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Abstract

Designing and analyzing voting rules for Participatory Budgeting (PB) elections is an active
research area in computational social choice. Many PB voting rules aim to optimize a specific
objective. For instance, the ubiquitous Greedy rule attempts to maximize utilitarian welfare,
while the Method of Equal Shares (MES) aims to achieve proportional representation of voter
preferences. However, it is often desirable to achieve good outcomes on multiple objectives
rather than a close-to-perfect outcome for one. Inspired by mixed-member systems that are often
used for parliamentary elections, we introduce mixed voting rules for PB. These are composed
of a sequence of two or more rules that can each spend some fraction of the overall budget in
order to add projects to the set selected by earlier rules. We develop a theoretical framework for
formulating and analyzing mixed PB voting rules, and explore how existing rules can be adapted
to this framework. We particularly focus on MES and its potential to address imbalances in
representation created by earlier rules. We propose different ways to adjust MES voter budgets
based on how satisfied voters are with previously chosen projects, and examine how well the
resulting rules approximate well-known proportionality axioms such as EJR+. We complement
our theoretical results with an empirical analysis of real-world PB elections, investigating how
mixed rules perform compared to their constituent rules.

1 Introduction

Participatory Budgeting (PB) is a democratic innovation that lets citizens vote on how public money is
spent [10, 28]. Typically, community members suggest projects, each with a specific cost. Voters are
then asked to express preferences over these projects, based on which a voting rule selects a subset of
the projects to fund, while making sure that their total cost stays within a given budget. Designing and
analyzing PB voting rules is a very active research area in computational social choice [2, 25].

PB voting rules have different strengths and weaknesses. For example, the Greedy rule simply ranks
projects by the number of votes they receive and funds them in that order until the budget runs out.
While this method is straightforward to implement and explain, it may fail to represent minority
interests. In contrast, the Method of Equal Shares (MES) [24] is guaranteed to provide proportional
representation, but computing it requires more complex calculations that are harder to explain. Instead
of choosing between different rules (and the different objectives that these rules aim for), we propose
a framework that combines multiple rules. Ideally, this approach preserves the advantages of the
constituent rules while mitigating their downsides. In particular, we introduce the framework of mixed

voting rules for PB. A mixed voting rule is defined as a sequence of rules, and each rule in that sequence
is allocated a specific portion of the overall budget. The process can be visualized as an assembly line
(see Figure 1): the first rule selects projects using its assigned budget share, then passes both its selection
and any unused budget to the next rule. Subsequent rules cannot alter the projects already chosen by
earlier rules but can only add new projects using their budget allocation. For example, we might let the
Greedy rule spend 60% of the budget first and then allow MES to spend the remaining 40%.

This idea is inspired by mixed-member electoral systems, which are used for parliamentary elections
around the world [26]. Prominent examples include Germany’s Mixed-Member Proportional Representa-

tion system and Scotland’s Additional Member System. In these electoral systems, parliamentary seats
are allocated according to two distinct selection methods: Some representatives are elected directly
(usually through first-past-the-post voting in local districts), while additional seats are allocated to
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ensure— or at least approximate— the proportional representation of political parties in the parliament
as a whole. Thus, these systems effectively divide the total resource (i.e., the parliamentary seats) be-
tween two complementary selection methods, with the second method specifically designed to enhance
proportionality. Similarly, our mixed voting rules for PB allocate portions of the total budget to different
selection methods, and later rules may enhance the proportionality of the outcome.1

To be able to apply existing PB voting rules in our mixed framework, we must adapt them to handle
scenarios where some projects have already been selected. For the Greedy rule, this adaptation is
straightforward: We can simply restrict attention to the remaining unselected projects and iteratively
choose those with the highest vote counts. Adapting MES, on the other hand, is more subtle. Since
the rule is defined via individual voter budgets, we need to decide how to divide the available budget
among the voters. One trivial way of doing that is to split the budget equally, essentially ignoring
the set of previously selected projects. In order to enhance proportionality, however, we need more
sophisticated methods that explicitly take the previously selected projects into account. In this paper,
we propose several approaches to adapting MES to this context, and we analyze— theoretically and
empirically— how these methods perform in terms of proportional representation, among other metrics.
All of these approaches are based on the intuition that voters who are already well-represented by the
previously selected projects should be allocated less budget to spend during the execution of MES.

Beyond their role in our mixed framework, these adaptations might be of independent interest, as they
allow PB voting rules to be applied to situations where certain projects must be included (maybe due to
administrative or legal constraints). For example, a municipality might have ongoing projects that need
to continue or legally required initiatives that must be funded. Another special case that is covered
by our framework is the class of PB “completion methods,” i.e., rules that are designed to extend an
outcome of another rule and make it exhaustive, in the sense that no more projects can be afforded
with the unused budget. Completion methods are often studied in the context of MES, because the rule
often spends only a relatively small fraction of the total budget [24].

Our Contribution In this paper we extend PB voting rules to work with a set of pre-selected projects.
We then use these extended rules to define mixed PB voting rules, composed of a selection of voting
rules that are executed in sequence (Section 3). We adapt MES to the mixed rules framework by
defining several “pre-allocation” methods to account for pre-selected projects (Section 4) and establish
proportionality guarantees for these methods using parametrized variants of EJR+ (Section 5). We
complement these theoretical guarantees with an empirical analysis of mixed rules on real-world PB
instances (Section 6). Omitted proofs can be found in Appendix A.

Related Work Recent years have witnessed a lot of work from the (computational) social choice
community on multiwinner elections [13, 20] and PB [2, 25]. Contrastingly, mixed-member electoral
systems are mostly studied within the political science literature [26]. Proportionality in the PB setting
has been a key research direction [4, 21, 8]. Prime examples of proportionality notions include Extended
Justified Representation [3, 24], its “up to one” variant [24], and its strengthening, EJR+ [6]. Several
proportional rules have been proposed, most prominently the Method of Equal Shares [23]. Recently,
there has been some work on analyzing the performance of (non-mixed) multiwinner voting rules
according to competing objectives [12, 7] and on best-of-both-worlds approaches [22]. Extending
an already selected set of projects has been studied in the context of PB completion methods [24].
More generally, the issue of extending partially specified solutions also features (at least implicitly) in
inter-temporal fairness notions where repeated decisions need to be made [15, 18, 16].

1The analogy has limitations, as PB elections often (but not always) lack the concept of geographic districts that is central to
most mixed-member electoral systems. Moreover, voters often (but not always) submit two ballots in a mixed-member system.
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2 Preliminaries

Let P be set of projects and N = [n] = {1, ..., n} a set of voters with n = |N |. We assume approval
preferences and let Ai ⊆ P denote the set of projects approved by voter i ∈ N . For a project p ∈ P ,
we let Np = {i ∈ N : p ∈ Ai} denote the supporters of p, i.e., the set of voters approving p.

An (approval-based PB) instance I = (B,P,A, c) consists of (i) a budget limit B ∈ R>0; (ii) a finite
set of projects P ; (iii) an approval profile A = (A1, . . . , An); and (iv) a cost function c : P → R>0.
We assume that voters have cost satisfaction functions [8], i.e., voter i’s satisfaction (or utility) from
project p is µi(p) = 0 if p /∈ Ai and µi(p) = c(p) if p ∈ Ai. For a subset of projects P ′ ⊆ P , we write
c(P ′) =

∑
p∈P ′ c(p) and µi(P

′) =
∑

p∈P ′ µi(p) = c(P ′ ∩Ai).

Any subset of projects is called an outcome. An outcome P ′ ⊆ P is feasible for instance I = (B,P,A, c)
if c(P ′) ≤ B. For an outcome P ′ and an instance I we say that a project p ∈ P \ P ′ is affordable if
c(P ′) + c(p) ≤ B. An outcome is exhaustive if there are no unchosen affordable projects.

Voting rules map each PB instance to a feasible outcome. In order to facilitate the definition of mixed
voting rules in Section 3, we define voting rules to take two additional inputs: a budget BR (that is
upper bounded by the instance budgetB but can be strictly smaller) and a set P0 of pre-selected projects
that are required to be in the output of the rule.

Definition 1. A voting rule R takes as an input (i) a PB instance I = (B,P,A, c), (ii) a rule budget

BR ∈ R>0 with BR ≤ B, and (iii) a set P0 ⊆ P of pre-selected projects with c(P0) ≤ BR; it outputs an

outcome R(I,BR, P0) = P ∗
with P0 ⊆ P ∗

and c(P ∗) ≤ BR.

Whenever P0 = ∅ and BR = B, this definition reduces to the standard definition of voting rules in the
PB literature. When the instance I is clear from the context, we often write P ∗ = R(BR, P0). We say
that a voting rule is exhaustive if it always produces an exhaustive outcome (with respect to BR).

We introduce two voting rules that are widely used in the PB literature and real-world elections, the
Greedy rule and the Method of Equal Shares. We start by describing these rules in the standard setting.

Greedy Rule. Given a budget B, Greedy(B, ∅) iteratively selects an affordable project p with the
largest number of supporters |Np|, with arbitrary tie-breaking, until no projects are affordable.

This rule greedily maximizes the utilitarian welfare
∑

i∈N µi(P
∗). Note that Greedy(BG, P0), with

P0 ̸= ∅ and BG < B, can be defined in the exact same way, greedily maximizing total voter satisfaction,
given that P0 must be included in its outcome, and checking project affordability with respect to BG.

Method of Equal Shares [24]. MES(B, ∅) assigns each voter i ∈ N an initial budget of bi = B
n

and iteratively selects projects as follows. Let P (k−1) be the set of projects chosen after step k − 1
of MES. During step k, for each affordable project p ∈ P \ P (k−1), we try to find ρ(p) such that∑

i∈Np
min(bi, ρ(p)c(p)) = c(p). We select pk = argmin{ρ(p) | p ∈ P \ P (k−1)}, with ties broken

arbitrarily. This is the project that can be bought by its supporters while minimizing the maximum
payment per unit satisfaction. We add pk to our selection (P (k) = P (k−1) ∪ {pk}) and update voter
budgets to bi−min(bi, ρ(pk)c(pk)) after every round. The algorithm terminates when no more projects
can be afforded by their supporters, i.e., when c(p) >

∑
i∈Np

bi for all p ∈ P \ P (k−1).

By giving the voters equal budgets, and allowing them to spend these on projects they approve of,
MES aims to make its outcome as proportional as possible. This has been formalized in the following
proportionality notion, which the outcome of MES(B, ∅) always satisfies [6].

Definition 2 ([6]). An outcome P ∗ ⊆ P satisfies EJR+ up to any project if for every group of voters

N ′ ⊆ N and every project p ∈
⋂

i∈N ′ Ai \ P ∗
, there is a voter i ∈ N ′

with c(Ai ∩ P ∗) + c(p) > |N ′|B
n .
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R = [Rk]k∈[m]

R1 R2
... Rm

P0 P1 P2 Pm−1 Pm

B1 B2 Bm

Figure 1: Illustration of a mixed voting rule R as a sequence of rules with inputs and outputs.

3 Mixed Voting Rules

In this section, we formally introduce a general framework for combining voting rules sequentially.

Definition 3. A mixed voting ruleR = [Rk]k∈[m] takes as an input (i) a PB instance I = (B,P,A, c),
(ii) a sequence of rule budgets [Bk]k∈[m], with each Bk ∈ R>0 and 0 < B1 ≤ B2 ≤ ... ≤ Bm ≤ B, and

(iii) a setP0 ⊆ P of pre-selected projects with c(P0) ≤ B1; it outputs an outcomeP ∗ = R(I, [Bk]k∈[m], P0)
with P0 ⊆ P ∗

and c(P ∗) ≤ Bm. The mixed ruleR produces its outcome P ∗
using a series of intermediate

outputs (Pk)k∈[m], created by the rules it contains, with P0 ⊆ P1 ⊆ · · · ⊆ Pm−1 ⊆ Pm = P ∗ ⊆ P . The

rules are resolved in sequence: Each set of output projects is iteratively defined as Pk = Rk(I,Bk, Pk−1)
and is used as the next rule’s set of input projects.

This process is illustrated in Figure 1. When the instance I is clear from the context, we often write
P ∗ = R([Bk], P0). Whenm = 1, R1(B1, P0) = [R1]([B1], P0).

We can think of a mixed rule R([Bk]k, P0) = [Rk]k([Bk]k, P0) as splitting up the instance budget
among the voting rules it contains, giving Rk a budget of at least Bk −Bk−1. However, we allow each
rule to use any budget left unspent by the previous rules, givingRk an available budget ofBk−c(Pk−1).

Definition 4. Consider a mixed voting rule R = [Rk]k∈[m] and let the outcome of Rk−1 be Pk−1. We

define the available budget share of Rk during the execution ofR(I, [Bk]k∈[m], P0) as

αk =
Bk − c(Pk−1)

B
.

The available budget share αk represents the proportion of the overall budget available to Rk to spend
on remaining projects. The available budget share of the first rule in a mixed rule is α1 =

B1−c(P0)
B . For

k > 1, αk depends on the set of projects chosen by earlier rules in the mix, and is unaffected by later
rules. The available budget share of Rk is bounded from above by its “gross” budget share Bk

B ≥ αk

(with equality if and only if Pk−1 = ∅). We will refer to the available budget share as simply α when it
is clear from the context which rule we are considering, writing “R ∈ R with available budget share α.”

A subset2 of “completion methods” [24] that are widely used in PB can be easily defined in the mixed
voting rule framework. We call a rule Rk ∈ R a completion rule if Bk = Bk−1. That is, Rk is not
allocated any extra budget, but can only spend budget that was left over from the previous rule. For
instance, MES completed by Greedy can be defined as a mixed rule, Greedy(B,MES(B, ∅)).

Example 1. Consider R = [R1, R2, R3] where R1 = MES, R2 = Greedy and R3 = Spend is a rule
that picks the set of projects that maximizes total spending. Let the instance budget be B = 100, the
rule budgets be [B1, B2, B3] = [50, 90, 100], and the project set P = {p1, . . . , p5}. The cost function c
and the approval profile A are given in Table 1.

2We only consider completion methods that add projects to the outcome of the rule they’re completing, without modifying
the already selected set. For instance, “completion by varying the budget” would not fall under this definition (and should
perhaps not be called a completion method).
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We compute R([50, 90, 100], ∅) in three steps: Project p1 p2 p3 p4 p5 p6

Cost 28 12 45 12 8 6

A1 ✓ ✓ ✓

A2 ✓ ✓ ✓

A3 ✓ ✓ ✓ ✓

A4 ✓ ✓ ✓ ✓

A5 ✓ ✓

Selected by: R1 R1 R2 – R3 R3

Table 1: Approval profile for Example 1.

(1) MES(50, ∅) with available budget B1 − c(∅) = 50 and
available budget share αMES = 0.5 selects P1 = {p1, p2}
and terminates, as the remaining voter budgets (b1 = b2 =
b3 = 3, b4 = 0, b5 = 1) are not sufficient to afford any of the
other projects. Note that B1 − c(P1) = 10 units of budget
is left unspent.

(2) Greedy(90, P1) with available budget B2 − c(P1) = 50
(note that this is the sum of B2 −B1 and B1 − c(P1)) and
available budget share αGreedy = 0.5 selects p3 and terminates with outcome P2 = P1 ∪ {p3}, as no
other projects can be afforded with Greedy’s remaining budget of B2 − c(P2) = 5.

(3) Spend(100, P2) with available budget B3 − c(P2) = 15 and available budget share αSpend =
B3−c(P2)

100 = 0.15 selects P3 = P2 ∪ {p5, p6}, which is the final outcome of our mixed ruleR. ⋄

We will analyze to what extent a mixed voting rule inherits the properties satisfied by its constituent
rules. The following definition applies to a wide range of axiomatic properties.

Definition 5. Let IP be the set of all instances with project set P . A monotone property is a function

X : IP × 2P → {0, 1} such that, for any I ∈ IP , P ′ ⊆ P ′′ ⊆ P implies X(I, P ′) ≤ X(I, P ′′). We say

that a set of projects P ∗ ⊆ P satisfiesX for instance I = (B,P,A, c) ifX(I, P ∗) = 1. Letting α ∈ R>0,

we say that P ∗
instead satisfies α-budget X for instance I = (B,P,A, c) if X((αB,P,A, c), P ∗) = 1.

Note that properties are defined for project sets rather than voting rules, and that project set P ∗ need
not be a feasible outcome for the instance (αB,P,A, c). Every voting rule from the standard setting can
be adapted to the mixed framework in a trivial way, by ignoring the pre-selected projects and setting
R(B,P0) = P0 ∪R(B, ∅). This “trivial adaptation” can be used to show the following statement.

Observation 1. Suppose there exists a voting rule R whose outcome P ∗ = R(B, ∅) always satisfies some

monotone property X . Then, we can construct a voting rule R′
such that if R′ ∈ R with available budget

share α, the outcome ofR always satisfies α-budget X .

Observation 1 helps establish a theoretical baseline for the axiomatic results of this paper. When we
adapt a rule R whose outcome always satisfies property X to the mixed framework, it is desirable that,
when R ∈ R with an available budget share of α, the outcome of R satisfies α′-budget X with α′ ≥ α.
We will discuss a complementary empirical baseline in Section 6.

4 Adapting the Method of Equal Shares to the Mixed Rules Framework

In this section we generalize MES to account for a set of pre-selected projects P0. We define several
pre-allocation methods to account for the differences in voter satisfaction from P0, each of which
provides a different profile of initial voter budgets to MES.

4.1 Allocating Voter Budgets

Consider MES(BMES, P0), with P0 ̸= ∅. Our goal is to determine how to initialize voter budgets bi for
each voter i ∈ N to account for a pre-selected set of projectsP0, in order to maximize the proportionality
achieved by subsequently running MES. We might no longer desire to equally split MES’s available
budget, αB, as the set of pre-selected projects P0 need not be equally liked by all voters. Intuitively,
voters that are more satisfied with P0 should be provided with a smaller individual budget.
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We formalize methods for determining voter budgets (bi)i∈N (with
∑

i∈N bi = αB) as pre-allocation
methods, and we write MESM to refer to MES with pre-allocation method M. All our pre-allocation
methods follow a two-step process.

Definition 6. A pre-allocation method takes as input an instance I , a set P0 ⊆ P of pre-selected projects,

and an available budget share α and proceeds in two stages:

(1) It determines voter payments (πi)i∈N for projects from P0, such that πi ≥ 0 for each voter i ∈ N
and

∑
i∈N πi ≤ c(P0).

(2) It applies a rebalancing step to determine voter budgets (bi)i∈N in order to make voters’ endowments

{πi + bi}i∈N as equal as possible.
3
Formally, (bi)i∈N are chosen to maximize mini∈N (πi + bi)

under the constraints

∑
i∈N bi = αB and bi ≥ 0 for all i ∈ N .

Note that we allow pre-allocation methods to have some voters pay more than their “fair share” of the
MES budget, i.e., πi > BMES

n . It is also possible for the voter payments to only partially fund the projects
in P0, or not fund them at all. The rebalancing step (2) is the same for all pre-allocation methods. To
motivate this, it can be shown that every “reasonable” voter budget profile (bi)i∈N can be induced by
picking appropriate voter payments in stage (1) — see Claim 1 in Appendix A for details.

4.2 Pre-allocation Methods

We now define four pre-allocation methods for MES(BMES, P0) with available budget share α, each
following the two-stage process in Definition 6. Alongside, we present a running example. All four
methods can be computed in polynomial time.

Example 2. Consider an instance with P = {p1, p2, p3}, budget B = 32,
and approval profile and project costs as specified in Table 2. We assume
that MES is given a budget BMES = 32, and a pre-selected project set
P0 = {p1, p2}, resulting in an MES budget share of α = BMES−c(P0)

B = 0.25.

Project p1 p2 p3

Cost 18 6 9

A1 ✓ ✓

A2 ✓

A3 ✓ ✓ ✓

A4 ✓ ✓

Table 2: Approval profile
for Example 2.

The outcomes of the pre-allocation methods are illustrated in Figure 2.

Method 1. Null: Set πi = 0 for all voters, obtaining voter budgets
bi =

αB
n using the rebalancing step. This pre-allocation method splits the

remaining budget αB equally among all voters. ⋄

In Example 2, each voter i ∈ N pays πi = 0 for P0 and gets an MES budget of bi = 2.

Method 2. MES-Style: In order to determine voter payments, choose any order for P0 and initialize
voter budgets to b0i =

BMES
n . Iteratively fund the projects in P0 as if they were sequentially selected by

MES. If at any point the voters in Np cannot fully fund some project p ∈ P0, the remainder of its cost is
discarded.4 We do not fix the order for P0. Our theoretical result (Proposition 5) holds regardless of the
order. For our empirical results in Section 6, we order P0 by the number of supporters. ⋄

In Example 2, assume we order P0 such that p1 is funded first. Then the first 3 voters each pay 6
for it, obtaining intermediate budgets of b′1 = b′2 = b′3 = 2. When funding p2, voter 3 can no
longer pay their fair share, so they pay as much as they can, with the rest covered by 4. We obtain
payments (πi)i∈[4] = (6, 6, 8, 4) and budgets of (bi)i∈[4] = (2, 2, 0, 4). If we instead fund p2 first, we
get (πi)i∈[4] = (6.5, 6.5, 8, 3) and (bi)i∈[4] = (1.5, 1.5, 0, 5).

3This can be thought of as pouring αB square units of water into a 2D bucket (see Figure 2), where the floor (hatched,
violet) is a bar chart, where the height of each bar is πi (and the width is 1), and the water (filled, blue) represents (bi)i∈N .

4Alternatively, we could fund such projects by overcharging their supporters; this would result in the same voter budgets.
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Figure 2: Pre-allocation outcomes for Example 2. Voter payments πi are calculated separately by each pre-
allocation method (and are split by project in the diagrams, with πi = πp1

i + πp2

i ), and the voter budgets bi are
obtained from the rebalancing step. The red line represents the minimum voter endowmentmini∈N (πi + bi).

Method 3. Eqal-Split: Split the total cost of every project p ∈ P0 equally among its supportersNp,
setting πi =

∑
p∈Ai∩P0

c(p)
|Np| , with the voter budgets derived using the rebalancing step. Note that∑

i∈N πi = c(P0) and thus the voter payments fund the pre-selected projects completely. ⋄

In Example 2, supporters pay 6 each for p1 and 3 each for p2, with total payments (πi)i∈[4] = (6, 6, 9, 3).
Voter 3 has spent more than their fair share. From the rebalancing step, we get (bi)i∈[4] = (53 ,

5
3 , 0,

14
3 ).

The MES-Style and and Eqal-Split methods represent fairly reasonable ways to divide the cost of P0

among voters. However, we will see in Section 5 that they do not achieve proportionality at a level
dictated by our theoretical baseline, while the (trivial) Null method does. We introduce one more
method that works similarly to Eqal-Split, but achieves better proportionality guarantees. The idea
behind this method is to partially fund the projects in P0 from voter payments πi in such a way that
voters get good value for money whenever they contribute to a project.
Method 4. Value-Based: We define the utilitarian value

5 (for money) v(p) of a project p to be
v(p) = |Np|. For a set of pre-selected projects P0, we define the threshold value v∗ as the value of the
most valuable unselected project that is affordable under budget BMES after every project from P0 with
greater value has been selected. Formally,

v∗ = max
p∈P\P0

{v(p) | p satisfies c(U(p)) + c(p) ≤ BMES},

where U(p) = {p′ ∈ P0 | v(p′) ≥ v(p)} denotes the upper contour set of p in P0, i.e., the set of
pre-selected projects with value at least v(p). If no project p ∈ P \ P0 satisfies c(U(p)) + c(p) ≤ BMES,
we let v∗ = 0. In the case that all projects have distinct values, the threshold value v∗ is the value of
the first project from P \ P0 that Greedy(BMES, ∅) would select.

When funding some project p∗ with value v∗, voters in Np∗ would each pay c(p∗)
v∗ , or equivalently 1

v∗

per unit satisfaction they obtain from p∗. The idea of the Value-Based pre-allocation method is to
allow voters to spend at most

1
v∗ per unit satisfaction, defining voter payments as follows:6

πi =
∑

p∈Ai∩P0

c(p)

max{v(p), v∗}
.

5This definition captures the ratio of the utilitarian welfare of a project to its cost. For a satisfaction function µ(·), the
value of p is defined as v(p) =

∑
i∈N µi(p)

c(p)
. For the cost satisfaction function, this reduces to v(p) =

∑
i∈Np

c(p)

c(p)
= |Np|.

6We can easily extend the Value-Based method to other satisfaction functions by setting πi =
∑

p∈Ai∩P0

µ(p)
max{v(p),v∗} .
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Thus, any project p ∈ P0 with value v(p) ≥ v∗ is thus funded identically to the Eqal-Split method. ⋄

In Example 2, supporters pay 6 each for p1 like they did under the Eqal-Split method. The threshold
value in this instance is v∗ = 3, corresponding to the value of p3. Thus, the Value-Based method
allows voters 3 and 4 to partially fund p2, with each paying 1

3 × 6 = 2 for it, resulting in total payments
of (πi)i∈[4] = (6, 6, 8, 2). Using the rebalancing step, we get (bi)i∈[4] = (43 ,

4
3 , 0,

16
3 ).

Arguably, the four methods outlined above choose voter payments πi in a reasonable way, from the
perspective of the voters. In particular, they never force a voter to pay for a project they do not approve.

5 Proportionality Guarantees for MES Variants

In this section, we study the proportionality of MES in the mixed framework, for each of the four pre-
allocation methods defined in Section 4. We consider parametrized versions of the proportionality axiom
EJR+ up to any project (Definition 2) and weakenings of it. The axioms we consider are parametrized
using the minimum voter budget share, an important value that can be calculated from the output of
a pre-allocation method. Notably, this creates a non-standard approach where the strength of our
proportionality guarantees cannot be determined until the mixed rule is partially executed and we
observe which projects were selected by earlier rules. We identify the Value-Based pre-allocation
method as the sole method that improves on our theoretical baseline from Section 3.

Applying Definition 5 to EJR+ up to any project results in the following parameterized axiom.

Definition 7. An outcome P ∗ ⊆ P satisfies α-budget EJR+ up to any project if for every group of voters

N ′ ⊆ N and every project p ∈
⋂

i∈N ′ Ai \ P ∗
, there is a voter i ∈ N ′

with c(Ai ∩ P ∗) + c(p) > α |N ′|B
n .

Additionally, we will consider the following weakened version of this property.

Definition 8. Let k ∈ N>0. An outcome P ∗ ⊆ P satisfies α-budget EJR+ up to any k projects if for
every group of voters N ′ ⊆ N and every set of projects P ′ ⊆

⋂
i∈N ′ Ai \ P ∗

with |P ′| = k, there is a

voter i ∈ N ′
with c(Ai ∩ P ∗) + c(P ′) > α |N ′|B

n .

This property reduces to Definition 7 for k = 1, and gets weaker for larger values of k. Similar notions
have been defined in the fair division literature [1].

5.1 Minimum Voter Budget Share

The normative goal of the pre-allocation methods we defined in Section 4.2 is to select the profile of
voter payments (πi)i∈N in such a way that each voter gets good “value for money” whenever they
contribute to a project in P0. We can think of πi + bi as the total endowment of the voter, which the
rebalancing step tries to make as equal as possible among the set of voters. The following definition
focuses on a voter with minimal total endowment and compares their total endowment to a voter’s fair
share of the instance budget, which is given by B

n (dividing by B
n is equivalent to multiplying with n

B ).

Definition 9. Consider an MES pre-allocation method M that is applied as part of a mixed rule. The

minimum voter budget share αM
is defined as αM = mini∈N{(πi + bi)

n
B}.

The minimum voter budget share represents how much the worst off voter gets to spend on (1) projects
in P0 and (2) during the execution of MESM, as a fraction of their fair share of the instance budget. A
method M with a higher value of αM is not necessarily more proportional as it is possible for M to
spend voter budgets inefficiently on projects from P0 (see the negative results in Table 3).

The rebalancing step (see Definition 6) places some constraints on the possible values of αM.
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Observation 2. For any pre-allocation method M, the minimum voter budget share αM
is lower-bounded

by MES’s available budget share α = BMES−c(P0)
B and upper-bounded by MES’s gross budget share

BMES

B .

Furthermore,
αMB
n exceeds all voter budgets determined in the rebalancing step, i.e.,

αMB
n ≥ max{bi}i∈N .

Before considering proportionality guarantees for each of our pre-allocation methods, we derive the
following relationship between their minimum voter budget shares.

Proposition 1. Fix an instance I and a set of pre-selected projects P0. The minimum voter budget shares

for MES
M(BMES, P0) withM ∈ {Null,MES-Style, Equal,Value-Based} satisfy the following:

0 ≤ α = αNull ≤ αValue-Based ≤ αEqual-Split ≤ αMES-Style ≤ BMES

B
≤ 1.

It is important to note that αNull < αValue-Based whenever P0 ̸= ∅, and that the gap between those two
values can be quite large in practice.7

5.2 Proportionality Guarantees

We will now consider which of our pre-allocation methods M guarantee that the outcome of voting
rule MESM satisfies a proportionality property of the form described in Definitions 7 and 8. These
guarantees will be parameterized by the minimum voter budget share αM corresponding to M.

Let P ∗ = MESM(BMES, P0) be the outcome of MESM when it is provided with rule budgetBMES and set
of pre-selected projects P0. Any proportionality guarantee that we can prove for P ∗ directly translates
to the same guarantee for the outcome of any mixed rule R with Rk = MESM, provided that the input
Pk−1 for Rk equals P0. This is because P ∗ will be contained in the output ofR.

Our results are summarized in Table 3. Interestingly, pre-allocation methodsM with higher αM (see
Proposition 1) lead to worse proportionality guarantees: For instance, while αValue-Based ≤ αEqal-Split,
the outcome of MESValue-Based is guaranteed to satisfy αValue-Based-budget EJR+ up to any project,
whereas the outcome of MESEqal-Split may violate the analogous property not only for αEqal-Split, but
even for the (smaller) available budget share α.

Method M Satisfied Properties Violated Properties

Null αNull-budget EJR+ up to any project (Theorem 1)
Value-Based αValue-Based-budget EJR+ up to any project (Theorem 2)
Eqal-Split† αEqal-Split-budget EJR+ up to any two projects (Theorem 3) α-budget EJR+ up to any project
Eqal-Split – α-budget EJR+ up to any k projects
MES-Style – α-budget EJR+ up to any k projects

Table 3: Proportionality guarantees for the outcome P ∗ = MESM(BMES, P0). The marker “†” indicates that the
corresponding results hold for the special case in which P0 is selected by Greedy.

We now state our proportionality guarantees formally, for mixed rulesR containing MESM. Note that
the parameter αM of the resulting guarantees cannot be directly inferred from the inputs to R, but
depends on the partial outcome provided to MESM during the execution of R. That is, we first need to
partially run the ruleR before determining how good a proportionality guarantee on its outcome we
can give. While this might sound like a disadvantage, we remind the reader of our empirical observation
that the values of αM are often close to 1 in realistic scenarios (see Footnote 7).

We start with a guarantee for MESNull, which is a straightforward extension of existing guarantees [6].
7For instance, when running [Greedy,MES]([0.5B,B]) on the real-world PB instances considered in Section 6, our

pre-allocation methods obtain the following minimum voter budget shares on average: αNull = 0.50, αValue-Based = 0.92,
αEqal-Split = 0.94, and αMES-Style = 0.97. See Appendix C.1 for a more detailed overview of these values in practice.
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Theorem 1. Consider a mixed voting rule R such that MES
Null ∈ R with available budget share

α = αNull
. Then, the outcome ofR satisfies α-budget EJR+ up to any project.

Thus, MESNull meets— but does not exceed— our theoretical baseline from Section 3. (It does so directly,
without following the “trivial adaptation” approach from Observation 1.) We can improve upon our
baseline by employing the Value-Based pre-allocation method.

Theorem 2. Consider a mixed voting ruleR such that MES
Value-Based ∈ R with available budget share α

and minimum voter budget share αValue-Based ≥ α. Then the outcome of R satisfies αValue-Based
-budget

EJR+ up to any project.

Theorem 2 is the main theoretical result of our paper. Its proof heavily relies on the fact that the voters
spending per unit of utility is bounded during the Value-Based pre-allocation.

Meanwhile, the Eqal-Split and MES-Style methods can subject voters to arbitrarily high payments
per unit utility. As we show in Appendix B, the outcome of MES with either of those two pre-allocation
methods may violate arbitrarily weak proportionality notions: For any fixed k ∈ N, there are examples
in which the outcome of MESEqal-Split and MESMES-Style violate α-budget EJR+ up to any k projects.

Finally, we show that the Eqal-Split pre-allocation method performs reasonably well in the special
case that the set of pre-selected projects was chosen by Greedy.

Theorem 3. Suppose R = [Rk]k∈[m], where R1 is Greedy and R2 is MES
Equal-Split

with minimum voter

budget share αEqual-Split
. Then, the outcome of R satisfies αEqual-Split

-budget EJR+ up to any two projects.

6 Experimental Results

In this section, we empirically evaluate our framework by computing the results of mixed voting rules
on a large dataset of real-world PB instances. In our experiments, we focus on mixed rules obtained by a
combination of Greedy and MES (with Greedy completion), where MES is implemented with one of the
pre-allocation methods introduced in Section 4. We compute the results for each of them while varying
the fraction αG of the budget provided to Greedy from 0 to 1 in steps of 0.1. More formally, let RM =
[Greedy,MESM,Greedy]. Then, for an instance I = (B,P,A, c), we compute RM([αGB,B,B]) =
Greedy(B,MESM(B,Greedy(αGB, ∅))) for all M ∈ {Null,MES-Style,Eqal,Value-Based} and
all αG ∈ {0, 0.1, 0.2, . . . , 1}. We use the factor αG, which we will refer to as the Greedy (budget) share,
to interpolate between the two rules, with αG = 0 corresponding to MES (with Greedy completion)
and αG = 1 corresponding to Greedy.

Data The data for our experiments is obtained from Pabulib [14], a library of over 1300 PB instances.
We compute the results of the mixed rules on all non-trivial real-world instances with at least 20 projects,
which amounts to 313 instances.8 We break ties lexicographically by project name.

Measures Since we are mixing a rule which aims to optimize the utilitarian welfare (Greedy) with a
rule which aims to provide proportional representation (MES), we evaluate the mixed rules on these
two criteria. For a given instance I = (B,P,A, c) and a set of selected projects P ∗ ⊆ P , we compute
several numerical measures, averaging our results over all instances in our dataset. To measure welfare,
we use the utilitarian ratio [19], defined as the utilitarian welfare of P ∗ as a fraction of the maximum
achievable utilitarian welfare for the instance. For (proportional) representation, we consider three
measures: (i) First, we check whether P ∗ satisfies EJR+ up to any project (henceforth abbreviated to

8Pabulib contains instances that are artificially generated and trivial instances, where all projects can be funded. The
rationale for considering only instances with 20+ projects is discussed in Appendix C.3.
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Figure 3: Fraction of instances for which EJR+ up to
any project is violated.
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Figure 4: Empirical baselines for evaluating the per-
formance of mixed rules.

(a)Maximum β for which β-budget EJR+ up to any project
is satisfied over the utilitarian ratio.

(b) Fraction of represented voters over the utilitarian ratio.

Figure 5: Proportionality versus utilitarian welfare for the mixed rule RM ([αGB,B,B]) for M ∈
{Null,MES-Style,Eqal,Value-Based} and αG ∈ {0, 0.1, 0.2, . . . , 1.0}. Metrics are averaged over all in-
stances with at least 20 projects.

EJR+X ). (ii) To get a better idea of how “close” an outcome is to violating EJR+X, we compute the
maximum value of β for which P ∗ satisfies β-budget EJR+X (Definition 7).9 This yields a quantitative
proportionality measure, as recently suggested by Bardal et al. [5]. (iii) Finally, we measure the fraction
of represented voters (a.k.a. voters with non-zero satisfaction), i.e., |{i ∈ N | Ai ∩ P ∗ ̸= ∅}|/n.

Figures 3 and 5 show a summary of our results, averaged over all 313 instances. For all of these
measures, the mixed rule containing MESNull is mostly outperformed by the other three, which all
perform similarly. In Figure 3 we can see that, for non-Null pre-allocation methods, the number of
proportionality violations only significantly increases once we give Greedy a share of more than 70% of
the budget, suggesting that even a comparatively small amount of budget allocated to MES is sufficient
to achieve proportional outcomes. On the other hand, we can see that even Greedy itself satisfies EJR+X
on most of the instances, suggesting that it is relatively easy to satisfy in practice. This observation
is further supported by Figure 5a, where we can see that the average values of β for which β-budget
EJR+X is satisfied range between 1.4 and 3.0, much higher than the theoretical guarantees.

Figures 5a and 5b show the trade-offs between (proportional) representation and utilitarian welfare.
When interpolating between Greedy and MES, it is desirable to perform at least as well as the former
with respect to representation and at least as well as the latter with respect to utilitarian welfare. In
other words, we do not want the outcome ofRM to be “Pareto-dominated” by either constituent rule.
We refer to this requirement as the weak empirical baseline, visualized in Figure 4. For Greedy share

9While all theoretical guarantees in Section 5 have β ≤ 1, actual values of β are often higher.
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αG ∈ {0.1, 0.2, 0.3}, all mixed rules perform very similarly, with a slightly lower utilitarian welfare,
but about the same proportionality as MES. Because of that, all rules RM are dominated by MES for
αG up to 0.4. This decrease in utilitarian welfare when mixing 10 to 40 percent Greedy into MES can
potentially be explained by the Greedy rule having to pick suboptimal projects due to its lower budget
constraint. For αG ≥ 0.6, the mixed rule RM exceeds the weak empirical baseline with any of the four
pre-allocation methods.

We can also compare our mixed rules to a hypothetical randomized combination of Greedy and MES,
where we run Greedy with some probability p ∈ [0, 1] and MES with probability 1 − p. Ideally, we
would want the outcome of our mixed ruleRM to not be Pareto-dominated by any of these randomized
rules. We consider this to be the strong empirical baseline, also visualized in Figure 4. We can see that
RM with M ̸= Null meets the strong empirical baseline for αG ≥ 0.6. It is noteworthy that even for
αG = 0.9, the proportionality of the mixed rule is around half-way between Greedy and MES. However,
this is mostly a side effect of splitting the budget into two parts, as can be seen by comparing to the
mixed rule that combines Greedy with Greedy, essentially reducing the number of expensive projects
that are chosen. For details, we refer to Appendix C.3.

Overall, the experiments show that mixing Greedy with MESM works best on large instances when we
allow Greedy to spend 60 to 90 percent of the budget. We achieve significantly better results when
choosing the MES-Style, Eqal-Split or Value-Based pre-allocation method over the Null-method,
with MES-Style consistently performing slightly better than the other two. However, as MES-Style
fails to give any theoretical proportionality guarantees (see Table 3), the Value-Based method might be
preferable, as it gives strong theoretical guarantees with only a slight practical performance trade-off.

7 Conclusion

Taking inspiration from mixed-member electoral systems across the world, we have introduced mixed
voting rules for participatory budgeting. Using combinations of Greedy and MES as our primary
examples, we have established a general framework for analyzing the performance of such mixed rules.

Our focus on MES stems from its strong proportionality guarantees and its potential to rebalance dis-
proportional selections by earlier rules. Similar to how the proportional component in a mixed-member
electoral system (like Scotland’s Additional Member System) aims to correct the disproportionalities
created by district voting, MES can enhance the proportionality of outcomes when incorporated as a
later component of a mixed voting rule. This parallel has the potential to improve the explainability of
mixed PB voting rules, particularly when voters are already familiar with mixed-member systems.

We proposed several methods to account for a set of already selected projects when setting initial voter
budgets for MES. From these, the Value-Based method was the only one to exceed our theoretical
baseline in terms of proportionality guarantees. Our experiments suggest that mixing Greedy and
MES works best on large instances, when letting Greedy spend at least 50% of the budget. From the
pre-allocation methods we defined, the Value-Based method is among the best, performing significantly
better than the naive approach of spreading the budget equally among voters.

In future work, we plan to consider the multiwinner (unit-cost) setting, where stronger proportionality
guarantees are typically possible. We would also like to find a formal argument showing that the
Value-Based method achieves the best possible proportionality guarantee that meets our baseline.
Additionally, we plan to complement our proportionality analysis by deriving utilitarian guarantees for
mixed rules involving Greedy and MES.

The mixed voting rules framework that we have introduced is applicable to a wide variety of rules and
objectives. Some rules, like Chamberlin–Courant [11], might have a trivial adaptation, analogously to
Greedy. Others, like Phragmén’s sequential rule [17, 9], might require processing the set of pre-selected
projects, or an entirely different approach altogether.
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Appendix

A Omitted proofs

Observation 1. Suppose there exists a voting rule R whose outcome P ∗ = R(B, ∅) always satisfies some

monotone property X . Then, we can construct a voting rule R′
such that if R′ ∈ R with available budget

share α, the outcome ofR always satisfies α-budget X .

Proof. Fix α > 0 and let P ∗ = R(αB, ∅). Define R′ such that whenever it is provided with available
budget share α and set of pre-selected projects P0 it produces outcome R′(αB+ c(P0), P0) = P0 ∪P ∗.
This outcome is feasible for R′ as c(P0 ∪ P ∗) ≤ c(P0) + c(P ∗) ≤ c(P0) + αB. Further, if P ∗ satisfies
α-budget X then so does P0 ∪ P ∗, completing the proof. Note that when P0 = ∅, R′ is identical
to R.

A.1 Properties of the minimum voter budget share

Observation 2. For any pre-allocation method M, the minimum voter budget share αM
is lower-bounded

by MES’s available budget share α = BMES−c(P0)
B and upper-bounded by MES’s gross budget share

BMES

B .

Furthermore,
αMB
n exceeds all voter budgets determined in the rebalancing step, i.e.,

αMB
n ≥ max{bi}i∈N .

Proof. Pre-allocation methods defined using Definition 6 always perform weakly better (in terms of
minimum voter budget share) than just giving each voter their fair share of MES’s available budget αB

n ,
which means that αM ≥ mini∈N{(πi + αB

n ) nB} ≥ αB
n

n
B = α.

αM = min{(πi + bi)
n
B} ≤

∑
i∈N{(πi + bi)

n
B} 1

n ≤ c(P0)+αB
B = BMES

B .

As a consequence of the rebalancing step, for each voter i ∈ N either n
B bi ≤ n

B (πi + bi) = αM or
bi = 0.

Claim 1. Consider a target MES budget profile (bi)i∈N with some minimum voter budget share αM
,

satisfying the following constraints:

• 0 ≤ bi ≤ αMB
n

•
∑

i∈N bi = αB

• α ≤ αM ≤ BMES

B

Then, there exists a choice of (πi)i∈N (for some pre-allocationmethodM) with πi ≥ 0 and
∑

i∈N πi ≤ c(P0)
such that the rebalancing step from Definition 6 outputs this profile.

Proof. Choose πi = αMB
n − bi.

Then, πi ≥ 0 as bi ≤ αMB
n and

∑
i∈N πi = αMB−

∑
i∈N bi ≤ αMB−αB ≤ BMES−(BMES−c(P0)) =

c(P0). Further,mini∈N{πi + bi} n
B = αMB

n
n
B = αM as required.

Proposition 1. Fix an instance I and a set of pre-selected projects P0. The minimum voter budget shares

for MES
M(BMES, P0) withM ∈ {Null,MES-Style, Equal,Value-Based} satisfy the following:

0 ≤ α = αNull ≤ αValue-Based ≤ αEqual-Split ≤ αMES-Style ≤ BMES

B
≤ 1.
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Proof. Fix an instance I , MES budget BMES and set of pre-selected projects P0. Suppose two different
pre-allocation methods M and M’ produce profiles {πM

i }i∈N and {πM’
i }i∈N , which results in minimum

voter budget shares ofαM andαM’ respectively computed during the rebalancing step. Using Definition 6
we can find that for all i ∈ N , πM

i ≤ πM’
i , then αM ≤ αM’. Using this, we can show the following:

• For all i ∈ N we have 0 = πNull
i ≤ πValue-Based

i so αNull ≤ αValue-Based.

• For all i ∈ N we again have πValue-Based
i ≤ πEqal-Split

i as voters pay weakly less for each project
they support in the Value-Based method. Thus, αValue-Based ≤ αEqal-Split.

• Define a new pre-allocation method, Eqal-Split′, which selects voter payments πEqal-Split′
i =

min{πEqal-Split
i , b

n}. α
Eqal-Split′ = αEqal-Split as any voter with πi >

b
n gets bi = 0 in both

cases and does not affect the objective of the rebalancing optimization.

Now suppose there exists i ∈ N for which πMES-Style
i < πEqal-Split′

i . In particular, this means
that πMES-Style

i < b
n and thus i has never paid less than their fair share c(p)

|Np| for any project
p ∈ Ai ∩ P0. However, under Eqal-Split, voter i has always paid exactly c(p)

|Np| for every project
p ∈ Ai ∩ P0. This leads to a contradiction, which means that πMES-Style

i ≥ πEqal-Split′
i for all

i ∈ N , and therefore αEqal-Split = αEqal-Split′ ≤ αMES-Style.

A.2 Proportionality Theorems

Theorem 1. Consider a mixed voting rule R such that MES
Null ∈ R with available budget share

α = αNull
. Then, the outcome ofR satisfies α-budget EJR+ up to any project.

Proof. We adapt the proof of Brill and Peters [6] to the mixed voting rule setting. Let P ∗ be the
outcome of MESNull(BMES, P0). It is sufficient for us to show that P ∗ satisfies α-budget EJR+ up to
any project, as P ∗ will be contained in the outcome of R. Suppose for a contradiction that P ∗ does
not satisfy α-budget EJR+ up to any project. Then, there exists p /∈ P ∗ and voter set N ′ ⊆ Np with
c(Ai ∩ P ∗) + c(p) ≤ |N ′|

n αB for all i ∈ N ′.

Since p /∈ P ∗, we know that it was not affordable when MESNull terminated, and thus the remaining
MES voter budgets bri satisfy

∑
i∈N ′ bri < c(p). Therefore, we get that for projects from PR:

spending by voters in N ′

satisfaction of voters in N ′ =

∑
i∈N ′(αBn − bri )∑
i∈N ′ c(Ai ∩ P ∗)

>
|N ′|αBn − c(p)

|N ′|(|N ′|αBn − c(p))
=

1

|N ′|
.

Hence, during the execution of MESNull at least one voter has to pay more than 1
|N ′| per unit satisfaction

they received, for a candidate from P ∗. This means that at least one project p′ with ρ(p′) > 1
|N ′| was

selected by MESNull. Just before the first such project was selected, each voter i ∈ N ′ must have spent
at most c(Ai∩P ∗)

|N ′| ≤ αB
n − c(p)

|N ′| during the execution of R, and thus p must have been affordable with a
ρ(p) ≤ 1

|N ′| at that point, so it should have been selected over p′, which leads to a contradiction.

Theorem 2. Consider a mixed voting ruleR such that MES
Value-Based ∈ R with available budget share α

and minimum voter budget share αValue-Based ≥ α. Then the outcome of R satisfies αValue-Based
-budget

EJR+ up to any project.
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Proof. The proof builds on the proof of Theorem 1. Let αv = αValue-Based. We again let the outcome
of MESValue-Based(BMES, P0) be P ∗ and assume for contradiction that there exist p /∈ P ∗ and voter
set N ′ ⊆ Np with c(Ai ∩ P ∗) + c(p) ≤ |N ′|

n αvB, ∀i ∈ N ′. Let v∗ be the threshold value, from our
definition of the Value-Based pre-allocation method. We distinguish two cases.

Case 1: |Np| ≤ v∗

From the definition of the Value-Based method, we know that for each voter i ∈ N , πi + bi ≥ αvB
N

Analogously to the proof of Theorem 1, we know that for projects from P ∗:

spending by voters in N ′ (πi and bi)

satisfaction of voters in N ′ ≥
∑

i∈N ′(αvB
n − bri )∑

i∈N ′ c(Ai ∩ P ∗)
>

1

|N ′|

Hence, during either the pre-allocation of P0 or the execution of MES at least one voter has to pay more
than 1

|N ′| per unit satisfaction they received, for a candidate from P ∗. Further, this must be a candidate
from P ∗ \ P0 as whenever a voter funds projects from P0 during the pre-allocation, they must spend
at most 1

v∗ ≤ 1
|Np| ≤

1
|N ′| per unit satisfaction, from the definition of the Value-Based pre-allocation

method. Then, a contradiction can be obtained analogously to the proof of Theorem 1.

Case 2: |Np| > v∗

From our definition of the Value-Based method this must mean that there exists P ′
0 ⊂ P0 with

c(P ′
0) + c(p) > BMES and for each p′ ∈ P ′

0, |Np′ | ≥ |Np|, as p was not selected and v(p) = |Np| > v∗.

Let the voter payments and budgets produced in the pre-allocation of MESValue-Based(BMES, P0)
be (πi)i∈N and (bi)i∈N respectively. In order to reach a contradiction, we will consider running
MESValue-Based(BMES, P

′
0). We let the voter payments and budgets its pre-allocation produces be

(π′
i)i∈N and (b′i)i∈N respectively and let its available and minimum voter budget shares be α′ and

α′
v respectively. Clearly π′

i ≤ πi for any voter i as P ′
0 ⊆ P0.

We claim that the following inequalities hold:

(1) α′
v ≥ αv ,

(2) c(Ai∩P ′
0)

|N ′| + c(p)
|N ′| ≤ (π′

i + b′i) for every i ∈ N ′,

(3) π′
i ≤

c(Ai∩P ′
0)

|N ′| for every i ∈ N ′, and

(4) b′i <
c(p)
|N ′| for some i ∈ N ′.

For (1), observe that one (perhaps not optimal) way to choose voter budgets (b′i)i∈N would be to give
each voter b′i = bi + (πi − π′

i) ≥ bi. Thus, α′
v ≥ mini∈N{(π′

i + b′i)
n
B} ≥ mini∈N{(πi + bi)

n
B} = αv .

For (2), recall that P ′
0 ⊂ P ∗. Thus we know that for each voter i ∈ Np the following holds: c(Ai∩P ′

0)+

c(p) ≤ c(Ai ∩ P ∗) + c(p) ≤ |N ′|
n αvB ≤ |N ′|

n α′
vB using (1). Further, from the definition of minimum

voter budget share: α′
v ≤ (π′

i + b′i)
n
b . Combining these, we obtain the statement above.

For (3), note that each project p′ ∈ P ′
0 ⊆ P0 has |Np′ | ≥ |Np| ≥ |N ′| and was funded fully by the

Eqal-Split method. This means that each voter i ∈ N ′ paid at most 1
|N ′| per unit satisfaction they

obtained: π′
i

c(Ai∩P ′
0)

≤ 1
|N ′| .

For (4), observe that c(p) > BMES − c(P ′
0) = α′B =

∑
i∈N b′i ≥

∑
i∈N ′ b′i. Therefore, there exists

i ∈ N ′ such that c(p)
|N ′| > b′i.

Combining (2), (3), and (4), we obtain a contradiction.
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Theorem 3. Suppose R = [Rk]k∈[m], where R1 is Greedy and R2 is MES
Equal-Split

with minimum voter

budget share αEqual-Split
. Then, the outcome of R satisfies αEqual-Split

-budget EJR+ up to any two projects.

Proof. For this proof, we make some tweaks to the proof of the first case of Theorem 2 (the second case
is not needed). Let αv = αEqal-Split. We again let the outcome of MESEqal-Split be P ∗, but now assume
that there exist p1, p2 /∈ P ∗ and voter setN ′ ⊆ Np1 ∩Np2 with c(Ai ∩P ∗)+ c(p1)+ c(p2) ≤ |N ′|

n αvB
for all i ∈ N ′. Without loss of generality, assume c(p1) ≤ c(p2) and let p = p1. Thus, we know that
c(Ai ∩ P ∗) + 2c(p) ≤ |N ′|

n αvB for all i ∈ N ′.

Let the outcome of Greedy be P0 (as it is the set of pre-selected projects for MESEqal-Split). Greedy
did not select p, which means that there exists P ′

0 ⊆ P0 with |Np′ | ≥ |Np| for all p′ ∈ P ′
0 and

c(P ′
0) + c(p) > B1 ≥ c(P0)

We now consider the spending of voters fromN ′ for projects in P ′
0 ∪ (P ∗ \P0) ⊆ P ∗ (omitting P0 \P ′

0

as that spending may have been inefficient), and the satisfaction they achieve from those projects:

spending by voters in N ′

satisfaction of voters in N ′ ≥
(
∑

i∈N ′
αvB)
n − bri )− c(p)∑

i∈N ′ c(Ai ∩ P ∗)
>

|N ′|αvB
n − 2c(p)

|N ′|(|N ′|αvB
n − 2c(p))

=
1

|N ′|

Hence, during either the pre-allocation of P ′
0 ⊆ P0 or the execution of MES (which additionally selected

PR \P0) at least one voter had to pay more than 1
|N ′| per unit satisfaction they received, for a candidate

from PR. Further, this must be a candidate from PR \ P0 as whenever a voter funded projects from P ′
0

during the pre-allocation, they must have spent at most 1
|Np| ≤

1
|N ′| per unit satisfaction. The rest of

the argument follows from the proof of Theorem 1.

B Proportionality Violations

In order to formulate the negative results in this section, we will use the proportionality notion of
Extended Justified Representation (EJR), and its variants, from PB literature.

Definition 10. Let T ⊆ P and N ′ ⊆ N . We say that voter group N ′
is T -cohesive if and only if

T ⊆
⋂

i∈N ′ Ai and c(T ) ≤ |N ′|
n B. We say that N ′

is α-budget T -cohesive if and only if T ⊆
⋂

i∈N ′ Ai

and c(T ) ≤ |N ′|
n αB

Definition 11 (Extended to PB by Peters et al. [24]). We say that an outcome P ∗ ⊆ P satisfies Extended
Justified Representation (EJR) if, for every T -cohesive group N ′

, either T ⊆ P ∗
or there exists a voter

i ∈ N ′
such that c(Ai ∩ P ∗) ≥ c(T ). Following Definition 5, the outcome satisfies α-budget EJR if this is

instead true for every α-budget T -cohesive group.

A feasible outcome satisfying EJR always exists, but cannot be computed in polynomial time, unless
P=NP [24], which motivated the following relaxation:

Definition 12. We say that an outcome P ∗ ⊆ P satisfies Extended Justified Representation up to one

project (EJR1) if, for every T -cohesive group N ′
, either T ⊆ P ∗

or there exists a voter i ∈ N ′
and a project

p ∈ Ai ∩ (P \ P ∗) such that c(Ai ∩ P ∗) + c(p) > c(T ). The outcome satisfies α-budget EJR1 if this is
instead true for every α-budget T -cohesive group.

The outcome of MES(BMES, ∅) always satisfies EJR1, and is computable in polynomial time. EJR+ up to
any project implies EJR1 [6].10

We generalize the definition of EJR1 as follows.
10We are skipping over some intermediate notions between the two, such as EJR up to any project (EJRx), which are not

needed for our results — see, e.g., Rey et al. [25] for an overview.
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EJR+X1

EJR+X2

...

EJR1

EJR2

...

EJR

α-budget EJR+X1

α-budget EJR+X2

...

α-budget EJR1

α-budget EJR2

...

α-budget EJR

Figure 6: Relationships between PB proportionality notions, for α ≤ 1. We refer to “EJR+ up to any k projects”
by the abbreviation EJR+Xk (so that EJR+X1 corresponds to EJR+X in Section 6). Nodes with a double border
correspond to axioms that have been proposed in this paper.

Definition 13. We say that an outcome P ∗ ⊆ P satisfies EJR up to k projects (EJRk) if, for every

T -cohesive group N ′
, either |T ∩ P ∗| > |T | − k11 or there exists a voter i ∈ N ′

and a set of projects

P ′ ⊆ Ai ∩ (P \ P ∗) with |P ′| ≤ k such that c(AI ∩ P ∗) + c(P ′) > c(T ). P ∗
satisfies α-budget (EJRk)

if the above instead holds for every α-budget T -cohesive group N ′
.

The idea of EJRk is that either (i) N ′ is at most k-1 projects away from getting T , the set of projects
they are cohesive over, or (ii) we can give some voter in N ′ k projects (possibly sourced from outside
of T ) to make them strictly better off than they would be from getting T . EJRk reduces to EJR1 when
k = 1. An “up to k projects” style notion has not been considered for the PB setting, and we define it
here analogously to the definition of envy-freeness up to k goods in fair division literature (see, e.g.,
Suksompong [27]).

We can show that EJRk is a weaker axiom than EJR up to any k projects.

Proposition 2. Fix P ∗ ⊆ P and k ∈ N+
. If P ∗

satisfies EJR+ up to any k projects, then P ∗
satisfies EJRk.

Proof. Suppose P ∗ satisfies EJR+ up to any k projects for some k ≥ 1. Let T ⊆ P and consider a
T -cohesive group N ′ ⊆ N with |T ∩ P ∗| ≤ |T | − k. Then, consider a k-size subset of T \ P ∗ and call
it P ′. We know from the definition of EJR+ up to any k projects that c(Ai ∩ P ∗) + c(P ′) > |N ′|[α]B

n
and we are done.

The relationships between the proportionality notions restated and introduced in this paper are summa-
rized in Figure 6. Our primary motivation for introducing weaker proportionality axioms is to show that
some of our pre-allocation methods can perform arbitrarily badly, from a proportionality perspective.

We restate stronger versions of the results in Table 3 using the EJR-based proportionality notions defined
above. Let P ∗ = MESM(BMES, P0) be the outcome of MES with available budget share α = BMES−c(P0)

B .
P ∗ does not necessarily satisfy the proportionality measure corresponding to that pre-allocation method
in Table 4, with respect to the available budget share α. Note that each of the counterexamples we

11“|T ∩ P ∗| > |T | − k” represents a generalization of “T ⊆ P ∗” from the definition of EJR1.
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construct in this section produce an exhaustive outcome, and thus these violations are not a consequence
of MES not spending enough of its available budget.

Method M Violated Properties

Null α-budget EJR (Proposition 3), even if P0 selected by Greedy
Value-Based α-budget EJR (Proposition 3), even if P0 selected by Greedy
Eqal-Split α-budget EJR1 (Proposition 6), even if P0 selected by Greedy
Eqal-Split α-budget EJRk (Proposition 4), in general
MES-Style α-budget EJRk (Proposition 5), even if P0 selected by Greedy

Table 4: Proportionality violations for the outcome P ∗ = MESM(B′, P0).

Proposition 3. Suppose R ∈ R is MES with any pre-allocation method and available budget share α.
Then the outcome ofR does not necessarily satisfy α-budget EJR.

This follows directly from the fact that the outcome of MES doesn’t satisfy EJR [24], by considering
R(αB, ∅).

Proposition 4. Consider a mixed voting ruleR such that MES
Equal-Split ∈ R with available budget share

α. Then, for any two arbitrary positive integers l, k ∈ N+
, the outcome ofR does not necessarily satisfy

α
l -budget EJR up to k projects.

Proof. Let l, k ∈ N+ be two positive integers. We construct a PB instance I , which shows that the
outcome ofR does not satisfy α

l -budget EJR up to k projects.

Consider the PB instance I = (B,P,A, c) with an even number of voters n = 8l and instance budget
B = n. Let P contain the following projects:

• pi for 1 ≤ i ≤ n
2 , with c(pi) = 1 and Npi = {i}

• p′j for 1 ≤ j ≤ 2k with c(p′j) =
n
8kl and Np′j

= {1, . . . , n2 }

• p′′ with c(p′′) = n
2 and Np′′ = {n

2 + 1, . . . , n}

Note, that the approval sets in A are implicitly defined through the approving voter sets Np for all
projects p ∈ P . We let P0 = {p1, . . . , pn

2
} and consider MESEqal-Split(B,P0) which has an available

budget share α = 0.5. The Eqal-Split method outputs the following voter payments and budgets:

• πi = 1 and bi = 0 for 1 ≤ i ≤ n
2 and

• πi = 0 and bi = 1 for n
2 < i ≤ n.

MESEqal-Split selects p′′ and terminates with outcome P ∗ = {p1, . . . , pn
2
, p′′} with c(P ∗) = n.

Now, we choose T = {p′1, . . . p′2k} and N ′ = {1, . . . , n2 } with c(T ) = n
4l =

0.5
l

n
2
n

n =
α
l
|N ′|B
n . Thus, N ′

is α
l -budget T -cohesive (compare Definition 10). However, we have |T ∩ P ∗| = 0 < k = |T | − k and

for any voter i ∈ N ′ and any set of projects P ′ ⊆ Ai ∩ (P \ P ∗) = T with |P ′| ≤ k, we have

c(Ai ∩ P ∗) + c(P ′) ≤ c(pi) + k
n

8kl
= 1 +

n

8l
= 2 =

n

4l
= c(T ).

Thus, the outcome ofR violates α
l -budget EJR up to k projects (compare Definition 13).
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Project p1 p2 . . . pn
2

p′1 p′2 . . . p′2k p′′

Cost 1 1 . . . 1 n/8kl n/8kl . . . n/8kl n/2

Number of approvals 1 1 . . . 1 n/2 n/2 . . . n/2 n/2

A1 ✓ ✓ ✓ · · · ✓

A2 ✓ ✓ ✓ · · · ✓
... . . . ...

... . . . ...
An

2
✓ ✓ ✓ · · · ✓

An
2
+1 ✓

An
2
+2 ✓

...
...

An ✓

Table 5: Example instance with a budget of n for the proof of Proposition 4.

Proposition 5. Consider a mixed voting rule R such that MES
MES-Style ∈ R with available budget share

α. Then, for any arbitrary positive integer k ∈ N+
, the outcome ofR does not necessarily satisfy α-budget

EJR up to k projects. This holds even when MES is the second rule inR and the first rule inR is Greedy

(with tie-breaking in favor of large projects).

Proof. Let k ∈ N+ be an arbitrary positive integer. We construct a PB instance I , which shows that the
outcome ofR does not satisfy α-budget EJR up to k projects.

Let I = (B,P,A, c) be a PB instance with n = 100 voters and a budget B = 100. Let parameter λ ∈ N
be defined as λ = ⌈k4⌉. Let P contain the following subsets of projects:

• Type 1: For 1 ≤ j ≤ 50 define pj with cost c(pj) = 1 and 40 approving voters Npj =
{j} ∪ {62, . . . , 100}.

• Type 2: For every unique 10-person subset of voters N∗ ⊂ {1, . . . , 40} define 5λ projects pN∗
j

with 1 ≤ j ≤ 5λ, with cost c(pN∗
j ) = 1

λ > 0, approved by the 10 voters in N∗, i.e., NpN
∗

j
= N∗.

• Type 3: For every unique 40-person subset of voters N̂ ⊂ {1, . . . , 50} define 40λ projects pN̂j
with 1 ≤ j ≤ 40λ with cost c(pN̂j ) = 39

40λ , approved by the 40 voters in N̂ , i.e., N
pN̂j

= N̂ .

• Type 4: Define one project p′ with cost c(p′) = 11, approved by 11 voters Np′ = {51, . . . , 61}.

Note, that the approval sets in A are implicitly defined through the approving voter sets Np for all
projects p ∈ P .

Let P0 = {p1, . . . , p50}, which means that MES’s available budget share is α = 0.5. Note, that P0 is
exactly the set of projects that would be chosen by Greedy(50, ∅) in this instance (with tie-breaking
in favor of large projects). Consider the MES-Style pre-allocation method, with some arbitrary order
of P0. The method funds the first 40 projects in this ordering equally, with supporters paying 1

40 per
project. At this point, all voters in {62, . . . , 100} run out of money and the remaining projects are
funded solely by their supporters from i ∈ {1, . . . , 50}. Call the set of these 10 voters N∗.

The MES-Style pre-allocation method selects voter payments and induces voter budgets as follows:

• πi = 1; bi = 0 for i ∈ N∗ ∪ {62, . . . , 100},

21



Project p1 p2 . . . p50 Type 2 Type 3 p′

Cost 1 1 . . . 1 1/λ 39/40λ 11

Quantity
(
40
10

)
· 5λ

(
50
40

)
· 40λ

Number of approvals 40 40 . . . 40 10 40 11

A1 ✓ (✓) (✓)
A2 ✓ (✓) (✓)
... . . . ...

...
A50 ✓ (✓) (✓)
A51 ✓

A52 ✓
...

...
A61 ✓

A62 ✓ ✓ · · · ✓

A63 ✓ ✓ · · · ✓
...

...
... . . . ...

A100 ✓ ✓ · · · ✓

Table 6: Example instance with a budget of b = 100 for the proof of Proposition 5. Each project of type 2 is
approved by 10 voters in {1, . . . , 40} and each project of type 3 is approved by 40 voters in {1, . . . , 50}.

• πi =
1
40 , bi =

39
40 for i ∈ {1, . . . , 50} \N∗, and

• πi = 0, bi = 1 for i ∈ {51, . . . , 61}.

This yields a minimum voter budget share of αv = 1. MES then selects the 40λ type 3 projects supported
by {1, . . . , 50} \N∗, and then the Type 4 project p′, yielding an output P ∗ with c(P ∗) = 100.

Each voter i ∈ N∗ obtains a (cost) satisfaction of µi(P
∗) = c(Ai ∩ P ∗) = c(pi) = 1. However, there

exist 5λ commonly approved unchosen projects T = {pN∗
j }1≤j≤5λ ⊆

⋂
i∈N∗ Ai with c(T ) = 5λ 1

λ =

5 = α|N∗|B
n . Thus, N∗ is α-budget T -cohesive (compare Definition 10).

However, we have |T ∩ P ∗| = 0 < 5k
4 − k ≤ 5λ− k = |T | − k and for any voter i ∈ N∗ and any set

of projects P ′ ⊆ Ai ∩ (P \ P ∗) with |P ′| ≤ k, we have

c(Ai ∩ P ∗) + c(P ′) ≤ 1 + k · 1
λ
≤ 1 + k · 4

k
= 5 = c(T ).

Thus, the outcome ofR violates α-budget EJR up to k projects (compare Definition 13).

This example be tweaked to show that the α
l -budget EJR up to k projects is not satisfied, for any

arbitrarily arbitrarily high l ∈ N+ by choosing an appropriately large number of voters, similarly to
the proof of Proposition 4.

Proposition 5 demonstrates that in order to achieve any kind of proportionality guarantees, it might be
necessary to give a budget of less than their fair share of the MES budget, BMES

n , to initially empty-handed
voters (those who approve no projects in P0), even if the cost of P0 doesn’t exceed the endowments of
non-empty-handed voters. This might seem unfair, but it is in this case preferable to charging the cost
of an entire project to one voter.

Proposition 6. Consider a mixed voting rule R = [Rj ]1≤j≤m with R1 = Greedy and R2 =
MES

Equal-Split
with available budget share α. Then the outcome of R does not necessarily satisfy α-budget

EJR up to one project.
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Proof. We construct a PB instance I , which shows that the outcome of R does not satisfy α-budget
EJR1.

Let I = (B,P,A, c) be a PB instance with n = 100 voters and budget B = 100. Let P contain the
following projects:

• p with cost c(p) = 48.6 and 11 approving voters Np = {90, . . . , 100}

• pj for 1 ≤ j ≤ 10 with cost c(pj) = 0.14 and 1 approving voter Npj = {j}.

• p′ with cost c(p′) = 2.85, and 10 approving voters Np′ = {1, . . . , 10}

• p′′j for 1 ≤ j ≤ 3 with cost c(p′′j ) = 1.5, and 9 approving voters Np′′j
= {1, . . . , 9}

• p̂j for 1 ≤ j ≤ 19 with cost c(p̂j) = 2.31 and 4 approving voters Np̂j = {4j + 7, . . . , 4j + 10}

• p̂20 with cost c(p̂20) = 1.88 and 4 approving voters Np̂20 = {10, 87, 88, 89}

Note, that the approval sets in A are implicitly defined through the supporter sets Np for all projects
p ∈ P .

Consider the output of MESEqal-Split(100,Greedy(50, ∅)). Greedy first chooses p, and then chooses
{p1, ..., p10} in some order, as it can no longer afford any other projects in P . c({p, p1, . . . , p10}) = 50,
which provides MES with an available budget share of α = 0.5.

The Eqal-Split pre-allocation method assigns budgets as follows:

• πi = 0.14 and 0.4375 ≤ bi ≤ 0.4376 for 1 ≤ i ≤ 10,

• πi = 0 and 0.5775 ≤ bi ≤ 0.5776 for 11 ≤ i ≤ 89, and

• πi =
48.6
11 and bi = 0 for 90 ≤ i ≤ 100.

MES then selects p′, which reduces the budgets of each voter i ∈ {1, . . . , 10} to bi ≈ 0.1525. Importantly,
this means that the voters in {1, . . . , 9} can no longer afford any project from {p′′1, p′′2, p′′3}. MES then
selects {p̂1, . . . , p̂20} and terminates with an exhaustive outcome P ∗ = {p, p1, . . . , p10, p′, p̂1, . . . , p̂20},
having spent 48.62 units of its available budget.

Consider T = {p′′1, p′′2, p′′3}. Voter group N ′ = {1, . . . , 9} is 0.5-budget T -cohesive as 0.5 |N ′|
n B =

4.5 = c(T ), and each voter i ∈ N ′ has c(Ai ∩ P ∗) = c(p′) + c(pi) = 2.99, and thus for any project
p ∈ P \ P ∗ = {p′′1, p′′2, p′′3}, c(Ai ∩ P ∗) + c(p) = 2.99 + 1.5 < c(T ).

Thus P ∗ does not satisfy EJR up to one project (compare Definition 12).

C Further experimental results

In this section, we discuss some more detailed results from the experiments we conducted.

C.1 Minimum Voter Budget Shares in Practice

In Section 5.1 we introduce the concept of the minimum voter budget share αM , based on which we
show different proportionality guarantees for MESM in Section 5.2. In particular, we show that the
outcome of MESM (B′, P0) satisfies αM -budget EJR up to any project forM ∈ {Null, Value-Based}
and αM -budget EJR up to any two projects forM = Eqal-Split if P0 was selected by Greedy. The
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Figure 7: Minimum voter budget share αM in practice
for different pre-allocation methods and Greedy bud-
get shares αG, averaged over all instances with at least
20 projects.

Figure 8: Budget spending of each individual rule in
the mixed ruleRValue-Based, averaged over all instances
with at least 20 projects.

(a) Loss of utilitarian welfare due to splitting the budget,
averaged over instances of different sizes.

(b) Increase of proportionality due to splitting the budget, av-
eraged over all instances with at least 20 projects. The values
for the mixed ruleRValue-Based are displayed for comparison.

Figure 9: Performance of mixing Greedy with Greedy for different (first) Greedy budget shares αG from 0 to 1.
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relation between αM for different pre-allocation methodsM is stated in Observation 2. In particular,
we know that αNull ≤ αValue-Based ≤ αEqal-Split, where α is the available budget share of MESM . To
get a feeling how far apart these values are in practice we computed them for the pre-allocation of
P0 = Greedy(αGB, ∅) for αG ∈ {0, 0.1, 0.2, . . . , 1}.

Figure 7 shows the average minimum voter budget share αM for each pre-allocation method M , and
for different Greedy shares of the budget, over all instances with at least 20 projects. We observe, that
αNull is significantly lower than the minimum voter budget share produced by the other three methods,
suggesting thatRValue-Based provides a much better proportionality guarantee thanRNull in practice.
The proportionality guarantees of RValue-Based and REqal-Split are incomparable, as Eqal-Split
provides a weaker guarantee, but for a potentially larger fraction of the budget αEqal-Split. However
Figure 7 shows that in practice αEqal-Split is not much larger than αValue-Based.

C.2 Budget Spending of MES in a Mixed Rule

A well known problem of the Method of Equal Shares is that it is not exhaustive, i.e., after its execution,
there can be unchosen affordable projects. This occurs because MES is constrained to only select projects
that can be funded by their supporters. In practice this issue is often solved by using a completion
method, as explained in Section 3.

Figure 8 shows how much of the budget is spent by each separate rule in RM =
[Greedy,MESValue-Based,Greedy] as defined in Section 6, averaged over all instances with at least
20 projects. We can see, that while (the first) Greedy spends its available budget αGB almost entirely,
this is not true for MES. In fact, for large values of αG, the spending of MES is close to zero. In these
cases,RM can almost be interpreted as mixing Greedy with Greedy, instead of Greedy with MES. We
discuss mixing Greedy with itself in the subsection below.

A popular method to make MES use more of its available budget is “completion by varying the budget”
[24], which involves iteratively increasing the starting budgets of all voters, until giving each voter one
more unit of the budget would result in an outcome that exceeds the budget limit. In future work, it
would be interesting to use this method in experiments, as it could solve the issue of MES only spending
a comparatively small proportion of its available budget.

C.3 Effects of Splitting the Budget

Mixed Rules on Small Instances Since our experiments are limited to large instances (with at
least 20 projects), this section addresses the challenges associated with running mixed rules on smaller
instances.

Splitting the budget betweenmultiple rules can sometimes have undesirable consequences— for example,
a project costing more than 50% of the budget is unlikely to ever be selected by a mixed rule that splits
the budget into two equal sized parts. This problem will less likely occur in larger instances, since the
average project cost tends to be lower for instances with a large number of projects. For example, the
cost of the most expensive project in instances with less than 10 projects is 71% of the budget limit
on average, while this value is only 44% over instances with at least 20 projects. We can empirically
observe the effect of splitting the budget, which we explain below.

Mixing Greedy with Itself By comparing the outcomes ofRG = [Greedy,Greedy] to the outcome
of Greedy, we can isolate the consequences of splitting the budget.

Figure 9a shows the utilitarian welfare for RG([αGB,B]), when varying αG for different instance sizes
(measured by the number of projects). Note, that for values 0 and 1 of αG the mixed rule RG is just the
Greedy rule. The performance of RG drops significantly when splitting the budget for instances with
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fewer than 20 projects, whereas the effect is much less pronounced for larger instances. For instances
with at least 50 projects even splitting the budget in half seems to have almost no effect. This indicates
that using mixed rules on small instances does not work well in practice.

Figure 9b shows the performance of RG in terms of proportionality, compared to that of RM =
[Greedy,MESValue-Based,Greedy] as defined in Section 6. It seems surprising that the proportionality
increases when splitting the budget of the Greedy rule into two parts, indicating that forcing Greedy
to pick cheaper projects (without checking who approves these projects) increases proportionality. This
could potentially be caused by correlations between the votes, or the fact that when larger projects are
chosen, more projects remain unchosen, which could make an EJR+X violation more likely.
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