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Abstract

We study the complexity of candidate control in participatory budgeting elections. The goal
of constructive candidate control is to ensure that a given candidate wins by either adding or
deleting candidates from the election (in the destructive setting, the goal is to prevent a given
candidate from winning). We show that such control problems are NP-hard to solve for many
participatory budgeting voting rules, including Phragmén and Eqal-Shares, but there are
natural cases with polynomial-time algorithms. We also argue that control by deleting candidates
is a useful tool for assessing the performance (or, strength) of initially losing projects, and we
support this view with experiments on real-life PB instances.

1 Introduction

Participatory budgeting is a recent democratic innovation where cities allow their inhabitants to decide
about a certain fraction of their budgets [9, 16, 26]. Specifically, some of the community members
propose possible projects to be implemented and, then, all the citizens get a chance to vote as to which
of them should be funded. Most commonly, such elections use approval ballots, where people indicate
which projects they would like to see implemented, and the GreedyAV rule, which selects the most
approved projects (subject to not exceeding the budget). However, there also are more advanced rules,
such as Phragmén [8, 21] or Eqal-Shares [24, 25], which produce arguably more fair—or, to be precise,
more proportional—decisions [14]. Yet, with more advanced rules come issues about understanding
the results. Indeed, recently [6] have argued that proposers whose projects were rejected may find it
quite difficult to understand the reasons for these outcomes. To alleviate this problem, they introduced
a number of performance measures—mostly based on the bribery family of problems [13, 12]—that
attempt to answer the following question: As a proposer of a project that was not funded, what could
I have done differently to have it funded? For example, they ask if the project would have been funded
if its cost were lower (see also the work of [3]), or if its proposer convinced more people to vote for
it, or if the proposer motivated some voters to only approve his or her project. Similar bribery-style
problems were also used to evaluate the robustness of election results [27, 7, 2, 4, 5], or the margin of
victory for the winners [22, 28].

In this paper, we follow-up on these ideas, but using candidate control. The main difference is that
instead of focusing on circumstances that depend on a project’s proposer (indeed, the project’s cost
is his or her choice, and it is his or her choice what support campaign he or she runs), we focus on
external ones, independent of his or her actions (such as some other projects being submitted or not1).
We believe that looking at both types of reasons for a project’s rejection gives a more complete view of
its performance.

1We disregard the possibility that a proposer might try to discourage other people from proposing projects, albeit we
acknowledge that this may happen, and this might even be quite benign: A group of activists focused on making their city
more green may discuss among themselves which projects to submit and which to withhold.



unit unary binary

Del Add Del Add Del Add

GreedyAV P‡ P‡ P‡ P‡ NP-c NP-c

GreedyCost P‡ P‡ P‡ P‡ NP-c NP-c

Phragmén NP-c NP-c NP-c NP-c NP-c NP-c

Eqal-Shares NP-c NP-c NP-c NP-c NP-c NP-c

Table 1: A basic overview of our complexity results. In the first column, we list the rules we are interested in.
All the remaining columns contain the complexity classification of our problem in one of the three variants: by
unit, we mean that all input projects are of the same cost, unary stands for cases where the costs are of size
polynomial in n+m, and binary applies for the variant where costs need to be encoded in binary (and hence
can be exponential in n andm). By Del (Add, respectively), we mean that the control operation is project deletion
(addition). The complexity classification is the same for both constructive and destructive objectives. Results
marked with ‡ hold even in the weighted version of the control where projects’ weights are encoded in binary.

Candidate Control. The idea of the control-in-elections family of problems is that we are given a
description of an election, a designated candidate, and we ask if it is possible to ensure that this candidate
is a winner (in constructive control) or ceases to be a winner (in destructive control) by modifying the
structure of the election [1, 12]. Specifically, researchers consider control by adding or deleting either
candidates or voters (some papers—including the one that introduced election control [1]—also consider
various forms of arranging run-off elections as a type of control). So far, election control has been
mostly studied theoretically, with a focus on the complexity analysis [1, 18, 23, 20, 10, 29], but some
empirical results exist as well [11]. We study candidate control in participatory budgeting, that is, we
ask if it is possible to ensure funding of a given project (or, preclude its funding) by either adding new
projects—from some apriori known set of projects—or by deleting them. Our results are theoretical and
focus on the complexity of our problems, but we motivate them by project performance analysis and
we also show some experimental results that provide examples of such analysis. As our performance
analysis is based on control by deleting projects, we pay most attention to results regarding this variant
of control, and we include the addition case for the sake of completeness and to be in sync with the
preceding literature.

Performance Analysis. Let us now discuss how one could use control by deleting candidates to
analyze the performance of projects in participatory budgeting (we will use the terms “projects” and
“candidates” interchangeably, e.g., using “candidates” in the names of control problems). Consider a
participatory budgeting election and some not-funded project p. One basic measure of its performance
is the smallest number of other projects that have to be removed from the election for p to be funded.
The lower this number, the closer was the project to winning: Indeed, perhaps some proposers only
managed to submit their projects in the last minute and it was possible that they would have missed
the deadline, or some projects were close to being removed from the election due to formal reasons, but
the city officials were not strict in this regard. However, it is more likely that such issues would affect
cheaper projects than the more expensive ones—which, likely, had more careful proposers—so instead
of asking for a smallest set of projects to delete, we may ask for a set with the lowest total cost.

Another way of using control by deleting projects to assess a project’s performance is to use a probabilis-
tic approach, along the lines of the one taken by [4], [5], and [2] for bribery: We ask for the probability
that project p is funded assuming that a random subset of projects (of a given cardinality) is removed.
The higher it is, and the lower is the number of removed projects, the closer was project p to winning.



A different interpretation of the above measures is that instead of thinking that some projects “barely
made it” to participate in the election, we learn how many projects performed better than p. The more
projects we need to delete to have p funded (or, to have p funded with sufficiently high probability) the
more projects can be seen as critically stronger than p.

Finally, we can use candidate control as a way of assessing rivalry between projects. For example, if
project p has a much higher probability of being funded after deleting a random set of projects under
the condition that some other project q was included in this set, then we can view q as a strong rival
of p.

Contributions. We provide theoretical and experimental results. First, we consider the complexity
of candidate control for four well-known voting rules, depending on how the costs of the projects are
encoded (either in binary, or in unary, or as unit costs, which means that each project costs the same
amount). We show the overview of our results in Table 1. We mention that all our NP-hardness results
also imply #P-hardness for respective problems where we ask for a number of solutions (e.g., number
of ways in which we can ensure a victory of a given project by deleting a given number of others). This
is interesting because solving such problems is necessary for estimating the probability that a project
wins if a given randomly-selected set of projects is deleted. On the experimental side, we provide an
analysis of real-world participatory budgeting instances, showing what one can learn about them via
candidate control. To this end, we provide several performance measures and prove their usefulness in
an extensive analysis of real-world PB instances.

We refer the interested reader to the full version of our paper for all missing details and proofs [15].

2 Preliminaries

An instance of participatory budgeting (PB) is a triple E = (P, V,B), where P = {p1, . . . , pm} is a
set of projects, V = {v1, . . . , vn} is a set of voters, and B ∈ N is an available budget. Each voter
v ∈ V is associated with an approval set A(v) ⊆ P , which is the set of projects they approve. For
each project p ∈ P , we know cost(p) ∈ N≥1, cost(p) ≤ B, i.e., the price for which this project can
be implemented. We extend this notation from a single project p to a set of projects S ⊆ P and set
cost(S) =

∑
p∈S cost(p). We say that S ⊆ P is a set of B-feasible projects if cost(S) ≤ B.

A PB rule is a function f : E → 2P that, for a given PB instance, outputs a B-feasible subset of projects.
Note that we assume the rules to be resolute, which can be easily ensured by incorporating some
tie-breaking order into them. Let W = f(E) for some rule f and some PB instance E. We say that
projects fromW are selected or, equivalently, funded. The projects not inW are called losing.

In this work, we consider four different participatory budgeting rules. Each of these rules starts with an
empty setW and sequentially, in rounds, extendsW with additional projects unless the budget B is
exhausted or all the projects were processed. More formally, given an instance E = (P, V,B) of PB,
the rules we consider work as follows:

GreedyAV. We define the score of a project p ∈ P as the number of voters approving p; formally
scoreAV(p) = |{v ∈ V | p ∈ A(v)}|. The GreedyAV rule then processes the projects in non-
increasing order according to their scores (with ties resolved according to a given tie-breaking order).
If the rule can afford the currently processed project p, i.e., cost(W )+cost(p) ≤ B, then it includes p
in W . Otherwise, the rule continues with the next project. The rule terminates when all projects
were processed.

GreedyCost. This rule is very similar to the GreedyAV rule. The only difference is in the order in
which the projects are processed. Specifically, the score of a project p ∈ P under GreedyCost rule is



scoreAV/c(p) = scoreAV(p)/ cost(p). The process is then identical to the one for the GreedyAV rule.

Phragmén. This rule is conceptually different from the two above. Here, each voter starts with an
empty virtual bank account, which is, in a continuous manner, increased by one unit of money per
unit of time. Once there is a project p ∈ P \W such that the sum of balances of voters approving
p is exactly cost(p), the current round ends, and the rule performs several steps. First, it includes
project p into the set of funded projects. Next, it sets the balance of all voters approving p to zero.
Finally, the rule removes all projects p′ ∈ P \W such that cost(W ) + cost(p′) > B. Then, the rule
continues with the next round. The rule terminates when there are no remaining projects in P .

Eqal-Shares. Our last rule is also based on the idea of virtual bank accounts. However, this time,
the budget is proportionally spread among the voters, meaning that each voter starts with the initial
balance of B/n, and this initial value is never increased. Again, the rule works in rounds. In each
round, the rule funds a project such that its supporters have enough cumulative budget to fund this
project, and each of them covers as small a fraction of its cost as possible. Formally, let bi be the
current balance of a voter vi. We say that a project p ∈ P \W is q-affordable, where q ∈ [0, 1], if∑

vi∈A(p)
min (bi, q · cost(p)) = cost(p).

In each round, the rule funds a project that is q-affordable for the smallest q over all projects and
adjusts the balances of voters supporting p: Specifically, the balance bi of each agent is decreased by
qi · cost(p), where qi = q if bi > q · cost(p) and bi/ cost(p) otherwise. The rule terminates when no
affordable project exists.

Control Problems. We focus on the control by adding or deleting projects and follow the standard
notation from single- andmulti-winner voting [12]. Let f be a PB rule. In the f -Constructive Control
by Deleting Candidates projects (f -CCDC, for short), we are given an instance E = (P, V,B) of PB,
an integer r, and a project p ̸∈ f(E), and our goal is to decide whether it is possible to delete at most r
projectsD such that p ∈ f((P \D,V,B)). In the f -Destructive Control by Deleting Candidates
(f -DCDC), the project p is initially funded, and the goal is to decide whether we can delete at most r
projects so that project p becomes a loser.

In control by adding projects, there are two disjoint sets of projects: P is a set of standard projects, and
Q is a set of spoiler projects. The rule does not initially consider the spoiler projects. The question
here is whether we can find at most r spoiler projects such that once we add them to the instance, then
project p is (in the case of f -CCAC) or is not (in the case of f -DCAC) funded by the rule f .

In our algorithmic results, we are sometimes interested in the weighted variants of the above-defined
problems. Under this consideration, each project p is additionally associated with its weight ω(p) ∈ N,
and the goal is to decide whether a setD of projects securing our goal exists such that

∑
p∈D ω(p) ≤ r.

We indicate the weighted variant by adding a dollar sign in front of the operation type. For example, the
weighted variant of f -CCDC is referred to as f -CC$DC. Even though the weighted variant might seem
unnatural at first glance, the motivation for it is two-fold. First, it is studied in literature on control in
elections [12]. Second, and more importantly, if we set the weight of each project equal to its cost, we
can use a hypothetical algorithm for the weighted variant to find a set of the lowest total costs that
secures our goal, one of the proposed performance measures.

3 Complexity Results

We start with the complexity picture of both constructive and destructive control by deleting projects.
This operation is arguably more natural for real-life instances and is also assumed in our experimental
results. Before we present our results, let us illustrate the concept of control by deleting projects using
a toy example.



Example 1. Assume an instance with three projects c1, c2, and p. The project c1 is approved by three

voters, the project c2 by two voters, and project p by a single voter. The costs of the projects are cost(c1) = 1,
cost(c2) = 2, and cost(p) = 1. The total budget is B = 2. Under the GreedyAV rule, project c1 is

considered first, and since its cost is less than the budget, this project is funded. Next, the rule considers

project c2, but this project costs more than the remaining budget. Lastly, project p is considered and

eventually also funded. If we remove project c1, then project c2 gets funded and exhausts the budget, and
therefore, project p cannot be funded. Hence, removing c1 from the instance is a successful destructive

control that prevents p from winning and a successful control that makes c2 win.

We start with the GreedyAV rule. In our first result, we show that both constructive and destructive
control are computationally intractable, even if the instance is unweighted. Maybe surprisingly, this
hardness result holds even if the instance contains only two agents (we give a reduction from the classic
NP-complete [17] problem RX3C, see below).

Definition 1. In the RX3C problem, we are given a universe U = {u1, . . . , u3N} and a family S of 3N
size-3 subsets S1, . . . , S3N ⊂ U such that every element ui ∈ U appears in exactly 3 subsets of S . We ask

if there are N subsets in S whose union is U .

Theorem 1. Both GreedyAV-CCDC and GreedyAV-DCDC are NP-complete, even if |V | = 2.

Proof Sketch. To show NP-hardness, we give a reduction from RX3C. We focus only on the constructive
variant and consider the destructive one in the full version.

The idea of the proof is that the projects are in 1-to-1 correspondence with the sets, and using project
costs, we encode which elements are covered by each set. We achieve this by having project costs as
a 3N digit-length number in base 4. A project pj corresponding to a subset Sj = {ui1 , ui2 , ui3} ∈ S ,
i1 < i2 < i3, then has cost of the form

0
3N

00 · · · 001
i3
00 · · · 001

i2
00 · · · 001

i1
00 · · · 0

2
0
1
,

where the i-th digit of this cost has value one if and only if the element ui belongs to Sj . All other
digits are always zero. Next, we set the budget and the cost of our distinguished project p so that it gets
funded only if the deleted projects correspond to subsets that form an exact cover in I .

Formally, given an instance I = (U,S), we construct an instance J of GreedyAV-CCDC as follows.
For each set Sj ∈ S , Sj = {ui1 , ui2 , ui3}, we create a set-project pj with cost 1 ·4i1+1 ·4i2+1 ·4i3 . Next,
we add our distinguished project p andN +1 guard-projects g1, . . . , gN+1. The cost of the distinguished
project p is

∑3N
i=1 1 · 4i and for every i ∈ [N + 1], we set cost(gi) = cost(p) + 1. That is, the guard

projects are only one unit more expensive compared to our distinguished project. This ensures that the
budget left after we delete some set-projects is exactly the cost of p.

The set of voters consists of just two voters, v1 and v2. The first voter, v1, approves all projects except
for p. The second voter, v2, approves only the set-projects. Such a preference profile secures that,
regardless of the tie-breaking order, the method first processes all set-projects, then all guard-projects,
and only as the last possibility, the method processes the distinguished project p.

To complete the construction, we set B =
∑3N

i=1 3 · 4i and r = N . Observe that the number of
guard-projects is one greater than the number of projects we are allowed to delete; hence, no solution
may delete all guard-projects. The budget is selected so that if we do not delete any project, all the
set-projects are funded, and the budget is exhausted after the last set-project is taken into consideration
by the rule. On the other hand, if we remove N projects corresponding to subsets forming an exact
cover in I , the remaining budget after the rule processes all the set-projects will be exactly the cost of p.

First, let us show that p is indeed initially not funded. The scoreAV of every set-project pj , j ∈ [3N ], is
exactly two, the scoreAV of the guard-projects is exactly one, while the scoreAV of our distinguished



project p is zero. Therefore, all other projects are processed before project p. Moreover, their total
cost is

∑3N
i=1 3 · 4i due to the definition of the costs and the fact that every element ui appears in

exactly three subsets. Therefore, when the distinguished project p is processed by the rule, the budget
is B −

∑3N
i=1 3 · 4i =

∑3N
i=1 3 · 4i −

∑3N
i=1 3 · 4i = 0. Hence, project p is clearly not affordable.

For left-to-right implication, let I be a Yes-instance and let C ⊂ S be an exact cover of U . We delete
every set-project pj such that Sj ∈ C , and we claim that p is now funded, that is, the control is successful.
Since C is an exact cover, we spend exactly

∑3N
i=1 2 · 4i on the set-projects. Consequently, after the last

set-project is processed by the rule, the remaining budget isB−
∑3N

i=1 2·4i =
∑3N

i=1 3·4i−
∑3N

i=1 2·4i =∑3N
i=1(3 − 2) · 4i =

∑3N
i=1 1 · 4i. This is one unit of money less than the cost of any guard-project.

Therefore, no guard-project is funded, and once the rule processes p, the remaining budget is still∑3N
i=1 1 · 4i which is the cost of p, so p is funded. Consequently, J is also a Yes-instance, and C is a

solution.

The hardness construction from Theorem 1 requires prices of exponential size. That is, our problems
are, from the computational complexity perspective, weakly NP-hard. It is natural to ask whether
Theorem 1 can be strengthened to polynomial-size prices or if a pseudopolynomial time algorithm exists
for the problem. In the following result, we answer this question positively by giving an algorithm
based on dynamic programming, which works even in the case of weighted control.

Theorem 2. If the costs of the projects are encoded in unary, both GreedyAV-CC$DC and GreedyAV-

DC$DC can be solved in polynomial time, even if the projects’ weights are encoded in binary.

Proof Sketch. Our algorithm is based on the dynamic programming approach. We first present an
algorithm for constructive control and later show what needs to be changed to also solve the destructive
variant of control by deleting projects.

We suppose that p1, . . . , pm−1, p is the order in which the rule processes the projects in the original
instance; that is, p1 is processed first and pℓ is processed just before the distinguished project p. Note
that the assumption that p is processed last is not in contradiction with the fact that our algorithm
works for any tie-breaking order, as we can remove all projects that the GreedyAV rule processes after
the distinguished project p. Moreover, we can remove all projects with cost(pj) > B, as such projects
cannot be afforded under any condition.

The central part of the algorithm is to compute a dynamic programming table DP[j, β], where
j ∈ [m− 1] is an index of the last processed project, and β ∈ [B] is a desired remaining budget just
before the rule processes a project pj+1. We call the pair (j, β) a signature. For every signature, the dy-
namic programming table stores the weight of a minimum-weight partial solution Dj,β ⊆ {p1, . . . , pj}
such that if the projects from Dj,β are removed, the remaining budget just before the GreedyAV rule
processed project pj+1 is exactly β. If no such partial solution exists, we store some large value ∞ (in
fact, it is enough to store any value greater than r).

The computation is then defined as follows. The basic step is when j = 1. Here, we just decide whether
p1 needs to be deleted or not, based on the required remaining budget β. Formally, we set the dynamic
programming table as follows:

DP[1, β] =


0 if β = B − cost(p1),

ω(p1) if β = B, and
∞ otherwise.



For every j ∈ [2,m− 1], the computation of the algorithm is defined as follows.

DP[j, β] =



min{DP[j − 1, β] + ω(pj),DP[j − 1, β + cost(pj)]}
if DP[j − 1, β] + ω(pj) ≤ r and β + cost(pj) ≤ B,

DP[j − 1, β]

if β + cost(pj) > B,

DP[j − 1, β + cost(pj)]

if DP[j − 1, β] + ω(pj) > r.

The first case corresponds to a situation where we need to decide whether to include pj in a solution or
not. In the second case, we cannot fund pj anyway, so we need not delete it, and we are only interested
in whether the same budget can be achieved just before pj is processed. In the last case, we cannot
delete pj , as it would exceed the budget.

Once all the cells of the dynamic programming table DP are correctly computed, we can decide the
instances. Specifically, we return Yes whenever there exists a cell DP[m− 1, β], where β ≥ cost(p),
such that DP[m− 1, β] ≤ r. The dynamic programming table has O(m ·B) cells, and each cell can be
computed in time O(log(r)). The final check can be done in O(B) time; therefore, the overall running
time of the algorithm isO((m ·B) · log(r) +B), which, assuming the unary-encoded budget, is clearly
a polynomial-time algorithm, even if the projects’ weights are encoded in binary.

Theorem 2 implies that for real-life elections, performance measures based on project control can be
computed efficiently. Indeed, we implemented this algorithm and we use it in our experimental analysis
in Section 4.

The hardness construction provided in Theorem 1 and the algorithm from Theorem 2 also work for the
GreedyCost rule. For the former result, one can observe that even under the GreedyCost rule, the
property that the set-projects are processed before the guard-projects, and that the guard-projects are
processed before the distinguished project p is preserved. This comes from the fact that set-projects are
approved by exactly two voters, guard-projects by exactly one voter, and p by no voter. Moreover, no
set-project is more expensive than any guard-project. The algorithms require that the relative ordering
of the projects is not affected by deletions. This is also clearly preserved under GreedyCost.

Corollary 1. Both GreedyCost-CCDC and GreedyCost-DCDC are NP-complete, even if |V | = 2. If the
projects’ costs are encoded in unary, even weighted control can be solved in polynomial time.

Now, we turn our attention to the Phragmén rule. Here, the situation is significantly less positive.
Specifically, in the following theorem, we show that for this rule, it is NP-hard to decide whether
successful control is possible, even if the instance is unweighted and all projects are of the same cost.

Theorem 3. Both Phragmén-CCDC and Phragmén-DCDC are NP-complete, even if the projects are of

unit cost.

The idea behind the construction is that we have one project for every set Si ∈ S in the RX3C instance
and many direct competitors of the distinguished project p. The set-projects have significantly higher
support than p or its competitors, and, moreover, the competitors of p share their voters with the
set-projects. Hence, all the set-projects are always funded before the first project of a different type
may be funded. These set-projects exhaust most of the budget, and unless every voter approving a
competitor of p approves a funded set-project, the remainder of the budget is spent on the competitor
of p, which is, consequently, not funded.
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To finalize the complexity picture, we show that for the Eqal-Shares rule, control by deleting projects
is intractable under the same restriction as in the case of Phragmén. To prove this result, we exploit a
reduction of [19], who showed that it is NP-hard to decide whether the Eqal-Shares rule outputs the
same outcome for every tie-breaking order.

Theorem 4. Both Equal-Shares-CCDC and Equal-Shares-DCDC are NP-complete, even if the projects

are of unit cost.

For performance measures based on the probability that a project wins/loses if a randomly selected
set of projects is deleted or added, it is essential to efficiently determine the number of solutions for
an instance. However, it turns out that all our NP-hardness results, excluding Eqal-Shares and the
deletion operation, also imply #P-hardness for respective problems. Therefore, we do not expect the
existence of a significantly faster algorithm for computing such measures than a simple enumeration of
all possible solutions.

4 Experiments

We analyze the effect of project deletions on real-world data from Pabulib [14] and explore how different
performancemeasures based on this operation can help with understanding and explanation of outcomes
for proposers of losing projects and PB election organizers.

Data. In our experiments, we analyze 543 approval-based PB instances from Pabulib. We include
every instance with approval ballots available as of October 2024 with at least one losing project. In total,
our dataset contains 10531 losing projects for GreedyAV, 5771 for GreedyCost, 6004 for Phragmén,
and 7412 for Eqal-Shares. The largest instance consists of 160 projects and 90494 voters.

Experimental Setup. The experiments were run on computers with two AMD EPYC™ 7H12, 64-core,
2.6 GHz CPUs, and 256 GB DDR4 3200MT/s RAM. We use the same Python implementation for rules
GreedyAV, GreedyCost, and Phragmén as in [6]. For Eqal-Shares, we use our own implementation
in C++ that significantly outperforms the available implementations (see ?? for details). For each rule,
every instance, and every combination of r ∈ {1, 2, 3} projects in this instance, we determined the
winners after deleting these r projects. Evaluating the instances with our rules took us the following



number of core-hours: 38000 for Phragmén, 900 for both GreedyAV and GreedyCost, and 5000 for our
C++ implementation of Eqal-Shares. The overall running time is significantly skewed by instances
with many projects, as we need to try all O(nr) subsets (recall that significant speed-up for these
rules is not possible due to Theorems 3 and 4). For computing the optimal control in the setting with
either GreedyAV or GreedyCost, we use the dynamic programming approach from Theorem 2, which
finishes for the whole dataset in less than 1 core-hour.

4.1 How Close is a Project to Being Funded?

In general, PB rules do not provide any information about the performance of proposed projects—a
project is either funded or not—and there are no direct ways of measuring how close a project was to
being successful. Indeed, this is exactly what drove [6] to initiate the study of project performance
measures. Here, we propose several further measures based on constructive control by deleting projects.

The first, very basic, approach we suggest is to count how many other projects need to be removed
from the instance to make some initially losing project p funded. In Figure 1, we present an overview of
the results for the whole dataset. For GreedyAV, more than 47% initially losing projects get funded
after the removal of at most 3 projects; for the remaining rules, the value is smaller, but still significant –
37% for GreedyCost, 40% for Eqal-Shares, and 43% for Phragmén, respectively. Another interesting
piece of information we gain from Figure 1 is that for most of the projects for which it is enough to
remove at most three projects, it is actually enough to remove only one other project. This is most
evident in the case of GreedyAV.

Yet, saying that a project is close to winning simply because it can be funded after deleting some small
number of carefully selected projects is overly simplistic. On the one hand, it is not too surprising that
a project gets selected after deleting some other, expensive projects. On the other hand, we expect such
expensive projects to be well-prepared and to not be removed for formal reasons, or due to missing some
deadline. Consequently, instead of taking the number of projects that we need to delete to get some
initially losing project p funded, we may rather seek the cheapest set of projects (of a given cardinality)
whose deletion gets p funded. This measure indeed is much more fine-grained than our first one. To
see this, we consider the results for Warsaw, Citywide, 2023 PB election, shown in Figure 2: There are
certain projects where the removal of expensive projects is the only way to get them funded (e.g., project
1915), but there are also projects that get funded after removing rather cheap projects (see, e.g., project
1592). Note that this behavior is not very consistent among different PB rules, which is caused mostly
by their underlying principles: whether the rule is more proportionality- or social-welfare-oriented
(e.g., to get project 640 funded, we delete cheaper projects under GreedyCost, but more expensive
ones under GreedyAV).

Both above measures have the downside that they focus on deleting exactly a particular subset of
projects. However, even if we can get some initially losing project p funded after deleting projects
whose cost is X , it is possible that p would be losing after deleting some other projects, whose cost
is 2X (while this may seem unintuitive, it can happen due to various possible interactions among the
projects and involved operation of our PB rules). Hence, in the remainder of this section we take a
more stochastic approach and analyze the probability that a project gets funded if we remove a random
subset of projects of some predefined size. We start with an overview of the whole dataset and later we
analyze one specific instance, to show what information can be gained from measures based on the
probability of winning.

In Figure 4, we have a data point for every instance and plot the percentage of initially losing projects
that have at least 25% probability of being funded after the removal of three random projects. First,
we see that for all the voting rules, there are instances where successful control is either unlikely
for large fractions of projects or, on the contrary, where control is likely to be successful for nearly
all projects. This affects more frequently instances of smaller size. Also, there is a visible difference
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Figure 4: Each point of this plot represents a single instance. On the x axis, we have the percentage of losing
projects with a probability of at least 0.25 for getting funded after the removal of 3 random projects. On the y
axis, we havem, i.e., the number of projects.

between GreedyAV and the remaining rules: unlike in GreedyAV, for these rules, the instances are
more ‘clustered’ around certain percentage values, while for GreedyAV, the instances are more spread.

Now, we focus on a specific instance. In Figure 3, we plot for each losing project of the instance Warsaw,
Ursynow, 2019 (under GreedyAV), the probability that this project becomes a winner if r projects
are removed for different values of r. From this plot, we can distinguish between projects that are
‘clear losers’, meaning that their probability of winning is very close to zero regardless of the size of
the removal set, and projects that are much closer to winning. This demonstrates how useful such a
measure is of a project’s strength is.

4.2 Who Are My Biggest Rivals?

The performance measures introduced so far allow us to compare projects from a ‘global perspective’,
meaning that we can see how a losing project performed relative to other losing projects. However,
for project proposers, it is very important to know why their project was not funded and what can
be done to improve their project’s performance in the future. One possibility is to identify a given
project’s rivals—projects whose removal significantly increases its chances of victory. Proposers of
losing projects can then analyze such rivals, learn what they did differently, and improve their projects.

We propose the following measure of rivalry. We set the r-rivalry between a losing project p and some
other project q equal to the probability that p is funded after we remove q and r other random projects.
In Figure 5, we present the results for r = 2, instance Warsaw, Ursynow, 2019, and different PB rules. It
is not surprising that the strongest rivals are usually the projects that were initially funded. However,
this is not always the case. One such example is project 1490 under the Phragmén rule (Figure 5d),
for which the (initially losing) project 1432 is a much stronger rival than most of the initially winning
projects. It can also be the case that for some projects, their funding relies solely on the performance
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Figure 5: Rivals for initially losing projects. For each losing project p (plotted on the x-axis) and every other
(not necessarily losing) project q (plotted on the y-axis), we display the probability (red represents a value close
to 0, blue represents a value close to 1) that p is funded when q and r = 2 other random projects are removed.
Instance: Warsaw, Ursynow, 2019.

of a few other projects. A very good example of this behavior is project 1806 under the GreedyAV
rule (Figure 5a): unless we remove project 210, there is almost no chance that project 1806 will ever be
funded. This measure also nicely complements the measures from the previous subsection, as, based
on plots similar to Figure 5, we can visually distinguish projects that are hopeless losers, which are
somewhere in the middle, and which projects almost got in.

5 Discussion

In our experiments, we demonstrated the usefulness of project performance analysis. One can use our
measures to compare different projects and provide election organizers with information on which
projects were very close to being funded. In practice, cities often try to discuss popular losing projects
and fund them from an increased or completely separate budget. Moreover, our rivalry measures help
project proposers identify which other projects prevented their success. If such strong rivals share
some similarities with the losing project, the proposer can learn from them and improve their project
for the next round of participatory budgeting.



Ethical Statement

Even though our paper’s goal is to improve the explainability and transparency of participatory budget-
ing outcomes, voting control is traditionally understood as malicious and highly undesired behavior.
As such, one might object that our work could increase awareness of possible manipulation in PB elec-
tions. We want to stress that manipulations based on our performance measures are implausible: Our
measures can be computed only after the elections have ended and we have complete (and anonymized)
information about the whole instance. That is, the potential knowledge based on our measures can be
used, if at all, to manipulate the next installation of PB elections. However, the new instance will most
likely be different since some projects have already been funded, new projects will be proposed, and, in
particular, voters’ preferences may change over time.
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