Mixed Voting Rules for Participatory Budgeting

Anton Baychkov, Markus Brill, and Markus Utke

Abstract

Designing and analyzing voting rules for Participatory Budgeting (PB) elections is an active
research area in computational social choice. Many PB voting rules aim to optimize a specific
objective. For instance, the ubiquitous Greedy rule attempts to maximize utilitarian welfare,
while the Method of Equal Shares (MES) aims to achieve proportional representation of voter
preferences. However, it is often desirable to achieve good outcomes on multiple objectives
rather than a close-to-perfect outcome for one. Inspired by mixed-member systems that are often
used for parliamentary elections, we introduce mixed voting rules for PB. These are composed
of a sequence of two or more rules that can each spend some fraction of the overall budget in
order to add projects to the set selected by earlier rules. We develop a theoretical framework for
formulating and analyzing mixed PB voting rules, and explore how existing rules can be adapted
to this framework. We particularly focus on MES and its potential to address imbalances in
representation created by earlier rules. We propose different ways to adjust MES voter budgets
based on how satisfied voters are with previously chosen projects, and examine how well the
resulting rules approximate well-known proportionality axioms such as EJR+. We complement
our theoretical results with an empirical analysis of real-world PB elections, investigating how
mixed rules perform compared to their constituent rules.

1 Introduction

Participatory Budgeting (PB) is a democratic innovation that lets citizens vote on how public money is
spent [10, 28]. Typically, community members suggest projects, each with a specific cost. Voters are
then asked to express preferences over these projects, based on which a voting rule selects a subset of
the projects to fund, while making sure that their total cost stays within a given budget. Designing and
analyzing PB voting rules is a very active research area in computational social choice [2, 25].

PB voting rules have different strengths and weaknesses. For example, the Greedy rule simply ranks
projects by the number of votes they receive and funds them in that order until the budget runs out.
While this method is straightforward to implement and explain, it may fail to represent minority
interests. In contrast, the Method of Equal Shares (MES) [24] is guaranteed to provide proportional
representation, but computing it requires more complex calculations that are harder to explain. Instead
of choosing between different rules (and the different objectives that these rules aim for), we propose
a framework that combines multiple rules. Ideally, this approach preserves the advantages of the
constituent rules while mitigating their downsides. In particular, we introduce the framework of mixed
voting rules for PB. A mixed voting rule is defined as a sequence of rules, and each rule in that sequence
is allocated a specific portion of the overall budget. The process can be visualized as an assembly line
(see Figure 1): the first rule selects projects using its assigned budget share, then passes both its selection
and any unused budget to the next rule. Subsequent rules cannot alter the projects already chosen by
earlier rules but can only add new projects using their budget allocation. For example, we might let the
Greedy rule spend 60% of the budget first and then allow MES to spend the remaining 40%.

This idea is inspired by mixed-member electoral systems, which are used for parliamentary elections
around the world [26]. Prominent examples include Germany’s Mixed-Member Proportional Representa-
tion system and Scotland’s Additional Member System. In these electoral systems, parliamentary seats
are allocated according to two distinct selection methods: Some representatives are elected directly
(usually through first-past-the-post voting in local districts), while additional seats are allocated to



ensure — or at least approximate — the proportional representation of political parties in the parliament
as a whole. Thus, these systems effectively divide the total resource (i.e., the parliamentary seats) be-
tween two complementary selection methods, with the second method specifically designed to enhance
proportionality. Similarly, our mixed voting rules for PB allocate portions of the total budget to different
selection methods, and later rules may enhance the proportionality of the outcome.!

To be able to apply existing PB voting rules in our mixed framework, we must adapt them to handle
scenarios where some projects have already been selected. For the Greedy rule, this adaptation is
straightforward: We can simply restrict attention to the remaining unselected projects and iteratively
choose those with the highest vote counts. Adapting MES, on the other hand, is more subtle. Since
the rule is defined via individual voter budgets, we need to decide how to divide the available budget
among the voters. One trivial way of doing that is to split the budget equally, essentially ignoring
the set of previously selected projects. In order to enhance proportionality, however, we need more
sophisticated methods that explicitly take the previously selected projects into account. In this paper,
we propose several approaches to adapting MES to this context, and we analyze — theoretically and
empirically — how these methods perform in terms of proportional representation, among other metrics.
All of these approaches are based on the intuition that voters who are already well-represented by the
previously selected projects should be allocated less budget to spend during the execution of MES.

Beyond their role in our mixed framework, these adaptations might be of independent interest, as they
allow PB voting rules to be applied to situations where certain projects must be included (maybe due to
administrative or legal constraints). For example, a municipality might have ongoing projects that need
to continue or legally required initiatives that must be funded. Another special case that is covered
by our framework is the class of PB “completion methods,” i.e., rules that are designed to extend an
outcome of another rule and make it exhaustive, in the sense that no more projects can be afforded
with the unused budget. Completion methods are often studied in the context of MES, because the rule
often spends only a relatively small fraction of the total budget [24].

Our Contribution In this paper we extend PB voting rules to work with a set of pre-selected projects.
We then use these extended rules to define mixed PB voting rules, composed of a selection of voting
rules that are executed in sequence (Section 3). We adapt MES to the mixed rules framework by
defining several “pre-allocation” methods to account for pre-selected projects (Section 4) and establish
proportionality guarantees for these methods using parametrized variants of EJR+ (Section 5). We
complement these theoretical guarantees with an empirical analysis of mixed rules on real-world PB
instances (Section 6). Omitted proofs can be found in Appendix A.

Related Work Recent years have witnessed a lot of work from the (computational) social choice
community on multiwinner elections [13, 20] and PB [2, 25]. Contrastingly, mixed-member electoral
systems are mostly studied within the political science literature [26]. Proportionality in the PB setting
has been a key research direction [4, 21, 8]. Prime examples of proportionality notions include Extended
Justified Representation [3, 24], its “up to one” variant [24], and its strengthening, EJR+ [6]. Several
proportional rules have been proposed, most prominently the Method of Equal Shares [23]. Recently,
there has been some work on analyzing the performance of (non-mixed) multiwinner voting rules
according to competing objectives [12, 7] and on best-of-both-worlds approaches [22]. Extending
an already selected set of projects has been studied in the context of PB completion methods [24].
More generally, the issue of extending partially specified solutions also features (at least implicitly) in
inter-temporal fairness notions where repeated decisions need to be made [15, 18, 16].

!The analogy has limitations, as PB elections often (but not always) lack the concept of geographic districts that is central to
most mixed-member electoral systems. Moreover, voters often (but not always) submit two ballots in a mixed-member system.



2 Preliminaries

Let P be set of projects and N = [n| = {1,...,n} a set of voters with n = |N|. We assume approval
preferences and let A; C P denote the set of projects approved by voter ¢ € N. For a projectp € P,
we let N, = {i € N : p € A;} denote the supporters of p, i.e., the set of voters approving p.

An (approval-based PB) instance I = (B, P, A, ¢) consists of (i) a budget limit B € R ¢; (ii) a finite
set of projects P; (iii) an approval profile A = (Aj,..., A,); and (iv) a cost function ¢ : P — Rsy.
We assume that voters have cost satisfaction functions [8], i.e., voter ¢’s satisfaction (or utility) from
project p is u;(p) = 0if p ¢ A; and p;(p) = ¢(p) if p € A,. For a subset of projects P’ C P, we write
e(P') = ¥ pepr o(p) and i (P') = 3 e pr 1s(p) = c(P' 1) Ay).

Any subset of projects is called an outcome. An outcome P’ C P is feasible for instance I = (B, P, A, ¢)
if ¢(P") < B. For an outcome P’ and an instance I we say that a project p € P\ P’ is affordable if
¢(P") 4 ¢(p) < B. An outcome is exhaustive if there are no unchosen affordable projects.

Voting rules map each PB instance to a feasible outcome. In order to facilitate the definition of mixed
voting rules in Section 3, we define voting rules to take two additional inputs: a budget Br (that is
upper bounded by the instance budget B but can be strictly smaller) and a set Py of pre-selected projects
that are required to be in the output of the rule.

Definition 1. A voting rule R takes as an input (i) a PB instance I = (B, P, A, ¢), (ii) a rule budget
Bpr € R- with Br < B, and (iii) a set Py C P of pre-selected projects with ¢(Py) < Bp; it outputs an
outcome R(I, Bg, Py) = P* with Py C P* and ¢(P*) < Bp.

Whenever Py = () and Br = B, this definition reduces to the standard definition of voting rules in the
PB literature. When the instance [ is clear from the context, we often write P* = R(Bpg, Py). We say
that a voting rule is exhaustive if it always produces an exhaustive outcome (with respect to Bp).

We introduce two voting rules that are widely used in the PB literature and real-world elections, the
Greedy rule and the Method of Equal Shares. We start by describing these rules in the standard setting.

Greedy Rule. Given a budget B, GrReepy(B, () iteratively selects an affordable project p with the
largest number of supporters | N, |, with arbitrary tie-breaking, until no projects are affordable.

This rule greedily maximizes the utilitarian welfare ),y 1;(P*). Note that GREEDY (B¢, Fp), with
Py # 0 and Bg < B, can be defined in the exact same way, greedily maximizing total voter satisfaction,
given that Py must be included in its outcome, and checking project affordability with respect to Bg.

Method of Equal Shares [24]. MES(B, ()) assigns each voter i € N an initial budget of b; = %
and iteratively selects projects as follows. Let P(*~1) be the set of projects chosen after step k — 1
of MES. During step k, for each affordable project p € P\ P*~1) we try to find p(p) such that
>ien, min(b, p(p)e(p)) = c(p). We select py = argmin{p(p) [ p € P\ P*=11 with ties broken
arbitrarily. This is the project that can be bought by its supporters while minimizing the maximum
payment per unit satisfaction. We add pj, to our selection (P*) = p(k=1) {pr}) and update voter
budgets to b; — min(b;, p(px)c(pr)) after every round. The algorithm terminates when no more projects
can be afforded by their supporters, i.e., when ¢(p) > Zz’eNp b forallp € P\ P*-1),

By giving the voters equal budgets, and allowing them to spend these on projects they approve of,
MES aims to make its outcome as proportional as possible. This has been formalized in the following
proportionality notion, which the outcome of MES(B, () always satisfies [6].

Definition 2 ([6]). An outcome P* C P satisfies EJR+ up to any project if for every group of voters
N’ C N and every project p € (\;cns Ai \ P*, there is a voteri € N’ with ¢(A; N P*) + ¢(p) > %.
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Figure 1: Illustration of a mixed voting rule R as a sequence of rules with inputs and outputs.

3 Mixed Voting Rules

In this section, we formally introduce a general framework for combining voting rules sequentially.

Definition 3. A mixed voting rule R = [Ry]jc[n takes as an input (i) a PB instance I = (B, P, A, ¢),
(ii) a sequence of rule budgets [By]j.c|m], with each By € R5g and0 < By < By < ... < By, < B, and
(iii) aset Py C P of pre-selected projects withc(Py) < By; it outputs an outcome P* = R(I, [Bi]ie(m), Fo)
with Py C P* and ¢(P*) < By,. The mixed rule R produces its outcome P* using a series of intermediate
outputs (Pk)ke[m}: created by the rules it contains, with Py C P, C --- C Py,_1 C P, = P* C P. The
rules are resolved in sequence: Each set of output projects is iteratively defined as P, = Ry (I, By, Pr_1)
and is used as the next rule’s set of input projects.

This process is illustrated in Figure 1. When the instance I is clear from the context, we often write

P = R([Bk], Po) When m = 1, Rl(Bl, Pg) = [Rl]([Bﬂ, Pg)

We can think of a mixed rule R([By|x, Po) = [Ri]x([Bk]x, Po) as splitting up the instance budget
among the voting rules it contains, giving I?;, a budget of at least Bj, — Bj,_;. However, we allow each
rule to use any budget left unspent by the previous rules, giving Ry, an available budget of By, — c(Py_1).

Definition 4. Consider a mixed voting rule R = [Ry]pc[) and let the outcome of Ry_1 be Py_1. We
define the available budget share of Ry during the execution of R(I, [Bi|rem), Fo) as

Bk — C(Pk_1>
—B .

ap —

The available budget share oy, represents the proportion of the overall budget available to Ry, to spend

7]31_;(130) . For

on remaining projects. The available budget share of the first rule in a mixed rule is a; =
k > 1, ay; depends on the set of projects chosen by earlier rules in the mix, and is unaffected by later
rules. The available budget share of Ry, is bounded from above by its “gross” budget share % > o
(with equality if and only if P;_1 = (). We will refer to the available budget share as simply o when it

is clear from the context which rule we are considering, writing “R € R with available budget share a.”

A subset? of “completion methods” [24] that are widely used in PB can be easily defined in the mixed
voting rule framework. We call a rule Ry € R a completion rule if By = By_;. That is, R}, is not
allocated any extra budget, but can only spend budget that was left over from the previous rule. For
instance, MES completed by GREEDY can be defined as a mixed rule, GREEDY(B, MES(B, ))).

Example 1. Consider R = Ry, Ry, R3] where Ry = MES, R2 = GREEDY and R3 = SPEND is a rule
that picks the set of projects that maximizes total spending. Let the instance budget be B = 100, the
rule budgets be [B1, B2, Bs] = [50, 90, 100}, and the project set P = {p1, ..., ps}. The cost function ¢
and the approval profile A are given in Table 1.

*We only consider completion methods that add projects to the outcome of the rule they’re completing, without modifying
the already selected set. For instance, “completion by varying the budget” would not fall under this definition (and should
perhaps not be called a completion method).



We compute R([50, 90, 100], @) in three steps:

Project pr P2 P3 P4 D5 D6
(1) MES(50, (}) with available budget By — ¢(f)) = 50 and ~ Cost 28 12 45 12 8 6
available budget share ayes = 0.5 selects P = {p1,p2} 4, v v v
and terminates, as the remaining voter budgets (by = b2 = 4 v 4
bs = 3,b4 = 0, by = 1) are not sufficient to afford any of the 1‘33 4 A
other projects. Note that B; — ¢(P;) = 10 units of budget Ag d ; ; v
is left unspent.

Selectedby: Ry Ry Ry - Rs Rj

(2) GreEDY(90, P;) with available budget By — ¢(P;) = 50
(note that this is the sum of By — B; and By — ¢(Py)) and Table 1: Approval profile for Example 1.
available budget share aigrgepy = 0.5 selects p3 and terminates with outcome P> = P; U {p3}, as no
other projects can be afforded with GREEDY’s remaining budget of By — ¢(Ps) = 5.

(3) SpenD(100, P») with available budget B3 — ¢(P;) = 15 and available budget share aspgnp =

B?’Tcé&) = 0.15 selects P3 = P, U {ps, ps}, which is the final outcome of our mixed rule R. o

We will analyze to what extent a mixed voting rule inherits the properties satisfied by its constituent
rules. The following definition applies to a wide range of axiomatic properties.

Definition 5. Let Zp be the set of all instances with project set P. A monotone property is a function
X : Ip x 2 — {0,1} such that, for any I € Ip, P’ C P" C P implies X(I, P') < X (I, P"). We say
that a set of projects P* C P satisfies X for instance I = (B, P, A, c) if X (I, P*) = 1. Letting o € R+,
we say that P* instead satisfies a-budget X for instance I = (B, P, A,c) if X ((aB, P, A, c), P*) = 1.

Note that properties are defined for project sets rather than voting rules, and that project set P* need
not be a feasible outcome for the instance (aB, P, A, ¢). Every voting rule from the standard setting can
be adapted to the mixed framework in a trivial way, by ignoring the pre-selected projects and setting
R(B, Py) = Py U R(B, (). This “trivial adaptation” can be used to show the following statement.

Observation 1. Suppose there exists a voting rule R whose outcome P* = R(B, ) always satisfies some
monotone property X . Then, we can construct a voting rule R’ such that if R’ € R with available budget
share o, the outcome of R always satisfies a-budget X .

Observation 1 helps establish a theoretical baseline for the axiomatic results of this paper. When we
adapt a rule R whose outcome always satisfies property X to the mixed framework, it is desirable that,
when R € R with an available budget share of «, the outcome of R satisfies o’-budget X with o/ > a.
We will discuss a complementary empirical baseline in Section 6.

4 Adapting the Method of Equal Shares to the Mixed Rules Framework

In this section we generalize MES to account for a set of pre-selected projects Py. We define several
pre-allocation methods to account for the differences in voter satisfaction from Py, each of which
provides a different profile of initial voter budgets to MES.

4.1 Allocating Voter Budgets

Consider MES(Bygs, Py), with Py # (. Our goal is to determine how to initialize voter budgets b; for
each voter© € N to account for a pre-selected set of projects Fp, in order to maximize the proportionality
achieved by subsequently running MES. We might no longer desire to equally split MES’s available
budget, aB, as the set of pre-selected projects Py need not be equally liked by all voters. Intuitively,
voters that are more satisfied with P should be provided with a smaller individual budget.



We formalize methods for determining voter budgets (b;);cn (With ). b; = aB) as pre-allocation
methods, and we write MES™ to refer to MES with pre-allocation method M. All our pre-allocation
methods follow a two-step process.

Definition 6. A pre-allocation method takes as input an instance I, a set Py C P of pre-selected projects,
and an available budget share o and proceeds in two stages:

(1) It determines voter payments (;);cn for projects from Py, such that 7; > 0 for each voteri € N
and ) oy i < c(Po).

(2) It applies a rebalancing step to determine voter budgets (b;);c v in order to make voters’ endowments
{m; + bi}ien as equal as possible.> Formally, (b;);cn are chosen to maximize mine y (m; + b;)
under the constraints ZieN b; =aB andb; > 0 foralli € N.

Note that we allow pre-allocation methods to have some voters pay more than their “fair share” of the
MES budget, i.e., m; > %. It is also possible for the voter payments to only partially fund the projects
in Py, or not fund them at all. The rebalancing step (2) is the same for all pre-allocation methods. To
motivate this, it can be shown that every “reasonable” voter budget profile (b;);cn can be induced by
picking appropriate voter payments in stage (1) — see Claim 1 in Appendix A for details.

4.2 Pre-allocation Methods

We now define four pre-allocation methods for MES(Bygs, Py) with available budget share «, each
following the two-stage process in Definition 6. Alongside, we present a running example. All four
methods can be computed in polynomial time.

Example 2. Consider an instance with P = {p1, p2, p3}, budget B = 32,
and approval profile and project costs as specified in Table 2. We assume
that MES is given a budget Bygs = 32, and a pre-selected project set

Project p1 p2 p3
Cost 18 6 9

Py = {p1, p2}, resulting in an MES budget share of o = BMES%C(PO) = 0.25. il ; v
2

A v v/

The outcomes of the pre-allocation methods are illustrated in Figure 2. Az /S v

Method 1. NuLL: Set m; = 0 for all voters, obtaining voter budgets
b = % using the rebalancing step. This pre-allocation method splits the
remaining budget aB equally among all voters.

Table 2: Approval profile
for Example 2.

In Example 2, each voter 1 € N pays m; = 0 for Fy and gets an MES budget of b; = 2.

Method 2. MES-STYLE: In order to determine voter payments, choose any order for P and initialize
voter budgets to b)) = %. Iteratively fund the projects in Fj as if they were sequentially selected by
MES. If at any point the voters in [N}, cannot fully fund some project p € F, the remainder of its cost is
discarded.* We do not fix the order for Py. Our theoretical result (Proposition 5) holds regardless of the
order. For our empirical results in Section 6, we order P by the number of supporters. o

In Example 2, assume we order Py such that p; is funded first. Then the first 3 voters each pay 6
for it, obtaining intermediate budgets of b} = 0, = b5 = 2. When funding po, voter 3 can no
longer pay their fair share, so they pay as much as they can, with the rest covered by 4. We obtain
payments (7;);c(a) = (6, 6,8, 4) and budgets of (b;);ci4) = (2,2,0,4). If we instead fund p, first, we
get (Wi)i€[4] = (6.5, 6.5, 8, 3) and (bl)z€[4] = (1.5, 1.5,0, 5).

3This can be thought of as pouring aB square units of water into a 2D bucket (see Figure 2), where the floor (hatched,
violet) is a bar chart, where the height of each bar is 7; (and the width is 1), and the water (filled, blue) represents (b;)icn-
*Alternatively, we could fund such projects by overcharging their supporters; this would result in the same voter budgets.
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Figure 2: Pre-allocation outcomes for Example 2. Voter payments 7; are calculated separately by each pre-
allocation method (and are split by project in the diagrams, with 7; = 77’ + 77), and the voter budgets b; are
obtained from the rebalancing step. The red line represents the minimum voter endowment min;e x (7; + ;).

Method 3. EQuaL-SpriT: Split the total cost of every project p € Py equally among its supporters N,
setting m; = Zpe ANPy %, with the voter budgets derived using the rebalancing step. Note that
> icn Ti = ¢(Po) and thus the voter payments fund the pre-selected projects completely. o

In Example 2, supporters pay 6 each for p; and 3 each for p, with total payments (;);c4) = (6,6, 9, 3).
Voter 3 has spent more than their fair share. From the rebalancing step, we get (b;);c(4) = (g, %, 0, %)
The MES-STYLE and and EQUAL-SpLIT methods represent fairly reasonable ways to divide the cost of P
among voters. However, we will see in Section 5 that they do not achieve proportionality at a level
dictated by our theoretical baseline, while the (trivial) NuLL method does. We introduce one more
method that works similarly to EQUAL-SpLIT, but achieves better proportionality guarantees. The idea
behind this method is to partially fund the projects in P from voter payments 7; in such a way that
voters get good value for money whenever they contribute to a project.

Method 4. VALUE-BASED: We define the utilitarian value® (for money) v(p) of a project p to be
v(p) = | INp|. For a set of pre-selected projects P, we define the threshold value v* as the value of the
most valuable unselected project that is affordable under budget Bygs after every project from Py with
greater value has been selected. Formally,
v* = max {v(p) | psatisfies c¢(U(p)) + ¢(p) < Bmss},
pEP\ Py

where U(p) = {p' € Py | v(p') > v(p)} denotes the upper contour set of p in Py, i.e., the set of
pre-selected projects with value at least v(p). If no project p € P\ P, satisfies ¢(U(p)) + ¢(p) < Bugs,
we let v* = (. In the case that all projects have distinct values, the threshold value v* is the value of
the first project from P \ P, that GREEDY(Bygs, ) would select.

When funding some project p* with value v*, voters in /N, would each pay C(ﬁ) , or equivalently vi*
per unit satisfaction they obtain from p*. The idea of the VALUE-BASED pre-allocation method is to

allow voters to spend at most v% per unit satisfaction, defining voter payments as follows:®

o c(p)
i = E .
max v(p),v*
pEA;NPy { (p) ’ }
>This definition captures the ratio of the utilitarian welfare of a project to its cost. For a satisfaction function p(-), the
value of p is defined as v(p) = W. For the cost satisfaction function, this reduces to v(p) = %)p = |Np|.

We can easily extend the VALUE-BASED method to other satisfaction functions by setting ; = > pEA; NPy %.



Thus, any project p € Py with value v(p) > v* is thus funded identically to the EQUAL-SPLIT method. ©

In Example 2, supporters pay 6 each for p; like they did under the EQuAL-SpL1T method. The threshold
value in this instance is v* = 3, corresponding to the value of p3. Thus, the VALUE-BASED method
allows voters 3 and 4 to partially fund po, with each paying % x 6 = 2 for it, resulting in total payments
of (7;)icia) = (6,6,8,2). Using the rebalancing step, we get (b;);cj4) = (3,5,0,18).

Arguably, the four methods outlined above choose voter payments 7; in a reasonable way, from the
perspective of the voters. In particular, they never force a voter to pay for a project they do not approve.

5 Proportionality Guarantees for MES Variants

In this section, we study the proportionality of MES in the mixed framework, for each of the four pre-
allocation methods defined in Section 4. We consider parametrized versions of the proportionality axiom
EJR+ up to any project (Definition 2) and weakenings of it. The axioms we consider are parametrized
using the minimum voter budget share, an important value that can be calculated from the output of
a pre-allocation method. Notably, this creates a non-standard approach where the strength of our
proportionality guarantees cannot be determined until the mixed rule is partially executed and we
observe which projects were selected by earlier rules. We identify the VALUE-BASED pre-allocation
method as the sole method that improves on our theoretical baseline from Section 3.

Applying Definition 5 to EFR+ up to any project results in the following parameterized axiom.

Definition 7. An outcome P* C P satisfies a-budget EJR+ up to any project if for every group of voters
N’ C N and every project p € (\;cns Ai \ P*, there is a voter i € N with ¢(A; N P*) 4 ¢(p) > a%.

Additionally, we will consider the following weakened version of this property.

Definition 8. Let k € N-q. An outcome P* C P satisfies a-budget EJR+ up to any k projects if for
every group of voters N' C N and every set of projects P' C (), Ai \ P* with |P'| = k, there is a
voteri € N’ with c(A; N P*) 4+ ¢(P’) > a%.

This property reduces to Definition 7 for k£ = 1, and gets weaker for larger values of k. Similar notions
have been defined in the fair division literature [1].

5.1 Minimum Voter Budget Share

The normative goal of the pre-allocation methods we defined in Section 4.2 is to select the profile of
voter payments (7;);cn in such a way that each voter gets good “value for money” whenever they
contribute to a project in Py. We can think of m; + b; as the total endowment of the voter, which the
rebalancing step tries to make as equal as possible among the set of voters. The following definition
focuses on a voter with minimal total endowment and compares their total endowment to a voter’s fair
share of the instance budget, which is given by % (dividing by % is equivalent to multiplying with ).

Definition 9. Consider an MES pre-allocation method M that is applied as part of a mixed rule. The
minimum voter budget share a™ is defined as o™ = min;e v {(m; + b;) % }.

The minimum voter budget share represents how much the worst off voter gets to spend on (1) projects
in Py and (2) during the execution of MESM, as a fraction of their fair share of the instance budget. A
method M with a higher value of o™ is not necessarily more proportional as it is possible for M to
spend voter budgets inefficiently on projects from Pj (see the negative results in Table 3).

The rebalancing step (see Definition 6) places some constraints on the possible values of oM.



Observation 2. For any pre-allocation method M, the minimum voter budget share o™ is lower-bounded

. _ Bups—c(Ro)
by MES’s available budget share o = Z¥5-2200

M M
Furthermore, % exceeds all voter budgets determined in the rebalancing step, i.e., % > max{b; }ien-

and upper-bounded by MES’s gross budget share %.

Before considering proportionality guarantees for each of our pre-allocation methods, we derive the
following relationship between their minimum voter budget shares.

Proposition 1. Fix an instance I and a set of pre-selected projects Fy. The minimum voter budget shares
for MESM(Bygs, Py) with M € {Nutrr, MES-STYLE, EQUAL, VALUE-BASED} satisfy the following:

0<a= aNULL < aVALUE-BASED < aEQUAL—SPLIT < aMES-STYLE < BMES <1

It is important to note that aNV** < oVAWEBASED whenever Py # (), and that the gap between those two
values can be quite large in practice.”

5.2 Proportionality Guarantees

We will now consider which of our pre-allocation methods M guarantee that the outcome of voting
rule MESM satisfies a proportionality property of the form described in Definitions 7 and 8. These

M

guarantees will be parameterized by the minimum voter budget share o corresponding to M.

Let P* = MESM(BMES, Py) be the outcome of MESM when it is provided with rule budget Bygs and set
of pre-selected projects Py. Any proportionality guarantee that we can prove for P* directly translates
to the same guarantee for the outcome of any mixed rule R with Ry, = MESM, provided that the input
Py,_1 for Ry, equals Py. This is because P* will be contained in the output of R.

Our results are summarized in Table 3. Interestingly, pre-allocation methods M with higher o™ (see
Proposition 1) lead to worse proportionality guarantees: For instance, while o VA1VEBASED < qEQuAL-SPLIT
the outcome of MESYAWEBASED js oyaranteed to satisfy oVA'VEBASED_hydget EJR+ up to any project,
whereas the outcome of MESEQUALSPLIT may violate the analogous property not only for afUALSPLIT byt
even for the (smaller) available budget share a.

Method M Satisfied Properties Violated Properties

NuLL oMU budget EJR+ up to any project (Theorem 1)

VALUE-BASED  oVAWEBASED by dget EJR+ up to any project (Theorem 2)

EQuAL-SprIT!  oFWALSPUT_hydget EJR+ up to any two projects (Theorem 3)  a-budget EJR+ up to any project
EqQuaL-SpLIT - a-budget EJR+ up to any k projects
MES-STYLE - a-budget EJR+ up to any k projects

Table 3: Proportionality guarantees for the outcome P* = MESM(Bygs, Py). The marker “I” indicates that the
corresponding results hold for the special case in which F is selected by GREEDY.

We now state our proportionality guarantees formally, for mixed rules R containing MESM. Note that
the parameter o™ of the resulting guarantees cannot be directly inferred from the inputs to R, but
depends on the partial outcome provided to MESM during the execution of R. That is, we first need to
partially run the rule R before determining how good a proportionality guarantee on its outcome we
can give. While this might sound like a disadvantage, we remind the reader of our empirical observation
that the values of o are often close to 1 in realistic scenarios (see Footnote 7).

We start with a guarantee for MESNY", which is a straightforward extension of existing guarantees [6].

"For instance, when running [GrReeDY, MES]([0.5B, B]) on the real-world PB instances considered in Section 6, our
pre-allocation methods obtain the following minimum voter budget shares on average: a"""* = 0.50, o"*WEBAE> — (), 92,
QFASIT — (0 94 and oMESSTE = (0.97. See Appendix C.1 for a more detailed overview of these values in practice.



Theorem 1. Consider a mixed voting rule R such that MESNU"" € R with available budget share
a = oNUL, Then, the outcome of R satisfies c-budget EJR+ up to any project.

Thus, MESNU'* meets — but does not exceed — our theoretical baseline from Section 3. (It does so directly,
without following the “trivial adaptation” approach from Observation 1.) We can improve upon our
baseline by employing the VALUE-BASED pre-allocation method.

Theorem 2. Consider a mixed voting rule R such that MES"**VE-BASED ¢ R with available budget share o
and minimum voter budget share o"A'VFBASED > o Then the outcome of R satisfies o ArVEBASED _py dget
EJR+ up to any project.

Theorem 2 is the main theoretical result of our paper. Its proof heavily relies on the fact that the voters
spending per unit of utility is bounded during the VALUE-BASED pre-allocation.

Meanwhile, the EQuAL-SpLIT and MES-STYLE methods can subject voters to arbitrarily high payments
per unit utility. As we show in Appendix B, the outcome of MES with either of those two pre-allocation
methods may violate arbitrarily weak proportionality notions: For any fixed k € N, there are examples
in which the outcome of MESEQUAL-SPUT and MESMES-STVIE yiglate a-budget EJR+ up to any k projects.

Finally, we show that the EQUAL-SpLIT pre-allocation method performs reasonably well in the special
case that the set of pre-selected projects was chosen by GREEDY.

Theorem 3. Suppose R = [Rp]e[m], where Ry is GREEDY and Ry is MESFU"SPT with minimum voter
budget share oFRUALSPIT Then, the outcome of R satisfies aF°" P -bydget EJR+ up to any two projects.

6 Experimental Results

In this section, we empirically evaluate our framework by computing the results of mixed voting rules
on a large dataset of real-world PB instances. In our experiments, we focus on mixed rules obtained by a
combination of GREEDY and MES (with GREEDY completion), where MES is implemented with one of the
pre-allocation methods introduced in Section 4. We compute the results for each of them while varying
the fraction o of the budget provided to GREEDY from 0 to 1 in steps of 0.1. More formally, let RM =
[GreEDY, MESM, GREEDY|. Then, for an instance I = (B, P, A, ¢), we compute RM([acB, B, B]) =
Greepy(B, MESM(B, Greepy(ag B, 0))) for all M € {Nurr, MES-STYLE, EQuAL, VALUE-BASED} and
all ag € {0,0.1,0.2, ..., 1}. We use the factor o, which we will refer to as the GREEDY (budget) share,
to interpolate between the two rules, with ag = 0 corresponding to MES (with GREEDY completion)
and ag = 1 corresponding to GREEDY.

Data The data for our experiments is obtained from PaBuLIB [14], a library of over 1300 PB instances.
We compute the results of the mixed rules on all non-trivial real-world instances with at least 20 projects,
which amounts to 313 instances.®> We break ties lexicographically by project name.

Measures Since we are mixing a rule which aims to optimize the utilitarian welfare (GREEDY) with a
rule which aims to provide proportional representation (MES), we evaluate the mixed rules on these
two criteria. For a given instance I = (B, P, A, ¢) and a set of selected projects P* C P, we compute
several numerical measures, averaging our results over all instances in our dataset. To measure welfare,
we use the utilitarian ratio [19], defined as the utilitarian welfare of P* as a fraction of the maximum
achievable utilitarian welfare for the instance. For (proportional) representation, we consider three
measures: (i) First, we check whether P* satisfies EJR+ up to any project (henceforth abbreviated to

8PABULIB contains instances that are artificially generated and trivial instances, where all projects can be funded. The
rationale for considering only instances with 20+ projects is discussed in Appendix C.3.
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Figure 5: Proportionality versus utilitarian welfare for the mixed rule R ([agB, B, B]) for M €
{NutL, MES-STYLE, EQUAL, VALUE-BASED} and ag € {0,0.1,0.2,...,1.0}. Metrics are averaged over all in-
stances with at least 20 projects.

EJR+X). (ii) To get a better idea of how “close” an outcome is to violating EJR+X, we compute the
maximum value of 3 for which P* satisfies 3-budget EJR+X (Definition 7).’ This yields a quantitative
proportionality measure, as recently suggested by Bardal et al. [5]. (iii) Finally, we measure the fraction
of represented voters (a.k.a. voters with non-zero satisfaction), i.e., |[{i € N | A; N P* # (0}|/n.

Figures 3 and 5 show a summary of our results, averaged over all 313 instances. For all of these
measures, the mixed rule containing MESN""* is mostly outperformed by the other three, which all
perform similarly. In Figure 3 we can see that, for non-NULL pre-allocation methods, the number of
proportionality violations only significantly increases once we give GREEDY a share of more than 70% of
the budget, suggesting that even a comparatively small amount of budget allocated to MES is sufficient
to achieve proportional outcomes. On the other hand, we can see that even GREEDY itself satisfies EJR+X
on most of the instances, suggesting that it is relatively easy to satisfy in practice. This observation
is further supported by Figure 5a, where we can see that the average values of 5 for which -budget
EJR+X is satisfied range between 1.4 and 3.0, much higher than the theoretical guarantees.

Figures 5a and 5b show the trade-offs between (proportional) representation and utilitarian welfare.
When interpolating between GREEDY and MES, it is desirable to perform at least as well as the former
with respect to representation and at least as well as the latter with respect to utilitarian welfare. In
other words, we do not want the outcome of RM to be “Pareto-dominated” by either constituent rule.
We refer to this requirement as the weak empirical baseline, visualized in Figure 4. For GREEDY share

*While all theoretical guarantees in Section 5 have 3 < 1, actual values of 3 are often higher.
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ag € {0.1,0.2,0.3}, all mixed rules perform very similarly, with a slightly lower utilitarian welfare,
but about the same proportionality as MES. Because of that, all rules RM are dominated by MES for
o up to 0.4. This decrease in utilitarian welfare when mixing 10 to 40 percent GREEDY into MES can
potentially be explained by the GREEDY rule having to pick suboptimal projects due to its lower budget
constraint. For ag > 0.6, the mixed rule RM exceeds the weak empirical baseline with any of the four
pre-allocation methods.

We can also compare our mixed rules to a hypothetical randomized combination of GREEDY and MES,
where we run GREEDY with some probability p € [0, 1] and MES with probability 1 — p. Ideally, we
would want the outcome of our mixed rule RM to not be Pareto-dominated by any of these randomized
rules. We consider this to be the strong empirical baseline, also visualized in Figure 4. We can see that
RM with M # NULL meets the strong empirical baseline for ag > 0.6. It is noteworthy that even for
ag = 0.9, the proportionality of the mixed rule is around half-way between GREEDY and MES. However,
this is mostly a side effect of splitting the budget into two parts, as can be seen by comparing to the
mixed rule that combines GREEDY with GREEDY, essentially reducing the number of expensive projects
that are chosen. For details, we refer to Appendix C.3.

Overall, the experiments show that mixing GREEDY with MES™ works best on large instances when we
allow GREEDY to spend 60 to 90 percent of the budget. We achieve significantly better results when
choosing the MES-STYLE, EQUAL-SPLIT or VALUE-BASED pre-allocation method over the NurL-method,
with MES-STYLE consistently performing slightly better than the other two. However, as MES-STYLE
fails to give any theoretical proportionality guarantees (see Table 3), the VALUE-BASED method might be
preferable, as it gives strong theoretical guarantees with only a slight practical performance trade-off.

7 Conclusion

Taking inspiration from mixed-member electoral systems across the world, we have introduced mixed
voting rules for participatory budgeting. Using combinations of GREEDY and MES as our primary
examples, we have established a general framework for analyzing the performance of such mixed rules.

Our focus on MES stems from its strong proportionality guarantees and its potential to rebalance dis-
proportional selections by earlier rules. Similar to how the proportional component in a mixed-member
electoral system (like Scotland’s Additional Member System) aims to correct the disproportionalities
created by district voting, MES can enhance the proportionality of outcomes when incorporated as a
later component of a mixed voting rule. This parallel has the potential to improve the explainability of
mixed PB voting rules, particularly when voters are already familiar with mixed-member systems.

We proposed several methods to account for a set of already selected projects when setting initial voter
budgets for MES. From these, the VALUE-BASED method was the only one to exceed our theoretical
baseline in terms of proportionality guarantees. Our experiments suggest that mixing GREEDY and
MES works best on large instances, when letting GREEDY spend at least 50 % of the budget. From the
pre-allocation methods we defined, the VALUE-BASED method is among the best, performing significantly
better than the naive approach of spreading the budget equally among voters.

In future work, we plan to consider the multiwinner (unit-cost) setting, where stronger proportionality
guarantees are typically possible. We would also like to find a formal argument showing that the
VALUE-BAsSED method achieves the best possible proportionality guarantee that meets our baseline.
Additionally, we plan to complement our proportionality analysis by deriving utilitarian guarantees for
mixed rules involving GREEDY and MES.

The mixed voting rules framework that we have introduced is applicable to a wide variety of rules and
objectives. Some rules, like Chamberlin—-Courant [11], might have a trivial adaptation, analogously to
GREEDY. Others, like Phragmén’s sequential rule [17, 9], might require processing the set of pre-selected
projects, or an entirely different approach altogether.
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Appendix
A Omitted proofs

Observation 1. Suppose there exists a voting rule R whose outcome P* = R(B, () always satisfies some
monotone property X . Then, we can construct a voting rule R’ such that if R’ € R with available budget
share «, the outcome of R always satisfies a-budget X.

Proof. Fix o > 0 and let P* = R(aB, (). Define R’ such that whenever it is provided with available
budget share v and set of pre-selected projects P it produces outcome R'(aB + ¢(FPy), Py) = Py U P*.
This outcome is feasible for R as ¢(Py U P*) < ¢(Py) + ¢(P*) < ¢(Py) + aB. Further, if P* satisfies
a-budget X then so does Py U P*, completing the proof. Note that when Py = (), R’ is identical
to R. O

A.1 Properties of the minimum voter budget share

Observation 2. For any pre-allocation method M, the minimum voter budget share o is lower-bounded

by MES’s available budget share o = BMES_Tf(PO) and upper-bounded by MES’s gross budget share %.

M M
Furthermore, % exceeds all voter budgets determined in the rebalancing step, i.e., % > max{b; }ien-

Proof. Pre-allocation methods defined using Definition 6 always perform weakly better (in terms of

minimum voter budget share) than just giving each voter their fair share of MES’s available budget %,
which means that o™ > min;en{(m; + %)% > %% = q.

oM = min{(mi + b)) B} < Sjen{(mi + bi) B1L < LB _ D

As a consequence of the rebalancing step, for each voter i € N either %5b; < %(m + b;) = o™ or

b; = 0. O

Claim 1. Consider a target MES budget profile (b;);cn with some minimum voter budget share o,

satisfying the following constraints:

oMB
c 0<h <7

M Bes
e < a" < z

Then, there exists a choice of (7;) ;e N (for some pre-allocation method M) withm; > 0 and ),y 7 < c(P)
such that the rebalancing step from Definition 6 outputs this profile.

Proof. Choose m; = ‘“MTB —b;.
Then, m; > 0asb; < O‘MTB and ),y = O‘MB*ZieN b; < aMB—aB < Bygs— (Bues —c(R)) =

c(Pp). Further, min;en{m; + b;} 5 = O‘MTB% = oM as required. O

Proposition 1. Fix an instance I and a set of pre-selected projects Py. The minimum voter budget shares
for MESM(Bpgs, Py) with M € {NutL, MES-STYLE, EQUAL, VALUE-BASED} satisfy the following:

0<a= aNULL < aVALUE—BASED < aEQUAL-SPLIT < aMES—STYLE < Bs <1
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Proof. Fix an instance I, MES budget Bygs and set of pre-selected projects Fy. Suppose two different
pre-allocation methods M and M’ produce profiles {7M};c and {7M };c v, which results in minimum
voter budget shares of o™ and o™ respectively computed during the rebalancing step. Using Definition 6
we can find that for alli € N, 7™ < M, then oM < oM. Using this, we can show the following:

« Foralli € N we have 0 = 7T?IULL S ,n.;/ALUE-BASED S0 aNULL S O[VALUE—BASED'

Bovar-S
« Foralli € N we again have 7y WE-BASED < 7 BQUALSPLIT

they support in the VALUE-BASED method. Thus @

as voters pay weakly less for each project
VALUE-BASED < aE@AL—SPLIT

« Define a new pre-allocation method, EQuaL-SpLIT, which selects voter payments A Seur’
mln{ﬂ'EQUAL SPLIT b} ofQuaL-Set’ EQUAL-SPLIT a5 any voter with 7; > 2 gets bi = 0in both

cases and does not affect the objective of the rebalancing optimization.

=«

Now suppose there exists i € N for which 7MESSTIE < 7 E@AL Seut!

that 7 MES STYLE < b

. In particular, this means

()

and thus ¢ has never paid less than their fair share ‘CN—‘ for any project
p

pe ANk However, under EQUAL-SPLIT, voter ¢ has always paid exactly ‘C]S,—p)l

MES-STYLE > EQUAL-SPLIT/ for all

for every project

p € A; N Py. This leads to a contradiction, which means that ;
i € N. and therefore aEQyAL -SPLIT __ aEQUAL SpLIT! < aMES -STYLE

A.2 Proportionality Theorems

Theorem 1. Consider a mixed voting rule R such that MESNU"" € R with available budget share
a = oNU" Then, the outcome of R satisfies c-budget EJR+ up to any project.

Proof. We adapt the proof of Brill and Peters [6] to the mixed voting rule setting. Let P* be the
outcome of MESNULL(BMES, Py). 1t is sufficient for us to show that P* satisfies a-budget EJR+ up to
any project, as P* will be contained in the outcome of R. Suppose for a contradiction that P* does
not satisfy a-budget EJR+ up to any project. Then, there exists p ¢ P* and voter set N/ C N, with

c(AiNP*)+c(p) < [N ‘ozB foralli € N'.

Since p ¢ P*, we know that it was not affordable when MESN' terminated, and thus the remaining
MES voter budgets b; satisfy ) ;v b; < c(p). Therefore, we get that for projects from Pg:

spending by voters in N’ Sien (2B —br) - IN'|2E — ¢(p) 1
satisfaction of voters in N’ >, s ¢(A4; N P*) IN'|(|N"|2E — c(p)) N

SNULL

Hence, during the execution of ME at least one voter has to pay more than | per unit satisfaction

\N !
they received, for a candidate from P*. This means that at least one project p’ with p(p’) > I ]\1,,‘ was
selected by MESNV™L, Just before the first such project was selected, each voter i € N’ must have spent

c(ANP*) _ B _ c(p)
INT = n  [N]

p(p) < i ]\1,,| at that point, so it should have been selected over p’, which leads to a contradiction.  [J

at most during the execution of R, and thus p must have been affordable with a

Theorem 2. Consider a mixed voting rule R such that MES"*"VEBASED ¢ R with available budget share o
and minimum voter budget share o"**VE-BASED > o Then the outcome of R satisfies o *"VEBASED by dget
EJR+ up to any project.
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Proof. The proof builds on the proof of Theorem 1. Let v, = oVAIVEBASED We again let the outcome
of MESYALUE-BASED (B /v Py) be P* and assume for contradiction that there exist p ¢ P* and voter
set N/ C N, with ¢(A4; N P*) + ¢(p) < %aUB, Vi € N'. Let v* be the threshold value, from our
definition of the VALUE-BASED pre-allocation method. We distinguish two cases.

Case 1: |N,| <v*

From the definition of the VALUE-BASED method, we know that for each voterz € N, m; + b; > apB

Analogously to the proof of Theorem 1, we know that for projects from P*:

spending by voters in N (m; and b;) S Sien (2B ) 1

n

satisfaction of voters in N/ - ZieN’ c(A; N P¥) |N'|

Hence, during either the pre-allocation of Py or the execution of MES at least one voter has to pay more
than ﬁ per unit satisfaction they received, for a candidate from P*. Further, this must be a candidate
from P* \ P, as whenever a voter funds projects from Py during the pre-allocation, they must spend
at most yi < ﬁ < ™ N,| per unit satisfaction, from the definition of the VALUE-BASED pre-allocation
method. Then, a contradiction can be obtained analogously to the proof of Theorem 1.

Case 2: |Ny| >v*

From our definition of the VALUE-BASED method this must mean that there exists P; C P, with
c(Py) + c(p) > Bumgs and for each p’ € Py, [Ny| > |N,|, as p was not selected and v(p) = |Np| > v*.

Let the voter payments and budgets produced in the pre-allocation of MESVAWEBASED( By no Py)
be (m;)ien and (b;)ien respectively. In order to reach a contradiction, we will consider running
MESYAWEBASED (B o Pl). We let the voter payments and budgets its pre-allocation produces be
(})ien and (b))ien respectlvely and let its available and minimum voter budget shares be o’ and
«, respectively. Clearly 7, < m; for any voter ¢ as Pj C P.

We claim that the following inequalities hold:

(1) a/ 2 a’L}s

c(A;NPY)

(2) i + 78

< (m, 4 b}) for every i € N',

. /
C(A;\Dll%) for every i € N’, and

(3) m <

|
(4) b, < p)| for some 7 € N'.

For (1), observe that one (perhaps not optlmal) way to choose voter budgets (b});en would be to give
each voter b = b; + (m; — ;) > b;. Thus, o, > min;en{(7] + ;) 5} > mingen{(m; +b;) 5} = .
For (2), recall that P C P*. Thus we know that for each voter i € N, the following holds: ¢(A4; N F}) +

c(p) <c(AinNP*) +c¢(p) < |N NMg,B < ¥ |a B using (1). Further, from the definition of minimum
voter budget share: o, < (7} + b’ )5 Combmmg these, we obtain the statement above.

For (3), note that each project p’ € P} C P, has |[Ny| > |N,| > |N'| and was funded fully by the
EquaL-SpriT method. This means that each voter i € N’ paid at most ﬁ per unit satisfaction they

ined: — 1
obtained: m S |N"

For (4), observe that c(p) > Byes — ¢(Fy) = o/ B = 37, n b > Y. Ui. Therefore, there exists

1 € N’ such that |( )‘ > bl.

Combining (2), (3), and (4), we obtain a contradiction. O
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Theorem 3. Suppose R = [Rp]e[m], where Ry is GREEDY and Ry is MESFU"SPUT with minimum voter
budget share of@UASPUT Then, the outcome of R satisfies aF°UA"SPUT -bydget EJR+ up to any two projects.

Proof. For this proof, we make some tweaks to the proof of the first case of Theorem 2 (the second case

is not needed). Let o, = QEQUAL-SPLIT Y370 again let the outcome of MESEQUAL-SPLIT o P* 'yt now assume
. . N’

that there exist p1, po ¢ P* and voter set N’ C N,,, N N, with ¢(A4; N P*) +¢(p1) +¢(p2) < ‘n—lavB

for all i € N'. Without loss of generality, assume ¢(p1) < ¢(p2) and let p = p;. Thus, we know that

c(A; N P*) +2¢(p) < Ml o, B foralli € N'.

n
Let the outcome of GREEDY be P (as it is the set of pre-selected projects for MESEQUAL"SPLIT)  GREEDY
did not select p, which means that there exists ) C Py with |[Ny| > |Np| for all p’ € Pj and
C(Pé) + C(p) > By > C(P())

We now consider the spending of voters from N’ for projects in Pj U (P*\ Fy) C P* (omitting Py \ P
as that spending may have been inefficient), and the satisfaction they achieve from those projects:

n

> =
satisfaction of voters in N/ — Yien c(A; N P*) ]N’](|N’]% —2¢(p)) V]

spending by voters in N’ S (X ien wB) _ bl') — c(p) |N’\% — 2¢(p) 1

Hence, during either the pre-allocation of Pj C P, or the execution of MES (which additionally selected
Pr \ Py) at least one voter had to pay more than ﬁ per unit satisfaction they received, for a candidate

from Ppg. Further, this must be a candidate from Pg \ Py as whenever a voter funded projects from P}

during the pre-allocation, they must have spent at most ﬁ < Wl’l per unit satisfaction. The rest of
P

the argument follows from the proof of Theorem 1. O

B Proportionality Violations

In order to formulate the negative results in this section, we will use the proportionality notion of
Extended Justified Representation (EJR), and its variants, from PB literature.

Definition 10. Let T C P and N’ C N. We say that voter group N' is T-cohesive if and only if
T C(Vien Ai and c(T) < ‘ﬁ—'B. We say that N’ is c-budget T-cohesive if and only if T C (), nv As
and c¢(T) < UX—'O[B

Definition 11 (Extended to PB by Peters et al. [24]). We say that an outcome P* C P satisfies Extended
Justified Representation (EJR) if, for every T-cohesive group N, either T C P* or there exists a voter
i € N’ such that ¢(A; N P*) > ¢(T). Following Definition 5, the outcome satisfies a-budget EJR if this is
instead true for every a-budget T'-cohesive group.

A feasible outcome satisfying EJR always exists, but cannot be computed in polynomial time, unless
P=NP [24], which motivated the following relaxation:

Definition 12. We say that an outcome P* C P satisfies Extended Justified Representation up to one
project (EJR1) if, for every T -cohesive group N', either T C P* or there exists a voter i € N’ and a project
p € A; N (P \ P*) such that c(A; N P*) 4 ¢(p) > ¢(T). The outcome satisfies a-budget EJR1 if this is
instead true for every a-budget T'-cohesive group.

The outcome of MES(Bygs, () always satisfies EJR1, and is computable in polynomial time. EJR+ up to
any project implies EJR1 [6].1°

We generalize the definition of EJR1 as follows.

""We are skipping over some intermediate notions between the two, such as EJR up to any project (EJRx), which are not
needed for our results — see, e.g., Rey et al. [25] for an overview.

18



EJR a-budget EJR

EJR+X1 EJR1 a-budget EJR+X1 a-budget EJR1

EJR+X2 EJR2 a-budget EJR+X2 a-budget EJR2

Figure 6: Relationships between PB proportionality notions, for v < 1. We refer to “EJR+ up to any k projects”
by the abbreviation EJR+Xk (so that EJR+X1 corresponds to EJR+X in Section 6). Nodes with a double border
correspond to axioms that have been proposed in this paper.

Definition 13. We say that an outcome P* C P satisfies EJR up to k projects (EJRk) if, for every
T-cohesive group N', either |T N P*| > |T| — k' or there exists a voter i € N’ and a set of projects
P’ C A;n (P \ P*) with |P'| <k such that ¢c(A; N P*) + ¢(P') > ¢(T). P* satisfies a-budget (EJRk)
if the above instead holds for every a-budget T'-cohesive group N'.

The idea of EJRk is that either (i) N’ is at most k-1 projects away from getting 7', the set of projects
they are cohesive over, or (ii) we can give some voter in N’ k projects (possibly sourced from outside
of T') to make them strictly better off than they would be from getting T". EJRk reduces to EJR1 when
k = 1. An “up to k projects” style notion has not been considered for the PB setting, and we define it
here analogously to the definition of envy-freeness up to k goods in fair division literature (see, e.g.,
Suksompong [27]).

We can show that EJ Rk is a weaker axiom than E'J R up to any k projects.

Proposition 2. Fix P* C P and k € NT. If P* satisfies EJR+ up to any k projects, then P* satisfies EJRk.

Proof. Suppose P* satisfies EJR+ up to any k projects for some & > 1. Let T' C P and consider a
T-cohesive group N’ C N with |T'N P*| < |T'| — k. Then, consider a k-size subset of 7'\ P* and call
it P’. We know from the definition of EJR+ up to any k projects that c¢(A; N P*) + ¢(P’) > W/'#
and we are done. d

The relationships between the proportionality notions restated and introduced in this paper are summa-
rized in Figure 6. Our primary motivation for introducing weaker proportionality axioms is to show that
some of our pre-allocation methods can perform arbitrarily badly, from a proportionality perspective.

We restate stronger versions of the results in Table 3 using the EJR-based proportionality notions defined
above. Let P* = MESM(Bys, Py) be the outcome of MES with available budget share o = BMES%C(PO).
P* does not necessarily satisfy the proportionality measure corresponding to that pre-allocation method
in Table 4, with respect to the available budget share o. Note that each of the counterexamples we

YT N P*| > |T| — k” represents a generalization of “T" C P*” from the definition of EJR1.
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construct in this section produce an exhaustive outcome, and thus these violations are not a consequence
of MES not spending enough of its available budget.

Method M Violated Properties

NurL a-budget EJR (Proposition 3), even if Py selected by GREEDY
VALUE-BASED  «-budget EJR (Proposition 3), even if Py selected by GREEDY
EgquaLr-Serit  «-budget EJR1 (Proposition 6), even if Py selected by GREEDY
Equar-Seuit  «-budget EJRk (Proposition 4), in general

MES-STYLE a-budget EJRk (Proposition 5), even if Py selected by GREEDY

Table 4: Proportionality violations for the outcome P* = MESM(B’, Py).

Proposition 3. Suppose R € 'R is MES with any pre-allocation method and available budget share .
Then the outcome of R does not necessarily satisfy a-budget EJR.

This follows directly from the fact that the outcome of MES doesn’t satisfy EJR [24], by considering
R(aB,0).

Proposition 4. Consider a mixed voting rule R such that MESERUA-SPHT ¢ ‘R with available budget share
. Then, for any two arbitrary positive integers |, k € N, the outcome of R does not necessarily satisfy
7 -budget EJR up to k projects.

Proof. Let [,k € NT be two positive integers. We construct a PB instance I, which shows that the
outcome of R does not satisfy 7-budget EJR up to k projects.

Consider the PB instance I = (B, P, A, ¢) with an even number of voters n = 8! and instance budget
B = n. Let P contain the following projects:

o pifor1 <i < 4, with ¢(p;) = 1 and N, = {i}
o pl;for 1 < j <2k with c(p};) = %ande; ={1,...,%}

. p” with C(p//) = % and Np// = {% —+ 1, .. .,TL}

Note, that the approval sets in A are implicitly defined through the approving voter sets [V, for all
projects p € P. We let Py = {p1, .. ., p%} and consider MESEQVALSPUT( B Py} which has an available
budget share ov = 0.5. The EQuAL-SpLIT method outputs the following voter payments and budgets:

e mi=1landb; =0forl <i< 5 and

e mi=0andb; =1for 5 <i<n.

MESEQUAL-SPUT gelects p” and terminates with outcome P* = {py,..., pz,p P} with ¢(P*) = n.
/ %°%n _ §IN'IB /
Now, we choose T' = {p,...ph }and N' = {1,..., 5} with ¢(T) = J; = - 2 = L ——. Thus, N

is ¢-budget T-cohesive (compare Definition 10). However we have |T'N P*] =0<k=|T|-kand
for any voter i € N’ and any set of projects P’ C A; N (P \ P*) = T with |P’| < k, we have

n
A;NP* P < LIS R L)
(AN P e(P) < elpi) b =14 =2 = o)
Thus, the outcome of R violates 7-budget EJR up to k projects (compare Definition 13). O
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Project pr P2 .. PPy Py . Dy D

Cost 1 1 ... 1 nfskl nf8kl ... 7nskl 12
Number of approvals 1 1 ... 1 nk nh .. nl nf
Ay v 4 oo/
Ay v v oo/
An v o/ v v
A, v

Table 5: Example instance with a budget of n for the proof of Proposition 4.

Proposition 5. Consider a mixed voting rule R such that MESMES ST ¢ ‘R with available budget share
«. Then, for any arbitrary positive integer k € N, the outcome of R does not necessarily satisfy a-budget
EJR up to k projects. This holds even when MES is the second rule in R and the first rule in 'R is GREEDY
(with tie-breaking in favor of large projects).

Proof. Let k € N be an arbitrary positive integer. We construct a PB instance I, which shows that the
outcome of R does not satisfy a-budget EJR up to k projects.

Let I = (B, P, A, c¢) be a PB instance with n = 100 voters and a budget B = 100. Let parameter A € N
be defined as A = [4]. Let P contain the following subsets of projects:

« Type 1: For 1 < j < 50 define p; with cost ¢(p;) = 1 and 40 approving voters N, =
{j}u{62,...,100}.

« Type 2: For every unique 10-person subset of voters N* C {1,...,40} define 5 projects pé-v )
with 1 < j < 5\, with cost c(pé-v*) = 1 > 0, approved by the 10 voters in N*, i.e., Nn+ = N*.
J

« Type 3: For every unique 40-person subset of voters N C {1,...,50} define 40 projects pé-v

with 1 < j < 40\ with cost c(pé-\?) = %, approved by the 40 voters in N, ie., NpN = N.
j

« Type 4: Define one project p’ with cost ¢(p’) = 11, approved by 11 voters N,y = {51, ...,61}.

Note, that the approval sets in A are implicitly defined through the approving voter sets /V,, for all
projects p € P.

Let Py = {p1,..., P50}, which means that MES’s available budget share is & = 0.5. Note, that P is
exactly the set of projects that would be chosen by GrReeDY(50, ()) in this instance (with tie-breaking
in favor of large projects). Consider the MES-STYLE pre-allocation method, with some arbitrary order
of Py. The method funds the first 40 projects in this ordering equally, with supporters paying % per
project. At this point, all voters in {62,...,100} run out of money and the remaining projects are
funded solely by their supporters from i € {1,...,50}. Call the set of these 10 voters N*.

The MES-STYLE pre-allocation method selects voter payments and induces voter budgets as follows:

e mi=1;b; =0fori e N*U{62,...,100},
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Project p1 p2 ... Dpso Type2 Type 3 P
Cost 11 .. 1 1/A 39 /10\ 11
Quantity (1) -5x (30) - 40x
Number of approvals 40 40 ... 40 10 40 11
Ay v ) )

As v ) )

Aso v ) v)

As1 4
A52 v
A61 v
Aga v /v -/

Ags o v/ -/

A1oo v /v -/

Table 6: Example instance with a budget of b = 100 for the proof of Proposition 5. Each project of type 2 is
approved by 10 voters in {1, ...,40} and each project of type 3 is approved by 40 voters in {1,...,50}.

. 7r2-:ﬁ’bi:%forie{1,...,50}\N*,and

. m:O,bizlforie{51,...,61}.

This yields a minimum voter budget share of a;, = 1. MES then selects the 40 type 3 projects supported
by {1,...,50} \ N*, and then the Type 4 project p/, yielding an output P* with ¢(P*) = 100.

Each voter i € N* obtains a (cost) satisfaction of y;(P*) = ¢(A; N P*) = ¢(p;) = 1. However, there
exist 5A commonly approved unchosen projects 7' = {pﬁy*}1§jg5,\ C (Nien+ Ai with ¢(T) = 5)\% =

5= %. Thus, N* is a-budget T-cohesive (compare Definition 10).

However, we have |T'N P*| = 0 < 5% — k < 5\ — k = |T| — k and for any voter i € N* and any set
of projects P’ C A; N (P \ P*) with |P'| < k, we have

c(AiﬁP*)+C(P/)§1+k:~§Sl-i—k-%:S:c(T).

Thus, the outcome of R violates a-budget EJR up to k projects (compare Definition 13). O

This example be tweaked to show that the 7-budget EJR up to k projects is not satisfied, for any
arbitrarily arbitrarily high [ € Nt by choosing an appropriately large number of voters, similarly to
the proof of Proposition 4.

Proposition 5 demonstrates that in order to achieve any kind of proportionality guarantees, it might be
necessary to give a budget of less than their fair share of the MES budget, %, to initially empty-handed
voters (those who approve no projects in Fy), even if the cost of Py doesn’t exceed the endowments of
non-empty-handed voters. This might seem unfair, but it is in this case preferable to charging the cost
of an entire project to one voter.

Proposition 6. Consider a mixed voting rule R = [Rj|li<j<m with Ry = GREEDY and Ry =
MESERUAL-SPLIT with qvailable budget share cv. Then the outcome of R does not necessarily satisfy c-budget
EJR up to one project.
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Proof. We construct a PB instance /, which shows that the outcome of R does not satisfy a-budget
EJRI1.

Let I = (B, P, A, c) be a PB instance with n = 100 voters and budget B = 100. Let P contain the
following projects:

« p with cost ¢(p) = 48.6 and 11 approving voters N, = {90, ...,100}
« pj for 1 < j <10 with cost ¢(p;) = 0.14 and 1 approving voter N, = {j}.

« p/ with cost ¢(p’) = 2.85, and 10 approving voters N,y = {1,...,10}

pj for 1 < j < 3 with cost c(p}) = 1.5, and 9 approving voters IV, y = ={1,...,9}
« pj for 1 < j < 19 with cost ¢(p;) = 2.31 and 4 approving voters Ny, = {4j +7,...,4j + 10}

« Poo with cost ¢(pao) = 1.88 and 4 approving voters Np,, = {10, 87, 88,89}

Note, that the approval sets in A are implicitly defined through the supporter sets IV, for all projects
p € P.

Consider the output of MESEQUALSPUT (1) GrREEDY(50, ())). GREEDY first chooses p, and then chooses
{p1, ..., p10} in some order, as it can no longer afford any other projects in P. c¢({p, p1,...,p10}) = 50,
which provides MES with an available budget share of o = 0.5.

The EQuAL-SpLIT pre-allocation method assigns budgets as follows:

m; = 0.14 and 0.4375 < b; < 0.4376 for 1 <17 < 10,
e m; = 0and 0.5775 < b; <0.5776 for 11 < ¢ < 89, and
« m = 28 and b; = 0 for 90 < i < 100.
MES then selects p/, which reduces the budgets of each voteri € {1,...,10} tob; ~ 0.1525. Importantly,
this means that the voters in {1,...,9} can no longer afford any project from {p/, p, p3} MES then

selects {p1, ..., poo} and terminates with an exhaustive outcome P* = {p,p1,...,p10,7,P1,---,D20}»
having spent 48.62 units of its available budget.

Consider T' = {p/,ph,ps}. Voter group N’ = {1,...,9} is 0.5-budget T-cohesive as O.5“X—I|B =
4.5 = ¢(T), and each voter i € N’ has ¢(A; N P*) = c(p’) + ¢(p;) = 2.99, and thus for any project
p e P\ P*={p],ph,p5} c(AiNP*) +c(p) =299+ 1.5 < ¢(T).

Thus P* does not satisty EJR up to one project (compare Definition 12). O

C Further experimental results

In this section, we discuss some more detailed results from the experiments we conducted.

C.1 Minimum Voter Budget Shares in Practice

In Section 5.1 we introduce the concept of the minimum voter budget share o™, based on which we
show different proportionality guarantees for MES™ in Section 5.2. In particular, we show that the
outcome of MESY (B, P,) satisfies o -budget EJR up to any project for M € {NuLL, VALUE-BASED}
and o™ -budget EJR up to any two projects for M = EQUAL-SpLIT if Py was selected by GREEDY. The
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relation between o for different pre-allocation methods M is stated in Observation 2. In particular,
we know that aNUMF < o VALUE-BASED - ( EQUAL-SPLIT 'where (y is the available budget share of MESM . To
get a feeling how far apart these values are in practice we computed them for the pre-allocation of
Py = Greepy(agB, () for ag € {0,0.1,0.2,...,1}.

Figure 7 shows the average minimum voter budget share o™ for each pre-allocation method M, and
for different GREEDY shares of the budget, over all instances with at least 20 projects. We observe, that
o™ is significantly lower than the minimum voter budget share produced by the other three methods,
suggesting that RVALVEBASED provides a much better proportionality guarantee than RN in practice.
The proportionality guarantees of RYAVEBASED apnd REQAL-SPUT are incomparable, as EQUAL-SPLIT
provides a weaker guarantee, but for a potentially larger fraction of the budget aP?VA*SP“T However
Figure 7 shows that in practice afA-"SPUT js not much larger than o VAWE-BASED

C.2 Budget Spending of MES in a Mixed Rule

A well known problem of the Method of Equal Shares is that it is not exhaustive, i.e., after its execution,
there can be unchosen affordable projects. This occurs because MES is constrained to only select projects
that can be funded by their supporters. In practice this issue is often solved by using a completion
method, as explained in Section 3.

Figure 8 shows how much of the budget is spent by each separate rule in RM =
[GREEDY, MESYALVEBASED GrEpDY| as defined in Section 6, averaged over all instances with at least
20 projects. We can see, that while (the first) GREEDY spends its available budget agB almost entirely,
this is not true for MES. In fact, for large values of ag, the spending of MES is close to zero. In these
cases, RM can almost be interpreted as mixing GREEDY with GREEDY, instead of GREEDY with MES. We
discuss mixing GREEDY with itself in the subsection below.

A popular method to make MES use more of its available budget is “completion by varying the budget”
[24], which involves iteratively increasing the starting budgets of all voters, until giving each voter one
more unit of the budget would result in an outcome that exceeds the budget limit. In future work, it
would be interesting to use this method in experiments, as it could solve the issue of MES only spending
a comparatively small proportion of its available budget.

C.3 Effects of Splitting the Budget

Mixed Rules on Small Instances Since our experiments are limited to large instances (with at
least 20 projects), this section addresses the challenges associated with running mixed rules on smaller
instances.

Splitting the budget between multiple rules can sometimes have undesirable consequences — for example,
a project costing more than 50 % of the budget is unlikely to ever be selected by a mixed rule that splits
the budget into two equal sized parts. This problem will less likely occur in larger instances, since the
average project cost tends to be lower for instances with a large number of projects. For example, the
cost of the most expensive project in instances with less than 10 projects is 71 % of the budget limit
on average, while this value is only 44 % over instances with at least 20 projects. We can empirically
observe the effect of splitting the budget, which we explain below.

Mixing GREEDY with Itself By comparing the outcomes of R = [GREEDY, GREEDY] to the outcome
of GREEDY, we can isolate the consequences of splitting the budget.

Figure 9a shows the utilitarian welfare for R ([agB, B]), when varying ag for different instance sizes
(measured by the number of projects). Note, that for values 0 and 1 of g the mixed rule R is just the
GREEDY rule. The performance of R drops significantly when splitting the budget for instances with
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fewer than 20 projects, whereas the effect is much less pronounced for larger instances. For instances
with at least 50 projects even splitting the budget in half seems to have almost no effect. This indicates
that using mixed rules on small instances does not work well in practice.

Figure 9b shows the performance of Rg in terms of proportionality, compared to that of RM =
[GREEDY, MESYALVEBASED GRrEEDY] as defined in Section 6. It seems surprising that the proportionality
increases when splitting the budget of the GREEDY rule into two parts, indicating that forcing GREEDY
to pick cheaper projects (without checking who approves these projects) increases proportionality. This
could potentially be caused by correlations between the votes, or the fact that when larger projects are
chosen, more projects remain unchosen, which could make an EJR+X violation more likely.
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