustness of participatory budgeting
outcomes: Complexity and experiments. In Proceedings of the 16th International Symposium on
Algorithmic Game Theory (SAGT), pages 161–178, 2023.

[10] N. Boehmer, M. Brill, A. Cevallos, J. Gehrlein, L. Sánchez-Fernández, and U. Schmidt-Kraepelin.
Approval-based committee voting in practice: A case study of (over-)representation in the Polkadot
blockchain. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pages
9519–9527, 2024.

[11] N. Boehmer, P. Faliszewski, Ł. Janeczko, A. Kaczmarczyk, G. Lisowski, G. Pierczyński, S. Rey,
D. Stolicki, S. Szufa, and T. Was. Guide to numerical experiments on elections in computational
social choice. In Proceedings of the 33rd International Joint Conference on Artificial Intelligence
(IJCAI), pages 7962–7970, 2024.

[12] N. Boehmer, P. Faliszewski, Ł. Janeczko, D. Peters, G. Pierczyński, Š. Schierreich, P. Skowron, and
S. Szufa. Evaluation of project performance in participatory budgeting. In Proceedings of the 33rd
International Joint Conference on Artificial Intelligence (IJCAI), pages 2678–2686, 2024.

[13] M. Brill and J. Peters. Robust and verifiable proportionality axioms for multiwinner voting. In
Proceedings of the 24th ACM Conference on Economics and Computation (ACM-EC), page 301. ACM
Press, 2023. Full version arXiv:2302.01989 [cs.GT].

[14] M. Brill, J.-F. Laslier, and P. Skowron. Multiwinner approval rules as apportionment methods.
Journal of Theoretical Politics, 30(3):358–382, 2018.

[15] C. Burnett and V. Kogan. Ballot (and voter) “exhaustion”’ under instant runoff voting: An exami-
nation of four ranked-choice elections. Electoral Studies, 37:41–49, 2015.

[16] M. Charikar, A. Lassota, P. Ramakrishnan, A. Vetta, and K. Wang. Six candidates suffice to win a
voter majority. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing (STOC),
pages 1590 – 1601, 2025.

[17] V. Dančišin. Misinterpretation of the hagenbach-bischoff quota. Annales Scientia Politica, 2(1):
75–78, 2013.

[18] T. Delemazure and D. Peters. Generalizing instant runoff voting to allow indifferences. In
Proceedings of the 25th ACM Conference on Economics and Computation (ACM-EC), page 50. ACM
Press, 2024.

[19] M. Dummett. Voting Procedures. Oxford University Press, 1984.
[20] E. Elkind, P. Faliszewski, J.-F. Laslier, P. Skowron, A. Slinko, and N. Talmon. What do multiwinner

voting rules do? An experiment over the two-dimensional Euclidean domain. In Proceedings of the

13



31st AAAI Conference on Artificial Intelligence (AAAI), pages 494–501. AAAI Press, 2017.
[21] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Multiwinner voting: A new challenge for

social choice theory. In U. Endriss, editor, Trends in Computational Social Choice, chapter 2. AI
Access, 2017.

[22] P. Faliszewski, J. Fils, D. Peters, G. Pierczyński, P. Skowron, D. Stolicki, S. Szufa, and N. Talmon.
Participatory budgeting: Data, tools, and analysis participatory budgeting: Data, tools, and analysis.
In Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI), pages
2667–2674, 2023.

[23] A. Graham-Squire and D. McCune. An examination of ranked-choice voting in the united states,
2004–2022. Representation, pages 1–19, 2023.

[24] I. D. Hill, B. A. Wichmann, and D. R. Woodall. Algorithm 123: Single transferable vote by meek’s
method. The Computer Journal, 30(3), 1987.

[25] C. Hoffman, J. Kauba, J. Reidy, and T. Weighill. Statistical models of ballot truncation in ranked
choice elections. Communications in Statistics - Simulation and Computation, 2024. Forthcoming.

[26] S. Janson. Thresholds quantifying proportionality criteria for election methods. Technical report,
arXiv:1810.06377 [cs.GT], 2018.

[27] Z. Jiang, K. Munagala, and K. Wang. Approximately stable committee selection. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 463–472. ACM,
2020.

[28] D.M. Kilgour, J. Grégoire, and A. Foley. The prevalence and consequences of ballot truncation in
ranked-choice elections. Public Choice, 184:197–218, 2020.

[29] M. Lackner and P. Skowron. Multi-Winner Voting with Approval Preferences. Springer, 2022.
[30] M. Marsh and C. Plescia. Split-ticket voting in an STV system: choice in a non-strategic context.

Irish Political Studies, 31(2):163–181, 2016.
[31] D. McCune and A. Graham-Squire. Monotonicity anomalies in scottish local government elections.

Social Choice and Welfare, 63(1):69–101, 2024.
[32] D. McCune and L. McCune. Does the choice of preferential voting method matter? an empirical

study using ranked choice elections in the united states. Representation, 60(1):1–16, 2024.
[33] D. McCune, E. Martin, G. Latina, and K. Simms. A comparison of sequential ranked-choice voting

and single transferable vote. Journal of Computational Social Science, 7(1):643–670, 2024.
[34] D. Peters and P. Skowron. Proportionality and the limits of welfarism. In Proceedings of the 21st

ACM Conference on Economics and Computation (ACM-EC), pages 793–794. ACM Press, 2020.
[35] N. Tideman. The single transferable vote. Journal of Economic Perspectives, 9(1):27–38, 1995.
[36] N. Tideman. Collective Decisions And Voting: The Potential for Public Choice. Ashgate, 2006.
[37] K. Tomlinson, J. Ugander, and J. Kleinberg. Ballot length in instant runoff voting. In Proceedings of

the 37th AAAI Conference on Artificial Intelligence (AAAI), pages 5841–5849. AAAI Press, 2023.

Tuva Bardal
University of Warwick
Coventry, United Kingdom
Email: tuva.bardal@warwick.ac.uk

Markus Brill
University of Warwick
Coventry, United Kingdom
Email: markus.brill@warwick.ac.uk

14

tuva.bardal@warwick.ac.uk
markus.brill@warwick.ac.uk


David McCune
William Jewell College
Liberty, Missouri, United States
Email: mccuned@william.jewell.edu

Jannik Peters
National University Singapore
Singapore
Email: peters@nus.edu.sg

15

mccuned@william.jewell.edu
peters@nus.edu.sg


Appendix

The appendix is structured as follows. In Appendix A, we provide more details on the voting rules STV
and EAR. Appendix B lists all solid coalitions of the election instance from Example 1. In Appendix C, we
give a proof of Theorem 2, and in Appendix D we discuss connections between the algorithm described
in Section 4.3 and apportionment methods. Appendix E provides more details on the experiments
discussed in Section 5. Finally, Appendix F is dedicated to experiments on completed ballot data (see
Section 6).

A Definitions of Voting Rules

Single Transferable Vote. The rule used most frequently in real-world elections is the method of
single transferable vote (STV). STV is actually a family of rules, with different versions of STV used
in different jurisdictions. Following McCune and Graham-Squire [31] we define it here in the way it
is used in Scottish local elections. This version uses the Hagenbach-Bischoff quota q = ⌊ n

k+1⌋ + 1
(which is different from the Droop quota ⌈ n

k+1⌉; see 17). STV then proceeds in rounds. It starts off by
assigning each voter i ∈ N a weight wi = 1. In each round STV checks whether the candidate with
the most weighted first-place votes has at least q weighted first-place votes. If that is the case, this
candidate is elected and the voters ranking this candidate first are reweighted proportionally (if there
were voters with total weight w ranking the candidate first, each voter with weight wi is reweighted by
a factor of wi

w−q
w ). Thus, the total weight of the election is decreased by exactly q. If there is no such

candidate, the candidate with the least weighted first-place votes is removed. We refer to this version of
STV as Scottish STV. We also use the version of STV known as Meek-STV, a commonly suggested STV
alternative. There are two primary differences between Meek and Scottish STV. Under Meek, candidates
who have previously won a seat can receive vote transfers in later rounds, and the quota can decrease
as the transfer process unfolds. Due to the inherent complexity of Meek-STV we defer its description to
Hill et al. [24].

Expanding Approvals Rule. The expanding approvals rule (EAR) is another family of proportional
multiwinner voting rules, suggested by Aziz and Lee [2] as an alternative to STV. Just like STV it uses a
quota q and starts off by assigning each voter a weight wi = 1. It then iterates over all possible ranks
r ∈ [m]. For each such rank and so-far unselected candidate c it checks whether the total weight of the
voters giving a rank of at most r to c is at least q. If there is such a candidate, it takes any such candidate
into the committee and collectively decreases the weight of all such voters by q. In our implementation
of the rule we select the candidate with the largest total weight and decrease the weights as in Scottish
STV. If there is no such candidate, r gets increased by 1.

B Additional Data for Example 1

Consider again the instance discussed in Example 1, given in the table below, where capital letters
A, B, C, ... are used to denote candidates; the for each candidate, the corresponding letter is given in
the rightmost column. The following list contains all 125 maximal solid coalitions for this instance.
Each solid coalition (N ′, C ′) appears in the format (C ′: |N ′|), and the list is ordered by the size |N ′| of
coalitions.

(EF: 1624), (E: 1574), (CG: 1277), (C: 1257), (B: 671), (BCG: 554), (F: 525), (ABCDEFG: 460), (BEF: 405),
(A: 382), (D: 365), (G: 358), (AEF: 345), (CEFG: 292), (BC: 239), (AE: 228), (BD: 228), (CEF: 216), (CEG: 212),
(ABCEFG: 200), (BCEFG: 197), (CE: 167), (BE: 159), (AB: 158), (BCDEFG: 156), (EFG: 140), (ACG: 132),
(DEF: 117), (CFG: 107), (ABCG: 107), (ABEF: 107), (BF: 102), (ABD: 101), (CDG: 82), (AC: 79), (ACEFG: 78),
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(BCDG: 77), (AD: 73), (ABDEF: 72), (ABE: 68), (BDEF: 65), (BCE: 64), (CDEFG: 64), (BCEG: 63), (DE: 62),
(EG: 62), (ABC: 61), (ABCDG: 61), (BG: 59), (ABCDEF: 53), (BCEF: 49), (ABF: 48), (BCD: 47), (CF: 45),
(AF: 44), (ABCEF: 42), (ABCDEG: 42), (CD: 40), (ACE: 40), (ACDEFG: 40), (BDE: 39), (ABCEG: 35),
(ABCDFG: 34), (BCFG: 33), (FG: 29), (BCF: 29), (BDF: 29), (DF: 28), (ACEF: 28), (ACEG: 28), (BEFG: 27),
(ABCFG: 25), (BCDEF: 25), (ABEFG: 23), (ABDE: 22), (AG: 21), (AEFG: 21), (BCDEG: 21), (ABCE: 20),
(ADEF: 20), (ABG: 18), (BDG: 18), (BCDFG: 17), (BEG: 16), (BFG: 15), (ACDG: 15), (AEG: 14), (ABDEFG: 14),
(ADE: 13), (ACFG: 13), (DG: 12), (ABCD: 12), (CDEF: 12), (ACD: 10), (ADF: 9), (ABDF: 9), (ABFG: 9),
(CDEG: 9), (ABCDE: 8), (ACF: 7), (CDF: 7), (BCDE: 7), (CDFG: 7), (DEFG: 7), (ADG: 6), (CDE: 6), (ABEG: 5),
(ACDEF: 5), (BDEFG: 5), (AFG: 4), (DEG: 4), (ABCF: 4), (BCDF: 4), (ABCDF: 4), (ACDEG: 4), (ACDFG: 4),
(ADEFG: 4), (DFG: 3), (ACDE: 3), (ABDG: 2), (ACDF: 2), (ADEG: 2), (BDFG: 2), (BDEG: 1).

Candidate Party Votes Letter

D. Milligan (DM) Labour 1,574 E
L. Milliken (LM) Labour 525 F
J. Aitchison (JA) Independent 382 A
B. Constable (BC) SNP 1,257 C
T. Munro (TM) SNP 358 G
I. Baxter (IB) Greens 671 B
E. Cummings (EC) Conservative 365 D

C Proof of Theorem 2

Theorem 2. Given an instance and a value α < 1, deciding whether α-PSC is satisfiable is NP-complete.

Proof. Membership in NP follows from Theorem 1, as any W with αPSC(W ) ≤ α witnesses the
satisfiability of α-PSC.

To show hardness, we reduce from 3-Hitting Set. Recall that in the 3-Hitting Set problem, we are given
a set S, a collection of size-three subsets S1, ..., Sj of S and an integer h < j, and the goal is to find a
set H ⊆ S of size |H| = h such that H ∩ Si ̸= ∅ for all i ∈ [j]. For each i ∈ [j], let Si = {s1i , s2i , s3i }.
For a given instance (S, {S1, . . . , Sj}, h), we construct a corresponding election instance as follows.

Let C = S ∪D, where D = {d1, . . . , dj} is a set of j dummy candidates. For each i ∈ [j], there are
two voters v1i , v2i with Ai = Si ∪ {di} and preferences

v1i : di ≻ s1i ≻ s2i ≻ s3i and v2i : di ≻ s2i ≻ s3i ≻ s1i .

Thus, n = 2j. Finally, we let k = h+ j and α = k
n < 1.

Since αn
k = 1, every individual voter on its own constitutes a 1α-large solid coalition and, for each

i ∈ [j], the voters v1i and v2i together form a 2α-large solid coalition over the prefix {di} ∪ Si. Hence, a
committee satisfying α-PSC must contain all dummy candidates and at least one candidate from each
of the sets S1, . . . , Sj . It follows that there is a committee of size k that satisfies α-PSC if and only if
there exists a hitting set of size h.

This proof can easily be extended to any α < 1 by either cloning the voters or adding new sets consisting
only of a single otherwise unused element.

D An Apportionment Perspective

The algorithm used to compute the PSC value of an instance (see Section 4.3) has similarities to the
D’Hondt apportionment method [8]. Apportionment methods distribute parliamentary seats among
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parties based on the parties’ vote counts in a party-list election. In particular, the D’Hondt method can
be computed by (1) constructing a table that contains the vote counts of all parties, the vote counts
divided by 2, the vote counts divides by 3, and so on; and (2) iteratively assigning a seat to the party
corresponding to the next-highest number in the table, until all k seats have been assigned.12

The ILP-based algorithm in Section 4.3 can be phrased in a similar way, based on the observation
that the threshold values αℓ

(N ′,C′) =
|N ′|
n · k

ℓ are proportional to |N ′|
ℓ . Therefore, we could interpret

the maximal solid coalitions as ‘parties’ and construct a table of the parties’ sizes, the parties’ sizes
divided by 2, and so on. In particular, the numbers corresponding to a solid coalition (N ′, C ′) are
|N ′|, |N

′|
2 , |N

′|
3 , . . . , |N

′|
|C′| . Then, we can iterate over the numbers in this table in non-increasing order,

just like the D’Hondt method would do.

There are two main differences between the algorithm from Section 4.3 and D’Hondt’s method. First, our
algorithm allocates “representation guarantees” instead of seats: When considering |N ′|

ℓ corresponding
to solid coalition (N ′, C ′), the constraint |W ∩ C ′| ≥ ℓ is added. Second, we may give out more than
k representation guarantees: Since the candidate sets of different solid coalitions are not necessarily
disjoint, candidates can satisfy more than one solid coalition at once. We only stop allocating further
representation guarantees if doing so would lead to an infeasible collection of guarantees (as determined
by our ILP).

This alternative description of the algorithm for computing the PSC value of an instance gives rise to
the idea of apportionment for non-disjoint parties. Interestingly, any divisor method can be employed
instead of the D’Hondt method. For example, the Sainte-Laguë method (aka Webster), which satisfies
attractive properties [7], uses divisors 1, 3, 5, 7, . . . instead of 1, 2, 3, 4, . . . .

E Detailed Analysis of Experiments

E.1 Agreement of Rules

To complement the results on how often rules disagree, we calculated the average distance between
each pair of rules. The results are given in Table 7. The pairwise distance between rules is low overall.
As we have seen in Table 4, except for SNTV and seq-RCV, each pair agrees in a majority of cases.
Moreover, the committees returned by the different rules often differ by only one candidate when they
disagree.

S-STV M-STV EAR SNTV seq-RCV

S-STV 0 0.10 0.25 0.26 0.46
M-STV - 0 0.22 0.31 0.39
EAR - - 0 0.44 0.44
SNTV - - - 0 0.58
seq-RCV - - - - 0

Table 7: Average distance between pairs of rules.

E.2 Alignment of Measures

In order to check how closely aligned our four measures are, we calculated, for each election, the
optimal committee w.r.t. each measure (i.e., the committee minimizing α). Table 8 shows how much
the committees optimizing different measures differ from each other. The difference between the

12For example, see Brill et al. [14, page 362].
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committees optimizing the LS value and committees optimizing other measures is overall higher than
the difference between the other measures. One possible explanation for this is that the LS measure is
mostly restricted to only consider first-place candidates, while the other measures impose constraints
more broadly.

EJR+ Priceability LS

PSC 193 (0.18) 91 (0.08) 254 (0.24)
EJR+ – 137 (0.12) 346 (0.33)
Priceability – 275 (0.26)

Table 8: Number of elections where measure-minimizing committees disagree and average distance between
those committees (in parenthesis).

E.3 Values Achieved by Rules

The LS and priceability values achieved by rules are given in Figure 4.
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Figure 4: The LS and priceability values achieved by voting rules

F Experimental Results for Completed Ballots

This section contains the results of experiments with completed ballot data, generated based on the
Scottish data set. We first describe the method that we used to complete the data in Section F.1. As
mentioned in Section 6, completing the data had limited effect on the experiments we performed.
In Section F.2 we give an example to illustrate why the method described in Section F.1 may not
necessarily yield elections with (many) more sufficiently large solid coalitions. We give the results of
the experiments on completed data in Sections F.3 to F.6.

F.1 Generating Completed Ballots

We used the following method to create this synthetic data. The process involves a series of steps, each
time extending partial ballots of length r to length r + 1 based on the probability distribution of ballots
which agree on the first r entries.

To be more concrete, suppose there are 10 ballots of the form ABC . To increase these ballots by length
1, we consider all ballots of the form ABC∗ which have length at least 4. Suppose there are 38 such
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ballots as shown in Table 9. We extend the ballots of the form ABC proportionally, (column 3) and
round to a whole number using Hamilton’s apportionment method (column 4).

Ballot Number Prop. Num. ballots

ABCD 9 (9/38) · 10 = 2.368 2
ABCE 12 (12/38) · 10 = 3.158 3
ABCF 17 (17/38) · 10 = 4.474 5

Total 38 10 10

Table 9: Extending ballots of length 3 to length 4.

In theory, this process can be iterated to create complete ballots, assuming a sufficient set of complete
ballots. However, in practice it does not make sense to keep extending preferences on a given ballot if
the number of ballots of length at least r + 1 is not sufficiently large in comparison to the number of
ballots of length r. Thus, each ballot was extended until either the ballot contained a complete ordering
of the candidates, or until the number of ballots of length r + 1 was less than 10% of the number of
ballots of length r.

If after this process, a ballot was not complete, we then completed the ballot by choosing between the
candidates not yet listed on the ballot uniformly at random.

F.2 Example Instance

As an example of why the number of large cohesive groups in elections does not increase substantially
when moving from truncated data to data with full preferences, consider the 2022 election of Glas-
gow, Ward 20 (see https://en.wikipedia.org/wiki/2022_Glasgow_City_Council_election#
Baillieston). In this election with k = 3, the two Labour candidates in the real instance with trun-
cated ballots have 38.4% of the first-place votes and form a solid coalition consisting of 0.313% of the
electorate (and thus too small to deserve representation under PSC). Furthermore, out of the voters
that rank either of the Labour candidates first, 2.75% only vote for this one candidate. Our completion
method assigns the other Labour candidate the second place in most of these ballots, but not all of them,
yielding a new solid coalition over these candidates that consists of 32.4% of the electorate— barely
below the n

3 threshold imposed by PSC.

F.3 Minimal Values

We computed the optimal α-value for each measure on the completed data. The histograms of encoun-
tered values is shown in Figure 5. The minimal α-values become slightly higher for all measures. The
difference in values is most pronounced for EJR+ and priceability. In particular, the prcieability value
for most instances is lower bounded by k

k+1 : essentially, for lower values the entire electorate would be
able to afford more than k candidates at rank m, hence violating priceability.

F.4 How often do rules produce optimal committees?

For each voting rule, we counted how often the rule achieves each optimal α-value. The results can
be found in Table 10, where, for each measure, the value associated with the best-performing rule is
highlighted. The overall performance of the rules was slightly worse on the completed data. As in the
truncated case, SNTV is most aligned with PSC and LS. On the other hand, on the full preferences, EAR
is most aligned with EJR+ and priceability, and now outperforms Scottish STV and Meek STV. Note also
that EAR performs better w.r.t. priceability value on the completed data than on the truncated data.
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Figure 5: Histograms of optimal values, rounded to one decimal place (completed preferences).

PSC EJR+ Priceab. LS

S-STV 763 591 667 743
M-STV 748 637 675 700
EAR 584 645 739 579
SNTV 860 454 543 906
seq-RCV 409 618 559 336

Table 10: For each rule and each axiom, the number of instances for which the rules achieves the optimal α-value
for completed preferences. The best values in each column appear in bold

F.5 Values Achieved by Rules

We compared the spread of α-values achieved by rules to the optimal α-values for each measure. The
results are presented in Figure 6 and Figure 7. We observe that the α-values of all rules become slightly
higher in the complete case – this is in line with the minimal possible values increasing somewhat.
Furthermore, the number of seq-RCV committees that have a value of α > 1 increases for each measure.
In other words, for each axiom, there are more instances where seq-RCV returns a committee that does
not satisfy the axiom. We also observe a difference in the spread of priceability values for all rules,
compared to that in the truncated case. This has to do with the k

k+1 lower bound on the priceability value:
the priceability values achieved by rules cluster around this area, to the point where any priceability
value that does not is considered an outlier.
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Figure 6: The PSC and EJR+ values achieved by voting rules (completed preferences).
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Figure 7: The LS and priceability values achieved by voting rules (completed preferences).

M-STV EAR SNTV seq-RCV

S-STV 92 306 376 601
M-STV – 303 399 555
EAR – 536 570
SNTV – 731

Table 11: Number of instances pairs of rules disagree on (completed preferences).

F.6 Pairwise Comparisons

We again considered the disagreement and distance between rules. The results are given in Tables 11
and 12. On the completed data, S-STV and M-STV agree slightly more often than in the truncated case.
Aside from this, disagreement is higher than on the truncated data for all pairs of rules. This difference
is perhaps most noticeable for pairwise comparisons that include seq-RCV, which disagrees with every
other rule on t > 100 more instances than in the experiments on the truncated data.

M-STV EAR SNTV seq-RCV

S-STV 0.08 0.30 0.35 0.60
M-STV – 0.30 0.38 0.50
EAR – 0.53 0.56
SNTV – 0.76

Table 12: Average distance between pairs of rules as fraction of seats (completed preferences).

Furthermore, we considered the difference in PSC values for pairs of rules, restricted to instances on
which the rules disagree. We again focused on S-STV vs. seq-RCV and S-STV vs. EAR (Figure 8). As
was the case on the truncated data, the difference between seq-RCV and S-STV is more pronounced
than what is the case for S-STV and EAR. As mentioned previously, seq-RCV fails 1-PSC more often for
completed ballots.
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Figure 8: Left: Differences in PSC values between Scottish STV and Sequential RCV when elections where
the rules agree are excluded (completed preferences). Right: Differences in PSC values between Scottish STV
and EAR when elections where the rules agree are excluded (completed preferences). Elections are ordered by
increasing optimal PSC value.
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