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Abstract

Stability has been a foundational criterion for two-sided matching. When agents on one side have
weak preferences involving indifferences, the seminal work of Kesten and Unver [26] proposes
the Fractional Deferred Acceptance (FDA) algorithm for computing a fractional matching that
satisfies (ex ante) stability along with a fairness criterion that ensures no discrimination among
(equally-preferred) agents on one side.

We show that their algorithm can actually fail to terminate, refuting their claim of (polynomial-
time) termination. Using substantially new algorithmic ideas, we develop an algorithm, Doubly-
Fractional Deferred Acceptance Via Strongly Connected Components (DFDA-SCC), which can
handle agents on both sides exhibiting indifferences and, in polynomial time, compute a fractional
matching satisfying ex ante stability and no ex ante discrimination among agents on both sides.

1 Introduction

Ever since the seminal work of Gale and Shapley [17], the problem of two-sided matching has influenced
not only a vast sea of academic research at the intersection of economics and computer science [33, 11],
but also a wide range of real-world applications ranging from school admissions and placement of
hospital residents to course allocation and centralized kidney markets [6].

The simplest formulation involves two sets of agents, N (“proposers”) and M (“acceptors”), with
|N| = | M| and each agent i € N U M having preferences =; over agents on the other side. The goal is
to find a desirable one-to-one matching x between agents on the two sides based on their preferences.
Much of the prior work assumes strict preferences, where each agent ¢ has a total order »; over agents
on the other side, and seeks integral matchings, where each agent is matched to a unique agent on
the other side, i.e., z € {0,1}""*M with direm Tijy = dyenTij = lforalli € Nandj € M. A
celebrated example is the polynomial-time Deferred Acceptance (DA) algorithm by Gale and Shapley
[17], which satisfies stability: no pair of proposer and acceptor who are not matched to each other
should prefer each other over the agents they are respectively matched to. Many extensions of DA have
been proposed to handle real-world nuances such as agent capacities [32], “couples constraints” [31],
and decentralized implementations [34].

One such practical consideration is agents having weak preferences that exhibit indifferences (ties). Such
indifferences are commonplace in real-world applications. For example, in a school choice program,
schools prioritize students based on only a few criteria, such as the walk zone and sibling criteria [1],
inducing ties among many students. When indifferences are allowed, one thread of the literature still
continues to focus on integral matchings. Erdil and Ergin [14] show that, while stability already implies
Pareto optimality under strict preferences, finding a stable and Pareto optimal matching is a much
more involved task in the presence of indifferences. Manlove et al. [28] show that maximizing the
number of agents matched in a stable matching is NP-hard in the presence of indifferences; this can be
approximated up to a factor of 3/2 [29] (1 + 1/e if indifferences exist only on one side [27]).

However, when one adds fairness considerations to the mix, it becomes evident that one must allow a
fractional matching, where z € [0, 1]"*™ and z;; denotes the degree to which the pair of agents i and
j are matched (For intuition on why exactly fractional matching is needed, see Appendix A).

This observation has inspired a fostering literature on seeking fractional matchings that are both stable



and fair in the presence of indifferences (For a more detailed look at the state of the art for current
fractional matching algorithms, we include an extended discussion in Appendix B). The seminal work of
Kesten and Unver [26] studies a model in which only acceptors can have indifferences (while proposers
have strict preferences), and seeks two criteria (see Section 2 for formal definitions):

« ex ante stability, a suitable adaptation of stability for fractional matchings demanding that no
pair of agents i and j be able to even increase their degree of match by decreasing their degrees
of matches to less-preferred agents; and

« no ex ante discrimination (among proposers), a fairness criterion which informally requires that
there should be no discrimination between two proposers being matched to an acceptor when
the acceptor is indifferent between them.

Kesten and Unver [26] define Fractional Deferred Acceptance (FDA), a generalization of DA that achieves
both these guarantees simultaneously. While this work has been able to cleanly answer the question of
what happens when there are indifferences on one side, it is much less clear how these definitions can
be met with respect to both sides simultaneously when all agents have indifferences. This causes us to
raise the following question.

When agents on both side exhibit indifferences, does there always exist a matching that is
simultaneously stable (in the sense of ex ante stability) and fair (in the sense of no ex ante
discrimination) to agents on both sides? If so, can it be computed in polynomial time?

1.1 Our Contributions

Our main contribution is to answer both questions affirmatively, but our story actually begins with a
closer examination of the seminal work of Kesten and Unver [26]. In more detail, they define Fractional
Deferred Acceptance (FDA) as a natural iterative procedure of proposals and rejections to find a
matching satisfying both ex ante stability and no ex ante discrimination among proposers; they term
this combination of axioms strong ex ante stability. While FDA may not terminate, a result of Alkan
and Gale [2] can be used to show that it converges to the proposer-optimal strongly ex ante stable
matching,! although Kesten and Unver [26] give a direct proof of this. Let us refer to this matching as
the FDA matching.

The reason that FDA may not terminate is that it can get stuck in an infinite loop wherein agents
in a cycle keep proposing/rejecting to the next agent in the cycle, but the degree of match being
proposed/rejected diminishes over time, leading to convergence. Kesten and Unver [26] design an
algorithm that detects such a cycle when it forms and immediately “jumps” to the matching that
infinitely many proposals/rejections along the cycle would lead to. They claim that this algorithm,
which we refer to as FDA-CycLE, finds the FDA matching in polynomial time.

Our first significant contribution is to show that this is incorrect. We present an example where even
the FDA-CYCLE ends up in an infinite loop, despite “resolving cycles” immediately as they arise. This
makes polynomial-time (or even finite-time) computation of a strongly ex ante stable matching an open
question once again. We resolve this positively, while extending the model of Kesten and Unver [26] to
allow indifferences and achieve no ex ante discrimination on both sides.

Second, we define Doubly-Fractional Deferred Acceptance (DFDA), a natural iterative procedure similar
to FDA, but which incorporates indifferences on both sides. We show that DFDA satisfies ex ante
stability, no ex ante discrimination among both proposers and acceptors, and a fourth axiom we term ex

'This means a strongly ex ante stable matching that is weakly ordinally preferred to every other strongly ex ante stable
matching by every proposer simultaneously.



ante indifference neutrality; we term the combination of all four axioms doubly-strong ex ante stability.
By invoking the framework of Alkan and Gale [2], we show that, while DFDA may not terminate, it
converges to a proposer-optimal doubly-strong ex ante stable matching.

Next, we design our polynomial-time algorithm. The insight we obtain from our counterexample to
FDA-CyctE is that it is not sufficient to resolve one cycle at a time. Instead, our algorithm detects entire
strongly connected components as they arise (or even before they arise), and resolves them by jumping
to their resultant matching. We show that this algorithm, which we term DFDA-SCC, in fact terminates
in polynomial time and returns a doubly-strong ex ante stable matching; this is our main contribution
with a highly intricate proof. There is one key difference between our work and that of Kesten and
Unver [26]. While FDA-CYCLE exactly mimics (a serialization of) FDA and thus converges to the same
matching (despite failing to converge), DFDA-SCC does not exactly mimic DFDA. Despite significant
effort, we are unable to prove that it returns the same matching that DFDA converges to (or at least a
proposer-optimal matching), but conjecture this to be the case. We discuss this issue in Section 6.

2 Preliminaries

For k € N, define [k] £ {1,...,k}. There are two sets of agents, N and M, with |[N| = |M|. We use
i,i',4" to refer to agents in N, called proposers, and j, j’, j” to refer to agents in M, called acceptors.
Each proposer @ € N has weak preferences over acceptors in M given by a strict weak ordering >=;,
which partitions M into equivalence classes E; = {Ej1,. .., Ejy, }, for some k; € N, such that: (i) for
all t € [k;], proposer i is indifferent between all acceptors j, j' € Ej;, denoted by j ~; 5/, and (ii) for
all t,t' € [k;] with t > ¢/, proposer i strictly prefers any acceptor j € Ej; to every acceptor j' € Eyy,
denoted by j >; j’. Similarly, each acceptor j € M has a strict weak ordering = ;, which partitions
N into equivalence classes E; = {Ejl, ooy B }, for some k; € N, such that i ~; ¢’ for all t € [k;]
andi,i’ € Ejandi ;¢ forallt,t' € [k;] witht < t',i € Ej, and i’ € Ejy. An ordinal two-sided
matching problem is given by the four-tuple (IV, M, == (=:)ien, =m= (=) jeM)-

When k; = | M| for each i € N (i.e., there are no indifferences), we say that the proposers have strict
preferences; when k; = |N| for each j € M, we say that the acceptors have strict preferences; and
when both are true, we say that both sides have strict preferences.

A (fractional) matching v € [0,1]V*M is a doubly stochastic matrix satisfying djrem Tij =

YienZiyj = 1foralli € N and j € M. We refer to row x; = (2j;)jen as the matching of
proposer i € N and column z; = (x;);en as the matching of acceptor j € M. We also denote
2| & > jem Tij and [z;] £ 3 en Tij- When z;; € {0,1} foralli € N and j € M, we refer to the
matching as integral.

2.1 Stability and Fairness Criteria

Our starting point is stability and fairness criteria for fractional matching introduced by Kesten and
Unver [26].

Definition 1 (Ex ante stability). A matching x is ex ante stable if there are noi,i' € N and j,j' € M
such that j —; j', i =; i', x;7 > 0, and xy; > 0. In words, no pair of proposer i and acceptor j should
both be positively matched to agents they prefer less than each other.

For integral matchings, ex ante stability coincides with the popular stability criterion of Gale and
Shapley [17]; all stable integral matchings are ex ante stable, but there are often additional fractional
matchings that are ex ante stable as well. For fractional matchings under strict preferences, ex ante
stability coincides with strong stability defined and studied by Roth et al. [35]. Ex ante stability is also



same as the fractional stability criterion of Caragiannis et al. [9] for cardinal utilities, but with cardinal
comparisons replaced by SD-preference relations defined above.?

While ex ante stability focuses on the strict portion of the preferences, the following fairness criterion
focuses on indifferences.

Definition 2 (No ex ante discrimination among proposers). A matching x has no ex ante discrimination
among proposers if there are noi,i' € N and j,j' € M such thati ~j; ', j =; j', z; > 0, and
xij < xy;. In words, no proposer i should receive less of acceptor j than another proposer i’ while still
being positively matched to an acceptor j' she prefers strictly less than j, if j is indifferent between i and i'.

Kesten and Unver [26] also give a name to the combination of the above two criteria.

Definition 3 (Strong ex ante stability). A matching x is strongly ex ante stable if it is ex ante stable and
has no ex ante discrimination among proposers.

Kesten and Unver [26] assume that only acceptors in M can have indifferences while proposers in N
have strict preferences. When both proposers and acceptors have weak preferences, as is the case in our
general model, it is natural to symmetrically apply the no-discrimination criterion to acceptors based
on indifferences in proposers’ preferences. To the best of our knowledge, we are the first to consider
this criterion of fairness.

Definition 4 (No ex ante discrimination among acceptors). A matching x has no ex ante discrimination
among acceptors if there are no i,i’ € N and j,j' € M such that j ~; j',i =; 7, zy; > 0, and
xij < xiy. In words, no acceptor j should receive less of proposer i than another acceptor j' while still
being positively matched to a proposer i’ she prefers strictly less than i, if i is indifferent between j and j'.

The two no-discrimination criteria stipulate desired behavior when indifferences on one side interact
with strict preferences on the other side. While the no-discrimination criterion addresses conditions
where indifferences on one side interact with strict preferences on the other side, the following criterion
that we introduce addresses conditions where indifferences on the two sides interact with each other.
See Section 6 for additional discussion about this criterion.

Definition 5 (Ex ante indifference neutrality). A matching x is ex ante indifference neutral if there
arenoi,i’ € N and j,j’ € M such that j ~; j',i ~; 7', z;; < min {x;j, zy; }. In words, if proposer i
and acceptor j prefer each other as much as they prefer acceptor j' and proposer i, respectively, then they
should be matched to a degree at least as much as the degree of match between either i and j' ori’' and j.
When agents have an innate preference to balance their degrees of matches to equally-preferred agents,®
this makes sense: in case of the above violation, proposer i and j would “deviate” to increase x;; to at least
min {a:ij/, xi/j} as this would leave them both happier by increasing their balance.

When a matching meets all four criteria above, we call it doubly-strong ex ante stable.

Definition 6 (Doubly-strong ex ante stability). A matching x is doubly-strong ex ante stable if it is ex
ante stable, has no ex ante discrimination among proposers and among acceptors, and is ex ante indifference
neutral.

2.2 Proposer-Optimal Matchings

Deferred-acceptance style algorithms often find a matching that not only satisfies desirable stability
and fairness criteria but is in fact “proposer-optimal” among such matchings. This is formalized using

?Based on common nomenclature, this would be called SD-fractional-stability.
3This is in fact formalized when we make a connection to the result of Alkan and Gale [2] and impose a preference for
balancedness to turn the weak preferences strict.



ordinal dominance. First, we extend agents’ preferences over individual agents to preferences over
fractional matches using the (first-order) stochastic dominance (SD) relation.

Definition 7 (SD-preferences). For proposeri € N and two fractional matches x;,y; € [0,1]M, we say
that i weakly SD-prefers z; to y;, denoted x; =;" v;, if, for each j € M, we have that Zj’eM:j’mj Tij >
Zj’eM:j’mj Y;jr. We say that i strictly SD-prefers x; to y;, denoted x; >-fD Yi, if x; >,-;?D y; holds and
at least one of its defining inequalities is strict. SD-preferences of each acceptor j € M are defined
symmetrically.

Next, we use the SD-preference relation to define ordinal dominance.

Definition 8 (Ordinal dominance for the proposers). Given two matchings x,y € [0, 1]V M we say

that x ordinarily dominates y for the proposers, denoted x =3P y, if x; =" y; for eachi € N.

Ordinal dominance can then be used to define a “best matching” for proposers within a set of matchings.

Definition 9 (Proposer-optimality). Given a set X of matchings, a matching x € X is proposer-optimal
within X if, for everyy € X, we have that x =52 y.

In general, it is possible that there is no proposer-optimal matching within X. Interestingly, though,
the sets of strongly ex ante stable matchings and doubly-strong ex ante stable matchings always admit
a proposer-optimal matching; Kesten and Unver [26] establish the former and Theorem 1 establishes
the latter.

3 The Fault in Our Stars: Strong Ex Ante Stability in Finite Time?

Our story begins with the seminal work of Kesten and Unver [26], who study fractional matchings in
the presence of indifferences in acceptors’ preferences, define strong ex ante stability (the combination
of ex ante stability and no ex ante discrimination among proposers), and identify Fractional Deferred
Acceptance (FDA), a natural adaptation of (integral) Deferred Acceptance (DA) of Gale and Shapley [17],
which produces a fractional matching provably satisfying strong ex ante stability. While we will not
present all the formal details of their work, we must present enough for the reader to understand our
first significant contribution, which is to identify (and, in later sections, fix) a major flaw in the main
contribution of Kesten and Unver [26].

Algorithm FDA. A formal description of the FDA algorithm is presented as Algorithm 2 in Appendix C.
Informally, it is an iterative process, which starts with an empty matching and every proposer having
a free weight of 1. In each iteration, all proposers simultaneously propose their free weight to their
respective most-preferred acceptors who have not yet rejected any of their proposals (even fractionally).*
Then, each acceptor whose sum of matched weight and total proposed weights exceeds 1 rejects enough
proposed weight such that this sum reduces to 1. The rejections happen in a water-filling manner—from
the least preferred equivalence class to the most preferred, and within each equivalence class, at an
equal rejection pace to all the highest-matched proposers at any given time. At the end, all unrejected
proposed weights get added to the current fractional matching and all rejected proposed weights return
to those proposers as free weights, which they propose in subsequent iterations.

The procedure is quite natural, but Kesten and Unver [26] observe that it has a critical flaw: there may
be a cycle of agents i1 — j1 — 42 — ... 4 — jr — %1 such that in some iteration, ¢; proposes some
weight to j;, who rejects some matched weight with i2; so in the next iteration, i3 proposes some
weight to jo, who rejects some matched weight with i3; at some point, ji rejects some matched weight

“Recall that in their model, proposers have strict preferences, so such an acceptor is unique for each proposer.



with 71, who then proposes to j; again; and this can continue indefinitely. Due to such cycles, which
they term rejection cycles, FDA may never terminate.

Nonetheless, they observe that by viewing FDA as a specific instantiation of a more general two-sided
“schedule matching” process studied by Alkan and Gale [2], one can easily conclude that FDA converges
to a matching—henceforth, the FDA matching—that is strongly ex ante stable, and, in fact, proposer-
optimal within the set of such matchings.” This still leaves the issue of finite-time computation of a
strongly ex ante stable matching, leading to their main contribution.

Algorithm FDA-CycLE. They propose an algorithm, which we refer to as FDA-CycLE (presented
formally as Algorithm 4 in Appendix C), which allegedly computes the FDA matching in polynomial
time. First, they notice that the proposals can be serialized as the resulting matching is still unique and
independent of the order of proposals (see their Corollary 1). In this serialized process, the infinitely
many proposals and rejections along any rejection cycle can be viewed as consecutive iterations.
However, instead of executing these infinitely many iterations, FDA-CyCLE detects a rejection cycle as
soon as it forms and directly computes the matching that these infinitely many iterations would have
converged to in finite time.

Formally, FDA-CycLE keeps track of a rejection graph, which is a directed graph with the agents as
nodes and edges ¢ — j — i’ exist (for all ¢,4’ € N and j € M) whenever z;; > 0, z;7; > 0, i has never
been rejected by 7, and i’ has been rejected by j.° Intuitively, this tells us that whenever i proposes to 7,
j will reject some fraction of i’.” FDA-CyCLE monitors this graph, and as soon as a directed cycle forms,
it solves a linear program to compute the matching that infinitely many proposals and rejections across
the cycle would converge to, “resolving” the cycle (temporarily).

Erroneous claim. Kesten and Unver [26] claim in their Proposition 3 that FDA-CYCLE terminates after
a finite number of steps. Our first significant contribution is to show that this is incorrect. The issue
lies in the last paragraph of their proof, presented in their Appendix B, which makes the following
(rephrased) claim: “after all proposers make proposals, at least one proposer is rejected by one acceptor
and has an outstanding fraction, or the algorithm converges, whether or not a [rejection] cycle occurs.
Since there are |N| proposers and | M | acceptors, the algorithm converges after at most | N'|| M| steps”.
It is not clear what they mean by a proposer being rejected by an acceptor, but the latter conclusion
would hold if they mean a proposer is rejected by an acceptor either for the first time or fully (i.e.,
making their degree of match 0). It turns out that the former statement does not hold under either
interpretation.

Our counterexample. Our first significant contribution is a counterexample in which FDA-CycLE in
fact fails to terminate, thus precluding the possibility of an alternative proof of its finite-time convergence.
We emphasize that significant effort and careful analysis went into designing this counterexample. Due
to the length of the argument, we defer the exact counterexample instance to Appendix D.

In short, at one point during the execution of FDA-CYCLE, a rejection cycle forms, which the algorithm
resolves. Crucially, after the resolution, the cycle remains in the graph, albeit with no free weights left
on the proposers. In the subsequent iterations, new edges get added to the rejection graph, causing
another rejection cycle to form. Again, after the algorithm resolves this cycle, it remains in the graph.
Later in the algorithm, a proposal occurs that requires re-resolving one of these cycles, which leads to
another proposal that requires re-resolving the other cycle. Re-resolving the second cycle directly leads
to re-resolving the first cycle again, essentially creating a cycle of cycles. FDA-CycLE then continues for
infinitely many steps.

>They provide an independent proof for this too.

SActually, in the rejection graph of Kesten and Unver [26], only the proposers are nodes, and instead of edges i — j — 7,
they add an edge ¢ % i’ labeled with the acceptor j; these are equivalent representations.

"This is because j having rejected i’ previously implies that j must be fully matched at the moment, so accepting any
proposed weight requires it to reject some existing weight, and once it rejects agent ¢’, it continues to do so until z;/; = 0.



This reopens the question of finite-time computation of a strongly ex ante stable matching. The main
contribution of the next two sections is to uncover a novel insight that lets us overcome the limitation
of FDA-CycLE and design a novel polynomial-time algorithm, DFDA-SCC, which in fact computes a
doubly-strong ex ante stable matching in the presence of indifferences on both sides.

Our counterexample highlights the key issue: when multiple cycles have paths to each other (i.e., they
are part of the same strongly connected component), they can keep “reactivating” each other. This
suggests that the right approach is to not resolve one cycle at a time, but rather resolve entire strongly
connected components in one shot, which is precisely what we do later in Section 5.

4 Doubly-Fractional Deferred Acceptance

Before we present a polynomial-time algorithm, we take a slight detour and extend the model of Kesten
and Unver [26] to allow indifferences on both sides, not only in acceptors’ preferences. The first step
is to extend their infinite iterative procedure, Fractional Deferred Acceptance (FDA). We term our
procedure Doubly-Fractional Deferred Acceptance (DFDA), and show that it produces a proposer-optimal
doubly-strong ex ante stable matching via a reduction to the framework of Alkan and Gale [2]. Then,
in the next section, we design our DFDA-SCC algorithm, which somewhat mimics DFDA, resolves one
strongly connected component (SCC) in each iteration, and provably terminates at a doubly-strong ex
ante stable matching in polynomial time.

DFDA, (which is formally presented in Appendix C as Algorithm 3), is almost identical to FDA, with a
simple and natural change to account for possible indifferences in the proposers’ preferences. Recall
that in FDA, each proposer proposes all her free weight to the most-preferred acceptor who has not
rejected any fraction of her, and this acceptor is unique due to strict preferences. In DFDA, each
proposer considers the set of all (equally) most-preferred acceptors who have not rejected any fraction
of her—note that they must all be part of the same equivalence class—and proposes to all of them simul-
taneously, evenly splitting her free weight between them. Thus, each iteration of DFDA witnesses both
proposers proposing to multiple acceptors simultaneously and acceptors rejecting multiple proposers
simultaneously, which explains the name of the algorithm. DFDA is a strict generalization of FDA,
reducing to FDA when proposers have strict preferences.

We establish the desired properties of DFDA by invoking the general framework of Alkan and Gale
[2]. They study two-sided fractional matching under a broad class of preferences, given by the so-
called (strict) “choice functions”. They prove that (1) the set of stable matchings—with a specific
stability definition that we refer to as AG-stability—form a lattice structure, which admits a unique
proposer-optimal matching under the strict choice-functions-based preferences; and (2) a natural
iterative procedure converges to this unique proposer-optimal AG-stable matching. We take the weak
preferences of proposers and acceptors and impose a secondary preference for “balancedness” to induce
strict choice functions under which (1) AG-stability becomes equivalent to doubly-strong ex ante stability,
thus establishing the existence of a proposer-optimal doubly-strong ex ante stable matching under the
strict choice functions, and (2) the iterative procedure of Alkan and Gale [2] becomes equivalent to
DFDA, which finds the aforementioned matching. This yields the following result; a formal proof, along
with an introduction to the framework of Alkan and Gale [2], is given in Appendix E.

Theorem 1. DFDA converges to a proposer-optimal doubly-strong ex ante stable matching.

5 A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching

Because DFDA coincides with FDA when proposers happen to have strict preferences, clearly we
cannot resolve rejection cycles one at a time, otherwise we would have the same non-termination
issue as FDA-CyCLE on our counterexample from Section 3. Based on the insight obtained from our



counterexample, we propose a new algorithm, DFDA-SCC (Algorithm 1), which circumvents this issue
by resolving an entire strongly connected component (SCC) in each iteration.

Our contribution lies not only in the design of this algorithm, but also in its analysis. For Kesten
and Unver [26], it is easy to establish equivalence between FDA-CycLE and FDA because FDA-CYCLE
exactly follows a serialization of FDA, simply skipping-forward intermediate blocks of infinitely many
iterations across individual rejection cycles. Unfortunately, this is not the case for DFDA-SCC: it is
possible that one of its intermediate matchings may never be produced during any serialization of
DFDA. 1t is still possible that DFDA-SCC is equivalent to DFDA by eventually producing the same
matching (which would establish its proposer-optimality), but, sadly, we are unable to prove so and
leave this as an open question. This is discussed in Section 6. Nonetheless, we are able to establish
doubly-strong ex ante stability of DFDA-SCC, in addition to polynomial-time convergence. This is our
main result with an intricate proof.

Theorem 2. DFDA-SCC (Algorithm 1) terminates in polynomial time and returns a doubly-strong ex ante
stable matching.

Description of DFDA-SCC. Let us describe what DFDA-SCC (Algorithm 1) intuitively does.

The basis of our algorithm is the proposal graph, a directed bipartite graph in which there is a node
for each proposer and acceptor. Each proposer 7 has directed edges to her most-preferred acceptors
who have not yet rejected her; these are the acceptors she will propose to next. Each acceptor j has
directed edges to her least-preferred proposers that she is matched to (and among this set, the ones
who currently have the highest degree of match to j); if j wishes to fractionally reject existing matches
to accept proposals from more-preferred proposers, these are the proposers she will start rejecting.

In each iteration, the algorithm partitions the proposers into groups based on whether they are part of
the same strongly connected component (SCC) of the current proposal graph and sorts these groups
according to the topological order of the proposal graph. Then, it “resolves” each group (and its
corresponding SCC) via a linear program (LP). For any proposer 4, the SCC of the proposal graph that
contains 7 is guaranteed to include all cycles containing i, as well as some “higher-order cycles” that
cause infinite loops like in Section 3.

The algorithm terminates when all proposers have no free weight remaining, which we will prove must
occur after a polynomial number of iterations.

Description of LP-SCC. The linear program at the heart of each step of the algorithm is shown
in Figure 1. At a high level, this LP works by maximizing the amount of total weight proposed
for a given connected component, while being constrained by the expected rules that dictate how
proposals and rejection work in DFDA as well as additional conditions to ensure that the LP simulates
proposal/rejection only up to the point where the proposal graph would change.

In more detail, the main variables in the LP are y-s and z-s. For each ¢ € IV, y; denotes the total weight
that ¢ proposes in the current iteration, of which y;; denotes the weight proposed to j € M. Similarly,
for each acceptor j € M, z; denotes the total weight rejected by j in the current iteration, of which z;;
denotes the weight that j rejects from i.

The first four constraints dictate how proposers can propose.

« Constraints (1) and (2)—Vi € Cy,y; < X ;cp 2ji + w; and Vi ¢ Cy,y; = O—ensure that only
proposers from the current SCC C} being resolved propose, and they propose weight that is
at most the sum of their free weight and their total rejected weight from the current iteration
(that is, they cannot propose more weight than they have). The inequality rather than a strict
equality in Constraint (1) allows proposers to retain some free weight in the end, which is key
to solving the problem as a series of continuous flow problems rather than a series of discrete
proposal-rejection sequences.



Algorithm 1: DFDA-SCC

1Vie Nyw;+ land P, < E;; // Free weight of ¢ and acceptors ¢ will propose to

next
2 Vie N,je M,z;; <0 // Current matching
3 G+ {(i,j):j€ P} // Proposal graph with only proposing edges, no rejections
4 while 37 € N, w; > 0 do

// Key step: SCC decomposition of the rejection graph
5 Cl, ..
topologically

., Ck < Partition N into strongly connected components based on G, sorted

6 | forte [k]do
7 if 3¢ € C; such that w; > 0 then

10
11

12
13

14

15
16

// Resolve the SCC via an LP and update the matching
y*, 2" <= An optimal solution to the linear program LP-SCC (given in Figure 1) for C;
fori € N do

for j € M do
‘ Tij < Tij + yfj - Z}kz // Update matching
end
U ZjeM 25 T wi — Yy // Update free weights
end

// Collect information for updating acceptors’ edges
for j € M do
if |z;| = 1 then

17 Xj«{ieN:x;;>0} // Proposers matched to j
18 ﬁ(—max{k:XjﬂEj,ksé(Z)}
19 Aj— E;y // Least-preferred proposers
20 A% argmax;c » i // Proposers from A; with max matched weight
21 Rj« Aiu{ie N:i€ Ejp,l' >{} // Updated rejected proposers
22 end
23 end

// Collect information for updating proposers’ edges
24 fori € N do
25 Ri+—{jeM:iecR;} // Acceptors who have rejected i
26 ¢« min{k: E;; € R;}
27 P« Ei¢\R; // Most-preferred acceptors who haven’t rejected ¢
28 end

// Update the proposal graph
29 G «—{(i,5):j€ P} U {(j,i) (i€ A;‘} // New proposal graph
30 if G’ # G then // Proposal graph changed, restart the outer loop
31 G+ G
32 Go to the start of the While loop (Line 4)
33 end
34 end
35 end
36 end

37 return

« Constraint (3) and (4)—Vi € N,y;; = v/|p|,Vj € P;and y;; = 0,Vj ¢ Pi—ensures that
proposers propose only to their most-preferred acceptors who have not rejected them and



maximize Z Ui
€N

subject to // Constraints on proposals
MVielC:y < Z]EM Zji + wj
@VigCi:yi=0
(3) Vi € N,Vj € P, : y;; = v/|P)|
4)Vie NNVj€P:y;; =0

// Constraints on rejections

G)Vj € M, |zj| =1: 2 =3 icn vij
6)Vje M, |z;]<1:2;=0

(7)Vj € M,Vi € A : zji = 2i/|43]
(B)Vje M,Vig A :2;=0

// Constraints that stop the flow at discrete structural changes
O)Vj € M, |xj| <1: 3 ienyij <1 — |zl

(10) Vj € M,V’i & A;,Vi/ S Aj \A;< 15— Zji > Tyl + Yir

(11)Vi € N,Vj € M : Zji K Tij

Figure 1: Linear program LP-SCC used to resolve a strongly connected component in DFDA-SCC (Algorithm 1).

propose an equal amount to them.
The next four constraints dictate how acceptors handle the weight proposed to them.

« Constraints (5) and (6)—Vj € M, z; = > ;. ¥ij when |z;| = 1 and z; = 0 when |z;| < 1—
stipulate that a saturated (fully matched) acceptor must reject exactly as much weight as she
accepts, while a non-saturated acceptor must not reject. Constraint (9) later ensures that such an
acceptor does not accept more weight than her remaining match capacity. This ensures that once
an acceptor becomes saturated, they remain saturated for the rest of the algorithm.

« Constraints (7) and (8)—Vj € M, zj; = #/|A;| for all i € A} and zj; = 0 for all i ¢ AZ—ensure
fair rejections. Only the least-preferred matched acceptors with the highest matched weight
(those in A7) are rejected, and they are rejected equally. Constraint (10) stops the LP once this
highest matched weight reduces to the next-highest level, at which point a new acceptor from A;
must be added to A} by the algorithm.

This leaves constraint (11)—V: € N,Vj € M, z;; < x;;. This states that an acceptor cannot reject
more weight from a proposer than it has available to reject. We do not have to consider any incoming
proposed weight from i to j because, due to constraint (8), zj; can only be positive if i € A7}, in which
case ¢ will not be proposing any weight to j in this iteration, or for the remainder of the algorithm.

The LP maximizes ),y ¥, i.e., the total amount of weight proposed by the proposers. The optimal
solution (y*, z*) is used by DFDA-SCC to update the matching and the proposal graph.

10



5.1 Analysis of DFDA-SCC

We are now ready to begin proving polynomial-time termination and doubly-strong ex ante stability of
DFDA-SCC (Theorem 2).

5.1.1 Proof of polynomial-time termination

The main technical lemmas we use to prove this fact revolves around a structural observation relating
the last three constraints of LP-SCC to key events in the algorithm, which cause progress to be made.
Specifically, all these events revolve around changes to the proposal graph, which correspond to
proposers being either rejected for the first time by an acceptor, or fully rejected from an acceptor. As
we will show, keeping track of such changes is crucial for arguing polynomial-time termination. We
give the full proof of Lemma 1 in Appendix F.

Lemma 1. In any solution to the LP, at least one of the following will be true:

C (Vi€ Cryi = Y jens 2ji + wi

« B)Fj e M, |zl <L) enyij =1—xj

« (C)Fie N,je M,x;j >0,zj; = x4j.

« (D)3j € M,Fi € A3, 3i" € Aj\ A%, w5 — 2ji = irj + Yiry-

Lemma 1 intuitively states the following: After any iteration of the algorithm, one of these conditions
will be true:

+ (A) All proposers in C; have no free weight.
+ (B) Some acceptor that was not full at the beginning of the iteration becomes full.

« (C) Some proposer is fully rejected from some acceptor.

+ (D) Some proposer is added to A7 for some acceptor j.
(A) is a special condition as the proposers not having any free weight is what we want to happen to

ensure termination with a perfect matching. The other three conditions, (B), (C), and (D), all correspond
to the previously mentioned changes in the proposal graph. We show this formally in Lemma 2.

Lemma 2. Let y*, z* be the variables after resolving some LP in Algorithm 1. The process of updating the
current matching using y*, z* will change the proposal graph only if at least one of the conditions (B), (C)
or (D) are true.

With this, we can next prove Lemma 3, which shows how the algorithm will come to terminate.

Lemma 3. In some iteration of the main while loop in Algorithm 1, if for every component Cy of proposers,
the LP run on Cy terminates with only condition (A) being true, then the matching produced by the last
component being solved will be a perfect matching.

Finally, leveraging all these technical lemmas, we can show that at each step of DFDA-SCC, progress

will be made, changing the proposal graph, and allowing the algorithm to terminate after a polynomial
number of iterations.

Theorem 3. Algorithm 1 terminates in polynomial time, and will output a perfect matching.

The proof of these lemmas, as well as the final theorem, appear in Appendix F.

11



5.1.2 Proof of doubly-strong ex ante stability

Finally, we will show that the perfect matching that Algorithm 1 returns in polynomial time will be
doubly-strong ex-ante stable, the proof of which appears in Appendix F.

Theorem 4. The matching produced by Algorithm 1 is doubly-strong ex-ante stable.

Together, Theorems 3 and 4 yield the two claims made in Theorem 2, concluding its proof.

6 Discussion

While we have established polynomial-time computation of a doubly-strong ex ante stable matching,
many exciting questions remain open.

The lingering issue of equivalence to DFDA and proposer-optimality. Recall that both our
infinite procedure DFDA and polynomial-time algorithm DFDA-SCC produce a doubly-strong ex ante
stable matching, but DFDA has the additional guarantee that its matching is proposer-optimal. Sadly,
we are unable to prove proposer-optimality of DFDA-SCC or its equivalence to DFDA. However, we
conjecture that the output of the two algorithms will be the same proposer-optimal matching.

Ex ante indifference neutrality and Pareto optimality. In Section 2, we remarked that it is not clear
if our ex ante indifference neutrality criterion is intuitively desirable. One formal reason why it may be
undesirable is that it is incompatible with Pareto optimality (or, rather, ordinal Pareto undomination). A
concrete example is given in Appendix H. Kesten and Unver [26] show that one can cyclically shift
matched weights in the FDA matching to find ordinal improvements for the proposers that retain
ex ante stability but introduce ex ante discrimination among proposers; this yields an ex ante stable
matching that is ordinally Pareto undominated by any other ex ante stable matching. But whether true
ordinal Pareto undomination (by any other matching) can be achieved, possibly while also retaining no
ex ante discrimination among proposers and acceptors, remains to be seen.

Open Question: When both proposers and acceptors have weak preferences, does there always
exist a fractional matching that is ex ante stable, has no ex ante discrimination among proposers
and acceptors, and is ordinally Pareto undominated? What if agents on one side (e.g., proposers)
have strict preferences?

Ex ante indifference neutrality nonetheless plays a key role in our reduction to the framework of Alkan
and Gale [2] for establishing proposer-optimality of the DFDA matching among the set of doubly-strong
ex ante stable matchings (Theorem 1). We believe that it should be possible to drop ex ante indifference
neutrality to make the statement stronger:

Conjecture: The DFDA matching is in fact proposer-optimal within the broader set of matchings
satisfying ex ante stability and no ex ante discrimination among both proposers and acceptors
(but not necessarily ex ante indifference neutrality).

Intuitively, if some proposer i strictly prefers the change from the DFDA matching to another matching,
then there must be a shift of matched weights across strict preferences of ¢, which should lead to the
new matching violating one of the other three axioms.

Investigation of stable and fair two-sided matching in the presence of indifferences opens doors to
many exciting research questions and connections. Due to the space constraint, we could only mention
the most interesting ones above; the rest are deferred to Appendix I.
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Appendix
A Fractional Matching is Required For Fairness

Consider the trivial example in Figure 2(a), where two proposers, i and 7/, strictly prefer acceptor j to 5/,
while the acceptors are indifferent between the proposers. Both integral matchings are stable, but assign
the more preferred acceptor j exclusively to one of the proposers (see Figure 2(b)), which is unfair
to the proposers as they are indistinguishable and, hence, should be treated equally. The fractional
matching in Figure 2(c) that equally shares j (and, thus, also ;') between the two proposers is the only
fair outcome. Note that this can be implemented as a lottery over the two integral stable matchings.
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(a) Preferences with ties. (b) Unfair integral stable matching. (c) Fair fractional stable matching.

Figure 2: Indifferences mandate fractional matchings for fairness.

B Extended Related Work

Apart from the work already cited in the introduction, there are a few threads of related work that our
DFDA should be contrasted against.

Matching under weak preferences. Han [19] extends the celebrated Probabilistic Serial (PS) algorithm
for one-sided matching (of agents to objects) to two-sided matching, assuming agents (proposers) to
have strict preferences but allowing objects (acceptors) to have weak preferences. This unifies PS
with FDA, retaining ex ante stability but sacrificing no ex ante discrimination for ordinal fairness, a
criterion that plays a key role in characterizations of PS [25, 20]. This complements the work of Katta
and Sethuraman [24] which extend PS by allowing agents to have weak preferences but still assuming
objects to have no preferences (equivalently, assuming every object to be indifferent between all the
agents). To the best of our knowledge, there is no known extension of PS to two-sided matching in
the full domain where both agents and objects have weak preferences. Huang and Kavitha [22] study
popular matchings, which are weakly preferred to any other matching by at least half of the agents.
It is known that popularity is a weaker notion than fractional stability [18], which is in turn weaker
than ex ante stability. Assuming strict preferences on both sides, they prove that the popular matching
maximizing any linear objective can be computed efficiently due to elegant half-integral and self-duality
properties of such matchings. Popular matchings remain well-defined with weak preferences, but we
are not aware of any work investigating this.

Cardinal preferences. The model of cardinal utilities is even more expressive than that of weak
preferences. Any algorithms designed for weak preferences (including ours) can be applied to an
instance with cardinal utilities as they induce unique weak preferences; however, applying an algorithm
designed for strict preferences requires breaking ties and the result can be dependent on tie-breaking.
Caragiannis et al. [9] use cardinal utilities to also justify fractional matchings: they show that stable
fractional matchings can have arbitrarily larger utilitarian social welfare compared to stable integral
matchings, and design approximation algorithms for the NP-hard problem of maximizing welfare subject
to stability. Panageas et al. [30] give an algorithm that computes a fractional matching maximizing the
Nash social welfare within an error of € in O(1/¢) time. But the Nash-optimal solution, while celebrated
in fair division for satisfying envy-freeness under additive/linear preferences [10, 38, 13], even under
constraints [12, 39], Trobst and Vazirani [37] show that it provides no approximation to envy-freeness
for two-sided matching, and use other means to show the existence of fractional matchings satisfying
two sets of axioms: envy-freeness (EF) and Pareto optimality, and justified envy-freeness (JEF) and
weak Pareto optimality.
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C Algorithms FDA, DFDA, and FDA-CyYCLE

Algorithm 2: Fractional Deferred Acceptance (FDA) [26]

Vi e Nyw; =1

Vie N,je M,z;; =0

while 3i € N, w; > 0 do

All proposers ¢ with w; > 0 propose their weight simultaneously to their most preferred
acceptor 7 who has not yet rejected any fraction of them.

All acceptors j whose tentative matching + proposals are greater than their capacity reject
some proposers based on the following process:

Starting with j’s highest equivalency class, if j can accept all proposals from that class without
exceeding its capacity, then it does so. Otherwise j accepts proposers from this equivalency
class as equally as possible, i.e., j increases the amount accepted of each proposer by an equal
amount, only stopping the increase for a given proposer for j has accepted all of that
proposers weight, or j runs out of capacity. This process is repeated until j reaches capacity.

end
return

Algorithm 3: Doubly-Fractional Deferred Acceptance (DFDA)

Vie Nyw; =1 // Free weights
Vie N,je M,z;; =0 // Current matching
while 37 € N, w; > 0 do

// Simultaneous fractional proposals

All proposers ¢ with w; > 0 propose simultaneously. Let P; be the set of (equally)
most-preferred acceptors of proposer ¢ who have not rejected ¢ yet. Each proposer ¢ evenly
splits her proposal across acceptors in P;, proposing a weight of wi/|P;| to each of them.

// Simultaneous fractional rejections

All acceptors j whose tentative matching + proposals are greater than their capacity reject
some proposers based on the following process:

Starting with j’s highest equivalency class, if j can accept all proposals from that class without
exceeding its capacity, then it does so. Otherwise j accepts proposers from this equivalency
class as equally as possible, i.e., j increases the amount accepted of each proposer by an equal
amount, only stopping the increase for a given proposer for j has accepted all of that
proposers weight, or j runs out of capacity. This process is repeated until j reaches capacity.

end
return
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Algorithm 4: FDA-CyCLE [26]
Vie N,w; =1
ViEN,jEM,.%’ijZO
while 37 € N, w; > 0 do

i1 < arbitrary agent with w;1 > 0
if 3 a cycle C = (i1, j1,%2, J2,13,73 - - - , i¢, je, 1) in the proposal graph then
M, = {Z ~is Ts41 Tij, > O}
forse€{2,...,¢} do
‘ Define equation ys = EieMs max{z;;, — (Ti,,, j, — Ys+1)}
end
Define equation y; + w1 = ) ;s max{zij; — (Tip 5 — y2)}
Solve the above system for y1, y2, . . . , y¢, let ys denote the amount of i, that gets rejected
from js_1, and update = accordingly.
else
11 proposes their free weight to their top acceptor. That acceptor rejects any proposers if
necessary using the same criteria as they do in FDA.
end
end
return x

D Failure of FDA-CycLE on Our Counterexample

Proposers Acceptors

i1: g3 > Ja > {J1, 72, Js} Jii i3 =g ~i5 > {i1,42}
io: J3 > Js > {J1,J2, 4} Jor dg >3 > {i1,12,05}
i3t J3 = j2 = J1 = {Ja, Js ) J3i U5 =01~ ig ~ i3 = iy
i4r J1 > Jo > {J3.Ja,J5} Jar i1 = {d2,13,14,15}

i5: J1 > J3 = {Jj2,Ja,J5} Js: g = {i1,143,14,15}

Figure 3: Counterexample on which FDA-CycuE fails to terminate. In each ordering, the relation between the
agents listed in the set at the end can be arbitrary.

In this section, we will show all the steps of the instance of Figure 3 where FDA-CycLE does not
terminate in a finite number of steps. The first several steps of FDA-CycLE on this instance act as
expected. We will highlight when we reach the key steps where cycles begin to occur. For each step,
we will show both the tentative matching produced, and the current state of the rejection graph that
the algorithm uses to resolve cycles.

Consider the instance shown in Figure 3. For the agents listed as a set in the end, we can have arbitrary
relationship as long as they are all strictly less preferred than the agents listed previously (e.g., they
may form the lowest equivalence class). The infinite looping of FDA-CycLE happens regardless of these
relations.

We assume that Algorithm FDA-CycLE breaks any ties lexicographically. That is, when there are
multiple proposers in N with free weight, the one with the smallest index among them proposes in the
next iteration.

In the first two steps of FDA-CYCLE, 4 and ¢2 will both propose to j3. j5 will reject half of each of these
proposers, and keep the other half.
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| i1 iy g dg i3

Al 13 19
Free Weight [ 1/2 12 1 1 1
i 0 0 0 0 0
ja 0 0 0 0 0
J3 /2 1/2 0 0 0 i is
Ja 0 0 0 0 O
s 0 0 0 0 0

In the next two steps, i1, now rejected from their top choice j3, proposes their 1/2 free weight to j4.
Similarly, jo proposes their 1/2 free weight to js.

11 13 12
Free Weight | 0 0 1 1 1
J1 0 0 0 0 O
J2 0 0 0 0 O
73 Y2 12 0 0 O . .
s 1?2 é 0 0 0 " "
Js 0 120 0 O

Next, i3 proposes to js. js is indifferent between i1, is, and i3, so it keeps 1/3 of each of them, and
rejects the rest. In the next two subsequent steps, 41 and iz both take their newly rejected free weight of
/6 and propose it to j4 and j; respectively. Note that by [26], this does not cause any edges to appear
on the rejection graph, since while there are proposers who are rejected from acceptors while having
outstanding weight matched to that acceptor, there are no corresponding proposers who have weight
matched to that acceptor and are not yet rejected.

11 2 13 %4 U5

i1 i3 12
Free Weight | 0 0 2/3 1 1
1 0 0 0 0 0
o 0 0 0 0 0
J3 /3 1/3 13 0 0 . )
ia 2;:), é é 0 0 " "
s 0 235 0 0 0

Next, i3, now rejected by their top choice j3, proposes their 2/3 free weight to ja

11 2 13 14 15

1 13 19
Free Weight | O 0 0 1 1
1 0 0 0 0 0
o 0 0 23 0 0
J3 Yz /3 1/3 0 0 , )
s 2§3 0 0 0 0 " "
s 0 23 0 0 0

Next, ¢4 proposes all their weight to their top choice j;. Similarly, in the next step, i5 also proposes all
their weight to ji. j; is indifferent between i4 and is, so it keeps 1/2 of each of them and rejects the rest.
Again, this does not cause any rejection edges to appear.
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i1 12 13 4 1 . ‘ .
1 13 12
Free Weight | 0 0 0 12 1/2
Ji 0 0 0 12 1)
J2 0 0 23 0 0
j3 3 1/3 1/3 0 0 i i
ja 23 0 0 0 0 : b
s 0 2 0 0 0

Next, i4 proposes their 1/2 free weight to jo. jo prefers iy to i3, so it keeps the 1/2 weight from i4 and
partially rejects 1/6 of i3. This adds an edge between i4 and i3 in the rejection graph.

| i1 iy iz da ds . ‘ :
1 13 12
Free Weight | 0 0 16 0 1/2 )
J 0 0 0 12 1/2 J
ja 0 0 Y2 12 0
Jj3 3 1/3 1/3 0 0 i i
ja 23 0 0 0 0 : b
Js 0 23 0 0 0

Next, i3, now rejected from their second choice js, proposes their 1/6 weight to j;. ji prefers i3 to
i4 and i5. so it accepts the 1/6 weight, and rejects 1/12 from each of the others. This causes edges in
the rejection graph between i3 and i4, and i3 and i5. Notably, this proposal forms a rejection cycle
between i3 and i4, which the algorithm must solve. Using the FDA-CycLE technique of reduction to
linear equation, we are given the following:

ya+ 112 =ys3
Y3 = 2y4

(1)
(2)

Solving this linear system gives us the values y, = 1/12, y3 = 2/12, updating the matching with these

values give us:

i 2 I3 l4 13
Free Weight 0 0 0 0 2/3
J1 0 0 13 1/3 1/3
o 0 0 13 2/3 0
Ja 3 13 13 0 0
ja 25 0 0 0 0
js 0 23 0 0 0

11

14

13

i5

19

The key thing to note here is that after solving the linear equation, the same cyclic relationship between
i3 and iy still remains. ;,;, > 0 and x;,;, > O still are both true, i3 has not not yet been rejected from
J1, so it will still propose there the next chance it gets, and the same can be said for ¢4 and j3. Thus, the
next time either it is either i3 or i4’s turn to propose, the same cycle will have to be dealt with again.

Consider the next step of the FDA-CycLE algorithm in this instance. It is now ¢5’s turn to propose. i5
proposes their 2/3 free weight to js. js prefers i5 to the other 3 agents it is currently accepting fractions
of, so it accepts all 2/3 of i5, and rejects 2/9 of i1, i2, and i3. However, this causes edges in the rejection
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graph between i5, and {41, 2, i3 }. Noticeably, this will cause a rejection cycle between i5 and i3, which
we can resolve by the following linear system:

Y3 + 2/9 = 2ys 3)
ys = 3Y3 (4)

Solving this linear system gives us y3 = 2/45, y5 = 6/45. Updating the matching with these values (and
running through the non-cyclic proposal steps of ¢; and i) gives us:

i1 (R - S VI £ . . ,
i i3 i2

Free Weight | 0 0 0 645 0 )

71 0 0 27/a5 915 945 Iy ’

J2 0 0 3 273 0

J3 3/a5  3/a5 3fa5 0 36/45 , .

. 14 15
J4 42/45 0 0 0 0
Js 0 415 0 0 0

Note that again, the solving of this cycle does not lead to the cyclic relation going away from the
tentative matching, the next time 45 proposes, the cycle will need to be resolved again. We also note that
there are technically edges between i5 and i1 and i5 and 9 in the rejection graph, but they will never
become relevant to the algorithm’s execution, so we do not include them in our diagram for simplicity.

Next, it is 74 s turn to propose, again, to do this, the cycle between i3 and i4 will have to be resolved.
This will require solving the following linear system:

ya +6/45 = y3 (5)
Y3 = 2y4 (6)

This will give us the values of y4 = 6/45, y3 = 12/45, updating the matching gives us:

i1 i i3 U4 i . ‘ :
11 13 12

Free Weight | 0 0 0 0 645 )

J1 0 0 3945 3/15 315 Iy ]

Jo 0 0 35 4215 0

J3 345  3/a5 3fa5 0 36/s5 , .

. 14 15
J4 42/45 0 0 0 0
Js 0 415 0 0 0

Now, it is ¢5’s turn to propose again, and it is still part of the same rejection cycle as previously. One can
see that whatever values we get from solving this rejection cycle, will cause ¢4 to have free weight in
the next step, this will force us to solve i4’s cycle again, which will in turn cause i5 to have free weight
in the next step, with each step along the way, the free weight getting smaller and smaller. It is easy to
see how this process continues ad infinium.

To illustrate this, we will solve the i5 and ¢4 cycles with generic values for the free weight.

First the 75 cycle:
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Ys + ws = 3y3 (7)
Y3 = 2ys (8)

The solution to this system will be y5 = ws/5, y3 = 2ws/s.

Similarly for the i4 cycle:

Y4+ ws = Y3 )
Y3 = 2ya (10)

The solution to this cycle will be y4 = wy, y3 = 2wy.

Therefore, we know that the cycle between i3 and ¢4 will only go away if one of the following happens:

« i3 gets partially rejected from j;
« 14 gets fully rejected from j;
. 14 gets partially rejected from jo

« i3 gets fully rejected from ja
Similarly, the cycle between ¢3 and i5 will only go away when:

« i3 gets partially rejected from j;
« 15 gets fully rejected from j;
« 15 gets partially rejected from j3

« 13 gets fully rejected from j3

Until one of these events happen, the algorithm will continue to alternate between resolving these
two cycles (while also letting ¢; and 42 propose their unpropsed weight between each step, which will
not effect the rest of the process). Clearly, resolving either of these cycles will never cause any of the
partial reject conditions to arise, so the algorithm will only exit this cycle resolving loop when one of
the following occurs:

« i3 gets fully rejected from jo or from j3

« 14 gets fully rejected from j;

« 15 gets fully rejected from j;
Note that due to the way the cycles are resolved, as long as none of these conditions are met, then the
amount of ¢4 and ¢5 matched to j; will always be equal. Similarly, the amount of i1, i2, and i3 matched

to j3 will always be equal, so the linear system we have to solve at each cycle removal step will remain
the same.

Thus, when we resolve the i5 cycle next with ws = 6/45, we will reject 6/255 of i5 and i4 from j;, and
12/955 of i3, i1, and i9 from js.
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Next, i4 will have free weight from 6/255, so resolving its cycle with wy = 6/255 will mean that 6/255
of 74 and i5 will get rejected from j1, and 12/255 of j3 will get rejected from jo. We will then have to
resolve i5’s cycle with ws = 6/255.

Putting this together, we have that after k times resolving i5’s cycle from this point, the total amount of
15 kicked out of j; is Zle 12/(45+51), which one can verify approaches 3/45 in the limit as k& approaches
infinity, the exact amount that i5 is matched to j; at the beginning of this process.

One can verify that the infinite summations for the other key matrix cells that form the cycles resolve
the same way, showing that this sequence will continue forever.

E Alkan-Gale Stability

E.1 Alkan-Gale Matching Model

In [2], the authors defined agent preferences using choice functions. They define these choice function in
a very broad way such that they generalize a huge range of common matching scenarios, including both
integral and fractional matching. For our purposes, we will assume the following simplified definition
of a choice function that handles fractional matching scenarios.

Definition 10 (Fractional matching choice function). Given a set of agents A and a quota q, a choice
function C' : RY — R4 is a mapping from one real vector to another (where each entry of this vector
corresponds to an amount of some i € A), such that for every x € R4, we have that for every i € A,
C(x); < x; (you can only choose at most what is available), and ), , C(x); < q (your total choice
cannot be more than your quota).

Given our specific definition of choice functions, we also define the join (V) and meet (/) operations as
the natural join and meet on the real numbers, i.e., given a set of agents A, and two vectors x,y € R4,
we say that = V y is the vector such that for every i € A, (z V y); = max {z;,v;}, and x A y is the
vector such that for every i € A, (x A y); = min{z;,y;}.

A given vector z € R4 represents all the available ways some agent i can be matched with the agents
in A, and when C'is i’s choice function over A, C(z) represents i’s most preferred matching among all
these possibilities.

For any two vectors x,y € R4, Alkan and Gale [2] gives the following way to determine whether an
agent prefers one of these possibilities over the other.

Definition 11 (AG-preference). For any agent i with choice function C* over some set of agents A, and
for any two vectors x,y € R4, we say that x =1¢ y if C'(z V y) = =.

A full matching problem in the model of [2] gives two sets of agents NV and M where each agenti € N
and j € M has a choice function and a quota. A perfect matching = € RIV*M! in this problem will be
such that for all i € N (resp. j € M) with quota ¢, we have ZjeM zi; = q (resp. Y ..y Tij = q)- In
each matching, note that each vector z; and z; will be in RM and R" respectively, so we can use the
agents’ choice functions to reason about their preferences over their matchings.

Under this model, the notion of a stable matching is defined as follows:

Definition 12 (Saturation). For some agenti € N, and matching x, i is not j-saturated at x for some
j € M ifincreasing the amount of j available in x; would cause i’s choice function to choose more of
J than x; has available. i.e., for any € > 0, define the vector y as yj = x;j forall j' € A\ {j}, and
y; = xij + . IfC¥(y); > x5 is true, the i is not j-saturated.

A symmetric definition can be given for when some j € M is not i-saturated for somei € N.
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Definition 13 (AG-stability). For any matching problem in the Alkan-Gale matching model, a matching
x is AG-stable for that problem if for every pair of agentsi € N and j € M, either i is j-saturated or j is
i-saturated.

The goal of [2] is to show a broad class of choice functions such that when all agents in a matching
problem have such choice functions, the set of stable matchings for the given problem will form a lattice
with respect to each side’s AG-preferences, and for a given side, the optimal matching in that lattice
can be found through a deferred-acceptance procedure.

To characterize such choice functions, the authors give two properties.

Definition 14 (Consistency). A choice function C is consistent if for all x,y € R? such that C(z) <
y < x, then C(y) = C(x) is true.

Definition 15 (Persistence). A choice function X is persistent if for all .,y € R such that x > vy, then
C(y) = C(x) Ny.

With these properties, they are able to state the following:

Theorem 5 (Theorem 2 of [2]). For any matching problem where all agents have persistent and consistent
choice functions, there exists a stable matching x* that dominates all other stable matchings in terms of
the AG-preferences of the agents in N, i.e., for any stable matching y, and alli € N, z} =4 y,;. This
N -optimal matching can be found by running the procedure of Algorithm 6 with N as the “proposers”.

E.2 Doubly-Strong Ex-Ante Stability Through Choice Functions

We will use a reduction to the model of Alkan and Gale [2] to show that under our preference model,
the set of double-strong ex-ante stable matching is equivalent to the lattice of matchings for a given AG
matching problems, and the proposer-optimal matching in that lattice can be found through the DFDA
procedure.

To do this, we will first define the DFDA choice function in Algorithm 6. For any ordinal matching
problem (N, M, =, =), we will assume that each agent has an induced DFDA choice function that
is based on their preference ordering.

Algorithm 5: Choice functions in the framework of Alkan and Gale [2] that yield DFDA

INPUT: i’s indifference classes E;; Vector x € R4
c+ 04
for E;;. € E; do

if ZjeEik rj < q— ZjeA c; then
‘ Vj e Eik,Cj —x;
end
else
while )., ¢; < gandc# x do
Continuously increase c; for all j € Fj; at the same rate. Only stop increasing c; for
some j if ¢; = x; becomes true.
end
return c
end
end
return c
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We will first prove that the DFDA choice function has necessary properties to admit a lattice of stable
matching in the Alkan-Gale model.

Lemma 4. The DFDA choice function is consistent.

Proof. For contradiction, assume this is false. For some agent ¢ with a preference ordering over a set of
agents A, and agent ¢’s induced choice function C"* over those agents with a quota of g, there exists
x,y € R4 such that C(x) < y < x but C(y) # C¥(x).

Let E;j, be the lowest equivalency class that C*(x) chooses agents from before terminating. First consider
all the agents from A who are chosen by C? who are in an equivalency class that is strictly preferred to
E;i. From the definition of the DFDA choice function, for each of these agents i € A, C"* would have
selected the full amount of j in x. Thus, for each such j, since we have that Cl(x) j <y; < xjand
C'(x); = z;, it must be the case that y; = z;. Since C" starts at the highest equivalency class for i and
works its way down, this means that selecting all of each agent strictly preferred to E;; will not exceed
C?s quota g, and thus we must have that C(y); = C'(z); = z; = y; forall j € Ey, k' < k.

Now consider the agents in E;. Note that for every j € Ejj, we must have that C*(z); < y; < z;.
From the definition of the DFDA choice function, we know that the choice function will select agents
from this class by continuously increasing the matched amount of all agents in this class at an equal
rate, only stopping the increase of an agent if that agent becomes full chosen, quota becomes full, or
the vector becomes fully chosen.

By the above arguments, we must have that C?(z); # C%(y); for some j € Ej. If C'(z); > C'(y);,
then consider the exact time in the equivalent increasing process where C*(y) finishes choosing j. At
this point, note that we cannot have that the quota of C" is full, as by the definition of the DFDA choice
function, at the same time in the increasing process for C*(x), x > y implies that C*(z) and C*(y) will
have chosen the same amount of all agents in Ejj, up to that point, while C*(z); > C*(y); continues
increasing after this point. Therefore, it must be the case that C(y); has been fully chosen by j at this
point, and thus C*(y); = y;. However, this fact along with C?(z); > C(y); would contradict the fact
that C*(z) < y.

If instead we had C*(z); < C*(y);, then consider the exact time in the equivalent increasing process
where C(x) finishes choosing j. At the same point during the process of C*(y), we know that C*(y)
must have chosen the exact same amount of every agent in Ej;,. This is due to the fact that C*(z) < v.
Thus, it cannot be the case that C*(z); stops because its quota is full, so it must be the case that it
consumed the full amount of z;. But C?(z); = x; and C%(z); < C%(y); < y; would contradict y < .

This contradicts the fact that such a j exists, and proves that the DFDA choice function is consistent. [J

Lemma 5. The DFDA choice function is persistent.

Proof. For contradiction, assume this is false. For some agent ¢ with a preference ordering of a set of
agents A, and agent ’s induced choice function C"* over those agents with a quota of ¢, there exists
z,y € R4 with # > y, and some j € A such that C?(y); < min {C=);,y;}-

Let Ej;;. be i’s lowest equivalency class containing some proposer that is positively chosen by C(x).
First note that for all & < k, and all j' € Ej; it must be the case that C*(y);» = y;+. This follows from
the fact that since z > y, we must have ), _, ZjleEik/ Tijt 2 D ek ZjleEW yijs» meaning that by
the definition of DFDA choice functions, since C*(z) was able to fully choose every j’ strictly preferred
to Ej1., then C¥(y) will be able to as well.

Therefore, it must be that j is in an equivalency class for i at least as bad Ej, and since C%(y); <
min {C?(z);,y; } implies that C*(z); > 0, then we know that j € Ej; must be true.

Since we must have that C?(y); < yj;, it must be the case that Ej, is also i’s lowest equivalency
class containing some proposer that is positively chosen by C*(y). With this in mind, we can see
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that if C%(z); > y; were true, then by definition of the DFDA choice function, we should have that
C'(y); = y;. This is due to the fact that since x > y, when C"(y) reaches the class Ej, it will have at
least as much free weight to keep choosing as C?(z); did when it reached E;, and since yjr < xj for
all j € Ejy, if the process that increases chosen weight in equal amounts for each agent in E;;, managed
to consume C*(z); of j, then that process should certainly be able to consume at least y; < C*(z); of j
when choosing from y.

At the same time, if y; > C%(x); were true, then we would again reach a contradiction, since by the
definition of the DFDA choice function, we would have to have that C?(y); > C*(x); must be true. To
see this, again notice that once C’(y) reaches equivalency class Ejz, it will have at least as much free
weight left to choose as C%(z) did at that same point. Since C*(y); < C(z);, observe the point of the
continuous increase in weight where C"(y); first stops increasing. This cannot be because the quota of
C*(y) was reached, or that would contradict the fact that y < x, but it can also not be the case that Yj
has been fully chosen, since we have C*(y); < C*(z); < y;. These contradictions prove that C* will
be persistent. O

Next, we can show that due to the way that we defined DFDA choice function, being AG-Stable with
respect to the agents’ induced choice functions is exactly equivalent to doubly-strong ex-ante stability.

Theorem 6. A matching is AG-stable with respect to the agents DFDA choice functions if and only if it is
doubly-strong ex-ante stable with respect to the agents’ ordinal preferences.

Proof. First, we will prove the forward direction.

For contradiction, assume this is false, some matching = is AG-Stable with respect to agents’ induced
choice functions, but not doubly-strong ex-ante stable.

First, we will assume it is not ex-ante stable, thus there exists 7,7’ € N, 7,5 € M such that j >=; 7/,
ey 7, x; > 0, and xy; > 0. However, it is easy to see that this would violate the definition of
AG-Stability with respect to ¢ and j. Since x;;» > 0 implies that C*(;) must still have some free space
left after choosing j’s entire equivalency class. This means that if we increased j by some small amount
in x;, the choice function would choose more, so ¢ is not j-satiated. Similarly, a symmetric argument
shows that j is not i-satiated.

Next, we will assume there is ex-ante discrimination on the proposers side, thus there exists 7,7’ € N,
J,j' € M suchthat j >; j/, i ~; 7/, x;» > 0, and z; > x;;. Again, in this case we can see that i is
not j-satiated in the vector x; due to the fact that x;; > 0. We can also observe that j will not be
i-satiated due to x;/; > x;;. If i and i’ are not members of the lowest equivalency class matched to
j in z;, then increasing i in z;; will cause C7(z;) to select more of it in favor of the lesser preferred
proposer it is currently matched to. If i and ¢’ are in the lowest equivalency class for 7, then note that
since x is a perfect matching, at the point of j’s DFDA choice function where the continuous increasing
process has chosen x;; of ¢, it will have not have chosen its entire quota yet, since it still continues on
to choose more of x; ;. Thus, if x;; were to be increase, this continuous process would choose at least
some of that increase, and reach its quota slightly before choosing the full amount of x; ;. Note that
deriving a contradiction when the matching has ex-ante discrimination on the acceptors side would be
a symmetrical argument to above.

Lastly, we will assume that the matching is not ex-ante indifference neutrality, thus there exists i, € N,
J,J' € M suchthat j ~; j',i ~j ', x;; < x;j, and x;; < ;. In this case, we can show that i is not
j-satiated, and the fact that j is not i-satiated follows from a symmetrical argument. If j and j’ are not
in ¢’s lowest equivalency class, then increasing j will cause ¢ to accept it in favor of the less preferred
acceptor it is currently matched to. If j and j’ are in ’s lowest equivalency class, then in a identical
argument to the previous paragraph, x;; < z;; implies that increasing x;; will cause i’s choice function
to select more of j as part of the equivalent increasing process.
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This concludes the proof of the forward direction. We will next show the backwards direction. For
contradiction, assume that some matching x is doubly-strong ex-ante stable, but is not AG-Stable with
respect to the agents’ induced choice functions.

Leti € N, j € M, be the pair of agents that violates AG-Stability, i.e., we have that 7 is not j-satiated,
and j is not ¢-satiated.

Since i is not j-satiated, this means that there exists some vector y; with y;;» = z;7Vj’ € M \ {j} and
Yij = x4 + € for some € > 0, such that C*(y;); > C*(x;);. Similarly, we since j is not i-satiated, there
must exist a symmetrically defined vector y; such that C7(y;); > C7(x;);.

Since z is a perfect matching, we must have that jem ij = 1, and thus since the quota of each
agents’ choice function will be 1, and we have C(y;); > C%(z;);, there must be some j' € M such
that C(y;) ;s < C*(x;) . Similarly, there must be some i’ € N such that C7(y;); < C¥(z;);. We will
now consider each possible case for i’s preference ordering over j and j/, and j’s preference ordering
over i and 7.

First, note that it cannot be the case that j =; j. By the definition of the DFDA choice function, if
§' =i j is true, then since we have C?(y;); > C*(x;); > 0 we must also have that C?(y;) ;s = y;j.
This follows since the only way C*(y;); < y;;» would be true is if j is in the lowest equivalency class
chosen by 7 in C*(y;). But, C*(y;);» < C*(x;)j < ;7 = y;j» contradicts this. Meaning that j »=; j'
must be true. By a symmetric argument, we can also say that i =; i’ must be true.

Case 1: j = j/,i > i’. In this case, note that 0 < C(y;);» < C*(x;); implies that C?(z;); > 0 and
thus z;;; > 0. Symmetrically, we also have that x;/; > 0. This implies that x violates ex-ante stability
with respect to ¢ and j, giving a contradiction.

Case2:j>-;j,i ~j i’. In this case, we again have that x50 > 0, this means that x;; > x;/;, otherwise
this would mean that x violates no ex-ante discrimination for the proposers. Note that this means we
have yj; > x;; > xy7; = y;i. But if this were true, we could not also have that C7(y;)y < C7(xz;)y <
zyj = y;i and CY(y;); > C’(z;);. This follows from the definition of the DFDA choice function.
Since CY (yj)l-/ < yji, it must be the case that i/, and thus 7, are in the lowest equivalency class among
accepted proposers in C7(y;). Since the only difference between x; and y; is that y;; > x5, this means
that the choice process will be identical up until the point where z;; of i is chosen. Note at that point,
due to i ~; i/, and the DFDA choice function choosing all agents in the lowest equivalency class at
equal proportions, we must have that at that point in the choice process, C7 will have chosen at least
min {a:ij, Y = azi/j} =y, of i/, contradicting that fact that C7(y;)i < yu;.

Case 3: j ~; j.i =3 i’. This follows from a symmetric argument to that of Case 2. Since we have

xyrj > 0, we must have x;; > x;;, but this produces a contradiction.

Case 4: j ~;j j’,i ~j 1. By the argument presented in Case 2, we know that x;; > z; and ¢ ~; 7’
leads us to a contradiction of the fact that C7(y;)iy < C’(z;)y. So it must be true that z;; < z;j.
However, we also know that using a symmetrical argument to case 3, x;; > x;;» and j ~; j ’leads to a
contradiction of the fact that C*(y;) g < C*(z;) j/» s0 it must also be true that z;; < x;; is true as well.
However, this would mean that x violates ex-ante indifference neutrality, again causing a contradiction.

This shows that a contradiction occurs for every possible ordinal preference ordering of ¢ and j, thus

proving the statement. O

In the case of our matching problems, we can relate this proposer optimal matching under AG-

preferences back to our traditional notion of preferences through the following lemma:

Lemma 6. For any two doubly-strong ex-ante stable matchings x,vy, if z; =2° y; for some i, then
SD

Ti 75 Yi

Proof. For contradiction, assume this is false. For some matchings x, y, we have x; >fG y;, and thus
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CZ(J:Z V yz) = Ty, but not X; >/:§D Y-

This means that there is some equivalency class fo i, Ej, such that ) ,, ;. > jeE,, Yii >
Dokick 2 jeE,, Tij- BY the fact that « and y are both perfect matchings, this implies that there exists
some other equivalency class Ey with &' > k such that 3= 0 3-icp , % > Y prcw Djep,, . Tis-

From this, we are able to conclude that there exists some j that ¢ places in at least class £ or higher,
such that y;; > x;;, and there is some j' that ¢ places in at least class E;s or lower such that z;jr > ;.
Since y;; > x;;, we must also have that (z; V v;); = yi; > x4j. Thus, if C¥(z; V y;) = x;, then we
must have that C*(x; V y;); < (z; V y;);. By the way the DFDA choice functions are defined, this
would imply that the equivalency class of j is i’s lowest equivalency class that has any matchings in
C'(x; V y;), but this would contradict the fact that C*(z; V ;) = ;5 > 0. O

Algorithm 6: The deferred-acceptance procedure of Alkan and Gale [2] with the choice functions
in Algorithm 5.
BO — 1N><M
XO «— 1N XM
YO — 0N>< M
k<0
while X* £ Y* do
fori € N do
| X[ Ci(BY)
end
for j € M do
‘ ij+1 « CI (XM
end
fori e N,j € M do
if Y = X/ then
| B =5
end
else
‘ szj—H _ Yil;+l

end

end
k+k+1
end

return X*

As the final step of this process, in Theorem 1 of [2], the authors provide an algorithm (Algorithm 6)
that produces the proposer-optimal matching among AG-preferences. We can show that when agents
have DFDA choice functions, this algorithm will be equivalent to the DFDA algorithm.

Theorem 7. Algorithm 6 is equivalent to Algorithm 3.

Proof. We can show this equivalence explicitly, by walking through the execution of the DFDA algorithm,
while also keeping track of a new matrix b. After each step k of Algorithm 3, we say that for all i € NV,
jEeM, bi-“j = wf] if any fraction of 7 has been rejected by j by that point of the algorithm, and otherwise
bfj = 1. Intuitively, b* represents the total fraction of each proposer that has not yet been rejected from
each acceptor.
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Forany ¢ € N and j € M, we can show that i’s tentative matching to j at step k — 1, xfj_l, plus his
tentative proposals to j in round k will equal C?(bF);.

To see this, let F; be the set of agents that ¢ is proposing to in this step. Assume the acceptors in P;
belong to the equivalency class E;;. By definition of DFDA, ¢ must be rejected from all acceptors in
the class F; for every k¥’ < k. This means that for all such acceptors j' € U/ F;x/, we have that
bf?l = xf?l. Since ¥~ is a valid matching, C’i(bf_l) must choose the full amount of acijl for each
such j’. After the DFDA choice function has selected these matchings from all preferred equivalency
classes, it will select matchings from E;j. Note that it must be the case for every j' € E;; \ P, i must
have been rejected from j’, thus will have bfj?l = xf]?l. For all j/ € P;, we will have bfy?l = 1. Now
we can simply observe how the DFDA choice function will choose matchings from this class.

Due to the properties of the DFDA algorithm, at each step of the algorithm, if j ~; j/, j' has rejected i
before step k and j has not yet been rejected, then we must have a:f-*l > 332.371. This means that every
J € P; is matched to i with at least as much weight as all the acceptors in Fy, \ P;.

We can note note that C*(b%~1) will choose the full available amount of every j' € E;; \ P,. This
follows from the fact that zF~! is a valid matching, and xffl must not exceed ¢’s quota of 1. Thus, if
C*(b¥~1) was not able to choose full amount of some acceptor in j' € Ej; \ P; this would contradict
that fact or the fact that all acceptors in P; must have a higher matching that j/ in ¥~ 1,

i
Finally, note that in %=1, it must be true that for all j,j' € P;, we have that xfj_l = xijl, this follows

from the fact that neither of j and j’ have been rejected yet, and thus by the definition of the DFDA,
every time ¢ proposed to one of them previously, it proposed to both of them the same amount. Since it
must be the case that the matching formed by xf_l and ¢’s proposals in step k is perfect matching that
exactly meets i’s quota, and we know that all agents other that those in P; from equivalency classes at
least as good as E;;, will be chosen at exactly their *~! matching in C Z‘(bf_l), it follows that the final
part of the Ci(bffl) will be for C* to continue choosing the acceptors from P; at an equal rate until it
has chosen an amount of each of them exactly equal to the amount at which they are matched to 7 in
xF~1 plus i’s proposals, at which the quota of i will be filled, and it will stop.

One can also note that in each step of the DFDA algorithm, when each acceptor looks at the tentative
proposals it received in that step and makes it’s rejections, the matching it selects will be identical to
the vector selected by the DFDA choice function when run against the vector formed by that acceptor’s
tentative matching at step £ — 1 plus the proposals it received in step k. Unlike the previous statement,
this does not require a nuanced proof, it follows trivially from the definition of the DFDA choice
function, and by the described way that the acceptors make their rejections in the DFDA algorithm. It
is easy to see that these are the exact same process.

With this in mind, it is easy to see that the Algorithm 6 is performing the exact same steps as the
DFDA algorithm. At every step, B*~! is defined equivalently to how we defined b, X* represents
the proposers tentative matchings plus their proposals at this step, and Y'* represents the acceptors
rejection choices. The final step of each iteration updates B* to reflect any rejections that happened this
step. From this, we can see that the tentative matching =¥ produced after step k of the DFDA algorithm
will be equivalent to Y* in Algorithm 6. O

From Lemma 6, we can conclude that the optimal matching that is guaranteed to exist for AG-preferences
is also optimal under our traditional notion of preferences, and through Theorem 7, we can conclude
that the process that is known to find this matching is equivalent to DFDA. This completes the proof of
Theorem 1, as it shows that DFDA will converge to a proposer-optimal doubly-strong ex-ante stable
matching.
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F Missing Proofs from Section 5

Lemma 7. For any acceptor j € M, if at any point during the execution of Algorithm 1 we have |z;| = 1,
then |x;| = 1 will remain true for the rest of the algorithm.

Proof. To see this, it is sufficient to note constraint (5) of the LP, Vj € M, |z;| =1 — z; = >, n ¥ij-

Since |xj| = ) ;. v Zij» and after each execution of the LP, each x;; will be updated using the formula

mfjl < xf; +yj; — 25;, we have that the value of |z;| gets updated by the formula ‘xz-'H’ — ‘xé +

dien Wi — 25) = ’xﬁ‘ + D ien Yl — 2 = ‘mﬁ‘ = 1. With the first equality being directly implied
by constraints (7) and (8) of the LP. O

Lemma 8. Foranyi € N and j € M, if at any point in Algorithm 1,i € R; \ A} is true, then it will
remain true for the rest of the algorithm.

Proof. From the logic of Algorithm 1, we can see that the only proposers in R; who are matched with
positive weight to j are those in A}. Thus, it must be the case that ¢ is not matched to j with any
positive weight in this step, and thus, we must have that j strictly prefers all the proposers it is currently
matched with to <.

Since ¢ € R; is true in this step, it follows from the definition of P; that j ¢ P; must be true. Thus,
from condition (4) of the LP, we know that the matching between 7 and j cannot increase while i € R;
is true.

Note that this same argument holds for any proposer 7’ such that i »=; i’. Thus, in the next step of the
algorithm, no such agent i’ will become positively matched with j. Thus, after the next step, j will still
strictly prefer everyone in its matching to all such ¢/, thus ¢ € R; will still be true.

We can continue this argument inductively, and conclude that after every step, j will still prefer everyone
in its matching to i and ¢ will never be positively matched to j, thus i will remain in R; \ A7 for the
rest of the algorithm O

Lemma 9. Foranyi € N and j € M, if at any point in Algorithm 1,1 € A7 is true, then i will only leave
Aj ifit is fully rejected from j, and enters R; \ AJ.

Proof. A% is defined as the set of proposers who are among the lowest equivalency class matched to j,
and among those, the proposers with the highest weight matched to j.

From Lemma 8, we know that this cannot happen because some other proposer from a lower equivalency
class becomes positively matched to j. So, it must be the case that some proposer in the same equivalency
class to j becomes matched to j with a higher weight than i.

For contradiction, assume that this happens, at some step of the algorithm ¢ € A7 is true, but in the
next iteration, after running an instance of the LP and updating the matching, ¢ is no longer in A%, and
thus there is some ¢’ with i’ ~; ¢ who is matched to j at a strictly higher amount than 7 is.

By condition (7) of the LP, we can see that if i/ € A;f were also true, this would lead to a contradiction.
Condition (7) ensures that i and i’ would be rejected from j the exact same amount during this iteration
of the LP, and from the fact that they are in A%, we can conclude that j ¢ P; and j ¢ Py are also true,
and thus y;; = y;; = 0 in the LP solution. Therefore, updating the matching with such a solution could
not cause 7"’s matching with j to exceed i.

In the case where i’ ¢ A7, then by the fact that i’ ~j i, we can conclude that i’ € A, \ A% must be
true, and we can easily see that this leads to a contradiction by observing condition (10) of the LP. By
condition (10) z;; — zj; = xy; + y;ij must be true. Again we can conclude that y;; = 0 from the fact
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thati € A;, and we can also conclude that z; = 0 from the fact that i’ ¢ A%, following from condition
(8) of the LP.

This also shows that in this case, updating the matching with the LP solution will never cause i’’s
matching with j to exceed ¢’s. d

Lemma 10. Foranyi € N and j € M, at any point of Algorithm 1, if i € R is true, then for alli' € N
such thati ~; i, x;; > x4 ; will remain true for the rest of the algorithm.

Proof. First note that if i € R; \ A7 is true, then it must be matched to j with 0 weight, and j must
strictly prefer everyone in its current matching to 7. This implies that all ' would have to be matched
to j with 0 weight as well, and by Lemma 8, this would continue to hold for the remainder of the
algorithm.

Next, from Lemma 9, we know that after the first step where i € A}'f is true, it will not leave Aj until it
is fully rejected by j. Thus, at any point after it gets added to A%, but before it gets it gets fully rejected,
we will have that z;; > x;; must be true for all ¢’ such that i ~; 7’.

Next, observe that on the step where i gets fully rejected from 7, it must be the case that this step, all i’
will also be matched to j with weight 0. If this were not true, then it is clear to see that ¢’ would have
had to violate condition (7) of the LP (if it were in A%), or condition (10) of the LP (if it were in A; \ A7)
to be positively matched to j at this step.

From the fact that i € A;f was true in the previous step, we know that all proposers who j strictly
prefers i to must in R \ A7, and thus by Lemma 8 will remain there for the rest of the algorithm. By
the above analysis, we can also conclude that on the step where ¢ gets fully rejected by j, all proposers
in ¢’s equivalency class will be matched to j with weight 0 as well, and thus is must be the case that j
strictly prefers everyone in its matching to ¢ at this point. Thus, for all ¢’ such that i’ ~; 7, we must
have i’ € R; \ A}, and by Lemma 8, they will all remain matched with j at 0 forever. O]

Lemma 11. Foranyi € N and j € M, at any point of Algorithm 1, if i € R; becomes true, theni € R;
will remain true for the rest of the algorithm.

Proof. 1f at this point, i € R; \ A7 is true, then this immediately follows from Lemma 8.

If on the other hand, ¢ € A is true at this point, then we know from Lemma 9, that it will remain
in A7 until it is fully rejected, and it is implied by Lemma 10 that once i is fully rejected, it will enter
R; \ A7, and thus remain there forever. d

Lemma 1. In any solution to the LP, at least one of the following will be true:

. (A)Vi € Cy,y; :Zjeszi+wi

« B)Fj € M, || <13 ienvij =1—

« (C)Jie N,je M,x;; >0,z = x4j.

« (D)3j € M,Fi € A5, 3" € Aj\ AS, wij — zji = Tirj + yurj.

Proof. For contradiction, assume that for some proposal graph G, component Cy, and existing (z, w),
the corresponding LP outputs a solution where none of these conditions are true.

First, because condition (A) is false, that means there exists some agent * € C; such that y;+ <
> jem Zji* + wi=. Intuitively, this means that after the LP has been resolved and the current matching
has been updated with the values of y*, z*, i* will have free weight remaining.
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We can show that, since conditions (B), (C), and (D) are also all false, ¢* should be able to propose more
of their weight without violating the constraints of the LP, leading to a contradiction of the fact that
the LP returns a solution maximizing the sum of proposed weights over all the proposers.

Consider what happens if the value of y;+ increases by some very small €. For each j € P;«, the value
of y;+; will increase by /| Pj«|. For each of these j’s, if || < 1, then by the fact that condition (B) is
false, we know that ) . vi; < 1 — |2 must be true. As long as epsilon is sufficiently small, it will be
the case that Y ., n vij + €/|Pp<| < 1 — |2;] as well.

Additionally, for all the j € Pj« such that |z;| = 1, then increasing the proposals to j means that it
will have to reject more of the agents in A7. Specifically, since proposals to j are increasing by ¢ /| Pixl,
J will increase its rejection of each proposer in A} by a factor of ¢/(| F;+[|4}|). Due to condition (C)
and (D), such a change will always be possible. We must have that for all € A7, zj; < x;;, and for all
i'e Aj\ A;, we have that x;; — zj; > 2y, + y;7;. Thus, given ¢ is sufficiently small, the inequalities
zji +&/(|P||A}]) < i and 245 — 25 — €/ (| P || Af]) > @y + yir; will still hold.

One can easily verify that the rest of the constraints of the LP will trivially hold after this ¢ increase as
well, as they are all equality constraints that we already implicitly handled above, or have no relation to
the variables that we changed.

The above procedure will increase y;+ by a factor of €, while maintaining all the necessary inequalities
of the LP provided that ¢ is sufficiently small, giving the desired contradiction. O

Lemma 2. Lety*, z* be the variables after resolving some LP in Algorithm 1. The process of updating the
current matching using y*, z* will change the proposal graph only if at least one of the conditions (B), (C)
or (D) are true.

Proof. For contradiction, assume this is false and that in an LP solution y*, z* where conditions (B),
(C), and (D) are all false, but the corresponding updating of the matching changes the proposal graph.
Consider the different ways that the proposal graph can change.

First, observe the fact that for any j € M,i € N, an edge from j to ¢ can only change (either appear or
disappear) in the proposal graph if A} changed in this iteration. This follows immediately from the fact
that by definition, the edge (7, ) exists in the proposal graph if and only if i € A3

Slightly less trivially, we can observe that for any ¢ € N, j € M, an edge from 7 to j can only also
change in the proposal graph if A;, changed for some j' € M in this iteration. For any fixed i, the
set of j such that (7, j) is an edge in G will be the set of j among i’s highest equivalency class such
that j € R;. Since we know from Lemma 11 that once some acceptor is placed into R;, it will never be
removed for the remainder of the algorithm, it must be the case that if some edge (3, j) is removed from
the graph, then j was added to R;, and similarly, if some edge (i, j) is added to the graph, then some
j' must have been added to R; that lowered the i’s highest unrejected equivalency class. Clearly, an
acceptor j' can only be added to R; if they are either directly added to Aj,, or if the lowest equivalency
class matched to j changed, which would also cause A7 to change.

Thus, it is sufficient to show that if conditions (B), (C), and (D) are all false after some iteration of the
LP, then A;‘» will remain the same for all j € M.

In our assumption for contradiction, let j be the acceptor such that A} changes. First consider the case
that there is some ¢ that was A7 in the previous step, but is not anymore. It cannot be the case that
was fully rejected from j, otherwise that would violate condition condition (C). But from Lemma 9, we
know that once some i is in A7, the only way it can leave A7 is by being fully rejected. So this cannot
be the case.

Therefore, there must some 4 that was not in A;‘- previously, but is there now. It cannot be the case that
i is part of a brand new equivalency class that was not in A previously, as that could only happen if
7 just became full for the first time, which would violate condition (B), or the proposers from some
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higher equivalency class were fully rejected in the previous step, violating the argument from the last
paragraph. Therefore, it must be the case that there are other proposers from the same equivalency
class in A}, and 4, previously being in A; \ A7 has become matched to j at the same weight as them.
But clearly this could only happen if a violation of condition (D) occurred. O

Lemma 3. In some iteration of the main while loop in Algorithm 1, if for every component C; of proposers,
the LP run on C; terminates with only condition (A) being true, then the matching produced by the last
component being solved will be a perfect matching.

Proof. First note that due Lemma 2, since conditions (B), (C), and (D) are never true during such an
iteration of the while loop, the proposal graph will never change, and thus the LP will run on every
strongly connected component of proposers.

By definition of condition (A), if an LP for component C; terminates with (A) being true, then each
proposer in C; will have no free weight after the matching is updated with the LP values. Further, from
the fact that the components are solved in a topological ordering, if an agent ¢ € C} does not have any
free weight after C} is solved, then there is no component Cy with ¢’ > t whose solution will result in
new free weight being pushed back to i.

To formalize this, we can say that for every Cy ordered after Cy, and for all i’ € Cj, i is not reachable
from ¢’ in the proposal graph. This means that if there is an edge (¢', j) for some j € M in the proposal
graph, then there cannot be an edge (7, ) in the graph as well.

It can easily be seen from conditions (5) and (6) of the LP that for any j € M, z; > 0 only if y;1; > 0
for some i’ € N. Since for an execution of the LP on Cy, the only proposers that propose their weight
are proposers in Cy, we have that for any j € M, yy; > 0 only if ' € Cy and (¢, j) is an edge in the
proposal graph. Therefore, for any Cy ordered after CY, there will never be a j € M in the LP solving
Cy such that z;; > 0. Thus, for all i € Cy, we will have ) | jem #ji = 0, meaning that w; = 0 after
updating the matching with the new values from the LP. O

Theorem 3. Algorithm 1 terminates in polynomial time, and will output a perfect matching.

Proof. Each iteration of the main for loop simply runs an LP with the number variables and constraints
being polynomial in the number of agents, then updates the proposal graph. Clearly a single iteration of
this loop terminates in polynomial time,® and since it runs once for each strongly connected component
in the proposal graph, each instance of this for loop will have at most | N| iterations. Therefore, we just
need to show that the algorithm terminates after a polynomial number of iterations of the main while
loop.

From Lemma 1, we know when we run the LP on a component CY, one of four listed conditions—(A),
(B), (C), or (D)—must be true.

Condition (A) represents that the LP was able to resolve all the free weight from the proposers in C}.
From Lemma 3, we know that if this happens for every component in a given iteration of the while
loop, the the algorithm will terminate with a perfect matching after that iteration.

The other three conditions all correspond to events that cause the proposer graph to change, and thus
move the algorithm forward. We will show that each of these conditions can only occur polynomial
number of times.

3Crucially, note that the optimal solution (y*, 2*) of each LP affects the updated matching x, which is involved in the
right hand side of the subsequent LP. If one uses an arbitrary polynomial-time solver for LPs, this may cause an exponential
blow-up in the bit-complexity of the successive LPs and, hence, the time it takes to solve them. This can be prevented by
using a polynomial-time algorithm for solving LPs whose running time is independent of the bit-complexity of the right hand
side, such as that of Tardos [36].
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If condition (B), 3j € M, |z;| < 1,> ,c 5 ¥ij = 1 — |z;], is true, that means that there existed some
acceptor j that was not full at the beginning of the LP, but is full afterwards. From Lemma 7, we know
that this can only happen at most | M| times during the algorithm, since once an acceptor become full,
its weight cannot go down again.

If condition (C), 3i € N, j € M, xz;; > 0, zj; = x4, is true, this means that some proposer 7 did have
weight matched with some acceptor j at the beginning of the LP, but was fully rejected from j by the
results of the LP. By condition (8) of the LP, we can see that zj; can only be positive if i € A7 is true.
i € A7 implies that ¢ € R; is true, and by Lemma 11, this means that ¢ € R; will remain true for every
future step of the algorithm. ¢ € R; also implies that j € P; cannot be true. Finally, following from
condition (4) of the LP, in any future iteration of the algorithm, ;; can only be true if j € F; is true.
This means that once ¢ is fully rejected from j, it can never increase again. Thus, this can only happen
once for every i and j, meaning it only happens | V|| M| times total.

Finally, if condition (D), 3j € M, 3i € A}k-, i€ Aj\ A;f, Tij — Zji = Ty + Yirj is true, this means
that there is some acceptor j, and some proposer ¢ that is in A; (among the lowest equivalency class
proposers matched to j), but not in A7 (does not have the most weight matched to j among proposers
in A;) who becomes tied for having the most weight matched to j among proposers in A;, either by
xi; increasing and/or x;/; decreasing for all 7’ € A%. We note that an LP can only terminate with this
condition being true once for every 4, i’j pair, meaning that it can only happen at most | N|?|M | times
throughout the course of the algorithm.

To see this, first note that condition (D) being true implies that i and i’ will be matched to j in the same
amount after updating the matching with the LP results. This is because we have x;; — 2j; = 25 + i,
and we also know from the fact that ¢ € A7 that y;; = 0, and from the fact that i ¢ A7 that z; = 0.

Next, note that ¢ € A7 before the LP execution implies that either i € A} ori € R; \ Aj must be true
after updating the matching. This follows from Lemma 11. If ¢ € A7 is true, then by the fact that i and
1/ are now matched to j with the same amount, then i’ € A% is also true. If ¢ € R; \ A; is true, then 7,
and thus, ¢ must be matched to j at weight 0, and therefore 7/ € R; \ A; must also be true. Either way,
we have that i/ € R is true. By Lemma 11, we know that 7’ will never leave R; for the remainder of
the algorithm, so therefore, it can never be in A4; \ A7 again, and thus condition (D) cannot repeat with
these agents.

This means that after at most (| N||M|) + (|N|?|M|) + | M| iterations of the main while loop, either
conditions (B), (C), and (D) will have have occurred their maximum number of times, or the algorithm
has terminated.

Thus, if the algorithm has not terminated at this point, then in the next iteration of the while loop,
condition (A) and none of the other conditions are true after each LP is solved. Following from Lemma 3,
the algorithm will terminate after this iteration. O

Theorem 4. The matching produced by Algorithm 1 is doubly-strong ex-ante stable.

Proof. First, we will show that Algorithm 1 returns an allocation that is ex-ante stable. For contradiction,
assume this is false. This means that there are some 7,7’ € N and j, ;' € M such that j =; j/,i >, 7/,
x;jr > 0,and xy7; > 0 are all true.

Note that if z;;; > 0, that means that at some point of Algorithm 1, 7" € P; must have been true.
This means that ¢ € R; must have been true at that point, or else, j € P; would have been the case
instead. ¢ € R; implies that j can only be currently matched to agents that are weakly preferred to 7,
and therefore strictly preferred to i’. Thus, we must have that z;; = 0 and i’ € R; at this point. By
Lemma 11, 7’ will remain in R; for the rest of the algorithm, and therefore cannot be positively matched
to j in the final output, causing a contradiction.

Next we will prove that Algorithm 1 has no ex-ante discrimination for the proposers. For contradiction,
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assume this is false. Then there are i,7' € N, j,7° € M such that ¢ ~; i/, j >; j/, ;7 > 0, and
Xy > xj; are all true.

As in the argument for ex-ante stability, 2;;; > 0 means that at some step of the algorithm, j' € P;, thus
it € Rj. Thus, immediately from Lemma 10, we can conclude that z;; > z;;, giving a contradiction.

Next, we will prove that the matching produced by Algorithm 1 has no ex-ante discrimination for the
acceptors. For contradiction, assume this is false. Then there are j, j' € M, i,i’ € N such that j ~; 7/,
1 >3 7, Tyj > 0, and Tijr > Tij.

Since, z;; > 0 we know that 7 ¢ R; was true at every point of the algorithm. Note that by the condition
(3) of the LP, whenever 7 proposes any of its weight to j, since ¢ € R; was never true, it must be the
case that ¢ will always propose an equal amount of weight to j. Thus, the only way that z;;; > z;;
could be true is if j ever rejected some weight from ¢, which is not possible due to i ¢ R;.

Finally, we will prove that z is ex-ante indifference neutral. For contradiction, assume this is false, and
there exists agents 4,7 € N, j,7' € M, such that j ~; j',i ~; 7/, 2;; < ;;» and 255 < xy;.

Note that x;; < x;; implies that at some step in the algorithm, we had 7 € R;. This follows from the
fact that if i € R; was never true, then in an identical argument to the previous paragraph, we know
that every time ¢ proposed to j’ it must have also proposed the same amount to j. Thus, if i € R; were
never true, it would have to be the case that z;; > x;;.

However, x;; < x;; implies that i € R; was never true at any point in the algorithm. This follows
from Lemma 10, as ¢ € R; would imply x;; > x;;. This along with the paragraph above clearly cannot
be true at the same time, giving us the desired contradiction. O

G Why We Demand Proposers With Free Weights

Suppose there are proposers 7, i’ and acceptors j, ;' with preferences shown on

Preferences
the right, and suppose that at some point of the algorithm, we have x;;; > 0 and —
xy1; > 0. Also, suppose that 4 is rejected from j’ and one of the acceptors she will 7; J -~ J/
propose to next is j, and 4’ is rejected by j and one of the acceptors she will propose R R/
to next is j'. Finally, suppose ¢ and i’ both have no free weight. This would form g
the following cycle in our proposal graph: i — j — i — j' — 4. ek

If we did not have the w; > 0 condition, then the LP would maximize flow through this cycle, swapping
matched weight on (i, /) and (7', j) for equal weight on (i, j) and (7', j'). However, this leads to the
proposers worsening. Also, it does not reflect any actual proposals and rejections that would have
happened in DFDA because 7 and i’ had no free weights to kick them off. Adding the condition to Line 7
that some proposer in C; must have free weight prevents such extra proposals and rejections, thus
bringing DFDA-SCC closer to mimicking DFDA.

H Incompatibility With Pareto Optimality

Consider the instance in Figure 4(a), where proposers i and i’ are indifferent between acceptors j and j’,
and j is also indifferent between 7 and 7', but j' strictly prefers i to i’. The only Pareto optimal matching is
given in Figure 4(c), which makes j’'—the only agent who is not completely indifferent—maximally happy.
However, this violates the requirement of ex ante indifference neutrality that z;; > min {xij/, Ty }
Note that DFDA and DFDA-SCC produce the matching shown in Figure 4(b) because both proposers
initially propose a weight of 1/2 to both acceptors, which accept them, and the algorithms immediately
terminate.
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(a) Preferences. (b) DFDA matching. (c) Ordinally Pareto dominant.

Figure 4: DFDA can be Pareto sub-optimal.

I Extended Discussion

Due to space constraints, the following discussion points are deferred here from Section 6.

One-sided matching with weak agent priorities. Two-sided matching includes one-sided matching,
also known as the house allocation problem [23], as a special case, where agents are matched to objects,
agents have preferences over the objects, and we can treat every object as being indifferent between all
the agents. In this case, DFDA does not seem to coincide with any known algorithm. It cannot ordinally
dominate its competitor, probabilistic serial (PS) [7], because PS is ordinally efficient, but we are able to
produce instances where PS ordinally dominates DFDA. That said, DFDA yields a natural extension to
the case where both sides have weak preferences, whereas for PS, extensions are known only when
either agents have weak preferences [24] or objects have weak priorities [19], but not both.

Tradeoffs with other criteria. As mentioned in Section 1, there are various other criteria for fractional
two-sided matchings studied in the literature, such as ordinal fairness [19], envy-freeness and justified
envy-freeness [37],” and popular matching [22]. It is worth exploring the tradeoff between our criteria
(particularly, ex ante stability) and these other criteria as well as with utilitarian welfare [9] in two-sided
matching.

Best-of-both-worlds guarantees. As mentioned in Section 1, fractional matchings can be imple-
mented as lotteries over integral matchings due to the Birkhoff-von Neumann theorem [5]. This simply
finds an arbitrary lottery under which the marginal probability of agents ¢ and j being matched is
precisely x;; for all 7 € N and j € M. Recently, there is a growing literature on implementing
fractional solutions as lotteries while providing “best-of-both-worlds” guarantees: ex ante guarantees
on the fractional solution and ex post guarantees on every integral solution in the support [3, 4, 15, 21].
These often use strengthened versions of the Birkhoff-von Neumann theorem such as the bihierarchy
extension due to Budish et al. [8]. Whether the fractional matchings returned by DFDA or DFDA-SCC
can be implemented while obtaining some ex post guarantees (such as stability of the integral matchings
in the support) is an exciting question for the future.

Many-to-many integral matchings. Following the discussion on multi-unit capacities from Section 6,
when agents on both sides have multi-unit capacities it is also interesting to investigate integral
matchings with approximate fairness guarantees: Freeman et al. [16] do so for a relaxation of envy-
freeness called EF1, leaving open the question of whether a matching satisfying EF1 for both sides
always exists under additive cardinal utilities, but we are not aware of any work doing so for relaxations
of stability-inspired criteria.

°It should be noted that the justified envy-freeness criterion of Trébst and Vazirani [37] is different from the no justified
envy criterion common in the deferred acceptance literature that coincides with stability for one-to-one matching.
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