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ABSTRACT. Participatory budgeting is a democratic process in which citizens decide how to al-
locate public funds among proposed projects. In practice, participants typically submit ordinal
preferences—such as rankings or approvals—rather than numerical utilities. A central fairness con-
cept in this setting is the proportional core, which ensures that no group of agents can reallocate
their proportional share of the budget to strictly improve their outcomes. However, the core may
be empty under general ordinal preferences, motivating the study of approximate core solutions
that relax this requirement while preserving its fairness spirit.

We improve the best-known approximation bound from 32 (as established by Jiang et al. (2020))
to 6.24 under general monotone ordinal preferences. In structured domains such as committee
selection with approval ballots or ranking preferences, we further refine our approach to achieve
stronger guarantees of 5.15 and 5.10, respectively. Our main innovation is the introduction of
the Lindahl Equilibrium with Ordinal preference (LEO), a novel continuous relaxation inspired by
the classical Lindahl equilibrium. This framework bridges traditional economic insights with the
discrete, ordinal setting of social choice and participatory budgeting, and has potential applicability
in a broad range of settings.
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1. INTRODUCTION

Since its inception in Porto Alegre, Brazil, in 1989, participatory budgeting has spread worldwide,
allowing citizens to allocate public funds to community projects democratically (Wamper et al.
2021). This has led to extensive research on the design of voting systems for participatory budgeting
(Aziz and Shah 2020). In the general participatory budgeting model, each project has a cost, and
voters have ordinal preferences over combinations of projects. The goal is to select a feasible
combination—one that stays within budget while fairly reflecting the voter’s preferences. A key
special case, known as committee selection, arises when all projects have equal cost (normalized
to 1) and the budget corresponds to the predetermined size of the committee.

A defining feature of participatory budgeting (PB) is the selection of multiple projects, rather
than a single winner. While one could, in principle, treat each feasible combination of projects as
an alternative and apply single-winner voting methods, such approaches fail to capture the core
challenge of PB: ensuring proportional fairness. Specifically, no group of voters should be able to
afford and strictly prefer an alternative set of projects whose cost is proportional to their size This
concept, known as the proportional core (core for short), is derived from the Lindahl equilibrium
and the core of economies with divisible public goods (Foley 1970). Ever since its first introduction
in the PB setting by (Fain et al. 2016), the concept has gained significant traction as it ensures
fairness and representation in all subgroups.

The proportional core is a demanding solution concept that may not always exist (Fain et al.
2018). To address this, Jiang et al. (2020) introduced the 7y-approximate core, where a project
combination is stable if no alternative is preferred by more than ~ times its cost-to-budget ratio of
the total number of voters. They elegantly showed that there is a 32-approximate core solution for
general monotone preferences and a 16-approximate solution for committee selection with approval
ballots and ranking preferences. The lower bound is known to be 2 (Cheng et al. (2019)), which
already holds for ranking preferences. Little progress in reducing the approximation factor has
been made since Jiang et al. (2020).

Given this challenge, the literature has explored alternative approximate core stability using
cardinal preferences, notably the («a, 3)-core, where blocking coalitions must secure an a-fold utility
gain and exceed the standard core constraint by a factor of 5. Although this approach has advanced
many problems, it has two drawbacks. Eliciting cardinal valuations can be impractical, as voters
cannot easily quantify trade-offs between public goods. Moreover, it weakens individual rationality:
the (1+¢, B)-core permits blocking coalitions in which all voters strictly prefer an alternative, even
when its cost is negligible.

Our main contribution is to study the original concept of the approximate core, assuming ordinal
preferences and preserving individual rationality. We construct a 6.24-approximate core solution for
participatory budgeting with monotone ordinal preferences. For special cases of committee selection
with approval ballots and ranking preferences, we achieve improved approximation factors of 5.15
and 5.10, respectively.

To achieve this, we introduce a new class of continuous relaxations for participatory budgeting,
inspired by the Lindahl equilibrium in public economics, which we term the Lindahl Equilibrium
with Ordinal Preferences (LEO). LEO brings classical economic insights—particularly the use of
individual prices or taxes—into discrete social choice settings. In this framework, given an agent’s
income level, individual prices guide her to “consume” an optimal social outcome. These prices
serve to coordinate all agents toward selecting the same outcome. To ensure this outcome lies in the
core, it must also coincide with the choice of a centralized agent who maximizes expected revenue.
However, unlike the traditional Lindahl equilibrium, LEO relies only on ordinal preferences. To
address the discontinuities inherent in discrete social choice, we depart from the standard assump-
tion of fixed incomes and instead allow agents’ incomes to be drawn from a common continuous
distribution. This randomization, together with a modified consistency condition linking agents’
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demands to the producer’s allocation, enables the application of standard fixed-point arguments to
establish the existence of a LEO.

The paper is organized as follows. After reviewing related work, Section 2 introduces the model
and fundamental solutions concepts. Section 3 covers the Lindahl equilibrium and extends it to
ordinal preferences with the introduction of LEO. Section 4 present methods for constructing an
approximate deterministic core solution using LEO. Section 5 focuses on committee selection with
ranking and approval preferences, providing improved approximation.

Related work. The intersection of social choice and computation is a central topic in both eco-
nomics and computer science. While the literature on participatory budgeting is relatively recent,
it is growing rapidly. Two excellent surveys—Aziz and Shah (2020) and Rey and Maly (2023)—pro-
vide comprehensive overviews. Here, we focus only on works most closely related to our results and
approach.

The approaches in the literature studying participatory budgeting problems differ according to
the assumptions about preferences and the solutions used. The most general form involves ordinal
preferences over combinations of projects, as considered in our paper. More specialized preference
classes, such as approval, ranking, or additive preferences over individual projects, are also studied
due to their succinct descriptions, which make it easier for voters to express their preferences (Rey
and Maly 2023). Although a large number of solution concepts have been proposed, a significant
portion of them fall into the category of justified representation (JR). JR requires that no cohesive
subgroup, defined as a group of voters with sufficiently similar preference profiles, has the incentive
to deviate. Numerous variations of JR concepts have been proposed: EJR (Aziz et al. 2017),
EJR1(Peters and Pierczynski (2021)), FJR (Peters and Pierczynski 2021), to name a few.

The proportional core, in contrast, seeks to prevent any of the exponentially many subgroups,
cohesive or not, from deviating to another outcome. Since exact core solutions may not exist,
approximate cores have been studied. Jiang et al. (2020) were the first to provide a constant-factor
approximation, though a significant gap remains between known upper and lower bounds. Their
32-approximation for general monotone preferences motivates our work. To improve this bound,
we develop new methods that extend the classical economic framework of Lindahl equilibrium.

Lindahl equilibrium is a classical concept for public goods and market design with externalities,
originating from early economic theory (Foley 1966, 1970, Rader 1973) and recently developed fur-
ther in economics (Gul and Pesendorfer 2020) and computer science (Fain et al. 2016, Kroer and
Peters 2025). However, existing approaches rely on preferences having a cardinal representation.
This reliance stems from the fact that establishing the existence of a Lindahl equilibrium typically
requires continuity, which in turn depends on cardinal utility. In settings with ordinal preferences
and a discrete outcome space, the standard workaround has been to relax agents’ choices to lot-
teries by extending their preferences over deterministic outcomes to preferences over lotteries—an
approach that implicitly requires cardinal information. We depart from this by not using lottery
extensions. Instead, we relax agents’ incomes from fixed values to continuous random variables.
This technique, originally introduced in the context of resource allocation by Nguyen et al. (2025),
allows us to establish Lindahl equilibria under purely ordinal preferences in public good settings.

The approximate core has also been studied in specialized settings of committee selection, where
additional structure or assumptions are imposed on preferences. Our 6.24-approximation result
already improves upon existing guarantees in the literature, and in this paper, we further refine
these bounds for both ranking and approval preferences.

For ranking preferences, the first approximate core guarantee is established by Cheng et al.
(2019) and Jiang et al. (2020), who show the existence of a 16-approximate core solution. This
was later improved to a 9.8217-approximation by Charikar et al. (2025). A lower bound of 2 is
also shown by Cheng et al. (2019), implying that exact core solutions cannot always be guaranteed
under ranking preferences.
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For approval preferences, the existence of an exact core solution remains an important open
question. The best known approximation factor is 16, again due to Cheng et al. (2019) and Jiang
et al. (2020). There are, however, positive results in restricted or related settings. For example,
when the committee size is small (fewer than 8), Peters (2025) show that an exact core solution
exists. In a relaxed setting where multiple copies of a candidate may be included in the committee,
Brill et al. (2024) prove that the Proportional Approval Voting (PAV) rule yields a core solution.
However, this argument does not extend to the standard setting, where each candidate can appear
only once in the committee.

Recent works have also relaxed the notion of the approximate core by allowing weaker individual
rationality conditions, leading to the concept of the («, §)-core with o > 1. Several studies have
explored this direction (Fain et al. 2018, Mavrov et al. 2023, Munagala et al. 2022, Peters and
Skowron 2020). However, these works rely on cardinal measures of voter preferences and their
techniques do not directly apply to our framework.

2. NOTATIONS AND PRELIMINARIES

Budgeted Social Choice. For full generality and ease of notation, we use a more abstract model.
There is a finite set of social outcomes O, with each outcome o € O having a cost c¢(o) > 0. We
assume that O contains the outcome () with ¢(f)) = 0, corresponding to the outside option. We also
assume () is the only outcome with 0 cost.

Given a budget B, a feasible outcome is an outcome in O with a cost of at most B.

A lottery over O is a discrete random variable that takes values in O. It can be represented as
a vector in [0,1]I°! whose coordinates sum to 1. The set of all such lotteries is denoted by A(O).
We use a tilde over a capital letter, such as 5, to denote an element of A(Q). We also refer to a
lottery over O as a probabilistic or randomized outcome.

Let the set of agents (voters) be N and the number of agents |N| = n. Each agent ¢ has a
preference order =; over . We assume that the order is strict.

The tuple (O, ¢(-), {>=i};), B) is called an instance of budgeted social choice.

We make the following assumption about the outcome space and the preference profiles of voters.

ASSUMPTION 1. There exists a merging operation & s.t. for any two outcomes 0,0’ € O, odod € O,
and it satisfies that c(o @ o) < ¢(o) 4+ ¢(0') and o ® o' =; 0,0 for every voter i.

It is straightforward to see that the problem of participatory budgeting with monotone ordinal
preferences (and, by extension, committee selection) fits within our framework. In these settings,
there is a finite set of possible projects, and an outcome is a subset of these projects. In committee
selection, similarly, the goal is to select a subset of candidates. Monotonicity implies that each
agent weakly prefers any set to its strict subsets; the cost of an outcome is simply the cardinality of
the selected set and the merging operation corresponds to taking the union of two outcome sets.

Our abstract model goes beyond traditional settings where outcomes are simply subsets of
projects or candidates. For example, two separate projects—a Health Clinic and a Childcare Cen-
ter—can be merged into a Family Wellness Hub that offers both services in a single facility. Even
if the total cost of building the two projects separately is within budget, other constraints—such
as land availability or location limitations—may prevent implementing them individually. In such
cases, the two separate projects are infeasible, but the combined facility offers a viable alternative.

Our main solution concepts are the core and the approximate core, defined as follows.

DEFINITION 2.1. Given an instance of budgeted social choice (O,c(-),{=i}l"1), B), a feasible out-
come 0*, i.e, c(0*) < B, lies in the core if, for every outcome o € O, the number of agents who

prefer o to o* is less than %n. That is, |{i € N : 0* <; 0}| < %n.

IThe same argument applies when multiple copies of each project are allowed in the outcome.
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Given that the core can be empty, we will adopt the following notion of approximate core.

DEFINITION 2.2. Given an instance of budgeted social choice (O,c(-),{=i}l1), B), a feasible out-
come 0* is in y-approximate core if for every outcome o € O, |[{i € N : 0* <; o}| < - % -n.

3. LINDAHL EQUILIBRIUM WITH ORDINAL PREFERENCES

This section introduces our main technical tool. We begin with the traditional Lindahl equilib-
rium and its existence proof, along with its relation to the core. We then adapt this framework
to the setting with ordinal preferences to obtain a fractional solution analogous to the classical
case. Finally, we show how to convert this fractional solution into a probabilistic one using depen-
dent rounding, while preserving the desirable properties of the fractional core. This probabilistic
outcome enables the development of a constant-factor core approximation in the next section.

3.1. Classical Lindahl equilibrium. To better understand our new notion of Lindahl equilibrium
with Ordinal preferences, and how it helps us to construct an approximate core solution, we first
revisit the classical version in a convex economy with a continuous set of alternatives. While
there are several equivalent formulations, we adopt the following for simplicity: every x € R’ is
assumed to be a feasible alternative. Each agent i has a strictly increasing and concave utility
function w;(x) and is endowed with a fixed token budget (income), normalized to 1. Given a
personalized price vector p; € R, the agent chooses a bundle from their demand set: D;(p;) =
arg MaXyerm, (p;)Tx<1 Ui (x).

A centralized producer, indexed by 0, has a strictly increasing linear cost function c¢(x) and
chooses an allocation x € R’} to maximize total revenue subject to a budget constraint B > 0. The

producer’s choice comes from the set: Do(p1,...,Pn) := arg maxx>o (Y4 p)'x st cx)=B.
In a Lindahl equilibrium, all agents and the producer agree on a common outcome x*, with
personalized prices ensuring individual optimality and feasibility.

DEFINITION 3.1 (Lindahl Equilibrium). A Lindahl equilibrium consists of an allocation x* € R
and personalized price vectors (pi1,...,pn) € (RT)™ such that:

(1) Individual optimality: For each agenti € {1,...,n}, x* € D;(p;).

(2) Producer optimality: The producer chooses x* € Do(p?,...,p").
THEOREM 3.1 ((Foley 1970)). A Lindahl equilibrium exists, and the equilibrium allocation x* lies

in the core. That is, for any alternative x: [{i : u;(x) > u;(x*)}| < ¢(x) - 5.
Sketch of the proof. The existence of equilibrium is established using a standard fixed-point argu-
ment, which follows from the continuity of the demand correspondence D;(p) with respect to prices
p, along with the concavity of utilities and the linearity of the cost function.
To show that the equilibrium is in the core, let x* be a Lindahl equilibrium. Since utilities are
strictly increasing, each agent exhausts their budget, p; - x* = 1. Thus, we have Y ;" | p; - x* = n.
Because of the cost is linear, the producer maximizes the profit-to-cost ratio, so for any alternative
X:
D PitX _ Y PicXT - n
= < == == = i x <c(x) —=.
cx)  © ex) B ;p’ selx) g

Now suppose some agents prefer x to x*, i.e., u;(x) > w;(x*). Then, by revealed preference,
pi-x > 1. Let I = {i:u;(x)>ui(x*)}, then: [I] <) . ;pi-x <¢(x)- 5.

0

3.2. Lindahl equilibrium with Ordinal Preference (LEO). Adapting the classical Lindahl
equilibrium concept to our setting—with ordinal preferences and a discrete set of outcomes—requires
expanding the outcome space from discrete to continuous. A natural starting point is to consider
lotteries over outcomes, represented by A(Q). However, as we will show below, this is insufficient
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for adapting the proof above. Instead, we work with outcomes represented by vectors y € R‘f‘,
which can be interpreted as fractional allocations over the discrete alternatives.

Even with this relaxation of the outcome space, significant challenges remain in formulating a
Lindahl-type equilibrium relying only on ordinal preferences. We address each challenge as follows:

Lack of continuity: In classical settings, continuous demand enables fixed-point arguments.
In our discrete setting with ordinal preferences, this continuity fails. To address this, we adopt the
random income method from Nguyen et al. (2025), assuming incomes are drawn from a continuous
distribution Z on [0,1].2 For each income realization, agents choose their most preferred affordable
outcome, with ) (priced at zero) ensuring nonempty demand. This induces a random demand that
varies continuously with prices, restoring the needed continuity.

Saturated utilities: In classical models, strictly increasing utilities ensure that all agents fully
exhaust their budgets and consume the same allocation, which also coincides with the producer’s
output. This fails in our setting because utilities saturate over a finite outcome set. Instead, we
adopt a condition akin to competitive equilibrium: each agent’s randomized demand x; € ]R'fl
must not exceed the producer’s allocation y coordinate-wise. If z; , < y, for some outcome o, then
Pi,o = 0. This weaker condition allows for heterogeneous demands across agents, which is necessary
to support a fixed-point argument, and still suffices to ensure core-like guarantees.

Revenue maximization and the core: Classical core arguments rely on the producer max-
imizing the revenue-to-cost ratio. But restricting outcomes to lotteries over O (i.e., Y v, = 1)

blocks this approach. To recover it, we relax the outcome space toy € R'f‘ and let the producer
maximize revenue subject to ) 0cO\{0} yoc(0) = B. This retains the revenue-to-cost ratio logic but
yields a fractional outcome, which must be rounded to a valid lottery. This is where we incur a
constant-factor approximation loss.

These modifications naturally lead to a new solution concept, which we call Lindahl equilibrium
with Ordinal Preferences (LEQO) and formally define as follows.

Each agent ¢ is endowed with a random income Z supported on [0, 1] (common for all voters) and
has a personalized price vector p; € R'fl. We use p;, to denote the personalized price of o € O for
an agent ¢ with p; g = 0.

Given a fixed deterministic income, a voter selects her most preferred affordable outcome. Under
a random income distribution Z, voter i’s random demand is the distribution over such choices across
income realizations:

Di(pi, I) = {H;@X{O €0 :pio<b}|b NI}.

Under the assumption that 7 is supported on [0, 1] and p; y = 0, 0 is affordable for every possible
realization of the random income and therefore D; is guaranteed to be a valid lottery over O.

Similar to the standard Lindahl case, the producer aims to produce a fractional central allocation
of outcomes maximizing the total profits given individual price vectors. In particular, given a total
budget constraint B, the demand of the producer is

n
Do(P1, P2, -, Pn) =arg max > (Zpi,o)‘zo st. Y c(0)z=B.
+ ocO\{0} =1 0cO\{0}

Note that in this formulation, the producer only produces outcomes other than (). This is purely
without loss of generality: allowing production of ) does not affect the producer’s decision, since
pig =0 and ¢(0) = 0.

Now we introduce the following definition of Lindahl equilibrium with ordinal preference (LEO).

DEFINITION 3.2. Given an instance of budgeted social choice (O,c(-),{>=i}I~1),B), and a random
income T supported on [0,1], the Lindahl equilibrium with ordinal preference (LEQO) consists of

20ur approach works for any bounded, continuous distribution; we use [0, 1] for convenience.
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individual consumptions x' ; € 0, 11191, a common allocation y € [O,B]‘O\{@}‘ and personalized
prices pY_; € [0,1]!° with pip = 0 such that

(1) for any i € N and o € O, z;, = Pr(D;(pi,I) = 0),

(2) for any i€ N and o € O\ {0}, yo > ;o with strict inequality only when p; , = 0,

(3) y € Do(P1, P2, -+, Pn)-

We first establish the existence of a LEO; the proof is provided in Appendix A.1.

THEOREM 3.2. Given an instance of budgeted social choice (O, c(-),{=i}}_,), B), if the cumulative
distribution function Fr :[0,1] — [0,1] of T is continuous, then a LEO exists.

Next, we introduce an additional parameter a > 0 into the LEO framework. The only modifica-
tion is in the second condition of LEO. The existence of an a-LEO follows directly from Theorem 3.2
(see Appendix A.2). This parameter will later be selected to optimize the approximation ratio in
our final construction.

DEFINITION 3.3. Given an instance of budgeted social choice (O,c(-),{=i}_,),B), a random in-
come L supported on [0,1] and a > 0, an a-LEO consists of individual consumptions x' | € [0, 1]‘(9',
a common allocation 'y € [0, B]'f\{@}l, and prices pY_, € [0,1]!° with pig = 0, such that

(1) for any i € N and o € O, z;, = Pr(D;(pi,I) = 0),

(2) for any i € N and o € O\ {0}, yo > « - x;, with strict inequality only when p; , = 0;

(3) y € Do(P1,P2, s Pn)-

THEOREM 3.3. Given an instance of budgeted social choice (O, c(-),{=i}"), B) and a > 0, if the
cumulative distribution function Fr :[0,1] — [0,1] of Z is continuous, then an a-LEO exists.

The following two properties of an a-LEO are important for our construction. We apply the
a-LEO to a specific income distribution, Z = U[1 — ¢, 1] (i.e. uniform distribution over [1 — ¢, 1]),
which is used to approximate the constant income of $1 in the classical Lindahl equilibrium.

The first property is analogous to the classical setting and provides a bound on the total revenue
of the common allocation. It follows from the definition of agents’ consumption and the market-
clearing condition.

PROPOSITION 3.1. Given an a-LEO (x}_,,y,p},) with random income T = U[1 — ¢, 1], the total
revenue of the common allocation satisfies Y co Y i—q Piolo < QM.

The second property bounds the total price of each outcome, mirroring the revenue-to-cost ratio
condition in the classical case. This property arises from the producer’s revenue-maximization
behavior.

PROPOSITION 3.2. Let (x]"1,y,P; ) be an a-LEO with a total budget B and a random income
I=TU[l—¢1]. Then, for anyoc O, Y i pio < a- $§) ‘n.
3.3. Dependent rounding and Lindahl Lottery. In most cases, the fractional common alloca-

tion y may not be a lottery over O. So, we adopt the technique of negatively dependent rounding
from (Byrka et al. 2017) to turn y into a lottery.

PROPOSITION 3.3. Byrka et al. (2017) Gwen'y € [0,1]™ s.t. >0, apyr < B, there exists a
distribution Y over {0,1}™ satisfying the following properties:

e Preservation of marginals: E[Yy] > yi for all k € [m),

e Preservation of weights up to one: Y ", Y., < B+ /37;,?30 ap with probability 1,

e Negative dependence between entries: for S C [m] , Pr (/\kes Y = 0) < II (1 — yk)
kesS

When aj, = 1 for all k, we additionally guarantee that y ;. Y < [B] with probability 1.
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Given this dependent rounding scheme, we now have the tool to construct a lottery over social
outcomes from a fractional solution. Note that dependent rounding runs in linear time, and thus
the algorithm below also operates in linear time.

Note that we allow the common allocation y of a LEO to have entries exceeding 1. When
generating a lottery from y with dependent rounding, we truncate its entries at 1.

ALGORITHM 1: Dependent Rounding on Social Outcomes

Input: A fractional y € ]R'fl st. Y ococlo)yo < B

Output: A lottery L(y) over outcomes with the cost at most B + maz, c(o)
0:Yo>

1 For each o0 € O set z, := min{1l, y,}
2 Generate a distribution Z from z satisfying Proposition 3.3
3 Sample Z € {0,1}/° ~ Z

4 Output o= €p 0 as arealization of z(y), where € denotes the merging operation for O.
o':Z,=1

DEFINITION 3.4. Given an a-LEO with common fractional allocation y, the lottery E(y) produced
by Algorithm 1 is referred to as the Lindahl lottery.

The main appeal of the Lindahl lottery is that it guarantees, for every agent, a constant prob-
ability of receiving a “good” outcome—one that is ranked above the agent’s boundary outcome,
defined below. The term “boundary” reflects that this outcome lies at the edge of the agent’s
random demand: an agent includes an outcome in her lottery only if it is at least as good as her
boundary outcome. The boundary outcome plays a crucial role: any outcome strictly preferred to
it must have a price of at least 1 — e. This property is key to bounding the number of voters who
can strictly prefer a different alternative.

DEFINITION 3.5. Given an a-LEO (p,x,y) with T = U]l — ¢, 1], the boundary outcome of agent i
denoted by o; is i’s favorite outcome with price at most 1 — € i.e. 0; = max.,{o € O :p;, <1—€}.

We obtain the following result bounding the probability of a Lindahl lottery outputting an
outcome worse than the boundary outcome. In particular, we show that the probability decreases
exponentially with respect to a.

PROPOSITION 3.4. Let L(y) be a Lindahl lottery corresponding to an a-LEO (p, X,y) with a budget
B and income distribution U[1l — €, 1], then following properties hold:
e cach realization of L(y) has a cost of at most B 4+ max c(0);
0€0:y,>0

e under this a-LEO, Vi € N, Pr (0 < oi) < e~ %, where o; is agent i’s boundary outcome.
o~L(y)

4. MAIN RESULT: APPROXIMATE CORE
The main result of this section is the following.

THEOREM 4.1. Given an instance of budgeted social choice (O,c(-),{>=i}_,),B), and under As-
sumption 1, there exists a 6.24-approximate core solution.

To prove this result, we begin with a Lindahl lottery associated with an a-LEO, where « is a
parameter to be chosen later. We will show that there exists a realization of this lottery, denoted
o*, that is approximately in the core. The intuition follows closely the classical Lindahl argument.

First, we show that o* “covers” a large fraction of agents, in the sense that for each covered
agent ¢, the following property holds: if some alternative outcome o ~; 0*, then the corresponding
price satisfies p; , > 1 — €. By Proposition 3.2, which upper bounds the cumulative price of each
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outcome, we can then conclude that the number of agents who are both covered by o* and prefer
another outcome o is small relative to its cost.

However, we cannot make any claims about agents not covered by o*, who may prefer o to
o*. Still, the total number of uncovered agents is reduced by a constant factor relative to the
total population. To obtain a constant-factor core approximation, we follow the iterative approach
of Jiang et al. (2020), applying the same algorithm to the remaining uncovered agents using a scaled-
down version of the Lindahl lottery. This process continues until no agents are left uncovered, and
the outcomes obtained at different steps are merged together to produce the final output. By the
convergence of a geometric sequence, this guarantees a constant-factor approximate core solution.
The parameter « is chosen to optimize the trade-off between two factors: the convergence rate of
the iterative process and the approximation guarantee obtained in each iteration.

We first define the notion of covering. Intuitively, an agent is said to be covered by an outcome
if the outcome is at least as good as her boundary outcome. This, in turn, implies that any strictly
better alternative must have a price of at least 1 — e. This observation allows us to bound the
number of such agents.

DEFINITION 4.1. Let an a-LEO (x]_,,y,pl~;) be given under random incomes Z ~ U[1 —¢, 1]. For
each agent i, let 0; € O be her boundary outcome as defined in Definition 3.5. Then, agent i is said

to be covered by outcome o if 0 =; 0;.

We now present Proposition 4.1, which uses the Lindahl lottery property from Proposition 3.4
and the linearity of expectation to establish the existence of a desirable outcome—one that not
only covers a large portion of the population, but also ensures that only a small fraction of the
covered agents can commonly find a better alternative.?

PROPOSITION 4.1. Let V' be a set of agents, and let (x]_,,y,pj—,) be an a-LEO with budget B
and random budget T ~ U[1 —¢,1]. Then there exists a realization o* € O from the Lindahl lottery
satisfying:

(1) ¢(0*) < B+ max{c(0) : y, > 0}

(2) At most e=® - |V'| voters are uncovered:

[V\ S, V)| <e @-|V|, where S(0*,V) is the set of covered voters.
(3) For allo € O, |{i € S(0*,V) : 0* <; 0} < 12 - <2 .|y,

The construction of an approximate core solution is presented in Algorithm 2. It ensures that
all agents are covered while keeping the total cost within the budget B. At each iteration j, it
restricts attention to outcomes with cost at most Bj, where B; decays geometrically with rate .
The Lindahl budget used in the a-LEO construction is set to v B;.

By Proposition 4.1, each iteration yields an outcome o that covers a large fraction of the remain-
ing agents; the uncovered agents proceed to the next round. The cost of o/ is at most (yo + 1)Bj,
accounting for rounding slack.* The final outcome is the union of all /. Since Bj shrinks geomet-
rically, the total cost remains bounded by B.

To prove the correctness of the algorithm, we first bound the number of agents preferring an
alternative outcome at each stage.

3Proposition 4.1 is key to our improved approximation guarantee over Jiang et al. (2020). Their notion of partial
coverage—termed “good” committees in Section 3.1 (which we refer to as “J-covering”)—shows that for any 8 <
1, there exists an outcome o* that fails to J-cover at most a S-fraction of the population, and limits deviations
among covered agents to at most % . % -|V|. with the same number of ”deviating” agents among covered agents,
our formulation covers significantly more agents. This tighter coverage ensures faster convergence in our iterative
procedure, yielding a stronger approximation ratio.

4The parameter o is introduced to better handle the additive slack arising from dependent rounding. In Jiang et al.
(2020), o is implicitly set to 1, which can result in the size of each outcome being up to twice the Lindahl budget.
Choosing a larger o helps reduce this rounding slack, leading to improved approximation guarantees.
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ALGORITHM 2: Iterated Rounding with LEO

Input: a set V of n voters, a budget B, € > 0, parameters « > 0 and 7,y > 1 s.t. e* >~
and & > ¢
Yo = e¥—y
Output: an outcome o* with ¢(0*) < B s.t.

; . , a  yo+l) | e
{’L eV .o = O} < |\17—€ . —Do . P

@

%nJ for each o € O

1j0,0" 0,V <V, B+ q- 5B

2 while |V;| > 1 do

3 Given outcome space {0 € O : ¢(0) < B;} and voters in Vj, generate an a-LEO
(xI'_4,y,pl~,) with a total budget of vy - B; and and Z = U[1 — ¢, 1]

Find an o’ with ¢(¢o/) < (v + 1) - B; satisfying Proposition 4.1

0* + 0* ® o’

Biiq o Bi
j+1 P

Vig1 < V;\ S(07,V;) i.e. Vjyq is the subset of V}, who are not covered by o

i+

end

© oW N o G~

10 return o*

PROPOSITION 4.2. In round j € N of Algorithm 2, let o be an outcome with c(o) < B;. The number
of agents in V; who are covered by o’ and prefer o to o’ is at most:

. . . o c(o
(i €8, V}) 0= 0'}| < (ela)ﬂ gl éo) “n).

With Proposition 4.2, we can establish the correctness of Algorithm 2. In particular, given an
alternative outcome, we need to bound the total number of people deviating to the alternative
accumulated during each stage. The key idea is that at the same time as Bj shrinks, |V;| decreases
at a faster rate. As a result, for any alternative o, the number of covered agents who prefer o
over o’ also decays geometrically. This prevents the cumulative preference deviation from growing
unbounded across iterations.

We now state the formal result establishing the correctness of Algorithm 2.

PROPOSITION 4.3. Let the input of Algorithm 2 be a set V' of agents, a budget B > 0, ¢ > 0, and
parameters vg, a,y > 1 with e* > ~. Then the output o* of the algorithm has a cost of at most B

. . a A+l e
and lies in the 72 O=Th " &=y

approrimate core.

Proof of Theorem 4.1. The main result (Theorem 4.1) easily follows from Proposition 4.3 by
letting e approach 0 and picking optimal parameters (o = 2.88,v = 4.6,y = 3.88) for the formula
in Proposition 4.3. The details can be found in Appendix C.1.

5. COMMITTEE SELECTION

In this section, we derive improved approximation results for the special case of committee
selection under additional structures on voter preferences. Let M be the set of m candidates (also
referred to as items), and let the set of feasible outcomes be @ C 2™ ie., O consists of certain
subsets of M. We assume that () € @. The cost of selecting an outcome S C M is its cardinality,
|5].°

SNote that we now shift from using the abstract outcome o (as in Section 4) to a committee S C M.
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In the committee selection problem we consider, we are given a budget B, and feasible outcomes
are all subsets of candidates whose size is at most B, i.e., O = {S C M : |S| < B}.

As before, there are n voters, indexed by the set IV, each with preferences over subsets in O. We
focus on the following two types of preferences.

DEFINITION 5.1. An agent i is said to have a ranking preference —; over O if it is induced by an
underlying preference ordering =; over the ground set in the following way. If the favorite item in
S is considered better than the favorite item in T according to >=*, then S =; T.

DEFINITION 5.2. An agent i is said to have an approval preference =; over O if there exists a subset
of approved candidates M; C M such that any subset S € O has a utility u;(S) = |S N M;| and for
any S, T € O, we S =; T if and only if u;(S) > u;(T).

Our main results are as follows.

THEOREM b5.1. For any integer budget B € Z, there exists a committee in the 5.10-approrimate
core under ranking preferences. Similarly, for any integer budget B € Z, there exists a committee
in the 5.15-approrimate core under approval preferences.

5.1. LEO with Item Pricing (LEOI). To take advantage of the special structure of the outcome
space and these preferences, we introduce a new variant of the LEO tailored to this setting. Unlike
the earlier version of LEO, which assigns individual prices to each outcome (i.e., subset of candidates
or bundle), this version employs item pricing. That is, each agent faces a price for each candidate,
and the price of any subset is simply the sum of its item prices. While this simplification introduces
more structure, it comes with a drawback: consistency between individual demand and the common
allocation is no longer enforced at the level of full outcomes (i.e., subsets), but only in expectation
over each individual candidate.

Specifically, we define a new notion of Lindahl equilibrium in which prices are on items instead of
bundles as in Definition 3.2. We call this equilibrium Lindahl Equilibrium with Ordinal Preferences
and Item Pricing, which is abbreviated as LEOI.

Note that both ranking and approval preferences may allow ties. Given a preference »~;, we can
extend it to a strict preference, >=;, where all strict preferences are preserved, and ties are broken
arbitrarily in a way that preserves set-inclusion monotonicity.® As seen in the proofs, this does not
affect the validity of our results, because the definition of approximate core only counts the number
of agents strictly preferring another outcome to the current one in terms of the original preferences.

Now, given an item price vector p;*; for a voter 7, her random demand is

Di(pl-,Z) = {I’HaX{S :.5 €O and Zpi’k < b} ’ b NI} .
. kes
Again, because ),y pir = 0, () is affordable for every possible realization of the random income
and therefore D; is guaranteed to be a valid lottery over O.
The demand of the producer, who aims to maximize the revenue subject to a budget of B, is:

Do(p1,P2; -, Pn) = arg max (Zpi’k) T Z 2z = B.
zeR l i
+ keM i=1 keM
DEFINITION 5.3. Given a total budget B, a random income I supported on [0,1] , and o > 0, an
a-LEOI consists of individual consumptions x}; € [0, 1]|O|, a common allocation y € [0, B]™, and
personalized prices pj—; € [0,1]™ such that
(1) for anyi € N and S € O, z; 5 = Pr(D;(p;,Z) = 5),

bWe use =; only in two definitions where tie-breaking is needed: first, in the definition of random demand; and
second, in the definition of boundary committee (Definition 5.5).
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(2) for any i € N and candidate k € M,

a-( Z xis) < yg, with strict inequality only when p; 1 = 0,
SeO:keS

(3) Yy e DO(plv p2, .- pn)
Similar to Theorem 3.2, we obtain the following result. The proof is provided in Appendix A.3.

THEOREM 5.2. Given a set of feasible outcome ) € O C 2M | for any a > 0 and B > 0, and for
any random budget T with a continuous distribution, an a-LEOI exists.

Now, similar to subsection 3.2, we have the following properties of equilibrium prices in a LEOI.

PROPOSITION 5.1. Let (x]—,,y,Pi—,) be an a-LEOI with total budget B and random income I ~
Ul —¢,1], for any € € (0,1]. Then:

(a) (Total Revenue Bound) Y, /> iy pikye < an.

(b) (Item-wise Price Bound) For any item k € M, Y"1 pir < a- 5.

c¢) (Set-wise Price Bound) For any outcome S € O n ik < Q- 5,
( ) ( Y ’ =1 kGSp: B

These properties allow us to bound the number of agents who prefer an alternative committee
using the bound on individual equilibrium prices.

As in the previous section, we define a dependent rounding of the common fractional allocation
y into a lottery over committees. We show that for each agent, the probability that a randomly
drawn committee is strictly worse than their boundary candidate—that is, the committee fails to
cover the agent—is at most e~®. This implies the existence of a committee that covers a large
fraction of agents.

We then apply an iterative algorithm similar to Algorithm 2, which repeatedly selects subcom-

mittees that cover the remaining uncovered agents. The output is the union of these subcommittees.

5.2. Dependent Rounding on LEOI. We apply dependent rounding with negative correlation,
as in Proposition 3.3, for the special case where ap = 1 for all £ € M.

DEFINITION 5.4. Given an a-LEOI with common fractional allocation y, we construct the corre-
sponding Lindahl lottery E(y) as follows:
e Define z € R™ by setting z; = min{y;, 1} for each i € M.
e Apply dependent rounding to z to obtain a lottery Z over {0,1}™.
e FEach realization of Z corresponds to a subset of M, where item i is included if and only if
the i-th coordinate is 1. This defines a realization of E(y)

As in the previous section, we define the boundary committee and the notion of covering.

DEFINITION 5.5. Let an a-LEOI (x]'_1,y,P,) be given under random income I ~ U[1—¢,1]. The
boundary committee of voter i, denoted by S;, is her most preferred bundle in terms of =; under
prices p; subject to the lower bound on income: S; := maxg, {S €O0:) 1cgPik <1— e} .

DEFINITION 5.6. A committee T is said to cover voter i if T is weakly preferred to the boundary
committee S; in terms of =;, that is, T =; S;.

The following proposition bound the probability that the Lindahl lottery fails to cover an agent
with ranking preference.
PROPOSITION 5.2. Suppose agent © has ranking preferences, and let E(y) be the Lindahl lottery
corresponding to an a-LEOI (p,x,y) with budget B and income distribution U[1 — €,1]. Then:

e Each realization of L(y) has cost at most [B];
e Let S; be agent i’s boundary outcome under this a-LEOI Then, PrSNZ(y)(S =i S;) <e .
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Similarly, we can show that in the case of approval preference, the probability that the lottery
returns a committee worse than the boundary committee is also small.
PROPOSITION 5.3. Suppose an agent i has approval preference. Let L(y) be a Lindahl lottery
corresponding to an a-LEOI (p,x,y) with a budget B and income distribution U[l — ¢,1]. If
a > 3, the following properties hold:

e Each realization of L(y) has a cost of at most [B];

e Let S; be agent i’s boundary outcome under this a-LEOI. Then, Pr S < Si) <e .

SNZ(y)(

While Proposition 5.3 is similar in form to Proposition 5.2, its proof relies on a different strategy.
Specifically, it uses a novel concentration inequality—an adaptation of the Chernoff bound tailored
to binary random vectors. This approach requires an additional condition: o > 3. Full details are
provided in Appendix D.

5.3. Iterative Rounding with LEOI. Now we can incorporate LEOI into the iterative framework
in a way similar to Algorithm 2 and derive improved approximation results for the setting of
committee selection under two important types of preferences. The improvement arises from the
fact that, with the cost of each item being 1, the effect of extra additament of dependent rounding
becomes minimal, which also simplifies the analysis.

PROPOSITION 5.4. In the setting of committee selection with a size bound of B > 2, there exists an
algorithm which, given inputs € > 0 and the a,y > 1 satisfying e* > v, outputs a committee in the

1 B a . . .
T= - (ﬁ + Og}s( )) . 6577 approrimate core for a set of agents with ranking preferences. If o > 3,
. . . It a .
the algorithm can also output a committee in the 1= - (% + Ogjg(B)) . ef_y approximate core for

a set of agents with approval preferences.

The algorithm (Algorithm 3 in appendix) for constructing the desired approximate core solution
in Proposition 5.4 uses a definition of covering similar to Definition 4.1, adapted to committee
selection setting. At each step 7, the algorithm rounds from an a-LEOI with budget B’ to cover a
(1 — e%)—fraction of the population. The budget is reduced by a factor of v at each step to maintain
feasibility, and the process repeats on the uncovered population until every voter is covered.

This algorithm is simpler than in Algorithm 2: rounding is done item-wise, eliminating the need
to restrict the outcome space at each step, and the parameter 7y is no longer required. The full
algorithm, along with supporting propositions and proofs, is provided in Appendix D.

Proof of Theorem 5.1. Finally, to prove our main result, we consider two cases. In the case
of B > 60, Theorem 5.1 follows from Proposition 5.4 by letting ¢ — 0 and optimizing over o and
~. The case of B < 60 is handled separately by applying Propositions D.3 and D.4 which are
two propositions similar to Proposition 4.1 but adapted to the setting of LEOI. (See details in
Appendix D.4).

6. CONCLUSION

We improve existing results for the approximate core of participatory budgeting and committee
selection. Our key innovation is the introduction of Lindahl’s Equilibrium for Ordinal Preferences
(LEO), which extends classical economic insights — traditionally confined to continuous convex
settings — to discrete economies with ordinal preferences.

There are several promising directions for future research. First, we believe that the LEO
framework has broader applications in voting and market design settings with externalities, which
we intend to explore further. Second, while our focus has been on existence results, computational
aspects are also important. The computational direction goes beyond the main scope of this paper,
which introduces the Lindahl Equilibrium with Ordinal Preferences as a new conceptual tool. We
leave this avenue for future investigation.
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APPENDIX A. EXISTENCES OF LEO, LEOI

A.1. Proof of Theorem 3.2: Existence of LEO. We include the renowned Kakutani’s fixed
point theorem and Maximum theorem here for the sake of completeness.

THEOREM A.1 (Kakutani’s fixed point theorem, Kakutani (1941)). Let S be a non-empty, compact,
and convex subset of some Euclidean space R™. Let 1 : S — 25\ () be a point-to-set function on S
such that 1) 1) is upper-hemicontinuous and 2) 1(s) is non-empty and convez for all s € S. Then
there exists a fixed point s € S such that s € 9(s).

THEOREM A.2 (Maximum Theorem, Brian (1990)). Given non-empty X C RE and ® C RM | [et
f: X x 0O — R be a continuous function on the product X x @, and C : @ = X be a compact
valued correspondence such that C(0) # 0 for all 8 € ©. Define f*(0) = sup{f(x,0) : x € C(0)}
and the correspondence C* : @ = X by C*(0) = {x € C(0) : f(z,0) = f*(0)}. If C is continuous
at 0, then f* is continuous and C* is upper hemi-continuous, non-empty, and compact valued. As
a consequence, the sup can be replaced by max.

Equipped with these theorems, we are ready to show Theorem 3.2.

Proof. Define I' := {z € le\{@}‘ | > ¢ozo = B}. We construct the following correspondence:
06(’)\{@}

n
L HoﬂolxrxHoNO':;Ho 1'0‘><1“><H0 1)/©l
=1 =1 =1 =1

L(({xi}tien,y: {Pi}tien)) = ({Xi}tien, Y, {P; }ien)

with

where

; , = Pr[Di(ps, I) = o] Vic N,oc O, (1a)
Y’—argmax (Z p,) z, (1b)
1EN
Pio = {:)nix {mig)l{lmi’o + (o —we)} 0 o 20 Vi€ N,o€ 0. (1c)
if o =0,

Our goal is to show that

(i) By Theorem A.2, the correspondence []? [0, 1]‘O| = T (from p to Y’) is upper hemi-
continuous, non-empty, and compact valued. Furthermore, Y’ is convex, bounded, and
non-empty.

(ii) By Theorem A.1, there exists a fized point ({X;}icn,¥,{Pi}ien) such that

({xitien, ¥, {pPitien) € LE{xi}tien, ¥y, {Pi}ien).
(iii) The fixed point ({x;}icn,y, {Pi}icn) satisfies all the conditions of a LEO in Definition 3.2.
To show (i), we employ Theorem A.2 with X = T' (the space of the producer’s decision) and
e =1[",0, 1]!91 (the space of prices p), both of which are non-empty. Let f(z,p) = (ZZEN pi)T z
be the producer revenue given the producer decision z € I' and the prices p € ©. Given that for
any prices p € ©, any producer decision in I' is feasible, we set C(p) = I' for any p € ©. C
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is a compact valued correspondence since I' is compact. f* maps p to the maximum producer
revenue, thus, given prices p, we have C*(p) = arg maxger (ZieN p,-)Tz. That is, C*(p) is the
set of the optimal producer decision. By Theorem A.2, because C is continuous at any p € O,
f* is continuous and C* is upper hemi-continuous, non-empty, and compact valued. Furthermore,
C*(p) is convex, non-empty, and bounded for any p € © since it is the set of the optimal solutions
of a linear program with a bounded and non-empty feasible region.

To show (ii), we consider S = []}~,[0,1]/°l x T x ][0, 1]!°/ and let v = £. The range of 1 is
restricted to having x’ and p’ as a point and Y’ C T' as a set. Clearly, S is non-empty, compact,
and convex. For all s € S, ¢(s) is non-empty and convex since Y’ is convex, non-empty, and
bounded. The remaining is to show that £ is upper hemi-continuous. To show this, we prove
that (a) the mapping from s € S to x’ is continuous, (b) the mapping from s € S to Y’ is upper
hemi-continuous, and (c) the mapping from s € S to p’ is continuous. (b) directly holds from (i)
and (c) holds once (a) holds since p; , defined in (1c) is a continuous function of x', y, and p. We
focus on showing (a). Let F7z be the CDF for the budget given to an agent i € N. We have that

i, = Pr[Di(pi, ) = o]

Jr
min (Fz(pi o) — Fr(p; o)> if o € O is not the top-ranked in >,
0'€0D:0' >0 ’ ’

1 — Fr(pio) if 0 € O is the top-ranked in >=; .

Intuitively, if o is the top-ranked in >~;, then ¢ demands o as long as p; , is at most the budget given
to i. The probability of having such a budget is 1 — Fz(p; ). If o is the second-ranked and o’ is the
top-ranked in ~;, then 7 demands o if the budget is below p; » and at least p;,. This probability
is captured by (FI(piyof) — FI(pi,O))JF. Note that if p; ,» < p; o, then i never demands o since it is
more expensive and less preferred. Applying analogous reasoning results in the closed form above
for the probability that ¢ demands o under a random budget Z. More specifically, consider o' >=; o,
the probability that o is demanded by ¢ under p; is zero when there exists p; » < p;,. Otherwise,
it is the minimum difference between the CDF at p; ,» and p; ,. Since Fz and the closed form above
are continuous, (a) holds. By Theorem A.1, there exists s € S such that s € L(s).

To show (iii), we prove that any fixed point s = ({X;}ien, ¥, {Pi }icn) such that s € L(s) satisfies
conditions (1), (2), and (3) in Definition 3.2. Conditions (1) and (3) follow directly by (la) and
(1b), respectively. For condition (2), we first show that x;, <y, for all o € O and i € N. Suppose
for the sake of contradiction that x;, > ¥, for some o € O and i € N. Since z;, — Yo > 0
and s is a fixed point, from (1c), we must have p; , = 1. Consequently, i cannot afford a with a
strictly positive probability unless Pr[Z = 1] is strictly positive. However, because Z is a random
variable with support on the unit interval [0, 1], a strictly positive Pr[Z = 1] would imply that Fr
is discontinuous, which is a contradiction. Therefore, z;, < y,. Now suppose z; , < ¥, then from
(1c), the fixed point s forces p; , = 0. Hence, s = ({X;}ien,y, {Pi}icn) satisfies all the conditions
of Definition 3.2, so s is a LEO. O

A.2. Proof of Theorem 3.3: Existence of a-LEO.

Proof. The theorem easily follows from Theorem 3.2. Let a budget B, a random income Z supported
on [0,1], and @ > 0 be given. Then let (x],,y,p}~;) be the LEO under budget g and random
income Z. We claim (x}"_,,« -y, p}' ) is the desired a-LEO. It is immediately clear that (x} ;, -
v, P} ,) satisfies part (1) and (2) of Definition 3.3 because (x}'_,,y,p;_;) satisfies part (1) and
(2) of Definition 3.2. Furthermore, since y maximizes revenue given prices p}-; under budget g,
it follows that o -y maximizes revenue given prices p;*; under budget B. Therefore part (3) of

Definition 3.3 is satisfied and this completes the proof. O

A.3. Proof of Theorem 5.2: Existence of LEOI.
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Proof. The proof is analogous to that of Theorem 2. The difference is on the detail of the mapping.
In particular, we define ® := {z € IR{LJFW | > zx = B}. We construct the following correspon-

keM
dence:
c: I, 1|M|><<I>xHo 1|M|:;H0 1|M|><q>><Ho 1]1M]
=1 =1 =1 =1
with
L(({xitien,y, {pitien)) = {xitien, Y, {D}}ien)
where

i, = Pr[X;(pi, I) = 5] Vie N,S €0, (2a)
Y' = arg max (Z pl> z, (2b)
1EN

p;’k:max{min{l pik+ (o Z T — Yk } 0} Vie N, ke M. (2¢)
S:keS

Thus, > g.ics x; g represents agent i’s expected demand for item k € M, Y’ denotes the pro-
ducer’s response—an allocation that maximizes total revenue—and p;.,k captures the price adjust-
ment.

The remainder of the proof follows the same structure as the proof of Theorem 3.2. Continuity
of the mapping follows directly from that argument, which shows that agents’ randomized demand
is continuous in prices. Moreover, the price adjustment mechanism, together with the fact that the
income distribution has support on the interval [0, 1], ensures that any fixed point of the mapping
corresponds to an a-LEOL.

O

APPENDIX B. MISSING PROOFS IN SECTION 3

Note that because of their fundamental importance, we have moved the proof of existence for
LEO and LEOI to separate sections, A.1 and A.2 respectively, in the appendix.

B.1. Missing Proofs in Section 3.2.

Proof of Proposition 3.1. Given that the expected spending of an agent can never exceed the ex-
pected income, for any ¢ € N, we have

Zpi,oxi,o < E[I] <1
ocO
Then by condition (2) of Definition 3.3, given any ¢ € N, we can bound the revenue collected from

agent ¢ as
Zpi,oyo = Z Di,oYo < Z pi,O(O‘xi,O) <o Zpi,ol’i,o < a,

oeO 0:xXTi 0=Yo 0:xXTi 0=Yo ocO
The first equality holds because of the second property of a-LEO, when x; , < y, the price p; o = 0.
Now by summing across the revenue of individual agents, we can obtain

n n n
Z Zpi,oyo = Z (Zpi,oyo) < Z o = an.
i=1

0€0 i=1 i=1 0€O
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Proof of Proposition 3.2. We first suppose by contradiction that there exists an 6 € O with a
cumulative price exceeding the threshold i.e.

n ~
pr >a-—c(0) -n
i=1 270 B ‘

Then since y maximizes the total revenue under budget B, y can only pick outcomes with the
highest revenue-to-cost ratio. In particular, this implies that for any o with y, > 0, we can derive
a strict lower bound on the revenue-to-cost ratio:
Z?;l Pio Z:‘L:l Pio
> L0 s - —.
clo) — (o) B
As a result, we can obtain a strict lower bound on the total revenue from y as:

S mon= 3 (ZEP o)

ocO i=1 0:yo>0

This means that the total revenue from y is strictly greater than an, which contradicts Proposition
o

3.1. Hence, for any o € O, Y1 1 pio < a- % n, and completes the proof. O
B.2. Missing Proofs in Section 3.3.

Proof of Proposition 3.4. The first part of the proposition follows directly from the properties of
dependent rounding. To see the second part, we fix an agent ¢ and define O; = {o€ O:z;, >0},
which is the set of all outcomes agent ¢ includes in her random demand. We can observe that for
each 6 € @i, 0; =; 0, because by definition, 6 is agent ¢’s favorite outcome under some income
realization b > 1 — €. Therefore, if agent i prefers a realization of z(y) over oy, it must be the case
no outcome in @; has been merged into the realization.

Let z be the truncated vector appearing in line 1 of Algorithm 1 and Z be the corresponding
random vector. Given the reasoning in the last paragraph, we obtain the following inequality:

Pr (0=;0) < Pr(Z;=0%6€ O,). (3)
o~L(y) Z~Z

Now we break into cases.
Case 1: If o; = (), the proposition is trivially true because ) is assumed to be each agent’s least

favorite outcome and any realization of L(y) is no worse. So we have Pr (o <; 0;) = 0
o~L(y)

and this completes the proof. N
Case 2: y5 > 1 for some 6 € O;. In this case, 6 is merged into L(y) with probability 1, and therefore

Pr (0 =< oi) = 0. This completes the proof.
o~L(y)

Case 3: 0; # () and y; < 1Yo € O;. Then for each 6 € (’}i, we have z; = min{1,y5} = ys > - ;5.
Since z; ; is a lottery over O;, Y x;; = 1 and consequently
56('57;

Now we apply the negative dependence property of dependent rounding to (3) and derive
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Er (O = Oi) < PI‘~(Z(, =0Voe @z) < H (1 — 25)
o~L(y) Z~Z N

< H e % =g Zéeéi 7o o

This completes the proof.

APPENDIX C. MISSING PROOF IN SECTION 4

Proof of Proposition 4.1. To find the desired outcome, we take the Lindahl lottery z(y) corre-

sponding to y. By proposition 3.4, for each agent 1, E(y) fails to cover ¢ with a probability of at
most e~“. Then we can use linearity of expectation to obtain

E[lie N: L(y) does not cover il] ZPr ) does not cover i) < |V]-e
eV

This implies that there must exist a realization o* of L(y) with [V \ S(o*, V)| < e~ . |V] as
desired, thus satisfying part (2) of the proposition. Since all realization of L(y) has a cost of at

most B+ max c¢(0), so is 0* and thus part (1) is satisfied.
0€0:y,>0

Now we are left to show o* satisfies part (3). Let an arbitrary outcome o € O be given. Suppose
0 =; 0" for a voter i € S(0*, V), then by the transitivity of preference it must also be the case that
o »—; 0;. However, since o; is by definition i’s most preferred outcome with a price no greater than
1 — ¢, this implies that p; , > 1 — €. And we know that the upper bound of the total prices for o is

% - |V| by Proposition 3.2. Thus we can bound the total number of covered agents preferring
0 as

ZZEV Dio < o . C(O) . |V‘
1—c¢ 1-e¢ B
and this completes the proof. ([l

lieV:0" <0<

Proof of Proposition 4.2. At step j, we have set the budget of the corresponding a-LEO to be

B
B=n-Bj="- —

By Part (2) of Proposition 4.1, |Vj41] < DA for each k > 0. Hence, Vil < &5
Now applying Part (3) of Proposmon 4. 1 we obtain

, o a o) .. v\ o c(o)
i€ S V) omid}| < g 5 Vil S (V- o5 - (-

and this completes the proof. O

Proof of Proposition 4.3. We first bound the cost of o*. At step j, only outcomes with cost less
than B; are considered and the budget of the corresponding LEO is 79B;. Therefore, according to
Proposition 4.1, the cost of o/ is at most (g + 1)B;. Then by the merging assumption (Assumption
1), we can compute

. (Yo +1) - Bo =1 1
c(o)deoj)szT (Yo+1)B Z;s (0+1)Bo- ~—1 =B,
V;1>1 V;1>1 =0 y

which means that o* is within the cost limit of B as desired.
Now given an outcome o, we want to bound the total number of agents preferring o to o*. Let ¢
be the first index for which B; < ¢(0). Then using Assumption 1 and Part (3) of Proposition 4.1
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and assuming the worst-case scenario where all agents in V; prefer o to o*, we can obtain

t—1
i€ N:o* <0l <> Ji€ S0, V)): 0" <iol+|Vi
j=0
o c(o) =7
< |V _ .. L.
<+ (rmg S ) T

Jj=0

Then using the assumption on the value of «, 7,7 and ¢(0), we can bound |V}| as

Vi hoao B (Y g (1Y

S =0 g ) =B (e

t
<O (2) < phe o), (0
~ By er/) T ev/(e*—7v) By e

t .
e (@) a0 oy
7% Bo 1—2% 7 vw(l—¢ By = e

Now combining the bound on |V;| and the previous inequality yields:

t—1
|i€N:o*-<io|§|Vt|+(a.C(O).n>2(7)j

w(l—¢ By ) L&gen
(s % ) (B E)
a c(0) 1

Si-o B M-z
a o+l e <o)
“1-¢ (y-Dw e B "
Thus o* lies in the core with the desired approximation ratio and this completes the proof.

C.1. Proof of Theorem 4.1.

Proof. Fix a, 7, g satisfying the requirement for the inputs of Algorithm 2. For the ease of notation,

we define w(a,y,7) = «- % . efi,y. Then by Proposition 4.3, for any € > 0, there exists a

feasible outcome o} s.t. for any o € O,

. . w(a,7,7%) (o)
[{i € N :0} <;0}| < T—. g ™
Since the left-hand side is integral, this implies that
w(a, e ’YO) C(O)
1—¢ B n.
Because c(0) is bounded from above and W(O{ijjo) — w(a,v,7) as € — 0, there must exist a
small enough €¢* s.t. for any o € O,
Lw(aa’y”YO) . C(O) .
1—e€* B

[{ie N:ol <0} <
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Let us denote the corresponding outcome as o}.. Then for any o € O,

. * W, 7,7 clo clo
HZ eN: Oex =i 0}‘ < L (1 —763/ ) ’ (B) nJ Sw(077770) : (B) "N
This means that for any «, 7, vy satisfying the requirement for the inputs of Algorithm 2, there
exists an outcome lying in the w(a,y,~0) approximate core. Taking o = 2.88,~v = 4.6, = 3.88

gives the desired approximation factor of 6.24.

O

APPENDIX D. PROOFS IN SECTION 5

We want to point out that we have previously put the proof of Theorem 5.2, the existence of
a-LEOI, in the separate sections of A.3 in the appendix due to its fundamental importance.

D.1. Omitted Proofs in Section 5.1.

Proof of Proposition 5.1, Part (a). The proof, which is based on the market clearing condition of
LEOI, is similar to the proof of Proposition 3.1 bounding the total revenue in the case of LEO. For
each agent i € NV, the expected spending cannot exceed her expected income. Therefore, we obtain
the following bound:

Z Z PikZi,s = Z (szk : wi,s) < E[Z] < 1.

keM SeO:keS SeO0 “keS

Then by condition (2) of Definition 5.3, given any i € N, we can bound the revenue collected
from agent ¢ as

ST b= Y. bk < Y, piklamip) <@ D pigmis <o,

keM SeO:keS k:or; p=yx kiox; p=yx keM SeO:keS

The first equality holds because of the second property of a-LEO, when x; ;, < y, the price p; 5, = 0.
Now by summing across the revenue of individual agents, we can obtain

n n n
Z sz',kyk = Z ( Z PikYk) < Za = an.
i=1

keM i=1 i=1 keM
O

Proof of Proposition 5.1, Part (b): The proof is similar to the proof of Proposition 3.2 but sim-
pler, which is based on the revenue maximization behavior of the producer. We first suppose by
contradiction that there exists an item k € M with a revenue exceeding the threshold i.e.

n
n
=1

Then since y maximizes the total revenue under budget B, y can only pick items with the highest
revenue. This implies that for any k with y; > 0:

n n
TR DT
=1 =1

As a result, we can obtain a strict lower bound on the total revenue from y as:
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n
n
DD TTEDD (a 5 yk>
keM i=1 E:ys >0
:a'%- Z yk:a-%-B:an.
This means that the total revenue from y is strictly greater than an, which contradicts Proposition
5.1, Part (a). Hence, for any k € M, " | p;j, < a - %, and completes the proof. O

Proof of Proposition 5.1, Part (c). This part is a straightforward corollary of Part (b). Fix a com-
mittee S € O. Then we can bound the total price of S as:

Zzpiﬂk:Z(Zpi,k) SZa-gga.g.n

i=1 keS keS =1 keS
and this completes the proof. ]

D.2. Omitted Proofs in Section 5.2.

Proof of Proposition 5.2. The first part of the proposition is a direct result of Proposition 3.3. Then
it is left for us to prove the second part.

If S; = (0, the second part trivially follows. So we assume S; # ). Let A be the set of items which
appear as the best item of some realization of i’s random demand i.e.

A:={keM:35 € O s.t. $i,5>0andk:%1a§k'},
‘e

which is a non-empty set because S; # 0.

Then we can see for any k € A, k =; 5;. Otherwise, let Ci be the collection of committees in the
random demand having k as the best item. Pick an arbitrary C € C;. We will have k£ < S; and
therefore C' < S;. Because =; preserves strict preferences, C<;5;. Then C would not have been
included in the random demand, which is a contradiction. B

Given the discussion above, an agent i strictly prefers S; to some realization of L(y) in terms of
>; only if the realization does not contain any item from A. It then follows

Bl" (S-<,SZ)§ E}‘ (VkEAk¢S)
S~L(y) S~L(y)

Now we break into two cases.

Case 1: If yi > 1 for some k € A, then zp = 1. Consequently, item k is always included in Z(y) and
the proof is complete.

Case 2: yp < 1 for all k € A. Now let z be the vector created from y as in the formulation of
Lindahl lottery and Z be the corresponding random binary vector. Then by Part (2) of the
definition of LEOI, we have

sz:Zmin(yk,l):ZykZa-z Z xi,SZa-Zin,c. (4)

keA keA keA k€A ScO:keS ke ACeCy

And because we have already assumed S; # ), we have
{CeO0:3keAst. CeC}={S€0O:2;,5>0}.

It then follows
Z Z Zi.C = Z T3S = 1. (5)

kEA CECy SEO:z; 50
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Combining inequalities (4) and (5) yields

ZZkZOé'ZZ%,C:O&

keA keACeCy,
As in the proof of Proposition 3.4, the following inequality follows from negative depen-
dence:
Pr (S=;S)< Pr (VkeA:k¢S) < Pr(Z,=0VkecA)<e kea® <@
S~L(y) S~L(y) Z~Z

and this completes the proof.

We have the following traditional Chernoff bound.

PROPOSITION D.1 (Chernoff bound). Let X1, X, ..., X, be negatively correlated random variables
in [0,1]. Define X =>"7" | X; and let p = E[X]. Then for any § > 1,
-5
€ 1
Pr(X < (1-9) -,u) < (1 —51—5) ,
and a weaker inequality is
%

Pr(X <(1—6)-p)<e 2.
Using the Chernoff bound above, we derive a similar result for discrete random variables.

PROPOSITION D.2. Let X1, X, ..., X,, be negative dependent random variables on {0, 1} with mean
T1, L2, .., Ty and let X =50 1 X;. Let o, A > 0 be given and suppose E[X]| > a-A. Then if « > 3
and A > 1, the following inequality holds:

Pr(X < A) <e @

Proof of Proposition D.2. Since X can only take integral values, it suffices to prove
Pr (X < max(|A—1],0)) <e .

We break the analysis into 5 cases based on the value of A. For cases where A < 5, we use the
cumbersome but tighter form of Chernoff (Proposition D.1); when A > 5, using the weaker form
would suffice.

Case 1: First consider the case 1 < A < 2. In this case, we can see that X < max(|A —1],0) only
if X; = 0 for any j. Then using the same deduction as in the proof Proposition 3.4, we can
apply the negative dependence property to obtain:

Pr (Xj =0 V)< e 2T < eAY < o

Case 2: Now consider the case 2 < A < 3. In this case, we take § = % so that 1 — A > % and

63
(1 —06)179 > =03 We can now compute

Prx<1)<() X;<(1-6)-a-A)
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Case 3: Now consider the case 3 < A < 4. In this case, we take § = % so that 1 — 9§ > a% and

(1—6)179) > 034 We can apply the same logic as in Case 2 to obtain

_7
9

Pr(X <2) < (—

3o —a
6—0.34) se .

Case 4: Now consider the case 4 < A < 5. In this case, we can take § = % sothat 1 —§ > ﬁ and

(1—6)179 > 035 We can apply the same logic as in Case 4 to obtain
3
e 4 )40c

—aF <e
e—0.35

Pr(X <3) < (

Case 5: Lastly, we consider the case A > 5, where it would be sufficient to use the weaker form of
Chernoff. In this case, we can take § = % sothat 1 — 4§ > é > % Then we have

52.a-A

Pr(XS LA—lj)Se* 2 <e ¢

and this completes the proof.

O

Proof of Proposition 5.3. To make the presentation easier, we first introduce some simplified nota-
tions: given any agent ¢ and item k € M, we write

Jii’k = E xiys.

SeO:keS

Now we are ready to prove the proposition. Note that the first part of the proposition is a direct
result of depending rounding with unit cost. It is left for us to prove the second part, which is
equivalent to:

Er (’U,Z(S) < u2(51>) <e
S~L(y)

Now let us define K := {k € M, : y > 1}. Because all items in K are included in L(y) with

probability 1, it suffices to show

Pr <ul(S \ K) < ui(S;) — |K|> <e
S~L(y)
Then let z be the vector truncating all entries of y to no more than 1 as in Definition 5.4 and

Z be the corresponding random vector on {0, 1} obtained from dependent rounding. We define a

random vector Zyp\ g 1= > Zi. Equivalently, it is sufficient to prove
keM\K

Pr (ZMi\K < ui(S;) — |K|) <e %
The next step is to verify that the prerequisite for applying Proposition D.2 has been satisfied.
By definition, S5; is the worst committee with positive weight in ¢’s random demand in terms of ;.
Then each realization of the random demand is also no worse than S; according to >; i.e. having a

utility no lower than w;(.S;). Therefore, we can see that the expected utility of the random demand
cannot be lower than u;(S;) i.e.:

Yo wilSrs > > wilSHwis =ui(S) Y s =ui(S).
Se0:x; >0 Se0:x; s>0 Se€0:x; s>0

We also know that the expected utility of the random demand equals the total weight of items

in M;. So, we have
E Tk = E ui(S)zis > ui(S).
keM; SEO:IZ"5>0
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And since each realization of the random demand contains at most one unit of each item, it
follows that z; ; < 1 for each k € M. This implies that the total weight of items in M; \ K is at
least u;(S;) — ]K| ie.

Z x,k—szk—szk>lek—Zl>ul z |K‘

keM\K keM keK keM keK

By our definition of K, z; =y for each k € M; \ K. Then by the market clearing condition, for
each k € M; \ K, we have 2z, = y; > a - x; , which allows us to lower bound the expected value of

Zp\K as:

ZM\K Z Zp > o Z Tig = Q- uZ Z) ’K‘)

kEMA\K ke M\K

Furthermore, we can assume that u;(S;)—|K| > 1; otherwise L(y) would have produced utility no
smaller than u;(S;) with probability 1 and the proof would be complete. Now taking X := Zy;\ g
and A := u;(S;) — | K|, we can see that the conditions for applying Proposition D.2 have been
satisfied and our proof follows.

]

D.3. Omitted Algorithms, Propositions, and Proofs in Section 5.3. For both types of
preferences, we can show the existence of a committee which covers a significant fraction of the
population and ensures that only a small fraction of covered agents who all prefer an alternative
committee.

PROPOSITION D.3. Given a set of agents V' with ranking preferences and o > 1, let (X}, y,P}1)
be an a-LEOI with a budget B and a random budget T = U[1 —e, 1]. Then there exists a realization
S* € O of the Lindahl lottery satisfying the following properties:
(1) 157 < [B]
(2) S* leaves at most e~ - |V| voters in V uncovered; that is,
[VAC(SS V) <e - |V,
where C(S*, V) 7 is the set of voters in V covered by S*.
(3) for any S € O,
o 8
1-€¢ B

[{i € C(S*,V): 8% <; S}| < V).

PROPOSITION D.4. Given a set of agents V' with approval preferences and o > 3, let (X}, y,Pj—;)
be an a-LEOI with a budget B and a random budget T = U[1 —¢,1]. Then there exists a realization
S* € O of the Lindahl lottery satisfying the following properties:

(1) |S*] < [B]

(2) S* leaves at most e~ - |V| voters in V' uncovered; that is,
[VACSS V) <e - |V,

where C(S*, V) is the set of voters in V' covered by S*.

(3) for any S € O,

a |5

—e¢ B

Proof of Proposition D.3 and Proposition D.4. Due to the similarity of the two Propositions, we

choose to prove them together. The main idea is very similar to the proof of Proposition 4.1.

{i € (s V) : 8" < S}l < 5 V).

"In the setting of committee selection, we change the notation from S(,V) to C(, V) because S has been used to
denote committees



APPROXIMATE CORE OF PARTICIPATORY BUDGETING VIA LINDAHL EQUILIBRIUM 25

As in the proof of Proposition 4.1, we can apply Proposition 5.2 in the case of ranking preference
(Proposition 5.3 in the case of approval preference) and linearity expectation to find a committee
S* which is a realization of the Lindahl lottery and satisfies Part (2) of both propositions. S*
also satisfies Part (1) because any realization of the Lindahl lottery has size at most [B] by
Proposition 3.3.

To show Part (3), notice that the total price for a committee S is at most a- ‘—g' -|V'| by Proposition
5.1, Part (c). If an agent is covered by S* but prefers S to S*, her personal price for S is at least
1 —e. It then follows

a |5
1—-¢ B
and the proof is complete. O

{ie C(S%,V): 5" < S} < V]

We are ready to give the iterative algorithm with LEOIL.

ALGORITHM 3: Iterated Rounding with LEOI
Input: a set V of n voters with either ranking or approval preferences, a budget B, € > 0,
parameters v > 1, a > 1 for ranking preferences (« > 3 for approval preferences)
satisfying e® > v
Output: a committee S* with |S*| < B s.t.

{iEV:S*%iS}lgLlae-(ﬂl+bg“§m)'efav~g-nJ for each S € O

1j<—07S*<_@,%<_V,BO<—+g(B)‘B
4

~y—1 B

while |V;| > 1 and B; > 1 do
Given voters in Vj, we generate an o-LEO (x]'_;,y,p}_;) with a total budget of B; and
and Z = U[1 — ¢, 1]
4 Find an S7 with |S7| < B, satisfying Proposition D.3 in the case of ranking preference
or satisfying D.4 in the case of approval preference
5 S* ¢« S*uU I
6 Bj+1 — %
7 Vig1 < V;\ C(S7,V)) i.e. Vjiq is the subset of Vj, who are not covered by o’
8 J++
9 end
10 return S*

W N

We next show the correctness of Algorithm 3.

PROPOSITION D.5. In round j of Algorithm 3, for any S € O, the number of agents in V; who are
covered by o’ and prefer S to S7 is at most

(e clsh1y)s 5 me S0 < (G g (g om

Proof. According to Proposition D.4 and Proposition D.3, we have

. . ' o S
e, v): 8- 5| < 2 By
j
Since |Vj41] < % and Bj11 < %, it follows that \VJ| < &7 and B; < % for each j. Plugging

these into the formula above gives the desired result.
O

Proof of Proposition 5.4. We first show that the output of Algorithm 3, S*, is feasible i.e. has a
size of less than B.
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17 1< >0 I< DB > B+ Y1

j:B;>1 j:B;>1 j:B;>1 §:B;j>1

< By Z — +1log,(B) < By - % +log., (By)
Jj= 0

l B
( v i Og'y( 0))
v—1 By
og, ()

where the last line uses the fact that - is a decreasing function for x > 2.
Now given S € O, we want to bound the total number of agents preferring S to S* using
Proposition D.5.

v, log,(B)

< By -
0 v—1 B )< B,

< By - (

Vi1>1

. . A - a Bl SR,
- g% i < J A i I < (=L . Ly
{ieV:5" <8} < ; (i€ C(S", Vi) S i S} < o - (™) ;ga)
a K 1 o v [ log (B), e |5
gi_(in) _lS — ( — + 2 ).a_ (= n).
v(1—€) "By 1-% " 1-¢ y—-1 B e“—~vy B
Therefore, S* lies in the 12 - (% + %) . efiv—approximate core and this completes the
proof. ]

D.4. Proof of Theorem 5.1.

Proof. As B is an integer, we divide the proof into two following cases.

Case 1: B < 60.

The reason we handle small B separately is because when B is small, the term % in Propo-
sition 5.4 can be too big to derive the desired bound.

Now, consider the committee S* as given in Proposition 5.2 and Proposition 5.3. Because B
is an integer, S* has a size of exactly B and is therefore feasible. Then, we claim that given
B < 60,e > 0,0 > 1 (o > 3 in the case of approval preferences), o* is in the (% + 60e™?)-
approximate core. To see this, we can combine Part (2) and Part (3) of 5.2 (Proposwlon 5.3 in the
approval case) to show that for any S € O,

eV :S* < S| <|ieC(S,V):8 <;S|+]i¢C(S,V):S* =8
<l|ieC(S*V): 8 < S!+|V\C(S*,V)\
o ISI e\ 15l

ey 1S —ay IS
g(—l_ + Be ).| | |V|<( — -+ 60e )-!~V|.

Now let ¢ — 0, we can obtain the existence of a committee in the a + 60e”*-approximate core.
Optimizing over « gives the existence of the desired approximation ratio (o = 4.094, o + 60e™“
5.094).

Case 2: B > 61.

Because this part of the proof is similar to the proof of Theorem 4.1, we choose to offer a sketch

here. By Proposition 5.4, for every € > 0 and «,~ > 1 satisfying the requirement for the inputs of
10g7(3)) ]

—approxnnate core. Because

Algorithm 3, we can find a committee in the ;2 - ( =1 o

ﬁ'(w 1_1_10%(3)).65 N (7 1+logw( )),ef 5 as € — 0 and the number of deviating agents

must be an integer, there must exist a € > 0 for which the corresponding committee lies in the




APPROXIMATE CORE OF PARTICIPATORY BUDGETING VIA LINDAHL EQUILIBRIUM 27

log.,(61) «
(e ol -
« («/_1 + 61 ) eX—vy

that % is monotone decreasing in [2, 00).

Then, for ranking preferences, taking a = 2.57,v = 3.67 yields an approximation factor of 5.10.
For approval preferences, taking o« = 3,y = 4.55 gives an approximation factor of 5.15. This
completes the proof.

-approximate core, where we use the assumption of B > 61 and the fact

O
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