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Abstract

We study the independent approval model (IAM) for approval elections, where each candidate
has its own approval probability and is approved independently of the other ones. This model
generalizes, e.g., the impartial culture, the Hamming noise model, and the resampling model.
We propose algorithms for learning IAMs and their mixtures from data, using either maximum
likelihood estimation or Bayesian learning. We then apply these algorithms to a large set of
elections from the Pabulib database. In particular, we find that single-component models are
rarely sufficient to capture the complexity of real-life data, whereas their mixtures perform well.

1 Introduction

We aim to design algorithms that take an approval election as input and produce simple probabilistic
models for generating similar elections (models of generating random elections are often called statistical
cultures). We form such algorithms using maximum likelihood estimation (MLE) and Bayesian learning
approaches, and evaluate them on the data from the Pabulib collection of real-life participatory budgeting
elections [9]. Consequently, we also get an insight into the nature of Pabulib data.1

More formally, an approval election consists of a set of candidates and a collection of voters. Each voter
indicates which candidates he or she finds appealing, i.e., which ones he or she approves, and which
ones he or she does not. One particularly natural model of generating such elections is to provide for
each candidate c a probability pc, so that each voter approves c with this probability, independently
from the other candidates and voters. We refer to this model as the independent approval model (IAM;
this model was also studied, e.g., by Lackner and Maly [12] and Xia [22]). For a positive integer t, by
a t-parameter IAM we mean an IAM where each candidate has one of at most t different approval
probabilities, and we often write full IAM when no such restriction applies. While full IAM is not widely
used in computational social choice—indeed, it does not appear in the recent overview of Boehmer et al.
[3]—its restricted variants are quite popular. For example, 1-IAM—where each candidate is approved
independently with some probability p—is simply the p-Impartial Culture model (p-IC), one of the most
popular statistical cultures for approval elections [3], and 2-IAM is equivalent to the resampling model
of Szufa et al. [21]. We also note that the Hamming noise model—analyzed, e.g., by Caragiannis et al.
[6], is a restricted variant of 2-IAM.

We provide algorithms that given an approval election and a number t, find a t-parameter IAM that
maximizes the probability of generating this election. These algorithms are simple for impartial culture,
Hamming noise model, and full IAM, while resampling and general t-parameter IAMs require more
effort. We also show how the classic expectation-maximization (EM) and Bayesian learning algorithms
can be used to learn mixtures of t-parameter IAMs, albeit with limited guarantees. In this case, we
focus on the Hamming noise model, resampling, and full IAM.

There are two main reasons why such learning algorithms are useful. The first one is that using them
we can get a strong insight into the nature of the elections that we learn. In our case, we consider all
271 approval elections from Pabulib [9] with up to tens of thousands of voters and between a few to

1We disregard the costs of the projects (candidates) present in participatory budgeting. We also stress that Pabulib elections
are certainly not representative of all approval elections. In particular, we do not include real-life single-winner approval
elections. We leave the analysis of approval elections from different sources as future work.



200 candidates. For each of these elections we learn each of our models. We find that while single
IAMs are sufficient for some of the instances, in most cases it is necessary to consider mixtures of at
least a few IAM components. In addition, we find that some elections are inherently difficult to learn,
irrespectively how strong would our models be.

The second reason why our learning algorithms—especially those for mixture models—are useful, is
that they provide models which generate fairly realistic synthetic data. In this sense, such models are
more realistic than basic, stylized models often used in the literature (see the overview of Boehmer et al.
[3]), but still offer a strong level of control over the generated data. For example, we can generate as
many votes as we like.

Related Work. So far, learning approval elections did not receive much attention in computational
social choice [3]. However, we mention a paper that analyzes the number of approval votes that we need
to sample to learn an underlying ground truth [5]. Further, Rolland et al. [20] consider learning profiles
where each voter assigns a score to each candidate that either comes from a continuous domain or from
a discrete one. For the discrete case, their setting generalizes ours, but they consider quite different
distributions and learning approaches. On the other hand, learning models of ordinal elections, where
each voter ranks the candidates, is well-represented. For example, there are algorithms for learning
the classic Mallows model [15, 1, 2, 13], or the Plackett–Luce model, which is similar in spirit to our
IAMs [24, 14, 23, 17]. There is also literature on learning voting rules, but it is quite distant from our
work and we only mention a single paper on this topic [4].

2 Preliminaries

For a positive integer t, by [t] we mean the set {1, . . . , t}. Given two numbers a and b, we write [a; b]
to denote a closed interval between a and b. For some probabilistic event X , we write P(X) to denote
the probability that it occurrs. Given a random variable X and some probability distribution D, we
write X ∼ D to indicate that X is distributed according to D. In particular, U(a, b) is the uniform
distribution over interval [a; b], under Bernoulli(p)we draw 1with probability p and 0with probability
1−p, and under the categorical distributionCat(p1, . . . , pk), for each i ∈ [k] the probability of drawing
i is pi (hence we require all pi values to be nonnegative and to sum up to 1).

Elections An (approval) election is a pair E = (C, V ), where C = {c1, c2, . . . , cm} is a set of
candidates and V = (v1, . . . , vn) is a collection of voters. Each voter vi has a vote A(vi) ⊆ C (also
called an approval ballot), i.e., a set of candidates that this voter approves. By vi(cj) we mean the 1/0
value indicating whether cj is included in A(vi) or not. For each candidate c ∈ C , we write V (c) to
denote the set of voters that approve c. The value |V (c)| is known as the approval score of c; |V (c)|/n is
the probability that a random voter approves c. Given two votes,X,Y ⊆ C , their Hamming distance is
ham(X,Y ) = |X \ Y |+ |Y \X|, i.e., it is the number of candidates approved in exactly one of them.

Probabilistic Models of Elections For a set of candidates C , we write D(C) to denote the family
of probability distributions over the subsets of C , i.e., over the votes with candidates from C . For a
distribution D ∈ D(C) and a vote X ⊆ C , P(X |D) is the probability of generating vote X under
D. For an election E = (C, V ), where V = (v1, . . . , vn), P(E |D) is the probability of generating E,
provided that each of its votes is drawn from D independently:

P(E |D) =
∏

i∈[n] P(A(vi) |D). (1)

P(E |D) is called the likelihood of generating E under D. We will also be interested in ln(P(E |D)),
i.e., the log-likelihood of generating E.



Remark 2.1. We view the voters as non-anonymous. To see what this entails, consider elections E′ =
(C, V ′) and E′′ = (C, V ′′), with C = {a, b}, V ′ = (v′1, v

′
2), and V

′′ = (v′′1 , v
′′
2), where:

A(v′1) = {a, b}, A(v′2) = {b}, and A(v′′1) = {b}, A(v′′2) = {a, b}.

In our model, these two elections are distinct, but they would be equal if one viewed the voters as anonymous
(it would only matter how many particular votes were cast, and not who cast them). The choice of the voter
model does not affect our results: The problems of maximizing the probability of generating a given election
under both models are equivalent (the respective probabilities only differ by a product of some binomial
coefficents that only depend on the election’s votes).

For a candidate set C = {c1, . . . , cm} and a number of voters n, a statistical culture is a probability
distribution over elections with this candidate set and n voters. By a small abuse of notation, we will also
refer to the distributions from D(C) as statistical cultures since we can always sample an election by
drawing the votes from D independently. The following cultures from D(C) are particularly relevant:

p-Impartial Culture (p-IC). Under p-IC, for each voter v and candidate c we have that v(c) ∼
Bernoulli(p), i.e., each voter approves each candidate with probability p.

ϕ-Hamming. This distribution is parameterized by a central vote U ⊆ C and a parameter ϕ ∈ [0; 1].
The probability of generating voter v’s vote is proportional to ϕham(U,A(v)). ϕ-Hamming is
sometimes referred to as the ϕ-noise model [21].

(p,ϕ)-Resampling. The resampling model is parameterized by a central vote U ⊆ C , resampling
probability ϕ ∈ [0; 1], and approval probability p ∈ [0; 1]. To generate a voter’s v, vote A(v) ⊆ C ,
we do as follows: First, we let A(v) be equal to U . Then, independently for each c ∈ C , with
probability ϕ we replace value v(c) with one sampled from Bernoulli(p).

Impartial culture and the Hamming model are part of the folk knowledge, although the Hamming model
was recently studied by Caragiannis et al. [6] and Szufa et al. [21]. The resampling model is due to
Szufa et al. [21]. The Hamming model is analogous to the classic Mallows model from the world of
ordinal elections [16], albeit Szufa et al. [21] advocate using the resampling model instead.

Mixture Models for Elections. Let C be some set of candidates. Given a family of K distributions
D1, . . . , DK ∈ D(C) and probabilities p1, . . . , pK (where

∑K
k=1 pk = 1), we can form the following

mixture model: (1) We draw a number k ∼ Cat(p1, . . . , pK) and, then, (2) we draw a vote X ∼ Dk.
We call D1, . . . , DK the components of this model, andK is their number.

3 Independent Approval Model

In this section we present the independent approval model and argue that it generalizes all the statistical
cultures from Section 2. We stress that it was already studied, e.g., by Lackner and Maly [12] and Xia
[22]). Let C = {c1, . . . , cm} be the candidate set:

(p1, . . . , pt)-Independent Approval Model. In this model, abbreviated as (p1, . . . , pt)-IAM, the
candidate set is partitioned into t disjoint groups, C1, . . . , Ct, and for each group Cj , each
candidate ci ∈ Cj is approved independently, with probability pj . We use the name t-parameter
IAM when we disregard specific probability values.

The (p1, . . . , pm)-IAM, where every candidate has his or her individual approval probability, is a
particularly natural special case of the independent approval model, which we refer to as full IAM.
Further, p-IC and the (p, ϕ)-resampling models also are special cases of IAM. For the former, simply



take a single candidate group with approval probability p. For the latter, note that (p, ϕ)-resampling
with central vote U is equivalent to the (p1, p2)-IAM with:

p1 = (1− ϕ) + ϕ · p, and p2 = ϕ · p,

where C1 = U and C2 = C \ U . In the other direction, (p1, p2)-IAM with candidate groups C1 and
C2, where p1 ≥ p2, is equivalent to (p, ϕ)-resampling with ϕ = 1− (p1 − p2), p = p2/1−(p1−p2), and
central vote U = C1 (note that as p1 ≥ p2, we have that p and ϕ are guaranteed to be between 0 and 1).
Consequently, resampling and 2-parameter IAM are equivalent.

The ϕ-Hamming model is a special case of 2-parameter IAM. Putting it in our language, Caragiannis
et al. [6] have shown that for an approval probability p ∈ [0.5; 1], (p, 1 − p)-IAM—with candidate
groups C1 and C2—is equivalent to ϕ-Hamming with ϕ = 1−p

p and central vote U = C1. Similarly,
ϕ-Hamming with central vote U is equivalent to (p1, p2)-resampling with candidate groups C1 = U
and C2 = C \ U , p1 = 1

1+ϕ and p2 = 1− p1 =
ϕ

1+ϕ .

Altogether, we have the following hierarchy of expressivity of the IAM models (we view our models
as sets of distributions, for all possible choices of parameters; e.g., by p-IC we mean all the impartial
culture distributions for all approval probabilities p):

p-IC ⊂ ϕ-Hamming ⊂ (p, ϕ)-Resampling = (p1, p2)-IAM
⊂ (p1, p2, p3)-IAM ⊂ · · · ⊂ (p1, . . . , pm)-IAM.

Remark 3.1. Later on we consider mixture models based on IAM variants. For example, by 2-full-IAM we
mean a mixture model with two full-IAM components. This should not be confused with 2-parameter IAM,
which is the resampling model (and, by definition, has a single component).

4 Learning Algorithms

Let us now focus on the following task: We are given an election E = (C, V ) with candidate set
C = {c1, . . . , cm}, and voter collection V = (v1, . . . , vn). We also have a family of distributions from
D(C). Our goal is to find a distribution from this family that maximizes the probability of generating
election E. We will first solve this problem for each of the special cases of IAM from the previous two
sections, and then we will consider IAM mixture models.

4.1 Learning a Single IAM Model

Let E = (C, V ) be an election, as described above. For each set of candidates B ⊆ C , let appE(B) =∑
c∈B |V (c)| be the total number of approvals that members of B receive, and let probE(B) = app(B)

n|B|
be the probability that a random voter approves a random candidate fromB. ByE(B), we mean election
E restricted to the candidate set B. Consider a partition of C into sets X and Y , and let DX ∈ D(X)
and DY ∈ D(Y ) be two IAMs with t1 and t2 parameters, respectively. Further, let DXY ∈ D(C) be
the (t1 + t2)-parameter IAM that generates approvals for candidates from X according to DX and for
those from Y according to DY . We have:

P(E |DXY ) = P(E(X) |DX) · P(E(Y ) |DY ). (2)

For each t ∈ [|C|] and each partition of C into C1, . . . , Ct, we write IAM(C1, . . . , Ct) to refer to
the t-parameter IAM that uses this partition and for each i ∈ [t], the probability of approving a
candidate from Ci is pi = probE(Ci). As per Equation (2), we have P(E | IAM(C1, . . . , Ct)) =∏

i∈[t] P(E(Ci) | probE(Ci)(Ci)-IC). Intuitively, if we want a t-parameter IAM that maximizes the
probability of generating a given election, it suffices to use IAM(C1, . . . , Ct) for an appropriate partition
of the candidate set. Next we show this fact formally and argue how to find optimal partitions (for the
ϕ-Hamming model we use a different approach).



Impartial Culture and the Full IAM Model. For impartial culture, finding the parameter that
maximizes the probability of generating a given election E is easy: It suffices to use p-IC with p equal
to the proportion of approvals in the election (this is a standard observation from statistics). Further, to
learn the parameters of an IAM for a given election, it suffices to find a partition of the candidates.

Proposition 4.1. For each election E = (C, V ), probability P(E |p-IC) is maximized for p = probE(C).

Proposition 4.2. For each election E = (C, V ) and t ∈ [|C|], there is a partition of C into C1, . . . , Ct

such that IAM(C1, . . . , Ct) maximizes the probability of generating E among t-parameter IAMs.

Consequently, the full IAM that maximizes the probability of generating a given election uses parameters
where each candidate is approved with probability equal to the fraction of its approvals.

Corollary 4.3. Let E = (C, V ) be an election, where C = {c1, . . . , cm} and n voters. Probability
P(E |(p1, . . . , pm)-IAM) is maximized if for each i ∈ [m] we have pi = |V (c)|/n.

Hamming Model. For each ϕ ∈ [0; 1] and each vote U , we let ϕ-Ham(U) denote the ϕ-Hamming
model with central vote U . The probability of generating vote A(v) under ϕ-Ham(U) is:

P
(
A(v) |ϕ-Ham(U)

)
= 1

(1+ϕ)mϕham
(
U,A(v)

)
(the normalizing constant is derived, e.g., by Caragiannis et al. [6]), and the probability of generating
election E is fu(ϕ) = P

(
E |ϕ-Ham(U)

)
= 1

(1+ϕ)mnϕ
∑n

i=1 ham
(
U,A(vi)

)
. For each fixed ϕ, this value is

maximized when the exponent,
∑n

i=1 ham
(
U,A(vi)

)
, is minimized. This happens for central vote U

such that for each candidate ci, ci belongs toU if and only if at least half of the voters approve ci. We refer
to such a central vote as majoritarian. Let us fix U to be majoritarian and let h =

∑n
i=1 ham

(
U,A(vi)

)
.

By definition, we have h ≤ mn/2, and we assume that h > 0 (otherwise it suffices to take ϕ = 0 to
maximize the probability of generating E). The derivative of fu(ϕ) (with respect to ϕ) is:

f ′
u(ϕ) =

hϕh−1(1+ϕ)mn−mn(1+ϕ)mn−1ϕh

(1+ϕ)2mn = ϕh−1(1+ϕ)mn−1

(1+ϕ)2mn (h(1 + ϕ)−mnϕ).

By analyzing the final term, one can verify that its value is 0 exactly for ϕ = h
mn−h , for smaller ϕ it is

positive, and for larger ϕ it is negative. Hence, we have the following result.

Proposition 4.4. Let E = (C, V ) be an approval election with m candidates and n voters, where
V = (v1, . . . , vn). Let U be the majoritarian central vote for E and let h =

∑n
i=1 ham(u, vi). The

probability of generating E using ϕ-Hamming model is maximized for the majoritarian central vote and
ϕ = h/mn−h.

Resampling and Other IAMs. Next, let us consider learning the parameters of 2-parameter IAMs
(or, equivalently, of the resampling models). The solution is intuitive, but requires a more careful proof.
In particular, the next theorem restricts the parameter space that we need to analyze.

Theorem 4.5. Let E = (C, V ) be an election with candidate set C = {c1, . . . , cm}, and voter collection
V = (v1, . . . , vn), such that |V (c1)| ≥ |V (c2)| ≥ · · · ≥ |V (cm)|. ThenP(E |(p1, p2)-IAM) is maximized
for somem′ ∈ [m] and:

p1 = |V (c1)|+···+|V (cm′ )|/nm′, C1 = {c1, . . . , cm′},
p2 = |V (cm′+1)|+···+|V (cm)|/n(m−m′), C2 = C \ C1.

Intuitively, Theorem 4.5 says that if we want to find the parameters of a 2-parameter IAM that maximize
the probability of generating a given election E = (C, V ), then there are only polynomially many
options to try. Namely, using the notation from Theorem 4.5, it suffices to try all O(m) choices ofm′,
each giving a different candidate partition, and—among those—select the one that leads to maximizing
the probability of generating E.



Corollary 4.6. There is a polynomial-time algorithm that given an election E = (C, V ) finds the
parameters of a 2-parameter IAM that maximizes the probability of generating E.

Using the ideas from the proof of Theorem 4.5, we also obtain an analogous result for IAMs with
arbitrary number t of parameters.

Theorem 4.7. Let E = (C, V ) be an election with m candidates and n voters. For each t ∈ [m],
P(E | (p1, p2, . . . , pt)-IAM) is maximized for p1, . . . , pt and a partition of C into C1, . . . , Ct such that
for each i ∈ [t] we have pi =

∑
c∈Ci

|V (c)|/n|Ci| and for each i ∈ [t− 1] and every two candidates a ∈ Ci

and b ∈ Ci+1 we have |V (a)| ≥ |V (b)|.

Based on Theorem 4.7, we derive a dynamic-programming algorithm that computes a t-parameter IAM
that maximizes the probability of generating a given election.

Theorem 4.8. There is a polynomial-time algorithm that given an election E = (C, V ) and an integer
t ∈ [|C|] finds the parameters of a t-parameter IAM that maximizes the probability of generating E.

4.2 Mixture Models: Expectation Maximization

In this and the next section we consider two different approaches of learning mixtures of IAMs. Here we
start with one of the most standard and widely adopted machine learning algorithms used for estimating
the values of parameters in statistical models, the Expectation-Maximization (EM) algorithm [7]. The
algorithm is useful when there are some missing or unobserved latent variables in the model. In the
context of learning mixtures of distributions, these latent variables correspond to the assignment of the
data points to the mixture components that generated them. The algorithm first guesses the parameters
of the model and then iteratively improves the estimation trying to maximize the log-likelihood of
generating the observed data. Each iteration consists of two steps:

E-step (Expectation), where the algorithm computes the posterior probability (soft assignment) that
each data point was generated by each mixture component.

M-step (Maximization), where the algorithm updates the parameters of the mixture model to maxi-
mize the expected log-likelihood given the probabilities from the E-step.

Intuitively, after each iteration the likelihood of generating the observed data under the current model
parameters increases. The algorithm alternates between the E- and M-steps until convergence (i.e.,
until two consecutive iterations return the same model parameters up to some negligible ϵ), obtaining a
local maximum of the log-likelihood.

Let us now consider how the EM algorithm can be used for learning mixtures of IAM models. Let
us fix some election E and the number K of components. For k ∈ [K], the k-th component has
parameters θk = (αk, (p1, p2, . . . , pm)), where αk is the weight of the component (

∑
k∈[K] αk = 1)

and p1, . . . , pm ∈ [0; 1] are the probabilities of approving candidates c1, . . . , cm (these probabilities
are independent only for the full IAM model; however, potential dependencies between them are not
relevant for the E-step). Given a k-th mixture component and its parameters θk, the probability of
generating vote A(v) by this component is:

P(A(v)|θk) = αk ·
(
Πj∈[m]:cj∈A(v)pj

)(
Πj∈[m]:cj /∈A(v)(1− pj)

)
.

Let us denote the posterior probability of generating votes from E, computed in the E-step of the
algorithm—further called the soft assignment of votes from E—as γ = {γv,k}v∈V,k∈[K]. For each
voter v and the k-th component, γv,k is equal to the conditional probability of generating v by the



k-th component subject to the fact that v has been generated by some component. Formally, γv,k =
P(A(v)|θk)∑
j P(A(v)|θj) . For clarity of the notation, for each k ∈ [K] let us denote the total weight of the votes

assigned to the k-th component as γk =
∑

v∈V γv,k. Note that
∑

k∈[K] γk = n.

For the M-step, we need to find the parameters θ1, θ2, . . . , θK maximizing the expected complete
log-likelihood up to the computed soft assignment, given by the following formula:∑

v∈V
∑

k∈[K] γv,k ln(P(A(v)|θk)).

In the above formula the gamma variables should be viewed as constants; their values depend on theta
values computed in the previous iteration of the algorithm, not on the ones we currently search for.

Let us first focus on the αk parameter of each component k ∈ [K]. We have the following result here:

Proposition 4.9. For each mixture ofK IAM distributions, the expected log-likelihood of generating the
observed data is maximized if for each k ∈ [K] it holds that αk = γk/n.

Next, we turn to optimizing the remaining parameters of IAM components. Note that since we know
the optimal weights of the components and the other parameters are independent between different
components, we can now optimize the parameters of each IAM component separately.

Let us fix component number k ∈ [K] and compute the probabilities maximizing the expected log-
likelihood of generating a corresponding soft assignment γ using the k-th component. Note that for
each v ∈ V we have that γv,k is a rational number, i.e., it is a quotient of two integers. Let Q be the
least common multiple of all the denominators of these quotients. We now consider an election Eγ,k

obtained from the initial electionE and the given soft assignment γ by multiplying each voter v,Q ·γv,k
times (so that for each two votes v and v′, the proportion between the numbers of their copies is equal
to γv,k/γv′,k), which we will further call an election induced by E, γ and the k-th component. We will
show that maximizing the log-likelihood of generating the part of γ corresponding to the considered
k-th component is equivalent to maximizing the probability of generating Eγ,k.

Proposition 4.10. Let E = (C, V ) be an approval election with m candidates and n voters and let γ
be the soft assignment of votes to someK mixture components. Let Eγ,k be the election induced by E, γ
and some k-th component for k ∈ [K]. Then finding the k-th mixture component parameters maximizing
the log-likelihood of generating the assignment is equivalent to finding the parameters maximizing the
probability of generating Eγ,k.

4.3 Mixture Models: Bayesian Learning

Consider an election E = (C, V ), with candidates C = {c1, . . . , cm} and voters V = (v1, . . . , vn).
So far we focused on learning parameter values that maximize the probability of generating E. Once
learned, model’s parameters in these settings are, essentially, fixed constants. Alternatively, we can
view the parameters themselves as random variables. We can then estimate a distribution over the
parameters that is compatible with the election E. Learning the distribution over model’s parameters
conditioned on the observed data is the core concept in Bayesian statistics.

One simple way to formalize a Bayesian model for an approval election is to postulate a generative process
for the votes, i.e., a sampling procedure that describes our prior assumptions about the distribution
over the votes. For example, consider the full IAM model parametrized by the vector of approval
probabilities: (p1, p2, . . . pm). The generative process in this case starts with sampling each approval
probability pi from a prior distribution over its possible values. In this work we do not assume any a
priori knowledge about the approval probabilities. The prior distribution for approval probabilities is
therefore the uniform distribution over the [0, 1] interval. After sampling the parameters, the generative
process samples the votes conditioned on the parameter values. In the IAM model this conditional



distribution is simply the Bernoulli distribution parametrized by the approval probability. Together,
these two steps give the following process:

1. For all c ∈ C , sample the approval probability, pc ∼ U(0, 1).

2. For all vi ∈ V, c ∈ C , sample the vote outcome, vi(c) ∼ Bernoulli(pc).

The generative process fixes the prior over model’s parameters p (p1, . . . , pm) and the data likelihood
p (V | p1, . . . , pm). The Bayes theorem then gives a principled formula for the posterior distribution
over the model’s parameters: p (p1, . . . , pm | V ). This distribution summarizes our knowledge about
values of the parameters, once we observed a set of votes V .

The Bayesian framework provides a flexible way to specify more complex generative processes. In
particular, we can easily write a generative process for a mixture ofK full IAM components:

1. Sample component probabilities, (α1, . . . , αK) ∼ Dirich(1K).

2. For all c ∈ C, k ∈ [K], sample the k-th component’s approval probability for the candidate c,
pc,k ∼ U(0, 1).

3. For all vi ∈ V : (a) Sample the component index, z ∼ Cat(α1, . . . , αK), and (b) for all c ∈ C ,
sample vi(c) ∼ Bernoulli(pc,z).

Here, Dirich(1K) is the Dirichlet distribution with unit concentration parameters, while
Cat(α1, . . . , αK) is the categorical distribution parametrized by components’ probabilities. Note that
the Dirichlet prior in our IAM mixture is, again, uninformative: Dirichlet distribution with unit concen-
trations is the uniform distribution over theK − 1 dimensional probability simplex. Using similar prior
distributions we can also formulate Bayesian models for other models (see the full version of the paper).

The flexibility of Bayesian models comes with a price: due to the intractable normalization constant in
the Bayes rule, it is typically impossible to evaluate the posterior distribution exactly. That said, there are
efficient, general-purpose algorithms that can be used to draw samples from the posterior distribution.
We generate posterior samples using the No-U-turn sampler [10] with variable elimination [18] for
the component assignments and Gibbs sampling for the central votes. To this end, we implement and
estimate our models in the NumPyro probabilistic programming language [19].

After sampling from the posterior distribution, we approximate posterior means of model’s parameters
by averaging across sampled values. We then use these mean estimates in downstream analyses. Note
that our models use so-called exchangeable priors: the model specification and, consequently, the
posterior density is invariant to permutation of component labels. In a naive implementation, samples
from such models may differ in the ordering of components, leading to incorrect mean estimates.
We remedy this issue by using a standard identifiability constraint technique [11]. In particular, we
restrict the Dirichlet prior on the components’ probabilities to the polytope that satisfy the constraint:
α1 > α2 > · · · > αK , and put zero prior probability mass elsewhere. This constraint uniquely identifies
one out ofK! equivalent component labellings. In practice, the constraint can be enforced post sampling,
by reordering the components in the samples [11].

5 Experiments

Our experiments focus on learning variants of IAMs, as well as their mixtures, on elections from the
Pabulib database [9]. Specifically, we considered all 271 approval-based Pabulib elections that include
at least 2 000 voters. For each election E = (C, V ) from this set, and each considered algorithm A (for
a given IAM variant) we executed the following procedure ttry = 5 times (each time using independent
coin tosses; for the experiment described in Section 5.2 we used ttry = 20):



1. We formed electionsElearn andEeval, where the latter consisted of randomly selected neval = 1000
votes from E, and the former consisted of the remaining votes. If Elearn ended up with more
than 20 000 voters, then we kept only nsample = 20 000 of them, selected uniformly at random
(to bound the computation time). We refer to Elearn as the learning election and to Eeval as the
evaluation one.

2. We run A on Elearn and obtained distribution D ∈ D(C).

3. We computed the log-likelihood of obtaining Eeval using D, as well as a few other metrics (see
Section 5.1).

We only performed 5 runs of this procedure because we found that the variance of the results that we
get (i.e., variance of the metrics that we computed) was typically several orders of magnitude lower
than the results themselves.

For each of our elections, we ran all the algorithms from Section 4.1, i.e., the single-component algorithms
for IC, Hamming, Resampling, full IAM and all the t-parameter IAM models for t ranging from 1 to
the number of candidates in the given election (with a step of 1). Then, we applied Bayesian learning
(Section 4.3) to compute mixture models with 2, 3, and 4 components, where each of the components
was either a Hamming model, a resampling model, or full IAM. Finally, we applied the EM algorithm
(Section 4.2) to learn mixture models of 2, 3, and 4 full IAM components (we omitted Hamming and
resampling models due to computation cost).

5.1 Evaluation Metrics

While we could use log-likelihoods of the models that we learn to evaluate their quality, this has
drawbacks. For example, it is difficult to compare log-likelihood values across different elections. Thus,
we use metrics based on the voter-anonymous variant of the Hamming distance, defined below.

Definition 5.1. Let E = (C, V ) and F = (C,U) be two elections over the same candidate set C , with
voter collections V = (v1, . . . , vn) and U = (u1, . . . , un) of equal size. Their voter-anonymous Hamming
distance is as follows (Sn is the set of permutations of [n]):

va-ham(E,F ) = 1
n minσ∈Sn

∑ℓ
i=1 ham

(
A(vi), A(uσ(i))

)
.

In other words, va-ham(E,F ) is the average Hamming distance between the votes from E and F ,
matched in such a way as to minimize the final result. Note that our definition is similar to the definitions
of isomorphic distances of Faliszewski et al. [8] and Szufa et al. [21], except that we consider election
with equal candidate sets. In particular, voter-anonymous Hamming distance is invariant to reordering
the voters and is normalized by the number of voters.

Baseline Distance Let E be an election from the subset of Pabulib that we consider. We define E’s
baseline distance as the expected value of the random variable defined as va-ham(E1, E2), where E1

and E2 are subelections of E, each with neval voters, selected uniformly at random up to the condition
that E1 and E2 do not have any voters in common.2 Intuitively, baseline distance is a measure of
an election’s internal diversity. For example, if its value is 2 then if we take two random, disjoint
subelections of E (each with neval voters), it would be possible, on average, to match their votes so
that two matched votes differ on two candidates (e.g., each of them may include a single candidate not
present in the other one). In practice, we compute baseline distance of an election by drawing 5 pairs of
elections and averaging their voter-anonymous Hamming distance (typically, the variance is orders of
magnitude lower than the value of the average, so considering 5 pairs of elections is justified).

2E.g., it means that if some voter v from E is included in E1 then he or she is certainly not included in E2. However, E2

may contain other voter u with A(v) = A(u).



Figure 1: Absolute distance between the Amster-
dam 289 election (38 candidates, left) or Warszawa
2020 Ochota election (51 candidates, right) and single-
component t-parameter IAMs, as a function of t, from
1 to the number of candidates.

Figure 2: The relation between the average vote
length and baseline distance (left plot), and absolute
distances from the best learned model (right plot).
Each dot depicts a single Pabulib instance. The color
gives the profile’s saturation (i.e., the average vote
length divided by the number of candidates).

Absolute and Relative Distances Given a Pabulib election E = (C, V ) and a learning algorithm A,
we compute their absolute distance as follows: For each evaluation election Eeval that we computed for
E and A, we take distribution D ∈ D(C) obtained by A on Elearn, generate election ED by drawing
neval votes independently from D, and compute va-ham(Eeval, ED). We obtain five numbers and we
output their average value. We define the relative distance between E and A as their absolute distance
divided by E’s baseline. In other words, relative distance normalizes the absolute one by E’s inherent
diversity (E’s baseline is, essentially, its absolute distance from a distribution that samples E’s votes
uniformly at random so, intuitively, it bounds achievable absolute distance).

5.2 Impact of the Number of IAM Parameters

Let us now focus on single-component IAMs and the influence that the number of parameters has on
their ability to learn Pabulib elections. In particular, in Figure 1 we plot the absolute distance between
elections generated using t-parameter IAM models learned (on two example Pabulib elections) using the
algorithm from Theorem 4.8. We find that for IC (t = 1) we get a significantly higher absolute distance
than for the resampling model (t = 2), which itself is somewhat higher than the absolute distance for
full-IAM (t equal to the number of candidates). The plots for other elections are very similar in spirit.

Our conclusion from this experiment is that impartial culture performs notably worse than the other
IAM variants, but models with two parameters and more achieve fairly similar results (even if there is
still a visible difference between the results for the resampling model and full IAM). In the following
experiments we limit our attention to the Hamming, resampling, and full IAM models, as they are
simple to learn, give good results, and the former two can be specified using much less information
than full IAMs.

5.3 General Analysis of Learning Results

In this section, we provide a high-level overview of the Pabulib dataset and the performance of our
learning methods. In Figure 2 we illustrate the relationship between the average vote length in a given
election (i.e., the average number of candidates approved by a single voter) and the baseline distance
of this election (left plot) or its absolute distance from the best-learned model (right plot). Each dot
represents a single Pabulib instance, with the color corresponding to the profile saturation (i.e., the
average vote length divided by the total number of candidates). The left plot reflects the self-similarity
of the Pabulib instances. We see that while some Pabulib elections have low baseline distance (i.e., are
close to the x axis) for many of them this is not the case. Indeed, the baseline distance seems to have a
close-to-linear dependence on the average vote length; the more candidates the voters approve, the
more diverse are the votes that they cast. The close resemblance between the two plots in Figure 2



Figure 3: The relation between the (negative) log-
likelihood and the absolute distance (left plot), and
relative distance (right plot). Each dot depicts a single
Pabulib instance. The color corresponds to the average
vote length.

Figure 4: The comparison of the absolute and relative
distances. The left plot shows from which city each
instance originates (for Lodz and Warszawa we use
different shades of green and blue, respectively, for
different years). The right plot compares the single-
and multi-component approaches. Each dot depicts a
single Pabulib instance (the number of dots doubles
in the right plot due to two approaches used).

indicates that, in most cases, our learning algorithms perform well and achieve absolute distance similar
to the baseline one (we discuss this in more detail later, when analyzing Figure 4). Regarding the plot on
the right-hand side, we observe two key trends: First, as the average vote length increases, the absolute
distance also increases. Second, for a given average vote length, higher saturation tends to correspond
to a smaller absolute distance.

In Figure 3 we explore the relationship between the (negative) log-likelihood and the absolute distance
(left plot) and the relative distance (right plot), both for the best-learned model (i.e., the one that achieves
the lowest absolute distance). While the log-likelihood is strongly correlated with the absolute distance
(having Pearson correlation coefficient equal to 0.993), it is barely (negatively) correlated with the
relative distance (having PCC=-0.567). Our conclusion here is that by using distance-based metrics
of quality we gain interpretability of our results (as discussed in Section 5.1) without losing much of
statistical significance of log-likelihoods (as absolute distances are, in essence, negative log-likelihoods
in disguise).

Figure 4 compares the absolute and relative distances between each election and its best-learned model
(i.e., the one that achieves lowest absolute distance). The left plot uses color to show the city of origin
for each instance, revealing that different cities tend to occupy distinct regions of the plot. This suggests
significant variation in the nature of elections across cities and is a strong argument to use data with
different origins in experiments based on Pabulib.

We note that absolute and relative distances tell us quite different stories about the quality of a learned
model. For instance, we may view relative distance below 1.2 as quite good, but it may still correspond
to the absolute distance of, say, 10. For the case where, on average, each voter in the considered election
also approves 10 candidates, this means that our algorithm learned a very good model as compared to
the baseline distance, but the input election is internally so diverse that the generated votes will still
largely differ from those present in the actual data. Similarly, we may view relative distance equal to 2,
as rather unsatisfactory, but it might still mean an absolute distance of 0.5 for the baseline of 0.25. Even
though the relative distance is large, the absolute one is objectively small and the learned distribution
produces votes that can be seen as very similar to those present in the considered election. Finally,
there also are some elections for which both distances are quite high. Then, we have to concede that
either IAM mixtures, or our algorithms, are simply insufficient to learn these elections well.

Let us now consider the right-hand plot of Figure 4 (note different scales on the axes as compared to the
left-hand one). This plot contrasts best-learned single-component models (in this case these always are
the full-IAM ones) and best-learned mixture models (these often are 4-full-IAMs learned using the EM
algorithm, but sometimes also 4-resampling or 4-full-IAM ones learned using the Bayesian approach).
As expected, mixture models perform much better: Their points have lower absolute and relative



Figure 5: Superposition of three histograms of vote lengths for three Pabulib instances. Each picture shows
histograms of the training election (blue) and learned single-component (pale red) and four-component (dark red)
resampling models. For clarity, we removed bars for fractions smaller than 10−10.

distance coordinates. While the fact that mixture models are more expressive than single-component
ones is hardly surprising, knowing the extent of their advantage is useful. Indeed, we see that to generate
realistic elections similar to those in Pabulib, using mixture models of several IAMs gives notably better
results that using single-component full-IAMs (not to mention even simpler single-component models).

In our full paper, we compare the EM and Bayesian approaches, showing some advantage of the former.

5.4 Closer Look on a Few Instances

Next, we zoom in on a few selected instances to describe our observations in more detail. To improve
understanding, we use histograms which show the number of votes of a given length in an election.
In Figure 5, for selected Pabulib elections we lay over histograms of the respective Elearn and of the
learned single-component and 4-component resampling models (results for Hamming and full-IAM are
similar, we chose resampling for variety).

As mentioned in Section 5.3, nearly always multiple-component models yield elections with significantly
smaller distances to the original one. There are two main reasons to explain this observation: First,
single-component models are prone to “the flaw of average” of the vote lengths. It is evident for elections
with bimodal vote length distributions, such as Warszawa Ochota 2020 in Figure 5: A single learned
component focuses on average-length votes, which are dissimilar from those of either of the peaks.

Second, single-component models can only produce votes with a relatively limited variance of their
length. Hence, it is frequently counterproductive to apply single-component models to learn elections
where this variance is high. It includes elections with a vote length distribution that is asymmetric,
uni-modal, and has a “heavy tail” (such as Warszawa Bielany 2018 depicted in Figure 5) or that have a
bimodal distribution of vote lengths (like Warszawa Ochota 2020 in Figure 5). The histograms clearly
show how multiple components help in dealing with such distributions.

On the positive side, we want to stress that single-component models can perform well on some real-life
elections. In particular, this holds true for elections with Gaussian-like distributions of vote lengths; for
an example, see election Amsterdam 289 in Figure 5.

6 Summary

To the best of our knowledge, we performed the first comprehensive analysis of Pabulib elections
by learning them using both single-component and mixture models. We found that some elections
can be captured with simple models such as resampling or full IAM, but typically using mixtures of a
few components is preferable. We have focused on learning models that “natively” generate approval
elections. Another possibility is to learn a model that generates a ranking of candidates and chooses
some top of them to be approved. It would be interesting to see if this approach would be effective and
how it would compare to our approach.
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A Missing Proofs

A.1 Proof of Proposition 4.1

Proof. Consider election E = (C, V ) and let p = probE(C). Letm be the number of candidates and
let n be the number of voters. For a number q ∈ [0; 1], the probability of generating E under the q-IC
model is as follows:

f(q) = qappE(C)(1− q)nm−appE(C)

= qpnm(1− q)(1−p)nm

=
(
qp(1− q)1−p

)nm
.

In other words, there are appE(C) = pnm approvals in the election and each of them is correctly
generated with probability q. Similarly, each of the nm − appE(C) = (1 − p)nm nonapprovals is
generated correctly with probability 1− q. As, from our point of view, m and n are constants, f(q) is
maximized for the same argument as h(q) = qp(1− q)1−p. The derivative of h(q) is:

h′(q) = pqp−1(1− q)1−p − qp(1− p)(1− q)−p

= qp(1− q)−p ·
(
pq−1(1− q)− (1− p)

)
,

and it assumes value 0 when:3

pq−1(1− q) = (1− p).

This holds when p(1− q) = q(1− p), which is equivalent to q = p. Hence P(E |q-IC) is maximized
for q = p = probE(C).

A.2 Proof of Proposition 4.2

Proof. Let us fix a value of t ∈ [|C|]. Consider a t-parameter IAM model that maximizes the probability
of generating E. By definition, the model is parameterized by a partition of C into subsets C1, . . . , Ct,
and probabilities p1, . . . , pt, such that for each i ∈ [t], each candidate from Ci is approved with
probability pi. By Equation (2), each pi maximizes the probability of generating E(Ci) under the
impartial culture model. Thus, by Proposition 4.1, for each i ∈ [t] we have pi = probE(Ci)(Ci). SoD is
IAM(C1, . . . , Ct).

A.3 Proof of Theorem 4.5

Proof of Theorem 4.5. Let the notation be as in the statement of the theorem. For a subset B ⊆ C of
candidates, let app(B) =

∑
c∈B |V (c)| be the total number of approvals that the candidates from B

receive within election E, and let p(B) = app(B)/|C|n be the probability that a randomly selected voter
approves a member of B. We let t = app(C) be the overall number of approvals cast within E.

Let us fix some partition of C into C ′
1 and C ′

2 = C \ C ′
1, where neither C ′

1 nor C ′
2 is empty, and

where p(C ′
1) ≥ p(C ′

2). The probability that E is generated under IAM(C ′
1, C

′
2) is as follows (where

x = app(C ′
1), A1 = |C ′

1|n, and A2 = |C ′
2|n; note that t− x = app(C ′

2)):

f(x)=
(

x
A1

)x(
A1−x
A1

)A1−x(
t−x
A2

)t−x(
A2−(t−x)

A2

)A2−(t−x)
.

3We disregard the cases where either all the voters approve all the candidates or neither of the voters approves any of the
candidates, for which, respectively, q = 1 and q = 0 are immediately seen to be the values maximizing P(E |q-IC).



Intuitively, A1 and A2 are the numbers of approval-disapproval decisions that voters have to make
regarding the candidates in C1 and C2, respectively. The first two factors of f(x) give the probability
that the decisions regarding candidates in C1 are made as in E (the former corresponds to approvals
and the latter to disapprovals), and the next two factors give analogous probability for the candidates
in C2. We consider f as a function defined for real arguments x such that x

A1
≥ t−x

A2
and x ≤ A1

(the assumption that x
A1

≥ t−x
A2

corresponds to p(C ′
1) ≥ p(C ′

2) and can be equivalently expressed as
x ≥ A1t

A1+A2
= A1t

nm ). Later on, we will prove the following claim.

Claim A.1. Function f , defined on arguments x such that x
A1

≥ t−x
A2

, is nondecreasing.

Let us consider some two candidates c1 ∈ C ′
1 and c2 ∈ C ′

2, and a partition obtained from C ′
1, C

′
2 by

swapping their membership in these sets:

C ′′
1 = (C ′

1 \ {c1}) ∪ {c2}, and C ′′
2 = (C ′

2 \ {c2}) ∪ {c1}.

Weobserve that the probability of generatingE under IAM(C ′′
1 , C

′′
2 ) is equal to f(x−app(c1)+app(c2)).

This means that if app(c2) ≥ app(c1), then swapping c1 and c2 does not decrease the probability of
generating E. Consequently, if we take partition C⋆

1 and C⋆
2 of C such that C⋆

1 contains |C ′
1| candidates

with the highest approval scores and C⋆
2 contains the remaining ones, then IAM(C⋆

1 , C
⋆
2 ) maximizes

the probability of generating E among 2-parameter IAMs that partition the candidates into groups
with |C ′

1| and |C ′
2| candidates, where the former group has at least as high approval probability as the

latter one (indeed C⋆
1 , C

⋆
2 can be obtained from any such parition by a sequence of swaps that do not

decrease the probability of generating E). This gives exactly the statement of our theorem.

It remains to show that Claim A.1 holds. To this end, we consider g(x) = ln(f(x)), where ln(·) is the
natural logarithm. We have:

g(x) = x ln
(

x
A1

)
+ (A1 − x) ln

(
A1−x
A1

)
+ (t− x) ln

(
t−x
A2

)
+ (A2 − (t− x)) ln

(
A2−(t−x)

A2

)
.

Naturally, g(x) is nondecreasing if and only if f is. Next, we compute the derivative of g (see also the
explanations below):

g′(x) = ln
(

x
A1

)
− ln

(
A1−x
A1

)
− ln

(
t−x
A2

)
+ ln

(
A2−(t−x)

A2

)
= ln

(
x

A1−x · A2−(t−x)
t−x

)
≥ 0.

For the final inequality, note that we have assumed that x
A1

≥ t−x
A2

. This is equivalent to x
(A1−x)+x ≥

t−x
A2−(t−x)+(t−x) , which itself implies (A1−x)+x

x ≤ A2−(t−x)+(t−x)
t−x and, after simplification, A1−x

x ≤
A2−(t−x)

t−x . Hence, the argument under the logarithm in the above inequality is at least 1. Finally, since
g′(x) is nonnegative, g is nondecreasing and so is f .

A.4 Proof of Theorem 4.7

Proof. Consider an electionE = (C, V ) and some arbitrary partition ofC into setsC1, . . . , Ct. Assume
that there are two candidates, c1 ∈ C1 and cx ∈ Ci, where i ∈ [t] \ {1}, such that cx is approved by
more voters than c1. Form a partition C ′

1, . . . , C
′
t that is identical to C1, . . . , Ct, except that c1 is in Ci

and cx is in C1. Then, by the same argument as in the proof of Theorem 4.5, we have the following
(note that C ′

1 ∪ C ′
i = C1 ∪ Ci):

P(E(C ′
1 ∪ C ′

i) | IAM(C ′
1, C

′
i) ≥ P(E(C1 ∪ Ci) | IAM(C1, Ci)).



Thus, by applying Equation (2), we see that the probability that IAM(C ′
1, . . . , C

′
t) generates E is at

least as high as that for IAM(C1, . . . , Ct). By applying this reasoning repeatedly, we can transform
C1, . . . , Ct into a partition that satisfies the conditions from the theorem statement, without ever
decreasing the probability of generating election E. This completes the proof as the initial choice of
C1, . . . , Ct was arbitrary.

A.5 Proof of Theorem 4.8

Proof. Let E = (C, V ) be our input election, where C = {c1, . . . , cm}, and V = (v1, . . . , vn), and let t
be the number of IAM parameters that we are to optimize. Without loss of generality, we assume that
|V (c1)| ≥ |V (c2)| ≥ · · · ≥ |V (cm)|. For each i, j ∈ [m], i ≤ j, by C[i, j] we mean the set {ci, . . . , cj}.
For each subset B ⊆ C of candidates and each integer ℓ ∈ [t], we let f(B, ℓ) be the highest possible
probability of generating E(B) using an ℓ-parameter IAM. We will show an algorithm for computing
f(C, t).

By Proposition 4.1, we know that for each subset B ⊆ C of candidates, we can compute f(B, 1)
in polynomial time (it corresponds to using an impartial culture model with approval probability
probE(B)(B)). Next, for each ℓ ∈ [t] \ {1} and j ∈ [m], j ≥ ℓ, we have the following recursive relation
between the values of f (it is true due to Theorem 4.7):

f(C[1, j], ℓ) = max
i : ℓ−1≤i<j

(
f(C[1, i], ℓ− 1) · f(C[i+ 1, j], 1)

)
.

Using this equation and standard dynamic-programming techniques, we can compute in polynomial
time both the value f(C, t) and the partition of C into C1, . . . , Ct such that:

f(C, t) = f(C1, 1) · f(C2, 1) · · · f(Ct, 1).

IAM(C1, . . . , Ct) is the model that maximizes the probability of generating E among the t-parameter
IAMs.

We should remark that while we have expressed the algorithm in the above theorem in terms of
multiplication of the values of f , in practice it is better to optimize the logarithms of the values of f
and, hence, use addition. This means optimizing log-likelihood of generating E instead of the actual
likelihood. The two approaches are formally equivalent, but the former is more stable numerically.

A.6 Proof of Proposition 4.9

Proof. We need to maximize the following expression:∑
v∈V

∑
k∈[K] γv,k ln(P(A(v)|θk)) =∑

v∈V
∑

k∈[K] γv,k ln(αk) +
∑

v∈V
∑

k∈[K] γv,k ln(
P(A(v)|θk)

αk
).

Note that the value of P(A(v)|θk)/αk does not depend on the value of αk for each k ∈ [K]. Conseqeuntly,
the second part of the sum is irrelevant for the maximization and can be skipped. Hence, we need to
maximize: ∑

v∈V
∑

k∈[K] γv,k ln(αk) =
∑

k∈[K] ln(αk) · γk.

To maximize this expression subject to the condition
∑

k∈[K] αk = 1, we can use the Lagrangian
multiplier method. The corresponding Lagrangian is as follows:

L((α1, . . . , αK), λ) =
∑
k∈[K]

ln(αk) · γk + λ(1−
∑
k∈[K]

αk).



By straightforward computations (computing partial derivatives with respect to each αk and comparing
them to 0), we obtain αk = γk/λ for each k ∈ [K] and, since

∑
k∈[K] αk = 1, we have that:

λ =
∑

k∈[K] γk = n.

Hence:
αk = γk

λ = γk
n , for each k ∈ [K].

which completes the proof.

A.7 Proof of Proposition 4.10

Proof. The formula for the expected complete log-likelihood is as follows:∑
v∈V

∑
k∈[K] γv,k ln(P(A(v)|θk)).

Since the parameters of the mixture components are independent, our goal is to maximize the following
expression for each k ∈ [K]: ∑

v∈V γv,k ln(P(A(v)|θk)).

The above formula is equivalent to the following one:

Πv∈V P(A(v)|θk)γv,k .

Then, by raising the above formula to the power of Q (which does not affect the parameter values
maximizing the expression) we obtain:

Πv∈V P(A(v)|θk)Q·γv,k .

which is the probability of generating Eγ,k by parameters θk.

B Why MLE and Bayesian Learning

We described two different ways to estimate parameters in our mixture models, MLE and Bayesian
learning. Hence, one may ask why estimate the same model with two different statistical frameworks?
Our motivation for this choice comes from specific strong points of both methods. In particular, maxi-
mizing the data likelihood is a conceptually simple estimation criterion. It does not require choosing
any distribution other than the components’ distributions (and fixing the number of components). The
corresponding EM algorithm is one of the standard choices for fitting mixture models. As we will see,
it also gives us fairly well estimated mixture models for approval elections. That said, extensions of
the EM algorithm to novel component distributions for approval elections require derivation of the
needed update equations. Bayesian learning is more flexible in this respect: contemporary probabilis-
tic programming frameworks, such as NumPyro [19], can conveniently express complex generative
processes and provide generic algorithms to estimate them. Priors in Bayes models may also serve
as regularization terms, preventing us, e.g., from ascribing zero approval probability to a candidate
that happened to have no approval in the training data. Finally, while we do not pursue this direction
in our work, posterior distributions may, in principle, provide uncertainty estimates for the inferred
quantities. Nevertheless, Bayesian modelling comes with a conceptually more elaborate statistical
framework. It requires care when choosing prior distributions, especially in mixture models where
label switching may affect inferences. Finally, estimation of Bayesian models often relies on dedicated
modelling software.



C Missing Corollary for Expectation Maximization

Below we provide a corollary based on Proposition 4.10 that obtains analogues of theorems presented in
Section 4.1 for IC, full IAM, Hamming and resampling models. They differ from their original versions
so that for each k-th mixture component the number of voters n is replaced by Q · γk and each vote v
is multiplied Q · γv,k times—the value Q in all cases can be actually reduced from the formulas.

Corollary C.1. Let E = (C, V ) be an approval election with m candidates and n voters, such that
|V (c1)| ≥ |V (c2)| ≥ · · · ≥ |V (cm)|, and let γ be the soft assignment of votes to some K IAM mixture
components. Then for each k ∈ [K], the expected log-likelihood of generating the part of assignment
corresponding to the k-th component is maximized:

1. for p-IC, when p = 1/γkm ·
∑

v∈V γv,k · |A(v)|,

2. for full (p1, . . . , pm)-IAM, when pj =
∑

v∈V (cj)
γv,k/γk for each j ∈ [m],

3. for (ϕ, u)-Hamming, when u is the majoritarian central vote and ϕ = h/mγk−h, where h =∑n
i=1 γv,iham(u, vi)

4. for (p1, p2)-IAM, when:

p1 =

∑
v∈V (c1)

γv,k + · · ·+
∑

v∈V (cm′ ) γv,k

γkm′ , C1 = {c1, . . . , cm′},

p2 =

∑
v∈V (cm′+1)

γv,k + · · ·+
∑

v∈V (cm) γv,k

γk(m−m′)
, C2 = C \ C1.

for somem′ ∈ [m].

D Bayesian models

D.1 Mixtures of (p, ϕ)-Resampling and ϕ-Hamming distributions

Using techniques introduced in Section 4.3, we formulate a Bayesian mixture model with (p, ϕ)-
Resampling components:

1. Sample component probabilities:

(α1, . . . , αK) ∼ Dirichlet(1K).

2. For all k ∈ [K]:
• Sample the resampling and approval probabilities:

ϕk ∼ U(0, 1), pk ∼ U(0, 1).

• For all c ∈ C, sample the central vote element:
uk(c) ∼ Bernoulli(pk).

3. For all vi ∈ V :
• Sample the component index:

z ∼ Cat(α1, . . . , αK).

• For all c ∈ C, sample the vote outcome:
σ ∼ U(0, 1),

vi(c) = uz(c), if σ > ϕz,

vi(c) ∼ Bernoulli(pz), if σ ≤ ϕz.



Figure 6: Comparison of Bayes and EM learning methods. The upper plots show the absolute distances for both
methods, and the lower ones show the relative distances. By red (green) color we mark the cases where Bayes
(EM) achieved smaller distance. Each dot depicts a single Pabulib instance.

Similarly, we formulate a Bayesian mixture model with ϕ-Hamming components:

1. Sample component probabilities:

(α1, . . . , αK) ∼ Dirichlet(1K).

2. For all k ∈ [K]:
• Sample the noise parameter:

ϕk ∼ U(0, 1).

• For all c ∈ C, sample the central vote element:
uk(c) ∼ Bernoulli(1/2).

3. For all vi ∈ V :
• Sample the component index:

z ∼ Cat(α1, . . . , αK).

• For all c ∈ C, sample the vote outcome:
vi(c) ∼ Bernoulli(1/1+ϕz), if uz(c) = 1,

vi(c) ∼ Bernoulli(ϕ/1+ϕz), if uz(c) ̸= 1.

In this model we sample from components using equivalence of the ϕ-Hamming distribution with the
2-dimensional IAM.

D.2 Estimation

For each evaluated model, we use the No-U-turn sampler [10] implementation provided by the
NumPyro [19] library to generate 2000 samples from the posterior distribution. Following standard
practice, we discard initial part of the sampler’s trajectory, where the Markov chain might be tran-
sitioning to an equilibrium distribution. Specifically, we discard initial 1000 samples, and use the
remaining 1000 to estimate mean parameter values.

E EM Versus Bayesian Approach

In Figure 6 we compare the EM and Bayesian approaches to learning IAM mixtures. As the plots show,
particularly in the case of the 4-full-IAMmodel, the EM approach consistently outperforms the Bayesian
method. Indeed, in this case the Bayesian approach often finds it difficult to identify four components
and outputs models that perform even worse than the 3-full-IAM models that it identifies. While we
believe that one could improve on this by engineering the priors used in Bayesian models, we did not
pursue this direction and view it as a follow-up work. The main conclusion from Figure 6 is that both



EM and the Bayesian approach achieve similar results, even though the former explicitly minimizes the
negative log-likelihood and the latter does not. This reinforces our view that both algorithms—based on
so different principles—identify meaningful components. As component analysis can be challenging,
we find this finding valuable.
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