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Abstract

We study temporal fair division, whereby a set of agents are allocated a (possibly different) set of
goods on each day for a period of days. We study this setting, as well as a number of its special
cases formed by the restrictions to two agents, same goods on each day, identical preferences, or
combinations thereof, and chart out the landscape of achieving two types of fairness guarantees
simultaneously: fairness on each day (per day) and fairness over time (up to each day, or the
weaker version, overall).

In the most general setting, we prove that there always exists an allocation that is stochastically-
dominant envy-free up to one good (SD-EF1) per day and proportional up to one good (PROP1)
overall, and when all the agents have identical preferences, we show that SD-EF1 per day and
SD-EF1 overall can be guaranteed. For the case of two agents, we prove that SD-EF1 per day
and EF1 up to each day can be guaranteed using an envy balancing technique. We provide
counterexamples for other combinations that establish our results as among the best guarantees
possible, but also leave open some tantalizing questions.

1 Introduction

How to divide a set of goods amongst a set of agents fairly has been an enigma for centuries. There has
been remarkable progress on this question in the last decade [2]. In the most prominent model, there is
a set of n agents IV, each having an (additive) valuation over a set of goods M. The goal is to find an
allocation A = (A1, ..., A,) which partitions M into pairwise-disjoint bundles, one allocated to each
agent s € N.

This one-shot model fails to capture numerous real-world fair division scenarios in which goods are
divided over time, e.g., food bank deliveries [25], resource allocation in data centers [19], allocation of
advertising slots [27], nurse shift scheduling [28], and organ transplants [9]. Compared to the one-shot
setting, fair division of goods over time has received relatively little attention.

Inspired by this, there has been a flurry of recent works that consider online fair division, where agents
or goods arrive over time and the principal needs to make allocations in an online fashion in the absence
of any information regarding future arrivals [24, 8]. The limits of feasible fairness guarantees have been
explored under various adversary models [30, 8].

However, in practice it is rarely the case that we have absolutely no information about the future.
Significantly better guarantees have been established when even partial information about the future is
available, either in the form of distributional knowledge [11] or machine-generated predictions [20, 6, 7].
But this work has left a very basic question wide open: How fair can we be if we had full information
about the future?

To address this, we introduce the model of temporal fair division, where a set of agents IV are allocated
a set of goods M; on day ¢, over a period of days ¢ € {1,...,k}, and the agents’ valuations over the
whole set of goods M = UF_, M, are available upfront. At first glance, it may seem that this is just
a traditional fair division problem where the set of goods M needs to be divided amongst the set of
agents IV. The twist, however, is that in temporal fair division, agents anticipate fairness to prevail not
solely at the end of the entire time horizon, but also at or within various interim time intervals. For
example, the principal may be confident, based on their knowledge of the future, the allocation will



Up to each day Overall

SD-EF1 | EF1 SD-EF1 | SD-PROP1 | EF1 | PROP1
General Setting
SD-EF1 Per Day X X X ? ? v/ (Thm 1)
EF1 Per Day X X X ? ? v
0 X X [22] v [3] v v v
Two Agents
SD-EF1 Per Day X v (Thm 3) | X ? v v
EF1 Per Day X v X (Thm5) | ? v v
0 X (Thm4) | v v v v v
Identical Orderings
SD-EF1 Per Day X ? V(Thm?7) | v v v
EF1 Per Day X ? v v v v
0 X (Thm ) | ? v v v v
Identical Days
SD-EF1 Per Day X ? ? v (Thm9) | ? v
EF1 Per Day X ? ? v ? v
0 X (Thm 8) | ? v v v |V

Table 1: Possibilities, impossibilities, and open questions in temporal fair division. v'indicates a possibility result.
X indicates an impossibility. ? indicates an open question. Green highlights indicate the main results of this
paper; non-highlighted cells are either open, already known, or implied by other results.

eventually turn out to be fair, but that may not be assurance enough to the agents.

This leads us to seek temporal fairness notions in our temporal fair division setting. Specifically, we take
prominent fairness notions from one-shot fair division, and seek them on three temporal scales:

(1) Per day: The allocation of the set of goods M; on each day ¢ should be fair.
(2a) Owverall: The allocation of the whole set of goods M in the end should be fair.

(2b) Up to each day: The allocation of the set of goods U’_; M, up to each day ¢ should be fair.

Clearly, up to each day fairness (2b) is stronger than overall fairness (2a). Solely achieving per day
fairness (1) or overall fairness (2a) can be reduced to one-shot fair division. Hence, we seek per day and
overall fairness simultaneously (1+2a), or per day and up to each day fairness simultaneously (1+2b), or
solely up to each day fairness (2b). Our main research question is to...

...explore the limits of temporal fairness that can be guaranteed in temporal fair division.

1.1 Our Results & Techniques

We chart out the landscape of the aforementioned temporal fair division model in a general setting, with
n agents having additive, heterogeneous preferences. Further, we identify three relevant restrictions
where we can circumvent some of the impossibilities of the general setting, and achieve very strong
results. Those are: (1) when there are only two agents; (2) when all agents have the same ordering over
the goods; and (3) when an identical set of goods arrives each day.
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Figure 1: Hierarchy of temporal fairness notions.
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In these settings, we seek the fairness guarantees of EF1, SD-EF1, PROP1, and SD-PROP1 at the temporal
scales of per day, overall, and up to each day. The various temporal fairness definitions are depicted
in Figure 1, with arrows indicating logical implications. We discover several surprising results, and
develop novel algorithmic tools along the way, which may be of independent interest.

In Section 3, we present an algorithm for finding temporally fair allocations in our most general
setting. Specifically, we show how to obtain an allocation that is PROP1 overall, and SD-EF1 per day in
polynomial time (Theorem 1).

In Sections 4 to 6, we look at the restricted settings of two agents, identical orderings, and identical days,
respectively. In these settings, we provide algorithms that give very strong fairness guarantees that are
impossible in the general case (Theorems 3, 7 and 9), while also showing which fairness desiderata are
still too strong even after applying these restrictions (Theorems 4, 5 and 8). In these restricted settings,
we provide a near complete picture of what is possible, while leaving open some interesting questions,
particularly surrounding the powerful notion of “up to each day” fairness.

Most of our results, along with several open questions, are summarized in Table 1.

1.2 Related Work

Our temporal fair division model is related to (but separate from) several fair division models studied in
the literature. We include the most relevant ones here, and include a more in-depth look at the literature
in the Appendix A

Repeated fair division. The repeated fair division model of Igarashi et al. [23], which is the case
of identical days in our more general model, is the most closely related to our work. Some of their
results are for two agents (still with identical days). As will be seen in Section 4, this is where the
strongest guarantees from Figure 1 of SD-EF1 per day and SD-EF1 up to each day can be achieved
simultaneously. This result is the only overlap between our works, and we present it again because we
obtain a shorter proof with a much simpler algorithm. The rest of their results with two or more than
two agents seek exact fairness guarantees, such as (exact) envy-freeness overall, in limited cases such
as when the number of days is a multiple of the number of agents.

Online fair division. In the online fair division model, goods arrive one by one and must be irrevocably
allocated to an agent upon arrival with no knowledge of agent preferences over the goods to arrive later.
Typically, one seeks to maintain a certain level of fairness. Clearly, any online fair division algorithm
can be simulated in our temporal fair division model to achieve the same guarantee up to each day.
One online fair division paper of particular note to this research is He et al. [22]. This paper introduced
the “Informed Model” of online fair division, where irrevocable allocation decisions must be made as
goods arrive one at a time in adversarial order, but the allocation algorithm is given all goods and the
order they will arrive in advance. The main goal in the informed model is to achieve an allocation that
remains EF1 after each good is allocated. Clearly, this is equivalent to achieving EF1 up to each day in



Temporal Fair Division when each day only contains a single good. He et al. [22] concludes that it is
impossible to allocate the goods in such a way that EF1 is always maintained. By corollary, EF1 up to
each day is also infeasible.

Constrained fair division. Seeking fair allocations over a set of goods that remain fair when only
looking at the goods from a single “day” can also be modeled as a constraint on the space of feasible
allocations, and the question becomes whether there is a constrained allocation that still achieves the
desired fairness guarantee. This model of constrained fair division has also been studied in the literature.
Biswas and Barman [10] study a model with cardinality constraints. Cardinality constraints (partition
matroid constraints) have been generalized to matroid constraints, and the existence of an EF1 allocation
subject to matroid feasibility constraints is a major open question [10, 16]. Finally, the bihierarchy
framework of Budish et al. [13] can also be viewed as a method for finding a constrained allocation,
which we use in some of our results. Although, our most interesting results deal with sets of constraints
that go beyond bihierarchies.

Temporal fairness in social choice. While we look at temporal fairness applied to the allocation of
indivisible resources, the idea of temporal fairness has been explored in other areas of social choice
theory. See the work of Elkind et al. [17] for a detailed look at temporal multi-winner voting, and for a
synopsis of other papers that look at fairness over time. Also, Alamdari et al. [1] present a model of
temporal fairness for a very general decision making setting.

2 Preliminaries

2.1 Model
For any r € N, define [r] £ {1,2,...,7}. A multiset is a set that allows repetitions.

Agents, goods, and valuations. Let N = [n] be a set of agents who are allocated a set of goods on
each day over k consecutive days. For ¢ € [k], denote by M, the set of goods to be allocated on day ¢,
M; = Uye[g) M, the set of goods up to day ¢, and M = M, = Uyek] My the set of all goods. We can view
(My, ..., My,) as a partition of M. Each agent i € N has an additive valuation function v; : 2M — R,
where v;({g}) (henceforth, with a slight abuse of notation, written as v;(g)) is her utility for receiving
good g € M and v;(S) = 3_ g vi(g) for all S C M. Collectively, (N, (M, ..., My), {vi};c ) form
an instance of temporal fair division. An instance with k = 1 is a (regular) fair division instance, so a
temporal fair division instance can be viewed as a sequence of fair division instances in which the same
agents participate. We will always assume that an algorithm to solve a temporal fair division problem
is given the entire instance as input, i.e. it knows the entire set of goods and what day those goods will
arrive upfront.

Preferences. Define =; (resp., >;) as the weak (resp., strict) ordering over the goods in M induced by
v;, where, forall g, g’ € M, g %=; ¢’ ifand only if v;(g) > v;(¢') and g =; ¢ ifand only if v;(g) > v;(¢).
Forall S C M and all r € N, define T;(.S, r) to be the r most preferred goods among the goods in S
according to the ordering ’=;; all ties are broken consistently across 7, S, and r.!

Allocations. An allocation A = (Ay,..., A,) is a partition of M into n pairwise-disjoint bundles,
where A; is the bundle allocated to agent i. For S C M, let Ag = (Ag1,. .., Asy) be the allocation of
the goods in S that is induced by A (i.e., for each good g € M and agenti € N, g € Ag; if and only if

!That is, we use an arbitrary global ordering over M as the tiebreaker to convert the weak ordering 3=; of every agent
¢ € N into her strict ordering over M, and compute all T;(S, )-s according to these strict orderings. Our negative results do
not depend on this tie-breaking and positive results hold regardless of it.



g € Sand g € A;). Fort € [k], we refer to Apy, as the allocation on day ¢ and Az, as the allocation up
to day ¢.

Restrictions. We study three restrictions of this general setup (and their combinations).

1. Two agents: |[N| = 2.

2. Identical valuations/orderings: Under identical valuations, v; = v for all agents ¢ € N. Under
identical orderings, =;="= for all agents i € IN. Here, we simply write v, =, and T'(.5, r'), skipping
the agent in the subscript. For this case, our results deal with desiderata which depend only on
the orderings; thus, no distinction between valuations and orderings is necessary.?

3. Identical days: Informally, copies of the same goods are allocated on each day. Formally, for all
days t,t’ € [k], there is a bijection f : M; — My such that v;(g) = v;(f(g)) for all agentsi € N
and goods g € M;.

2.2 Fairness Desiderata

We first introduce the main desiderata we will be studying. Later, we will introduce their temporal
extensions. Other notions referred to in specific sections will be introduced therein.

Definition 1 (Envy-Freeness Up to One Good (EF1)). An allocation A of a set of goods S is envy-free up
to one good (EF1) if for alli, j € N with A; # 0, there exists a g € A; such that v;(A;) > vi(A; \ {g}),
i.e., no agent envies another agent if some good from the latter agent’s bundle is removed.

In addition to EF1, we will also introduce a weaker notion of measuring fairness that does not require
directly comparing one agent’s bundle to another’s.

Definition 2 (Proportionality Up to One Good (PROP1)). An allocation A of a set of goods S is proportional
up to one good (PROPI) if for alli € N with A; # S, there exists a good g € S\ A, such that
vi(Ai U {g}) = jui(S).

It is well known that EF1 is a stronger notion than PROP1 [15].

Given a set of goods S and a good g € S, define an agent i’s top-set with respect to S as H;(S, g) =
{g' € S:¢ =i g}. When given only a weak ordering *=; over a set of goods S, we can compare
two bundles X,Y C S using the stochastic dominance (SD) relation: X k?D Y if forall g € S,
| X NH;(S,g)] =|Y NH;(S,g)| Thatis, X has at least as many goods weakly preferred to any good
as Y has. It is known that X =3P YV if and only if v;(X) > v;(Y) for all (additive) valuations v; over
S that would induce >=;. Hence, using the SD comparison in the EF1 definition yields its stronger
counterpart, which has also been studied extensively [4, 18, 5].

Definition 3 (SD-EF1). An allocation A of a set of goods S is stochastically-dominant envy-free up to one
good (SD-EF1) if for all i, j € N with Aj # 0, there exists a g € Aj such that A; =3P A; \ {g}.
We also introduce a stochastic dominance extension of PROP1.

Definition 4 (SD-PROP1). An allocation A of a set of goods S is stochastically-dominant proportional up
to one good (SD-PROP1) if; for alli € N with A; # S, there existsa g € S\ A; such that |(A; U {g}) N
H;(S,q")| = [1Hi(S:9)l/n] forallg’ € S.

?In other words, our positive results hold even under identical orderings (weaker restriction), while our negative results
hold even under identical valuations (stronger restriction).



Informally, A;, after adding at most one good to it, must contain at least [¥/n] goods among the k£ most
preferred goods of agent i in S, for each k € [|S]].

Just as EF1 implies PROP1, we have that SD-EF1 implies SD-PROP1, and similarly to SD-EF1, if an
allocation A is SD-PROP1 for certain orderings {3=;},c . then A will be PROP1 for any additive
valuation functions that induce {3=;},. ;. Both these facts are proven in the Appendix B.

2.3 Temporal Fairness

In a temporal fair division instance given by a set of goods M partitioned as (M3, ..., M}) across
k days, we can ask for fairness to hold at different levels of granularity, yielding various temporal
extensions of the fairness desiderata introduced above. These extensions also apply to any other type
of desiderata (e.g., efficiency).

Definition 5 (Per Day Fairness). For desideratum X, allocation A satisfies X per day if Apy, satisfies X
forallt € [k].

Definition 6 (Overall Fairness). For desideratum X, allocation A satisfies X overall if Ay; = A satisfies
X.

Definition 7 (Up To Each Day Fairness). For desideratum X, allocation A satisfies X up to each day if
Agz;, satisfies X for allt € [k].

Note that ‘up to each day’ is a strengthening of ‘overall’, while ‘per day’ is incomparable to those
two. Plugging in our fairness desiderata into these three temporal extensions gives us the hierarchy of
fairness guarantees depicted in Figure 1. Because SD-EF1 is achievable for (regular) fair division (e.g.,
via a simple round-robin procedure [14]), SD-EF1 per day and SD-EF1 overall are both individually
achievable, implying the same for EF1, PROP1, and SD-PROP1.

3 General Preferences

In this section, we present temporal fair division results in the most general setting: an arbitrary set of
goods arrive each day, and each agent has arbitrary additive preferences over them. Let us present our
main result for this general setting.

Theorem 1. For any temporal fair division instance, an allocation that is SD-EF1 per day and PROP1
overall exists and can be computed in polynomial time.

We find such an allocation using Algorithm 1. The derivation of Theorem 1 can be divided into three
conceptual steps.

Identical ordering transformation. Algorithm 1 begins by creating an auxiliary temporal fair
division instance as follows. For each day ¢, it creates a new instance for that day with a set of goods
M and valuations v such that agents have identical orderings but with the same set of utility values
as they had previously. More formally, let M; = {g; 1, .., gL' Mf,\}' Then, for each agenti € N,
vilgi1) 2 vilgia) - = vilgy, ay)) (common ordering) and there exists a bijection 0; ; between M; and
M such that v;(g) = v}(0;+(g)) for all g € M; (same utility values). This technique has been used
previously for designing algorithms to achieve (approximate) maximin share fairness (MMS) [12], but
we use it with a novel and nontrivial analysis to ensure PROP1.

Connection to cardinality constraints. Algorithm 1 invokes a key subroutine due to Biswas and
Barman [10] that returns an EF1 allocation subject to cardinality constraints summarized below.



Algorithm 1 SD-EF1 per day + PROP1 Overall

// Identical Ordering Transformation
vi=0foralli e N
for t € [k] do
M < A{gi1:- 9
for: € N do
0;,+ be the goods M, in non-increasing order of v;
v (g17) < vi(0it(7)) for all j € [|[My]
end for
end for

R A A~ SR> S

10: // Invoking EF1 with Cardinality Constraints algorithm of Biswas and Barman [10]
11: for t € [k] do
12:  Partition M, into groups of size n (last one may be smaller than n) as follows: Cy; <
{g{yl, X ’gl,f,n}’ Cir2 {gllf,n—&—l’ cee 792,271}7 cens Ct,HM,g\/n] A {g;(HMH/n]_l)n_Fp x -927\M£|}
13: end for
/ : /
14: A" = BiswasBarmanCC(U,cp Ujerriay|/n) Ct» V')

15: // Final Allocation with Daily Picking Sequences based on A’
16: A<+ )

17: for t € [k] do

18:  for j € [|My|] do

19: i + Agent allocated g; ; in A’

20: g < ’s favourite unallocated good from M;

21: A+ A; U {g}

22:  end for

23: end for

24: return A

Theorem 2 (Theorem 1 of [10]). Given p disjoint sets of goods C1, . .., C}, andn agents with heterogeneous
additive valuations, there always exists an EF1 allocation A such that ||Cy|/n] < |A; N Cy| < [|Cy|/n]
for every agenti € N and{ € [p|, and such an allocation can be computed in polynomial time.

Algorithm 1 invokes the algorithm of Theorem 2 on the following instance. Fix a day ¢. Recall that
agents have identical ranked preferences for M, givenas g, ; = ... = g£’| M| Divide M/ into groups
of size n in the decreasing order of value, breaking ties arbitrarily and letting the last group have
possibly fewer than n goods: that is, let Cy1 = {g; 1,---,9;n}> Ct2 = {G1 115+ - » 9t 20} and s0 on.
By Theorem 2, we find an allocation A’ that is an EF1 allocation for Ute[k] M and v/, and that each
agent is allocated at most one good from C ; for all ¢ and j.

Final Allocation. Algorithm 1 then takes the allocation A" and, for each day M| = {g; ,..., g, | M,|},
i 5 t

allocates M through a “serial dictatorship” with the picking sequence derived from A’. First, the agent
that is allocated 92,1 in A’ will pick their most favourite good from M; (the original set of goods for day
t); next, the owner of 92,2 picks their most favourite good among the remaining goods of My; and so on.
We now prove that the resulting allocation A is SD-EF1 per day and PROP1 overall.

Lemma 1. Algorithm 1 returns an allocation that is SD-EF1 per day.

Proof sketch. In the picking sequence for each day ¢, due to partitioning of the goods C 1, . .., Cy a1/ /n]
and the property that A’ satisfies the “at most one per group” requirement, each agent appears exactly
once in the first n positions, once in the next n positions, and so on. Additionally, each agent appears



at most once among the last |M;| mod n positions. Such a picking order is known as “recursively-
balanced”, and is known to yield SD-EF1 [3]. A detailed proof appears in Appendix C. O

To prove that A is PROP1 overall, we use the following technical lemma, the proof of which appears in
the Appendix C.

Lemma 2. Let V be a multiset of m real values, and A = {a1,...,a;} and A" = {a}, ..., a},} be two
subsets of V' with equal size such that a; > aj forall j € [k]. Letg = max{z : x € V' \ A} and
¢ =max{x : x € V' \ A'}. Then, there exists a bijection z from AU {g} to A’ U{g'} such thatx > z(x)
forallz € AU{g}.

Lemma 3. Algorithm 1 returns an allocation that is PROP1 overall.

Proof. Fix an agent i € N. Take a day ¢ € [k]. Rename the goods so that A, N M/ = {¢}, ... ,g(A;th,‘}

are the goods that ¢ is allocated in A’ in a non-increasing order of v,. Similarly, let A; N M; =
{91, -, 914,001, } be the goods i picks according to the picking sequence in order. That is, g; is the
good picked corresponding to g}, g2 corresponding to gh, and so on.

Towards invoking Lemma 2, a helpful observation is that v;(g;) > v;(g;) forall j € [|A;N M|]. Suppose
g; is the 7-th preferred good among M. Since M; and M; share the same multiset of utility values
for 4, and g; is the top pick of ? when r — 1 goods are picked, g; is at least as good as ¢’s r-th most
preferred good among M; (and hence, M;). This argument, combined across all days, implies existence
of a bijection z; : A; — A} such that v;(g) > v}(zi(g)) forall g € A;.

By invoking Lemma 2 with A <— A; and A’ <~ A} over the multiset V being ¢’s utility values, we have
that

vi(A;) + max vi(g) = vi(4]) + ma v;(9)

Every EF1 allocation is also PROP1 [15], therefore, since A’ is EF1 (Theorem 2), we have that

1 1
vi(Ad) + mavilg) > S i (M) = S (M),
the last equality being true from the way we constructed M’. Combining the two inequalities above,
we get v;(A;) + maxgg 4, vi(g) = Ly;(M). Thus, A is PROP1. O

It is worth noting that PROP1 is not a monotonic property, i.e., if v;(A4;) > v;(A}) and A} is PROP1,
it is possible that A; is not PROP1 (as the best good for i in M \ A; could be worth less than the best
good in M \ A}). This is why we needed to use a more involved argument in Lemmas 2 and 3.

4 Two Agents

In this section, we consider temporal fair division with two agents. We provide a complete picture of
temporal fairness notions that can be guaranteed in this case. We establish a strong positive result, then
show that it is the best possible by producing counterexamples for stronger desiderata.

4.1 Possibilities

Our main goal in this section is to show that SD-EF1 per day and EF1 up to each day can be achieved
for two agents. We begin by introducing an envy-balancing lemma, a powerful tool for finding temporal
allocations to two agents. We later use this lemma to derive not only the aforementioned guarantee,
but also other appealing guarantees.



Definition 8 (Cancelling Allocations). We say that allocations B and B’ of a set of goods S to two agents
cancel out if v;(B;) + v;(B]) > vi(Bs—i) +vi(B5_;), Vi € [2]. In words, they cancel out if hypothetically
allocating two copies of each good in S, one according to B and the other according to B, achieves (exact)
envy-freeness.

Lemma 4 (Envy-Balancing Lemma). Suppose that for each dayt € [k], we are given two EF1 allocations
By and By of the set of goods M; that cancel out. Then, we can compute, in polynomial time, an allocation
A of the set of all goods M = Uyc; M, that is EF1 up to each day and Ay, € {By, B;} for each day
t € [k].

Note that the lemma achieves EF1 up to each day while not only retaining the EF1 per day property of
the input allocations, but in fact by using exactly one of the two input allocations on each day. Thus, if
the per day allocations given as input satisfy properties stronger than EF1, those properties are also
retained per day; this is important as we will use this lemma to derive such stronger per day guarantees.

We include the proof of the lemma in Appendix D. At a high level, it works by realizing that when
two allocations cancel out, we know that both agents have at least one of the two allocations where
they feel no envy (they like the bundle they were given more than the bundle given to the other agent).
With this in mind, we can carefully choose which allocation to assign on each day, in such a way that
whenever an agent is feeling too much envy, we can give them their preferred allocation on that day,
always keeping envy levels “balanced” after each time-step.

For readers familiar with the “informed” model of online fair division from He et al. [22], this can be
seen as a generalization of their two agent algorithm. While they achieve EF1 up to each day while
allocating a single good during each time step, we provide a similar guarantee while allocating batches
of goods and simultaneously maintaining fairness over the batches.

We are now ready to show that the pair of allocations required by the envy-balancing lemma — both
satisfying EF1 and cancelling each other out — exists and can be computed in polynomial time. In
fact, we find a single partition (By 1, By 2) of the goods in M; such that both B, = (B 1, By 2) and
B} = (B2, By 1) satisfy the stronger property of SD-EF1.

Lemma 5. Given the preferences of two agents over a set of goods My, one can efficiently compute a
partition (By 1, By 2) of My such that both By = (By 1, By 2) and B = (By2, By1) are SD-EF1 allocations.

We can plug these allocations into the envy-balancing lemma (Lemma 4) to get our desired main result.

Theorem 3. For temporal fair division with n = 2 agents, an allocation that is SD-EF1 per day and EF1
up to each day exists and can be computed in polynomial time.

We include both the proofs for Lemma 5 and Theorem 3 in Appendix D. For the interested reader,
we also include some notes on the connection between Lemma 5 and the well-known Bihierarchy
Theorem from Budish et al. [13], as well as how to achieve other fairness notions per day while using
the envy-balancing lemma, such as EFX and EF1+PO.

4.2 Impossibilities

We have shown that when there are only two agents, the strong guarantee of EF1 up to each day
can be obtained along with the guarantee of SD-EF1 per day. However, one wonders if even stronger
guarantees are possible, such as strengthening EF1 up to each day to SD-EF1 up to each day. We find
that not only is this strengthening impossible, but even if we relax SD-EF1 up to each day to SD-EF1
overall, it is impossible to achieve alongside EF1 per day. Together, these two impossibility results
prove that our guarantee of SD-EF1 per day and EF1 up to each day from Theorem 3 is the strongest
possible in the hierarchy shown in Figure 1. We include the counterexamples proving both these claims
in Appendix D.



Theorem 4. For temporal fair division with n = 2 agents, SD-EF1 up to each day cannot be guaranteed.

Theorem 5. For temporal fair division with n = 2 agents, EF1 per day and SD-EF1 overall cannot be
guaranteed simultaneously.

4.3 Two Agents and Further Restrictions

As the final part of this section, we note that when further restrictions are placed on two-agent instances,
we receive even stronger results. Particularly, in Appendix D, we prove and provide a discussion of the
following theorem.

Theorem 6. For temporal fair division with n = 2 agents and identical days, an allocation that is SD-EF1
per day, SD-EF1 up to each day, and SD-EF up to each even day exists and can be computed in polynomial
time.

5 Identical Orderings

We next look at instances where agents have identical orderings over all goods in M. Not only are
results in this setting practically useful, as there many real life scenarios where participants agree on
the ordinal ranking of goods, but results under identical orderings are also very technically useful. As
can be seen from our main result in Section 3, reducing a general setting to one where agents have
similar orderings over the goods can lead to fairness guarantees in the original setting. We will show in
future sections that the possibility results we develop here can be applied as black-boxes to achieve
strong results in scenarios where agents have heterogeneous orderings.

Possibilities. Our main result for the case of identical orderings is the following theorem:

Theorem 7. For temporal fair division with identical orderings, an allocation that is SD-EF1 per day and
SD-EF1 overall exists and can be computed in polynomial time.

We provide a detailed proof of Theorem 7 in the Appendix E. Intuitively, we accomplish this by creating
two partitions over the set of goods M, labeled P; and P5, which are defined below.

Py = {T(Mt,m*) \T(M¢,n(r —1)) : 7 € H“Z—”H e [k]},

Py = {T(M,nr) \T(M,n(r—1)) :r € leLM-H } .
In words, P, splits the entire set of goods M into the agents’ most preferred n goods, their next most
preferred n goods, etc. P; does a similar partitioning over M, but does the partitioning separately for
each day. It is known that when agents have identical orderings, guaranteeing that each agent receives
1 good from their n favourite goods, 1 good from their next n favourite goods, etc. will guarantee an
SD-EF1 allocation. We prove that it is possible to construct an allocation where each agent gets exactly
1 good from each set in P; and from each set in P, thereby ensuring SD-EF1 per day and overall.

To an initiated reader, the problem of finding an allocation that meets the above constraints may be
immediately reminiscent of the bihierarchy framework of Budish et al. [13]. We require that from each
set of (at most) n goods out of a family of sets, each agent receives (at most) one good. The sets produced
by each desideratum are mutually non-overlapping, forming a “hierarchy”, but the sets produced by one
desideratum can be overlapping with those produced by the other, resulting in two different hierarchies.
However, the problem is that with n > 2 agents, we have a third set of constraints: each good must be
assigned to (exactly) one agent. This forms a third hierarchy (which cannot be assimilated into either of
the two previous hierarchies), preventing one from applying the bihierarchy framework.
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Impossibilities. In the case of 2 agents, imposing the additional restriction of identical days allowed
for very strong results, making it possible to satisfy SD-EF1 per day and SD-EF1 up to each day. This
is unfortunately not the case when the identical days restriction is imposed in addition to identical
preferences. Below, we show via a fascinating counterexample that even when an instance has identical
preferences and identical days, it is not always possible to even achieve SD-EF1 up to each day by itself.

Theorem 8. For temporal fair division with identical days and identical preferences, SD-EF1 up to each
day cannot be guaranteed.

Proof. Consider the following instance in which twenty-four goods arrive over four identical days:
M = {91, 92t 93,4 9a.t gs5.t- g+ } for all t € [4]. Twelve agents have identical valuations given by
v(g1t) = 6, v(g2,t) = 5, v(g3t) = 4, v(gar) = 3, v(g5,t) = 2, v(ge,t) = 1 (since we seek SD-EF1, it
only matters that the agents strictly prefer g1+ > g2t > g3+ > gat > g5+ > ge, for all t € [4], and are
indifferent between any two goods g; ¢, g; ¢ for all [ € [6],¢,¢" € [4].

Consider how the requirement of SD-EF1 up to each day restricts how each good can be allocated:

« The bundle M5 will contain 12 goods. By the necessity condition of Proposition 1, we know
for Agz, to satisfy SD-EF1, it must be the case that each Agent receives exactly 1 good from

T(Mo,12) = Mo.

» For Az;. to be SD-EF1, it must be the case that each agent receives exactly 1 of the goods in
T(M3,12). This is because T'(M3, 12) will contain goods g1 ¢, g2.¢, g3.t, ga,t for all ¢ € [3]. The
next good in the agents’ ordering will be a copy of gs ; for some ¢, so all the goods in T'(M 3, 12)
are strictly preferred over the remaining goods in M3 \ T'(M3, 12).

« For Agz, tobe SD-EFL, it must be the case that each agent gets exactly 1 of the goods in T(My,12).
This is because T'(M 4, 12) will contain goods g1 ¢, g2,¢, g3, for all ¢ € [4]. Similar to the previous
case, the next good in the agents’ ordering will be a copy of g4 for some ¢, so it must be
the case that all the goods in T'(My, 12) are strictly preferred over the remaining goods in
My \ T(M4,12). Since there are 24 total goods in M4, we can also say that each agent must
receive exactly 2 goods from the set T'(M4,24) = M . Since no agent can have more than 1
good from T'(M 4, 12), the only way to satisfy this condition is to give each agent exactly 1 good
from T'(My,24) \ T(M4,12).

t=1 t=2 t=3 t=4

o |1 A
92 || 2 8 / /
g3 |3 9 / /
gs |4 10 / /
gs 5 11 / /
ge |6 12 / /

-

Figure 2: Restrictions Placed on the Allocation by SD-EF1 Up To Any Day
Figure 2 makes these restrictions clear. The restrictions over My are shown in Blue, M3 in Green, and
M 4 in Red. Each box represents a group of 12 goods that all must go to different agents. Notice that the

good g4 3 is contained in a restriction from M3 and M 4. Due to its M5 restriction, it cannot be given
to an agent that has been assigned a good from 7'(M 2, 8). Due to its M 4 restriction, it cannot be given
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to an agent that been assigned a good from T(M,12)\ T(M2,6). However, these two groups together

make up the entire set of goods M5, which contains 12 goods, each assigned to one of the 12 agents.

So there is no agent we can assign ga,3 to that will lead to the satisfaction of SD-EF1 for Az , Az7. and

Az .. O]
My

6 Identical Days

In Section 3, we showed that in the general model, we can achieve SD-EF1 per day and PROP1 overall.
In this section, we will show if we assume the additional restriction that the sets of goods which arrive
on each day are identical, then a slightly stronger guarantee can be achieved overall.

Theorem 9. For any temporal fair division instance with identical days, it is possible to find an allocation
that is SD-EF1 per day and SD-PROP1 overall in polynomial time.

To achieve these guarantees, we use an algorithm that is almost identical to Algorithm 1, the algorithm
which was used to achieve SD-EF1 per day and PROP1 overall in the general case, but with one major
change.

Algorithm 1 first finds an EF1 overall allocation in a reduced version of the problem where agents have
identical orderings over all the goods on each day, and uses that to construct an allocation in the original
instance that is PROP1 overall. The key insight that can be leveraged to get stronger guarantees in
this less general setting is that when we have identical days, we know that the output of the “Identical
Ordering Transformation” from Algorithm 1 will result in an instance where all agents have identical
orderings over the entire set of goods M, not just over the goods from each individual day. This stronger
guarantee from the Identical Ordering Transformation allows us to use Theorem 7 to find an SD-EF1
per day and SD-EF1 overall allocation over the reduced instance (rather than the algorithm of Biswas
and Barman [10] which only guarantees EF1 overall). We can then use this allocation as the basis for
the picking order that Algorithm 1 uses to construct the final allocation over the original instance. We
include a detailed proof of Theorem 9 in Appendix F, including why an SD-EF1 allocation over the
identical orderings instance will lead to a SD-PROP1 allocation in the original instance.

7 Discussion

In this work, we are able to find possibility and impossibility results that give a picture of what can be
achieved in the temporal fair division model. This picture is quite clear when focusing on special cases
such as two agents or identical orderings. However, we still leave many questions open for future work.
All of the entries in Table 1 marked by a “?” remain open. The most interesting question in the general
setting is:

Open Question: In temporal fair division, does an allocation that is SD-EF1 (or EF1) per day
and EF1 overall always exist?

Other interesting open questions include the existence of EF1 up to each day under identical orderings
or identical days, and the existence of (SD-)EF1 per day and (SD-)EF1 overall under identical days.

Finally, it would be an interesting further direction to take a more abstract view of the temporal fair
division model. In Appendix G, we introduce a generalized model of temporal fair division, where a fair
allocation must be found simultaneously over a set of goods, and over each set in a collection of subsets
of those goods. It would be very interesting to explore this interpretation of our model further.
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Appendix

A Additional Related Work

Repeated (or many-to-many) matching. Both our works are inspired by the earlier work of
Gollapudi et al. [21], who consider the repeated two-sided matching problem, where there are n agents
on each side of a two-sided market with agents on each side having preferences over those on the
other side, and the goal is to compute a perfect matching on each day over a period of days. They
also seek guarantees such as EF1 up to each day. However, their positive results are only for binary
valuations, and they leave achieving EF1 (for both sides) up to each day for general additive valuations
as an open question. Finally, note that repeated perfect matching effectively produces a many-to-many
matching. Freeman et al. [18] study how to achieve EF1 (for both sides) in this setting, which can
be viewed as an EF1 overall guarantee. They show how to achieve it when agents on each side have
identical preferences, but leave it open for the case of general additive valuations. Note that unlike
in fair division, EF1 overall is not straightforward in their case because EF1 needs to be achieved for
agents on both sides simultaneously.

Online Fair Division In addition to the online fair division work mentioned in the main body, Benadé
etal. [8] show that O(y/k log n) envy can be maintained up to k days, and also point out that randomized
algorithms may have much greater power against a nonadaptive adversary, who sets the full instance
before the algorithm starts making random choices, with no super-constant envy lower bound known
for this case. Online fair division with a nonadaptive adversary is still a stronger model than temporal
fair division due to the fact that the algorithm does not have knowledge of what goods will arrive in
future time periods.

Constrained fair division. We remarked that achieving an overall fairness guarantee can be reduced
to the one-shot fair division model, taking an instance with the set of all goods M. When we additionally

14



seek a per-day fairness guarantee, this can be modeled as a constraint on the space of feasible allocations,
and the question becomes whether there is a constrained allocation that still achieves the desired fairness
guarantee. This model of constrained fair division has also been studied in the literature. Biswas
and Barman [10] study a model with cardinality constraints, where M is partitioned into categories
(Cy,...,Cp) and an allocation A is feasible only if | 4;NCy| < [|Cy|/n] forall i, £. That is, the allocation
should divide the goods from each category as evenly as possible (in a “balanced” manner). As we
remark in Section 5, when agents have identical orderings over the goods, the SD-EF1 per day constraint
can be reduced to a cardinality constraint, immediately yielding an allocation that is SD-EF1 per day
and EF1 overall. However, for this case, we are able to achieve the stronger guarantee of SD-EF1 per
day and SD-EF1 overall. The algorithm of Biswas and Barman [10] relies on the envy-cycle elimination
technique of Lipton et al. [26] at the overall scale, which is very much reliant on the exact cardinal
values, and hence, fails to achieve SD-EF1 overall. We are able to make a better algorithm, round
robin, work via a non-trivial connection to the strong perfect graph theorem. Cardinality constraints
(partition matroid constraints) have been generalized to matroid constraints, and the existence of an
EF1 allocation subject to matroid feasibility constraints is a major open question [10, 16]. For further
discussion, see Section 7. Finally, the bihierarchy framework of Budish et al. [13] can also be viewed as
a method for finding a constrained allocation, which we use in some of our results. Although, our most
interesting results deal with sets of constraints that go beyond bihierarchies.

B Missing Proofs from Section 2

B.1 Properties of SD-EF1 Allocations

We will begin by noting some useful properties of SD-EF1 allocations. Specifically, in Section 2, we
establish the function 7;(.S, r), which returns agent ¢’s top 7 ordered goods from a set .S, breaking ties
according to some arbitrary rule consistent across all agents. In contrast, the definitions for SD-EF1 and
SD-PROP1 are based around sets of the form H;(S,g) = {¢' € S : ¢’ =i g}, which returns all goods
from S that are weakly preferred to g. As will be seen in other proofs in this Appendix, it is often very
useful to be able to look at a set of exactly size r of some agent’s top goods, which the sets H; (.S, g) do
not allow for. Below, we will show relations between the T;(.S, ) function, and the SD-EF1 definition,
that allows us to often use it without loss of generality when proving statements about SD-EF1 and
SD-PROP1, vastly simplifying many of our proofs.

Observation 1. For any agenti € N and good g € S, if |H;(S,g)| = r, then T;(S,r) = H;(S,9),
regardless of the arbitrary tie-breaking order dictated by T;.

Proof. This follows from the fact that agent ¢’s ordering ’=; over the goods in S will be transitive.
|H;(S, g)| = r means that there are exactly r goods that i weakly prefers to g. It must be the case that
for any good g7 € H;(S,g), g~ € S\ H;(S,g), we must have that g* =; ¢g~. If there were some
goods gt € H;(S,g9),g~ € S\ H;(S,g) such that g~ i=; g™, then by the transitivity of i’s ordering,
we know that g~ 3=; g* =; g is true, contradicting that fact that g~ € S\ H;(5, g).

Therefore, when |H; (S, g)| = r, we know that there are r goods in S that agent i strictly prefers to all
other goods in S. It is clear that 7;(S, ) will return exactly those goods, and will not need to use its
tie-breaking order in this case. O

With this observation in mind, we can now list several necessary and sufficient conditions for an
allocation to be SD-EF1, which relate it directly to the 7; function.

Proposition 1. Let A be an allocation of a set of goods S.
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(Sufficiency) If |A; N T;(S,r)| = |A; N T;(S,r)| — 1 foralli € N andr € [|S|], then A is SD-EF1.
Ifn = 2, the condition can be written as |A; NT;(S,r)| = |r/n|. If T;(S,r) = T;(S,r) for all
i,j € N, the condition can be written as |A; N T;(S,r)| € {|r/n],[r/n]}.

(Necessity) If A is SD-EF1, then |A; N T;(S,r)| = |r/n]| foralli € N andr € [|S|] conditioned on
g >=i g forallg € T;(S,r) and g’ € S\ T;(S,r). Further, if T;(S,r) = T;(S,r) foralli,j € N,
then the condition can be written as |A; N T;(S,r)| € {|r/n],[r/nl}.

Proof. Below are the proofs for both the sufficiency and necessity conditions:

(Sufficiency)

General Case Assume that some agent ¢ has the ordering g1 =; g2 ... =; gs over the set of
goods S, where some preferences may be strict. For contradiction, assume that for all r € [| S]]
and j € N, |A;NT;(S,r)| = |A;NT;(S,r)| — 1, but for some g € S and j € N, we have
|A; N H;(S,9)| < |(A4;\{g;}) N H;i(S, g)|, where g; is agent i’s most preferred good from A;.

Let |H;(S, g)| = r’. Then from Observation 1, we know that 7;(S, ") = H;(S, g), and from our
assumption, we know that |4; N T;(S,7")| > |4; N T;(S,7")| — 1. Note that this is equivalent to
saying that |A; N H;(S,g)| > |A; N H;(S,g9)| — 1.

To get the contradiction, we just need to notice that |(4; \ {¢*}) N H;(S,9)| > |A; N H; (S, g)|—
1 for all g* € Aj, since if g* € H;(S,g), then we have [(4;\ {g*}) N H;(S,9)| =
|A; N H;(S, g)| — 1, and otherwise we have |(4; \ {g*}) N H;(S, g)| = |A; N H;(S, g)|.

2 Agents For the case of 2 agents (Agent ¢ and Agent j), it is sufficient to notice that
|A; NT;(S,7)| > |r/2] implies that [A; N T;(S,7)| < [r/2], since A; = S\ A; when there are
two agents. Since |r/2| > [r/2] — 1, this gives us that |A; N T;(S,7)| > |A; N T;(S,r)| — 1 for
all 7,7 € N and r € [|S|], which we know implies SD-EF1.

Identical Orderings Finally, in this case, we can see thatforalli € N, r € [|S|], |A; N T;(S,7)| €
{lr/n],[r/n]}implies that |A; N T;(S,r)| > |A; N T;(S, r)|—1. Thisis due to the fact that since
T;(S,r) = T;(S,r) for all 4, j, we must have that |A; N T;3(S,r)| > [r/n] and |A; N T;(S,r)| <
[r/n].

(Necessity)

General Case For contradiction, assume this is false. There is some allocation A over a set of
goods S, some agent ¢ and some r € [|S|] such that A is SD-EF1 and |A; N T;(S,r)| < |r/n],
and for all goods g € T;(S,7), ¢' € S\ T;(S,r), g =i ¢'. Assume that agent i has the following
order over the goods in S, g1 =; g2 . .. =; gs where some of the preferences may be strict.

Let g* be the good in T; (S, r) that is not strictly preferred to any other good in 7;(.9, 7). Since agent
i strictly prefers all goods in T;(S, r') to all goods that are not, we must have that |H;(S, g*)| = r,
and thus by Observation 1, T;(S,7) = H;(.S, g*). Therefore, we have that |4; N H;(S, g*)| <
Lr/n].

When |A; N H;(S,g")| < |r/n], note that by the fact that every good must be allocated to one of
the n agents, there must exist some j € N such that |A; N H;(S, g*)| = |r/n] + 1. This means
that for this j, we have |A; N H;(S, ¢*)| < |A; N H;(S, ¢g*)| — 1. But that means that for any
gj € Aj, we must have |A; N H;(S,¢")| < |(4;\ {g;}) N Hi(S,g")|, contradicting the fact that
A is SD-EF1.

Identical Orderings In the case where agents have identical orderings over the goods, it can be
seen that |A; N T;(S,r)| € {|r/n],[r/n]} follows as a consequence of the necessity statement
in the general case. When every agent gets at least items |7 /n | of some set of size r, there must be
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some agent i who gets exactly |r/n ] items from the set. When n divides r, then each agent getting
at least [r/n| goods implies that each agent gets exactly r/n = [r/n] goods. Otherwise, we will
have |r/n] = [r/n] — 1, and therefore, there can be no other agent j such that |[A; N T'(S,r)| >
[r/n], or else it would immediately follow that |A; N H;(S, ¢*)| < |(4; \ {g;}) N H;(S,g")| for
some g*,and all g; € A;.

B.2 Properties of SD-PROP1

Here we formalize the fact that SD-EF1 implies SD-PROP1, and that SD-PROP1 implies PROP1, which
completes the hereditary relationships of desiderata shown in Figure 1.

Proposition 2. If an allocation A over a set of goods S is SD-EF1, then it will also be SD-PROP].

Proof. Assume that this is false, and for some allocation A over a set of goods S, we have that A is
SD-EF1, but for some i € N and some ¢g* € S, we have that |A; N H;(M, g*)| < [[H:(S:9")I/n].

Note that since every good must be allocated to some agent, if |A; N H; (.S, g*)| < [|H:(S:9")/n]| were
true, then there must be some other agent j € N such that |A; N H;(S, ¢g*)| > [|Hi(S9")l/n] + 1.
This would directly imply that [A; N H;(S, ¢*)| < |A; N H;i(S, g*)| — 1, so clearly |A; N H;(S, g%)| <
|(A;\ {g;}) N H;(S, g*)| for any g; € A;. This contradicts the fact that A is SD-EF1. O

Proposition 3. If an allocation A over a set of goods S is SD-PROP1, then it will also be PROP1.

Proof. Assume that some agent ¢ has the ordering g1 =; g2 .. =i g|s| over the set of goods S, where
some preferences may be strict, and ties are broken based on the the tie-breaking ordering of the
function Tj;.

Define the bundle P; = {g1, gnt1, g2n+1, - - -}. It must be the case that v;(P;) > Lv;(5). To see this,
partition S into disjoint subsets of size n in the form of C; = {g1,...,9n},C2 = {gn+1,92n},C3 =
{92n+1, g3n }, and so on. Notice that in each subset C, there is a single good in g € P, N C, and that
good is weakly preferred to all other goods in C. Thus for each C, we must have that v;(g) > 2v;(C).
Summing over all subsets we get our desired inequality.

Next, notice thatforany g € S, |4; N H;(S, g)| > [1Hi(5:9)|/n] implies that |(A; U {¢g*}) N H;(M, g)| >
[1Hi(S.9)|/n], where g* is agent i’s most preferred good in S\ A;. This is because if |A; N H;(S, g)| <
[1Hi(S:9)|/n] were true, then there would need to be some good ¢’ such that ¢’ € H;(S,g) and ¢’ € A;.
Since g* is i’s most preferred good that is not in A;, then we know that ¢* 3=; ¢/, and thus ¢* € H;(S, g).

To complete the proof, we will show that A; U {g*} =° P, where g* is agent i’s most pre-
ferred good from S \ A;. For contradiction, assume this were false, and that for some g € S,
[(A; U{g*}) N H;(S,9) < {P,NH;(S,g)} Let |H;(S,g)| = r. By Observation 1, we must have
that H;(S,g) = Ti(S,r) = {g1,- .., 9r}. Because of the way that we constructed P;, we know that
there cannot be more than [7/n] = [IHi(S9)|/n] goods from P; in {¢1,...,g,}. However, since we
know that A is SD-PROP1, it must be the case that |(A4; U {g*}) N H;(S, g)| = [IH:(S:9)|/n], giving a
contradiction, and showing that A; U {¢*} %ZSD P;.

This tells us that v;(4; U {g*}) > vi(P;) > Lv;(S) forany i € N. O

Note that since SD-PROP1 only considers agents’ orderings over the goods in M, the above proposition
implies that an allocation that is SD-PROP1 for a set of orderings, is guaranteed to be PROP1 on any set
of valuation function that induce those orderings.
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C Missing Proofs from Section 3

C.1 Proof of Lemma 1

Proof of Lemma 1. Let A be the allocation returned by Algorithm 1. Due to Proposition 1, to prove that
A is SD-EF1 per-day, it is sufficient to show that |Ang, ; N T;(My, )| > |Ang, j N T3 (Mg, 7)| — 1 for all
i,j € N,t e [k],and r € [|M]].

Let A’ represent the allocation that the algorithm finds for the identical orderings transformation
instance. In each day ¢ € [k], we have that My is partitioned into sets Cy.1 = {g; 1,---, gt} Cr2 =
{9tns1>-- > 9t 2} and so on, in order of utility value. Without loss of generality, assume that the
ordering of the labeling of the goods is also consistent with the tie-break ordering of 7;. The allocation
A?W will guarantee that no agent receives more than 1 good from each set C} ; for all [. Note that this
will imply that for all ¢ € N and r € [|M/|], we will have |A, N T'(M{,r)| € {|r/n],[r/n]}. By the
sufficiency condition of Proposition 1, this means that AEV[{ will be SD-EF1.

Next, Algorithm 1 uses a picking order procedure to construct the final allocation Ay, from A’ . It can
t

be seen that each agent is assigned exactly one “pick” over the goods in M; for each good they received
in the allocation A/M;’ with the ordering of these picks corresponding to the ordering of M/ induced by
the T} function. Therefore, we know that for any r € [|My]], after the rth pick of the procedure, each
agent will have received either |/n| or [r/n] picks. It can also be seen that after the rth pick of the
procedure, |A; N T; (M, r)| = |r/n| will be true for each agent 7. This is because at each pick r, the
picking agent will select their most preferred good from M that has not yet been picked. After pick r,
only r goods from M; have been assigned, and |T;(M;, r)| = r, so each of an agent’s picks up to and
including the rth overall pick of the procedure will all have been used to select an item from their top r

goods from M;.

For contradiction, assume our original claim is not true, the allocation on some day is not SD-EF1,
and therefore, there exists some agents 7, j € N, some day ¢t € [k], and some r € [|M;]|], such that
|Ang,,i VT (M, )| < [Ang, j N T(My,7)| — 1.

Let 7’ be the last pick in the picking sequence where agent j picked a good from T;(M;, r). We know
that |A; N T(M],r")| € {|r'/n|, [r'/n]}, so agent i must have received at least |’ /n| picks prior to
pick 7/, and each of those picks must have been used to select a good from T;( My, ) (Agent i would
never have used one of these picks to select a good not from T;( My, 1), since we know there was at
least one good from T;(My, r) available, the good that agent j selected with pick r’). Similarly, we

know that | A} N T'(Mg,r")| € {[r'/n], [r'/n]}, so agent j could only have had a maximum of [r’/n/]
picks up to and including the 7'th overall pick. Since 7’ is the last pick where agent j selected a good

from T;(My,r), that means A; can only contain at most [//n| goods from T;(M;, r). This gives us a
contradiction since |7/ /n| = [r'/n] — 1. O

C.2 Proof of Lemma 2

Proof of Lemma 2. In the case where g > ¢/, then z can be constructed by simply mapping g to ¢’ and
aj to a’; for all j € [k].

Now, the case where g < ¢’. Suppose g is the rth element of V' (ties broken such that g is ranked
lowest possible). Since g is the maximum among V' \ A, the first  — 1 elements of V' are should be in
A. Therefore, {a1,...,ar,—1} U {g} are the top r elements of V/, and we can simply create a bijection
from those elements to {a},...al._;} U{g'} as desired. For the remaining k£ — 7 bottom ranks of both
A and A’, we simply use z(a;) = a;- since we know from the statement that a; > a;, which completes

the proof. O
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Algorithm 2 Envy-Balancing Algorithm

Input for ¢ € [k], a pair of allocations (B}, B?) of the set of goods M; that cancel out, with labels
assigned in such a way that if neither of the allocations is Envy-Free, then vi (B} ) — v1(B{,) > 0 and
’U2(Bt2,2) - U2(BZ1> 2 0.

Output An allocation A of the set of goods M = U My

F+ 0,5« 0,e1+0,e40

for ¢t € [k] do
if v1(B};) > Ul(Btl,2) N U2(Btl,2) > vz(B},) then
F «+ FU{B}}
else if v1(B7,) > v1(Bfy) A va(B7,) > v2(B7,) then
F «+ FU{B?%
else
if e; < 0 then
S« SuU{B}}
er < e1+ (vl(Btl,l) - Ul(Btl,z))
ez ez + (v2(By) — v2(B}1))
else
S+ Su{B?
e1  e1 + (vi(B}4) — vi(B}3))
e < ey + (’UQ(Bgz) — UQ(BZ]_))
end if
end if
if e1 > 0 A ey > 0 then
F+«FuUS
S+ 0,e1+0,e5 <0
elseif e; <0 A ey <0 then
F + F USWAP(S)
S 0,e1 0,20
end if
end for
F«+FuUS
A < allocation in which M, is allocated according to the allocation of M, in F, for each ¢t € [k]
return A

D Missing Proofs from Section 4

D.1 Proof of Lemma 4

Proof of Lemma 4. For any allocation A, we will use the following language to describe the agents’
relative valuations of their bundles compared to the other agent:

« For any allocation A where v;(As_;) > v;(A;) for some agent i € {1,2}, the negative value
v;(A;) — vi(As_;) will be refereed to as the “Envy” felt by Agent ¢ in A.

« Similarly, for any allocation A where v;(A4;) > v;(As_;) for some agent i € {1, 2}, the positive
value v;(A;) — v;(As_;) will be referred to as the “surplus utility” that the respective agents feels
in A.

For each t € [k], let B}, B? be two allocations over M; that are both EF1 and cancel out. Since these
allocations cancel out, we can make the following assumption without loss of generality:
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For every day ¢, If neither of B} or B? are envy-free, then without loss of generality, we say that
Ul(Btl,l) > Ul(Btl,z)

U2(Bt1,1> > U2<Btl,2)
U1(3t2,1> < Ul<BtQ,2)
U2(Bt2,1> < Ul<BtQ,2)

This is due to the fact that the allocations canceling out allows us to know that exactly one agent feels
envy in each allocation (if they both felt envy in some allocation then the other allocation would have
to be envy free in order to cancel out), and the same agent cannot feel envy in both allocations (or else
their envy would clearly not cancel out). For simplicity we assume that in this case, Agent 2 always
feels envy in B}, and Agent 1 always feels envy in B2. B} can be thought of as Agent 1’s “preferred”
allocation, and B? as Agent 2’s “preferred” allocation. We can further conclude that the equalities in
each agent’s preferred allocation must be strict, since if any agent was indifferent between the bundles
of one allocation, they could not feel any envy in the other allocation, so therefore one of the two
allocations would need to be envy-free.

Algorithm 1 functions by examining each day in order, and picking one allocation from each day’s
pair. When the algorithm selects an allocation for some day, it puts it into one of two sets. F' is the
“Final” set. If an allocation is put into F’, that means that it will be in the final allocation returned by the
Algorithm. S is the “Swap” set. If an allocation is put into .S, that means that it may be changed at some
point in the future. Specifically, the algorithm may perform a SWAP on S. This means that for every
day t € [k], if an allocation from day ¢ is in .S, that allocation will be replaced with the other allocation
from day ¢ that is not in S. We will refer to S; and F} as the contents of the sets S and F' directly after
iteration ¢ of the algorithm has completed, and will refer to SWAP(.S) as the contents of .S if a SWAP
were performed on it. With slight abuse of notation, for any set I" containing allocations over some
days, we will refer to A7 as the allocation induced by combining all the per-day allocations in 7.

Clearly Algorithm 1 will produce an allocation that is EF1 Per-Day. We will show that it also produces
an allocation that is EF1 up to each day.

To do this, we will first note that for both agents ¢ € {1, 2}, for any possible set S during the runtime of
the algorithm, if an agent feels envy in the allocation Ag, then they will not feel envy in the allocation
Aswap(s)- This follows from the fact that performing a SWAP on S involves replacing each allocation
in B € S with an allocation that cancels out B. Let D C [k] be a set of days such that S contains an
allocation B; for each day ¢ € D. Let D™ be the days where the allocation B; € S is agent i’s preferred
allocation, and D~ = D\ D*. From the fact that we know the pair of allocations (B}, B} ") on each
day cancels out, we have:

Z (UZ(BtZ’L) - Uz‘(B;sfz')) Z Z (”2(35’;1) - Uz‘(Bf,i—i))

teD+ teD+
> (B —vi(BY)) < D (wi(Bly) —wi(Bisy)
teD— teD—

together gives us the following implication:

vi(Aga) —vi(Ass—i) = Y (i(B};) —vi(Biz_;)) — > (ui(Bj3',) —vi(B;;") <0

teD+ teD—

implies
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Ui(ASWAP(S),i)_Ui(ASWAP(S),S—i) = Z (Ui(BZ,i) - Ui(Bti,?,—u))— Z (Ui(B?,gii) - Ui(Bf,;i)) 20
teD— teD+

Along with the above facts, proving the following inductive hypothesis will be sufficient to show that
the allocation returned by Algorithm 1 will be EF1 up to each day:

For all ¢t € [k], if the following conditions hold after the (¢ — 1)th iteration of the algorithm, they will
hold at the ¢th iteration.

+ Ap, is an envy-free allocation.
+ Ag, is an EF1 allocation.

« Aswap(s,) is an EF1 allocation.

We will show this by analyzing each possible state the algorithm can be in after some iteration ¢.

First, we will show that this holds for some obvious cases.

- Day t has an EF Allocation When the pair (B}, B?) for some day t contains an EF allocation,
then the algorithm simply adds that allocation to F'. This clearly maintains the envy-freeness of
F;, and the contents of S; will be the same as S;_1.

. During iteration t, some allocation B; is added to S that causes neither agent to feel envy

over A s, Directly after B} has been added to S, Ag will be an Envy-Free allocation,

1 U{B;‘ }
and the algorithm will move the entire current contents of S to . A, will remain EF since the
algorithm is adding an EF allocation to it, and Ag,, Aswap(s,) Will trivially meet their conditions

since S; will be empty.

- During iteration ¢, an allocation B} is added to S that causes both agents to feel envy
over Ag (B} Similarly to above, directly after B} has been added to S, both agents will
either feel envy in Ag, or will be indifferent between the two bundles in Ag. In this case, the
algorithm will perform a SWAP on S. The allocation induced by this newly swapped S will be
Envy-Free. The algorithm will then move the contents of S to F. A, Ag,, and Aswap(s,) Will
meet the required conditions for the same reasons as in the case above.

« S¢_1 = () Finally, in the case where S is empty at the beginning of iteration ¢, and there is no EF
allocation over Mj, the algorithm will add the allocation B} to S. A, will be EF since it was not
altered, Ag, will be EF1 since B} is EF1, and SWAP(Ag,) will be EF1 since B} is EF1.

From this, whenever the algorithm executes iteration ¢ and was not in one of the above cases, we can
conclude the following:

« Neither of B} or B? are envy-free.

+ S¢—1 was not empty. Since we know that during iteration ¢t — 1, if an allocation is added to .S that
makes both agent feel envy or both agents have surplus utility, then S;_; would be empty, so we
can also conclude that exactly one agent must feel envy in Ag, |, and the other must feel surplus
utility (notably, neither agent can be indifferent between the bundles).
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+ Sy will not be empty. From this, we can conclude that exactly one agent must feel envy in Ag,,
while the other feels surplus utility. It also allows us to conclude that a SWAP was not performed
in iteration ¢, as a SWAP is always proceeded with moving the contents of S to 7.

We can show that in this case as well, the inductive step holds.

In this case, there will be one agent i € {1,2} who feels envy in Ag, ,, while the other agent feels
surplus utility. During iteration ¢, the algorithm will select Agent i’s preferred allocation B¢, and add it
to S. By our hypothesis, we have that Ag, , is EF1, so there must be some good g € Ag, , 3—; that can
be taken away to eliminate all Agent i’s envy. Because we add in Agent ¢’s preferred allocation from
day t, we know that v;(As, ;) — vi(As,3-i) > vi(As,_,,;) — v1(As,_, ;_,), meaning that Ag, must
still be EF1 with respect to Agent ¢, as we can still remove g from Ag, 3_; to eliminate all envy. We
can also show that Ag, will be EF1 with respect to Agent 3 — i. Since B} is Agent 3 — i’s unpreferred
allocation, we have that v3_;(Ag, 3—i) — v3—i(As,.i) < v3—i(As, ,3-i) — v3—i(As,_, ). However,
since we know that B} is EF1, we know that there exists some g € Bzz such that vs_;(B;3—i) >
v3—i(Bti) — v3—i(g). Combining this with the fact that v3_;(Ag, , 3-i) > v3—i(As,_,,i), we get that
’1)3_7;(145}7173_1) + Ug_i(Bt,g_i) > U3—i(ASt,1,i) + Ug_i(Bm') — vg_i(g). Since we know that g € ASM',
this gives us EF1 as desired.

The proof that Agwap(s,) is EF1 can be done similarly. Notice that SWAP(S;) will be equal to
SWAP(S;_1) U {B}"}. We know Aswap(s,_,) Will be EF1, and in Agwap(s,_,) we know that agent i
will feel surplus utility. Agent 3 — i may feel envy in SWAP(SS;_1 ), but since Bf’ ~% is their preferred
bundle, they cannot be the reason why Aswap(S:) is not EF1, as the envy they feel in Agwap(s,_,)
strictly decreases from the envy they feel in Aswap(s,) = ASWAP( Se_1)U{BY}" Agent ¢ cannot be the

reason why Aswap(St) is not EF1, since there must be some good g € Bg’ ~¥ that will eliminate all of
agent i’s envy over Agwap(s,) when removed.

We also know that A, will be EF since we have Ar, = Af, ,. In the base case, both .S and F will be
empty at the beginning of the algorithm, thus all the conditions in the inductive statement will trivially
be true.

Finally, note that this inductive statement being true implies that the final allocation will be EF1 up to
each day. This is due to the fact that in the final allocation A outputted by the algorithm, for any ¢ € [k],
it must be true that the allocation Az;, € {A FUS ARUswaP(S;) } This is due to the fact that the only
operation that can be performed on S is a SWAP, and the algorithm only ever moves the entirety of S
into F', never just part of it. Due to the fact that we know Ap, will be EF and Ag, and Agwap(s,) must
be EF1, we know that Aﬂt must be EF1 as well. O

D.2 Proof of Lemma 5

Proof of Lemma 5. Draw a graph G = (M, E') with the goods in M; as the nodes. For each agent
i€[2)andr € [W\g’flJ], draw an edge between the two goods in T; (M, 2r) \ T;(My, 2(r — 1)). The
edges added for each agent form a matching, so this graph is a union of two matchings, and hence, a
bipartite graph. Thus, it admits a 2-coloring ¢ : M; — {1, 2}, which can be computed efficiently. Define

By = (B, Bt 2), where By ; = {g € M, : ¢(g) = i} for each i € [2].

Note that due to the way we added the edges, each agent ¢ € [2] receives exactly r of her 27 most

favorite goods, for each r € [L%J |. This meets the sufficiency condition from Proposition 1, implying

that By is SD-EF1.

It is easy to see that the same reasoning also shows B; = (By 2, By1) is also SD-EF1. O

For readers familiar with the bihierarchy matrix decomposition theorem of Budish et al. [13], it is worth
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remarking that Lemma 5 can also be derived as a corollary. Specifically, we can define a binary variable
x4 € {0, 1} to indicate whether good g should be allocated to agent 1 (with 1 — x4 denoting whether it
should be allocated to agent 2, and write the set of constraints:

| M|
Vr € [{2 : ZQETl(]\/[t,QT)\Tl(MtQ(T_l)) Ty =1,

| M|
vre Hg P2 g Ty 2N\ T (M 2(r—1) (1~ Tg) = 1.

It is easy to notice that this constraint set forms a “bihierarchy”, and since it admits a fractional
solution (x4 = 1/2 for all g), the result of Budish et al. [13] implies the existence and polynomial-time
computability of an integral allocation satisfying them, which is what we need. However, we provide a
more direct proof for our specific constraint set because it is simpler to understand and leads to a faster
algorithm.

D.3 Proof of Theorem 3

Proof of Theorem 3. Consider the allocations B; and Bj generated by Lemma 5. Each is SD-EF1 and
because they use the same partition of M, into bundles but do the opposite assignments, they trivially
cancel out. Thus, due to Lemma 4, these can be combined to compute an allocation that is SD-EF1 per
day and EF1 up to each day. O

D.4 Other Fairness Desiderata that can be guaranteed by the Envy-Balancing Lemma

In the main body of the paper, we remarked that if one can always find two allocations over each day
M, that cancel out, and satisfy some fairness desiderata that implies EF1, then one can find an allocation
over the entire set of goods that satisfies that desiderata per day, along with EF1 up to each day. We
showed that it is always possible to find such a pair of allocations that satisfies SD-EF1. Below, we will
show the same for two other interesting strengthenings of EF1.

Definition 9 (Envy-Freeness Up to Any Good (EFX)). An allocation A of a set of goods S is envy-free
up to any good (EFX) if foralli,j € N and g € A, vi(Ai) = vi(4; \ {g}).

Theorem 10. For temporal fair division with n = 2 agents, an allocation that is EFX per day and EF1 up
to each day exists.

Proof. Due to Lemma 4, it is sufficient to prove that for any day ¢, there exist EFX allocations B; and
B; of the goods in M; that cancel out.

We use the CUTANDCHOOSE++algorithm of Plaut and Roughgarden [29, Algorithm 4.2] to produce the
required two EFX allocations and show that they cancel out. Because their algorithm has a simpler
description for additive valuations (which we focus on), we explicitly describe the construction here.
Allocation B, is constructed as follows.

1. Find a partition (P, Q) of M, that minimizes |v1(P) — v1(Q)|. With loss of generality, assume
that v (P) > v1(Q).

2. If there are any goods g € P such that v1(g) = 0, move them to (). Note that this does not
change v1(P) or v1(Q).

3. Allow agent 2 to pick their preferred bundle, and assign the other bundle to agent 1.
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Allocation Bj is computed similarly, but reversing the roles of agents 1 (who picks) and agent 2 (who
cuts).

Plaut and Roughgarden [29, Theorem 4.3] show that the resulting allocations, B; and B are EFX. It
remains to show that they cancel out. Due to symmetry, we simply need to argue the cancellation for
agent 1, i.e.,

v1(By,1) +v1(By ) = v1(By2) + v1(Bi o) € v1(Bi ) —vi(Biy) = vi(Bt2) — vi(Bi).

Note that v1(B; ;) — v1(B; ) > 0 because agent 1 picks their favorite out of the two bundles in B;.
Further, |v1 (B} ;) —v1(Bj )| = [v1(Byi,1) —v1(By2)| because (By,1, By 2) is the partition that minimizes
the difference between agent 1’s value for the two bundles. Putting the two together, we get the desired
result. d

Next, we derive the same result for EF1+PO. Interestingly, we use the two cancelling EFX allocations
produced for the previous result in order to show the existence of two cancelling EF1+PO allocations.
This requires adding a minor tie-breaking rule to the procedure for computing these EFX allocations
(the CuTANDCHOOSE++algorithm due to Plaut and Roughgarden [29]): when the chooser (agent 2
in By) is indifferent between the two bundles but the cutter (agent 1 in B;) is not, the chooser must
pick the bundle the cutter values less. An interested reader can note that the allocations would have
remained EFX even if we had introduced this tie-breaking in the proof of Theorem 10, but it was not
needed there.

Definition 10 (Pareto Optimality (PO)). An allocation A of a set of goods S is Pareto optimal (PO) if
there is no allocation A’ such that v;(A}) > v;(A;) foralli € N and at least one inequality is strict.

Theorem 11. For temporal fair division with n = 2 agents, an allocation that is EF1+PO per day and EF1
up to each day exists.

Proof. Due to Lemma 4, it is sufficient to prove that for any day ¢, there exist EF1+PO allocations By
and Bj of the goods in M; that cancel out.

We claim that for any day ¢, the existence of 2 EFX allocations that cancel out implies the existence of 2
EF1+PO allocations that cancel out. For contradiction, assume this were false, and for some instance
there are not 2 EF1+PO allocations that cancel out.

Let the allocation B; be the allocation that was constructed by the process in Theorem 10, where the
bundles are chosen according to agent 1’s valuations, and agent 2 picks their preferred bundle. We
know that in this allocation, va(By2) > v2(Bt 1), and for all g € By o, v1(Bt1) = vi(Bez \ {g}). If By
is a PO allocation, then we do not have to deal with it further, otherwise, we know that there exists
some P C By 1,Q C By, such that the allocation ((B;; \ P) U Q, (B2 \ @) U P) is PO, and that
v1((Bia \ P)UQ) = v1(Bt1) and v2((Br2 \ Q) U P) = va(By 2).

First, note that in this PO allocation () must be a strict subset of B; . If this were not true, then
v2((Bt2 \ Q) U P) > va(By2) would tell us that va(By 1) = va(P) > va(By2), with the first inequality
being due to the fact that P C B; ;. By the process used to construct B;, we already know that
v2(Bt2) = v2(Bt1), meaning vy (Bt 2) = va(By,1), and by the tie-breaking mechanism in the cut-and-
choose algorithm, this would mean that ((B;1 \ P) UQ, (B2 \ Q) U P) must be an EF+PO allocation.
This would lead to a contradiction, since 2 copies of any EF allocation clearly cancel out.

Therefore, we must have that ) C By 2. Due to this, we know that there will be some good g such that
g € (B2 \ Q)UP and g € By 5. After the reallocation, we know that no agent was made worse off, so
it will be the case that Agent 2 will not feel envy in the new PO allocation. We know that ((Bz; \ P) U
@, (B2 \ Q) U P) cannot be an EF allocation (by the logic from the above paragraph this would lead to
contradiction), so we know that Agent 1 does feel envy in the PO allocation. Since By is EFX, we know
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that for all ¢’ € By 2, we have that v1(By1) > vi(By2) — vi(g’). Since we only have 2 agents, we have
that v; (Bt 2) = v1(My) — v1(By.1), and thus v1(g') = v1 (M) — 2v1(By,1) for all ¢ € By o. Therefore,
due to the fact that vy ((By,1 \ P)UQ) > v1(By,1), we have that v1(g) > vi(M;) —2v1((Be,1 \ P)UQ),
which can be rearranged back into v1 ((By,1 \ P) U Q) = v1((Br2 \ @) U P) — v1(g), showing that this
PO allocation is also EF1.

We can symmetrically repeat this procedure with the other EFX allocation B; where the bundles are
selected according to Agent 2’s valuations and Agent 1 chooses their preferred bundle. Since our PO
reallocation can only increase the utility of both agents (and thus lessen their envy), we can conclude
that if the original EFX allocations cancel out, the corresponding EF1+PO allocations also cancel out,
giving a contradiction. O

We note that while we provided a polynomial-time algorithm in Theorem 3 for achieving SD-EF1 per
day and EF1 up to each day result, the constructions in Theorems 10 and 11 for achieving EFX or
EF1+PO per day are not efficient because they rely on partitioning a set of numbers into two subsets
with near-equal sum. This is NP-hard because PARTITION (which requires exactly equal sum) can be
trivially reduced to it. This raises the following interesting open question:

Open Question 2: For temporal fair division with n = 2 agents, can EFX or EF1+PO per day
and EF1 up to each day be achieved in polynomial time?

D.5 Proof of Theorem 4

Proof of Theorem 4. Consider the following instance in which four goods arrive over three days: M; =
{91,914}, M2 = {g3}, and M3 = {g2}. Two agents have identical valuations given by v(g1) = 4,
v(g2) = 3, v(g3) = 2, and v(g4) = 1 (since we seek SD-EF1, only the fact that the agents strictly prefer
g1 > g2 > g3 > g4 matters).

For an allocation A to be SD-EF1 up to each day, Aj;, must be SD-EF1 for each t € [3], where
My = {g1,94} , M2 = {g1, 93,94}, and M3 = M = {g1, 92, 3, 94}.

By the necessity condition of Proposition 1, we can make the following claims:
« For AM1 to be SD-EF1, g; and g4 must be given to different agents.

» For A7, to be SD-EF1, g1 and g3 must be given to different agents.

« For Az;, to be SD-EF1, the two goods in T'(M, 2) = {g1, g2} must be allocated to different agents.
Since each agent must also get 2 goods from T'(M,4) = M, it follows that g3 and g4 must also
be allocated to different agents.

We now have the requirements that g1, g3, and g4 must all be pairwise given to different agents, which
is impossible since there are only two agents. Hence, in this instance, there is no allocation that is
SD-EF1 up to each day. O

D.6 Proof of Theorem 5

Proof. Consider the following instance, in which eight goods arrive over three days: M = {¢1, g5, g7},
My = {92, 94, g6}, and M3 = {g3, gs}. The valuations are as follows:

vi(g1) =8 wi(g2) =7 wvi(gs) =6 wvi(gs) =5 wi(gs) =4 vi(gs) =3 wvi(gr) =2 wi(gs) =
v2(g2) =8 w2(g3) =7 wv2(g1) =6 wv2(g4) =5 w2(gs) =4 wa(gs) =3 walgs) =2 w2(gr) =1
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Notice that although each agent has a different strict ordering over M, their orderings restricted to the
goods in any day M, are identical. Since there are only 2 or 3 goods given on any day and each agent
has strict preferences over them, for allocation Aj, to be EF1, the same agent cannot receive both the
items from T'(My, 2) (otherwise, the other agent, who receives at most one good from M that they
value strictly less than each good in T'(My, 2), would envy them even after the removal of one of the
goods).

Thus, EF1 per day requires that among the pairs of goods (g1, 95), (92, 94), and (g3, gg), the two goods
in each pair go to different agents.

Now consider what is required in order for the allocation Aj; to be SD-EF1 overall while adhering to
these constraints. Since both agents have strict preferences over the goods, by the necessity condition
of Proposition 1, we can say that for both ¢ € {1,2}, |Ay; NT;(M,r)| > |r/n| must be true for all
r € [|M]].

This means that each agent must receive at least one of their top 2 goods. Specifically, agent 1 must
receive one of T1 (M, 2) = {g1, g2}, and agent 2 must receive at least one of To(M, 2) = {g2, 93}

It also means that each agent must receive at least 2 of their top 4 goods. Observe that T;(M,4) =
{91, 92, g3, ga } for both agents, so, in order to satisfy this, each agent must receive exactly 2 goods from

{91, 92, 93, 94}-

Notice that under these restrictions, in any allocation where agent 1 receives go, they cannot receive
g3 (or they would have both of agent 2’s top 2 goods) or g4 (due to the per day constraints). Since the
allocation over the top 4 goods must be balanced (each agent receiving exactly two of them), the only
possible allocation A7, (57 4) in this scenario would be ({g1, g2}, {93, g4}). Using the same logic, when
agent 2 receives go, the only possible allocation is ({g1, 94}, {92, 93}). Since one of the agents must be
given go, these are the only two ways that the top 4 goods can be allocated. Note that in both of these
allocations, agent 1 gets g; and agent 2 gets gs.

Finally, consider how the remaining goods {gs, g¢, g7, gs } must be allocated to guarantee SD-EF1 overall.
Each agent must receive at least 3 of their top 6 goods, and since we know that each agent has exactly
2 of their top 4 goods, that means that agent 1 must receive at least one of {gs, g¢}, and agent 2 must
receive at least one of { gg, gs }. Since we know that agent 1 must be allocated g1, the per-day constraints
say they cannot receive g5, so they must receive gg. Similarly, agent 2 is known to have g3, so they
cannot receive gg, which means they must also receive gg, which is a contradiction. Hence, in this
instance, there is no allocation that is EF1 per day and SD-EF1 overall. O

D.7 Two Agents and Identical Days

In this section, we briefly discuss the implications of our results so far for the special case where we
have two agents and identical days. Recall that Igarashi et al. [23] focus only on the case of identical
days and many of their results hold for only two agents. In particular, they show that an allocation that
is EF1 per day and (exact) EF overall exists and can be computed in polynomial time when the number
of days k is even.

We prove a slightly stronger result via a much simpler technique, albeit only for allocating goods while
their result is for allocating a mixture of goods and chores.

Theorem 12. For temporal fair division withn = 2 agents and identical days, an allocation that is SD-EF1
per day, SD-EF1 up to each day, and SD-EF up to each even day exists and can be computed in polynomial
time.

Proof of Theorem 6. Consider the set of goods M; on day 1 (each day has a set of goods identical to
this). Consider the two allocations B = (Bj, By) and B’ = (Bs, B;) produced in Lemma 5 such that
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both B and B’ are SD-EF1 allocations of M. The desired allocation is one that uses B on every odd
day and B’ on every even day. Clearly, SD-EF1 per day is satisfied. Since the allocations completely
cancel out after every even day (each agent has exactly the same number of copies of each good), we
get SD-EF1 up to each day and SD-EF up to each even day. O

E Missing Proofs from Section 5

E.1 Proof of Theorem 7

Proof of Theorem 7. Start by constructing two set families, P} and Px.

Py ={T(My,nr)\T(Mg,n(r—1)):r€ H‘Mnt’“ .t e [k},

Py = {T(M,nr)\ T(M,n(r — 1)) : 1 € HMM'H 1.

In words, P» splits the entire set of goods M into the agents’ most preferred n goods, their next most
preferred n goods, etc. P; does a similar partitioning, but splits the goods from each day separately.

Because preferences orderings of all agents are identical, we can use the sufficiency condition Propo-
sition 1, which states that if for alli € N and r € [|M|], |4; N T;(M,r)| € {|r/n], [r/n|} implies
SD-EF1 overall. Clearly, if each agent receives at most 1 good from each set in P, this will be true.
Similarly, if each agent receives at most 1 good from each set in Py, then for alli € N, ¢t € [k], and
r € [|M¢]], we would have |A; N T;(My,r)| € {|r/n],[r/n]}, implying SD-EF1 per day. Therefore,
any allocation which gives each agent at most 1 good from each of the sets in P; U P, will be SD-EF1
per day and SD-EF1 overall. Our goal is to find an allocation that meets these constraints.

We will first start by adjusting the structure of the set families slightly to make the problem easier to
work with. Note that it must be the case that |P;| > |P|. P, will contain [m/n] sets. |m/n] set of
exactly n goods, and if m/n is not an integer, then 1 additional set will be included containing the
remaining goods. P; will contain at least [m/n] sets, since it will be a disjoint partition of all the goods
in m, with each set having a maximum set size of n, but may contain up to k sets with size less than n
due to the fact that it is partitioning each day individually.

First, we will create | P;| — | P»| empty sets and place them in P». This makes sure that P; and P, have
the same number of sets. Then, if [P;| > ™, we will create n|P;| — m dummy goods (goods with 0
value to every agent), place each dummy good into a set from P} and P; in such a way that all | P; | sets
in both families contain exactly n goods each. Note that the restriction that each agent must receive
no more than 1 good from each of these updated families creates is a stronger constraint than what is
needed to guarantee SD-EF1. Any allocations that meets the constraints on the updated set families can
be clearly shown to meet the original SD-EF1 constraints simply by removing all the dummy goods.
After these updates, both P} and P will contain the same number of sets, and the size of every set in
both families will be exactly n.

Next, construct a graph where each set from P; or P; is a vertex, and put an edge between two sets
in P; and P if they share a good (there can be multiple edges between vertices). Label each edge
to correspond to the good it represents. Since both P; and P; are disjoint partitions over the set of
goods M + “the dummy goods”, there will be no edge between two sets from the same family, making
this a bipartite graph where each vertex has a degree of exactly n. Therefore, this bipartite graph can
be deconstructed into n perfect matching. Let each of these matchings denote a bundle of the items
corresponding to the edges in that matching. These n bundles will form a disjoint partition over the
full set of goods M, and each bundle will contain at most 1 good from each set in P U P5.
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Since there are n bundles, we can create an allocation by assigning each one arbitrarily to an agent. Any
allocation formed this way will meet the constraints for both P; and P, and thus will be be SD-EF1 per
day and SD-EF1 overall. O

F Missing Proofs from Section 6

F.1 Helper Lemmas for Proving Theorem 9

Lemma 6. For any instance with identical days, the identical orderings transformation described in
Algorithm 1 will produce an instance where all agents have identical orderings overall.

Proof. Let M’ represent the full set of goods in the identical orderings transformation instance, and for
each agent 7, let v} be i’s valuations over M’. Due to the original instance having identical days, we
know that for each pair of days ¢, ¢’ there must be a bijection f : My — M, such that for each g € M,
and each i € N, v;(g) = vi(f(g)). By the way we constructed the identical orderings transformation
instance, we know that there must be an analogous bijection in the transformed instance f" : M; — M],.

Let M| = {gm, . 79t,\Mg|}, where for each 7,1’ € [|My|] with r’ > r, we have that g, , = g, , for all
agents. Without loss of generality, we can assume that the labeling on each day is consistent, and for

each day t,?, the bijection f' maps g:, to gy, for all » € [|M,|]. Therefore, we can assume that the
overall ordering of g11 *=; 91,2 = ... = g1,k =i 92,1 =i -+ - =i 9| My, must hold. O

Lemma 7. The algorithm described in Section 6 achieves SD-PROP1 Overall.

Proof. This proof involves reasoning with two separate bijections. The first is o; : M — M’, which is
the bijection formed by creating the identical ordering transformation in Algorithm 1. In this bijection,
we have that v;(g) = v}(0;(g)) for each i € N and g € M, which implies that v;(M) = v,(M’) for
all 4, and that the utility vectors formed by taking all of i’s utilities for M and M’, and ordering them
non-increasingly, will both be identical. The second is z : 4; U {g;} — A, U {g}}, where A; and A} are
the bundles that ¢ receives in the final allocation and the identical orderings transformation allocation
of Algorithm 1 respectively, and g;, g, are agent i’s favourite good that they are not allocated in each of
those allocations. In this bijection, we will have that v;(g) > v}(2(g)) foralli € N and g € A; U{g;},
implying that v;(A; U {g;}) > vi(A; U {g}}).

Since SD-EF1 implies EF1, and the allocation found over the transformed preferences reduction by this
algorithm will be SD-EF1 overall, it is easy to see that we can invoke the same logic from Lemma 2
and Lemma 3 to show that this allocation is PROP1 overall. To show that the allocation is in fact
SD-PROP1 overall, we can do a more detailed analysis on the proof technique from Lemma 3. Consider
the set of goods M* = M U M’ and each agent i’s ordering over M* that is induced by their valuation
functions v; and v]. We note that when considering the set M*, the bijection from Lemma 3 not
only shows that v;(A4; U {g;}) > v}(A; U {g;}), but also allows us to conclude the stronger claim
that A; U {g;} =3P A’ U {g/}. This is because for each pair of items g*, z(g*), if we have that

v;i(g*) = vi(2(g*)), then we must also have ¢g* =; z(g*).

Next, note that for each agent i € N, and each ¢ € M, we must have that H;(M’, 0,(g)) =
{0i(¢") : ¢’ € H;(M, g)}, since clearly, H;(M’, 0;(g)) can be thought of as the set of all goods g* € M’
such that g* =, 0;(¢g), and similarly, H;(M, g) is the set of goods g* € M such that g* *=; g. From our
definition of o;, we have that for any ¢* € M, v;(¢*) > v;(g) if and only if v}(0;(g*)) = v'(0i(g)).

With this, we can conclude that |H;(M,g)] = |H;(M',0i(g9))|, and also that
[(A; U{gi}) N Hi(M,g9)] > [(A,U{g}}) N H;(M', 0i(g))| for all goods ¢ € M. The second
statement follows from the fact that for any ¢* € A; U {g¢;}, if 2(¢*) € H;(M’', 0i(g)), then
g* € H;(M, g) must be true as well, since we have that v;(g*) > v}(2(g")), and v;(g) = v}(0i(g))-
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We know that A/ is SD-EF1, implying it is SD-PROP1 by Proposition 2. Therefore, for all g € M, we have
that [(A; U{g:}) N Hi(M,g)| > [(A,U{g;} N H;(M' 0i(g9))| = [IH:i(M 0ig)l/n] = [IH:(M.g)|/n],
allowing us to conclude that A is SD-PROP1. O

F.2 Proof of Theorem 9

Proof of Theorem 9. From Lemma 6, it is known that the identical days reduction will construct an
instance where each agent has the same overall ordering for the full set of goods M’. This means that
by the results of Theorem 7, an allocation A’ over M’ can be found that is SD-EF1 per day and SD-EF1
overall in polynomial time.

Using identical logic from Lemma 1, constructing the final allocation A by running the picking order
construction procedure from Algorithm 1 on A’ will result in an allocation that is SD-EF1 per day, since
A’ is SD-EF1 per day.

Finally, from Lemma 7, we know that A will also be SD-PROP1 overall, completing the proof. d

G Laminar Fair Division

For any set of goods M, a collection L of subsets of M is a Laminar Set Family over M if for every pair
of subsets S, T € L, we have that either SNT =0, S CT,orT C S.

For each set S € £, let D(S) : £ — 2* be a function returning each set S’ € £ such that S’ C S. Let
C(S) : £ — 2* be the function returning every maximal set of D(S) (every set in D(S) that is not
contained in some other set from D(S)).

We can say that a laminar set family £ over M is Complete if and only if the following conditions hold:

« The set M is an element of L.

« For every set S € L, either D(S) = ), or Ugrep(sy = S.

We will assume that all laminar sets families we deal with in our setting are complete. This can be
assumed without loss of generality, as any laminar set £ over a set of goods M that is not complete can
be “completed” through the following simple procedure:

« If the full set of goods M is not in £, add M to L.

« Foreveryset S € L,if 0 < |Ugep(s) | < |9
itto L.

, then create a new set S* = S\ Ugiep(s) and add

After the above steps, £ will remain a laminar set family. £ will clearly remain laminar after the addition
of M since every other set in £ will be a strict subset of M. £ will also remain laminar after the addition
of each of the S* sets, since the definition of laminar families ensures that if none of the sets in £ that
are subsets of a set S contain some good g, then the only other sets in the family that can contain g are
strict supersets of .S. Therefore, the S* that the completion process adds to £ will be a strict subset of
S, and thus a strict subset of all the sets containing g.

Note that in any complete laminar set family £, and any S € £, C(S) will either be empty, or will form
a complete disjoint partitioning of S. If this were not true, then we would have that C'(S) # ), which
implies that D(S) # (). We would also have that Ug/ccsy C S and Ugie p(s) = S. Clearly, every good
9 € Ugrep(s) must appear in some maximal set from D(.5), giving a contradiction. The fact that all the
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sets in C'(.S) will be disjoint follows immediately from the definition of a laminar set family and from
the fact that each set S” € C(S) is maximal in D(S5).

One can think of the structure of a complete laminar set family £ as a tree where each subset is a node.
M is the root node of the tree. For any set S € £, D(S) are the descendants on S, and C(5) are
the children of S. The Leaf sets of £ are any sets S € £ who has no descendants (i.e. D(S) = 0).
Thinking of complete Laminar Set Families in this way will allow us to topographically sort the sets.
Particularly, thinking of £ as a directed tree where there is a directed edge going from each child to its
parent, then a topographical sorting of £ will result in no set S € £ appearing in the ordering before
any of its descendants.

Now, consider the following problem. A school district has received a new shipment of supplies and
must distribute them between the schools under their jurisdiction. Each item is used for a different
subject (there are microscopes for the biology lab, instruments for music class, easels and paint for
art class, etc.), and each school has different preferences over the items. The district wants to find an
allocation that is fair among the schools, but also wants to make sure that the allocations are fair with
respect to each individual subject. For example, the district may be able to construct an EF1 allocation
by giving all the biology supplies to one school, and all the art supplies to another school, but that would
be extremely unfair to the individual departments within those schools. Interestingly, this problem is
identical to finding an allocation over a temporal instance that is fair per day and fair overall, since both
are in essence looking at a pairwise-disjoint partition of some set of items M, and finding an allocation
that is fair with respect to M, and remains fair when only looking at any of the sets in the partition.

Up until this point, the best way to solve such a problem would be existing algorithms for constrained
fair division, such as the cardinality constraint algorithm of [10]. This algorithm would guarantee
an EF1 overall allocation, while also guaranteeing that each school got a balanced number of items
from each subject, but it gives no guarantee that the goods from each subject will be allocated fairly
according to the valuation functions of each of the schools. While our solution, Algorithm 1, only
achieves PROP1 overall, it achieves the very strong SD-EF1 fairness guarantee for each subject, making
it arguably a more desirable algorithm for use cases such as this. When there are 2 agents, or when all
agents’ orderings are identical, then we get strictly better guarantees, since we can still achieve SD-EF1
per day (which implies balancedness), while also achieving EF1 overall.

While the “per day” and “overall” desiderata translate very well into this broader interpretation of the
temporal fairness model, our other definition, “up to each day” does not. This is because “up to each day”
implicitly assumes that there is some ordering over the sets of goods in the partition. One intuitive way to
extend this concept is with laminar set families. In the school district example, the sets of items where fair-
ness is required could be something like {Biology, Chemistry, Drawing, Music, Science, Arts}, where
Biology and Chemistry are subsets of Science and Drawing and Music are subsets of Arts.

With this in mind, we can introduce a new concept of fairness, which generalizes “up to each day” and
is more compatible with this abstract view of temporal fair division.

Definition 11 (Laminar Fairness). For desideratum X, allocation A is Laminar X with respect to some
laminar set family L if Ag satisfies X for all S € L.

It can be seen that achieving both “up to each day” and “per day” fairness is a special case of Laminar
Fairness. Figure 3 shows the laminar family induced by these constraints.

We present an upgrade to our two agent Envy-Balancing algorithm from Lemma 4 that allows us to
find EF1 allocations with respect to any laminar set family, a strictly stronger guarantee than simply
finding allocations that are EF1 up to each day.

Theorem 13. Given 2 agents, a set of goods M, and a laminar set family L over M, it is possible to find
an allocation to those agents that is Laminar EF1 with respect to L.
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Figure 3: Representation of the “up to each day” and “per day” constraints for three days as a laminar set family.
An allocation that is EF1 up to each day and EF1 per day would be an allocation that is EF1 with respect to
every set in this family. To just represent the “up to each day” constraints, only the sets M;, My U Ms and
My U My U M3 would be required.

Proof. We begin by introducing a slight adaptation of the Envy-Balancing algorithm from Lemma 4,
which will serve as the basis for our algorithm to give the stronger guarantee of laminar fairness. We
will use the notation introduced in the proof of Lemma 4 to descibe the behaviour of the algorithm.

At the end of the Algorithm 2, the allocation A induced by F' U S is returned as the final allocation. A
is an EF1 allocation since we know that A is an EF allocation and Ag is EF1. Note that Ap_swap(s)
would also be an EF1 allocation for the same reason (The proof of Lemma 4 shows that at every point
in Algorithm 2, both Ag and Agwap(s) are EF1 allocations). Also note that the two allocations Apys
and Apyswap(s) Will cancel out. This is because we know that neither agent feel envy in Ap, and we
also know that Ag, and Agwap(g) will cancel out for both i € {1,2}, due to the fact that a SWAP will
involve replacing every allocation in S with an allocation that cancels it out, so the sum of all these
allocations must also cancel out.

We will use this fact in order to construct Algorithm 3, named EnvyBalancing++. This algorithm takes
as input a set of goods S, and a partitioning C' over the goods in S. If the partitioning is empty, then
EnvyBalancing++ simply returns 2 EF1 allocations over .S that cancel out, using any of the methods
introduced in Section 4 to do so. Otherwise, if C' is a complete and disjoint partition of S, then
EnvyBalancing++ runs Algorithm 2 on the input, but returns both Apys and Apyuswap(s) as the final
allocations.

Algorithm 4 takes in a laminar set family £, and finds an allocation that is Laminar EF1 with respect to
L by the following process:

« Sort the sets from £ topographically such that no set appears in the order before any of its
descendants.

+ Run EnvyBalancing++ on each set S € £ in the topographical order, with the partitioning of S
being giving by the pairs of allocations the algorithm has already found for each of the children
of S. If S is a leaf set, then C'(S) = (), and the algorithm will return two arbitrary EF1 allocations
over S that cancel out. Otherwise, two allocations generated by the Envy-Balancing algorithm
will be returned.

« As the final output, return the 2 allocations over M, which will be the last set from £ ordered
topographically. Each of these allocations are guaranteed to be EF1 with respect to every set

SeLl.
We will prove the following inductive statement: For any set S € L, if the algorithm found 2 allocations

for each child S” € C(S) that are EF1 with respect to S” and all the descendants of S/, then the algorithm
will find 2 allocations over .S that are EF1 with respect to S and all descendants of S.
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We will first start with the case where S is not a Leaf set. Since the algorithm visits each descendant of
S prior to visiting S, it will have already found 2 allocations for every set S’ € C'(S). If the hypothesis
holds, then each of these pairs of allocations will cancel out, will be EF1 with respect to S, and will
be EF1 with respect to every descendent of S”. The algorithm will use these allocations as input to
EnvyBalancing++. Since we are assuming that £ is a complete laminar set family, the children of S
will make a complete and disjoint partition of S. We know that EnvyBalancing++ will output two
allocations over S that cancel out and are EF1 over S. Further, we know that both allocations will be
EF1 with respect to all descendants of S’ due to the fact that the fact that the Envy-Balancing algorithm
constructs its allocations by picking one of the inputted allocations from each of its children, which are
known to be EF1 with respect to all their descendants from the hypothesis.

If S is a Leaf set, the algorithm uses any arbitrary method to find the two allocations for S. These
allocations will be EF1 with respect to .S, and since leaf sets do not have any descendants, they will
vacuously be EF1 with respect to all descendants as well. This proves the base case and completes the
argument.

Finally, note that the topographical sorting of the sets runs in polynomial-time in the number of elements
in the tree it is traversing, and it is well-known that every laminar set family with a ground set M can
have at most 2| M| — 1 members. This together with the fact that EnvyBalancing++ runs in poly(m)
time allows us to conclude that the entire procedure will be poly(m). O

We give the proof of this lemma in Appendix G.

Unfortunately, for the general case, laminar fairness will not always be possible. Since the “up to each
day” constraint can be modeled as a laminar set family, all of the impossibility results for “up to each
day” also hold for laminar fairness.
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Algorithm 3 EnvyBalancing++

Input for ¢ € [k], a pair of allocations (B}, B?) of the set of goods M; that cancel out, with labels
assigned in such a way that if neither of the allocations is Envy-Free, then vi (B} ) — v1(B{,) > 0 and
’02(31:2,2) - U2(BZ1> 2 0.

Output An allocation A of the set of goods M = U My

if C' = () then

(A, A") < Two EF1 allocations of S that cancel out, determined by some arbitrary subroutine
else
F+0,S+0,e1+0,e2 0
fort € [k] do
if v1(B})) > v1(B},) Ava(Bi,) > va(B/;) then
F+« FU{B)}
else if v1(B7|) > v1(B},) Ava(B7y) > va(B7,) then
F+« FU{B}
else
if 1 < 0 then
S+ Su{B}}

e1 < e1+ (v1(B})) — v1(Biy))

€2 < e+ (’02(31:1,2) - 02(3751,1))
else

S+ Su{B?

e] <e1+ (Ul(Bt%l) - Ul(Bt2,2))
ez < ez + (v2(B}y) — v2(B}4))
end if
end if
if e1 > 0 A ey > 0 then
F+FuUS
S<—®,61%0,€2<—O
elseif e; <0 A ey <0then
F + F USWAP(S)
S<+0,e1+0,e5<0
end if
end for
A < allocation in which M, is allocated according to the allocation of My in F' U S, for each
t € [k]
A" + allocation in which M is allocated according to the allocation of M; in F' U SWAP(SS), for
eacht € [k]
end if
return (A, A’)
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Algorithm 4 Laminar Envy-Balancing Algorithm

Input A Laminar Set L Output An allocation A of the set of goods M =
User
T < (S1,52,...,5||) (A topographical ordering the sets in £)
VS € L,Bg <+
fort € [|L]] do

(B, B%) « EnvyBalancing++(S;, {Bs/ : S’ € C(S;)})
Bg, = (B}SU B?q)

end for

return BS‘L|
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