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Abstract

We study temporal fair division, whereby a set of agents are allocated a (possibly different) set of

goods on each day for a period of days. We study this setting, as well as a number of its special

cases formed by the restrictions to two agents, same goods on each day, identical preferences, or

combinations thereof, and chart out the landscape of achieving two types of fairness guarantees

simultaneously: fairness on each day (per day) and fairness over time (up to each day, or the

weaker version, overall).

In the most general setting, we prove that there always exists an allocation that is stochastically-

dominant envy-free up to one good (SD-EF1) per day and proportional up to one good (PROP1)

overall, and when all the agents have identical preferences, we show that SD-EF1 per day and

SD-EF1 overall can be guaranteed. For the case of two agents, we prove that SD-EF1 per day

and EF1 up to each day can be guaranteed using an envy balancing technique. We provide

counterexamples for other combinations that establish our results as among the best guarantees

possible, but also leave open some tantalizing questions.

1 Introduction

How to divide a set of goods amongst a set of agents fairly has been an enigma for centuries. There has

been remarkable progress on this question in the last decade [2]. In the most prominent model, there is

a set of n agents N , each having an (additive) valuation over a set of goodsM . The goal is to find an

allocation A = (A1, . . . , An) which partitionsM into pairwise-disjoint bundles, one allocated to each

agent i ∈ N .

This one-shot model fails to capture numerous real-world fair division scenarios in which goods are

divided over time, e.g., food bank deliveries [25], resource allocation in data centers [19], allocation of

advertising slots [27], nurse shift scheduling [28], and organ transplants [9]. Compared to the one-shot

setting, fair division of goods over time has received relatively little attention.

Inspired by this, there has been a flurry of recent works that consider online fair division, where agents
or goods arrive over time and the principal needs to make allocations in an online fashion in the absence

of any information regarding future arrivals [24, 8]. The limits of feasible fairness guarantees have been

explored under various adversary models [30, 8].

However, in practice it is rarely the case that we have absolutely no information about the future.

Significantly better guarantees have been established when even partial information about the future is

available, either in the form of distributional knowledge [11] or machine-generated predictions [20, 6, 7].

But this work has left a very basic question wide open: How fair can we be if we had full information
about the future?

To address this, we introduce the model of temporal fair division, where a set of agents N are allocated

a set of goods Mt on day t, over a period of days t ∈ {1, . . . , k}, and the agents’ valuations over the

whole set of goods M = ∪kt=1Mt are available upfront. At first glance, it may seem that this is just

a traditional fair division problem where the set of goods M needs to be divided amongst the set of

agents N . The twist, however, is that in temporal fair division, agents anticipate fairness to prevail not

solely at the end of the entire time horizon, but also at or within various interim time intervals. For

example, the principal may be confident, based on their knowledge of the future, the allocation will
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Up to each day Overall
SD-EF1 EF1 SD-EF1 SD-PROP1 EF1 PROP1

General Setting
SD-EF1 Per Day X X X ? ? ✓ (Thm 1)

EF1 Per Day X X X ? ? ✓

∅ X X [22] ✓ [3] ✓ ✓ ✓

Two Agents
SD-EF1 Per Day X ✓(Thm 3) X ? ✓ ✓

EF1 Per Day X ✓ X (Thm 5) ? ✓ ✓

∅ X (Thm 4) ✓ ✓ ✓ ✓ ✓

Identical Orderings
SD-EF1 Per Day X ? ✓(Thm 7) ✓ ✓ ✓

EF1 Per Day X ? ✓ ✓ ✓ ✓

∅ X (Thm 8) ? ✓ ✓ ✓ ✓

Identical Days
SD-EF1 Per Day X ? ? ✓ (Thm 9) ? ✓

EF1 Per Day X ? ? ✓ ? ✓

∅ X (Thm 8) ? ✓ ✓ ✓ ✓

Table 1: Possibilities, impossibilities, and open questions in temporal fair division. ✓indicates a possibility result.

X indicates an impossibility. ? indicates an open question. Green highlights indicate the main results of this

paper; non-highlighted cells are either open, already known, or implied by other results.

eventually turn out to be fair, but that may not be assurance enough to the agents.

This leads us to seek temporal fairness notions in our temporal fair division setting. Specifically, we take

prominent fairness notions from one-shot fair division, and seek them on three temporal scales:

(1) Per day: The allocation of the set of goodsMt on each day t should be fair.

(2a) Overall: The allocation of the whole set of goodsM in the end should be fair.

(2b) Up to each day: The allocation of the set of goods ∪tr=1Mr up to each day t should be fair.

Clearly, up to each day fairness (2b) is stronger than overall fairness (2a). Solely achieving per day

fairness (1) or overall fairness (2a) can be reduced to one-shot fair division. Hence, we seek per day and

overall fairness simultaneously (1+2a), or per day and up to each day fairness simultaneously (1+2b), or

solely up to each day fairness (2b). Our main research question is to...

...explore the limits of temporal fairness that can be guaranteed in temporal fair division.

1.1 Our Results & Techniques

We chart out the landscape of the aforementioned temporal fair division model in a general setting, with

n agents having additive, heterogeneous preferences. Further, we identify three relevant restrictions

where we can circumvent some of the impossibilities of the general setting, and achieve very strong

results. Those are: (1) when there are only two agents; (2) when all agents have the same ordering over

the goods; and (3) when an identical set of goods arrives each day.
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SD-EF1 per day

EF1 per day

SD-EF1 up to each day

SD-EF1(PROP1) overall EF1 up to each day

EF1(PROP1) overall

Figure 1: Hierarchy of temporal fairness notions.

In these settings, we seek the fairness guarantees of EF1, SD-EF1, PROP1, and SD-PROP1 at the temporal

scales of per day, overall, and up to each day. The various temporal fairness definitions are depicted

in Figure 1, with arrows indicating logical implications. We discover several surprising results, and

develop novel algorithmic tools along the way, which may be of independent interest.

In Section 3, we present an algorithm for finding temporally fair allocations in our most general

setting. Specifically, we show how to obtain an allocation that is PROP1 overall, and SD-EF1 per day in

polynomial time (Theorem 1).

In Sections 4 to 6, we look at the restricted settings of two agents, identical orderings, and identical days,

respectively. In these settings, we provide algorithms that give very strong fairness guarantees that are

impossible in the general case (Theorems 3, 7 and 9), while also showing which fairness desiderata are

still too strong even after applying these restrictions (Theorems 4, 5 and 8). In these restricted settings,

we provide a near complete picture of what is possible, while leaving open some interesting questions,

particularly surrounding the powerful notion of “up to each day” fairness.

Most of our results, along with several open questions, are summarized in Table 1.

1.2 Related Work

Our temporal fair division model is related to (but separate from) several fair division models studied in

the literature. We include the most relevant ones here, and include a more in-depth look at the literature

in the Appendix A

Repeated fair division. The repeated fair division model of Igarashi et al. [23], which is the case

of identical days in our more general model, is the most closely related to our work. Some of their

results are for two agents (still with identical days). As will be seen in Section 4, this is where the

strongest guarantees from Figure 1 of SD-EF1 per day and SD-EF1 up to each day can be achieved

simultaneously. This result is the only overlap between our works, and we present it again because we

obtain a shorter proof with a much simpler algorithm. The rest of their results with two or more than

two agents seek exact fairness guarantees, such as (exact) envy-freeness overall, in limited cases such

as when the number of days is a multiple of the number of agents.

Online fair division. In the online fair division model, goods arrive one by one andmust be irrevocably

allocated to an agent upon arrival with no knowledge of agent preferences over the goods to arrive later.

Typically, one seeks to maintain a certain level of fairness. Clearly, any online fair division algorithm

can be simulated in our temporal fair division model to achieve the same guarantee up to each day.

One online fair division paper of particular note to this research is He et al. [22]. This paper introduced

the “Informed Model” of online fair division, where irrevocable allocation decisions must be made as

goods arrive one at a time in adversarial order, but the allocation algorithm is given all goods and the

order they will arrive in advance. The main goal in the informed model is to achieve an allocation that

remains EF1 after each good is allocated. Clearly, this is equivalent to achieving EF1 up to each day in

3



Temporal Fair Division when each day only contains a single good. He et al. [22] concludes that it is

impossible to allocate the goods in such a way that EF1 is always maintained. By corollary, EF1 up to

each day is also infeasible.

Constrained fair division. Seeking fair allocations over a set of goods that remain fair when only

looking at the goods from a single “day” can also be modeled as a constraint on the space of feasible

allocations, and the question becomes whether there is a constrained allocation that still achieves the

desired fairness guarantee. This model of constrained fair division has also been studied in the literature.

Biswas and Barman [10] study a model with cardinality constraints. Cardinality constraints (partition

matroid constraints) have been generalized to matroid constraints, and the existence of an EF1 allocation

subject to matroid feasibility constraints is a major open question [10, 16]. Finally, the bihierarchy

framework of Budish et al. [13] can also be viewed as a method for finding a constrained allocation,

which we use in some of our results. Although, our most interesting results deal with sets of constraints

that go beyond bihierarchies.

Temporal fairness in social choice. While we look at temporal fairness applied to the allocation of

indivisible resources, the idea of temporal fairness has been explored in other areas of social choice

theory. See the work of Elkind et al. [17] for a detailed look at temporal multi-winner voting, and for a

synopsis of other papers that look at fairness over time. Also, Alamdari et al. [1] present a model of

temporal fairness for a very general decision making setting.

2 Preliminaries

2.1 Model

For any r ∈ N, define [r] ≜ {1, 2, . . . , r}. A multiset is a set that allows repetitions.

Agents, goods, and valuations. Let N = [n] be a set of agents who are allocated a set of goods on

each day over k consecutive days. For t ∈ [k], denote byMt the set of goods to be allocated on day t,
M t = ∪r∈[t]Mr the set of goods up to day t, andM = Mk = ∪t∈[k]Mt the set of all goods. We can view

(M1, . . . ,Mk) as a partition ofM . Each agent i ∈ N has an additive valuation function vi : 2
M → R⩾0,

where vi({g}) (henceforth, with a slight abuse of notation, written as vi(g)) is her utility for receiving

good g ∈M and vi(S) =
∑

g∈S vi(g) for all S ⊆M . Collectively, (N, (M1, . . . ,Mk), {vi}i∈N ) form
an instance of temporal fair division. An instance with k = 1 is a (regular) fair division instance, so a

temporal fair division instance can be viewed as a sequence of fair division instances in which the same

agents participate. We will always assume that an algorithm to solve a temporal fair division problem

is given the entire instance as input, i.e. it knows the entire set of goods and what day those goods will

arrive upfront.

Preferences. Define ≽i (resp., ≻i) as the weak (resp., strict) ordering over the goods in M induced by

vi, where, for all g, g
′ ∈M , g ≽i g

′
if and only if vi(g) ⩾ vi(g

′) and g ≻i g
′
if and only if vi(g) > vi(g

′).
For all S ⊆M and all r ∈ N, define Ti(S, r) to be the r most preferred goods among the goods in S
according to the ordering ≽i; all ties are broken consistently across i, S, and r.1

Allocations. An allocation A = (A1, . . . , An) is a partition of M into n pairwise-disjoint bundles,

where Ai is the bundle allocated to agent i. For S ⊆M , let AS = (AS,1, . . . , AS,n) be the allocation of

the goods in S that is induced by A (i.e., for each good g ∈M and agent i ∈ N , g ∈ AS,i if and only if

1

That is, we use an arbitrary global ordering overM as the tiebreaker to convert the weak ordering ≽i of every agent

i ∈ N into her strict ordering over M , and compute all Ti(S, r)-s according to these strict orderings. Our negative results do

not depend on this tie-breaking and positive results hold regardless of it.
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g ∈ S and g ∈ Ai). For t ∈ [k], we refer to AMt as the allocation on day t and AMt
as the allocation up

to day t.

Restrictions. We study three restrictions of this general setup (and their combinations).

1. Two agents: |N | = 2.

2. Identical valuations/orderings: Under identical valuations, vi = v for all agents i ∈ N . Under

identical orderings,≽i=≽ for all agents i ∈ N . Here, we simply write v,≽, and T (S, r), skipping
the agent in the subscript. For this case, our results deal with desiderata which depend only on

the orderings; thus, no distinction between valuations and orderings is necessary.
2

3. Identical days: Informally, copies of the same goods are allocated on each day. Formally, for all

days t, t′ ∈ [k], there is a bijection f : Mt →Mt′ such that vi(g) = vi(f(g)) for all agents i ∈ N
and goods g ∈Mt.

2.2 Fairness Desiderata

We first introduce the main desiderata we will be studying. Later, we will introduce their temporal

extensions. Other notions referred to in specific sections will be introduced therein.

Definition 1 (Envy-Freeness Up to One Good (EF1)). An allocation A of a set of goods S is envy-free up
to one good (EF1) if for all i, j ∈ N with Aj ̸= ∅, there exists a g ∈ Aj such that vi(Ai) ⩾ vi(Aj \ {g}),
i.e., no agent envies another agent if some good from the latter agent’s bundle is removed.

In addition to EF1, we will also introduce a weaker notion of measuring fairness that does not require

directly comparing one agent’s bundle to another’s.

Definition 2 (Proportionality Up toOneGood (PROP1)). An allocationA of a set of goodsS is proportional
up to one good (PROP1) if for all i ∈ N with Ai ̸= S, there exists a good g ∈ S \ Ai, such that
vi(Ai ∪ {g}) ⩾ 1

nvi(S).

It is well known that EF1 is a stronger notion than PROP1 [15].

Given a set of goods S and a good g ∈ S, define an agent i’s top-set with respect to S as Hi(S, g) =
{g′ ∈ S : g′ ≽i g}. When given only a weak ordering ≽i over a set of goods S, we can compare

two bundles X,Y ⊆ S using the stochastic dominance (SD) relation: X ≽SD

i Y if for all g ∈ S,
|X ∩Hi(S, g)| ⩾ |Y ∩Hi(S, g)|. That is, X has at least as many goods weakly preferred to any good

as Y has. It is known that X ≽SD

i Y if and only if vi(X) ⩾ vi(Y ) for all (additive) valuations vi over
S that would induce ≽i. Hence, using the SD comparison in the EF1 definition yields its stronger

counterpart, which has also been studied extensively [4, 18, 5].

Definition 3 (SD-EF1). An allocation A of a set of goods S is stochastically-dominant envy-free up to one
good (SD-EF1) if for all i, j ∈ N with Aj ̸= ∅, there exists a g ∈ Aj such that Ai ≽SD

i Aj \ {g}.

We also introduce a stochastic dominance extension of PROP1.

Definition 4 (SD-PROP1). An allocation A of a set of goods S is stochastically-dominant proportional up
to one good (SD-PROP1) if, for all i ∈ N with Ai ̸= S, there exists a g ∈ S \Ai such that |(Ai ∪ {g}) ∩
Hi(S, g

′)| ⩾ ⌈|Hi(S,g
′)|/n⌉ for all g′ ∈ S.

2

In other words, our positive results hold even under identical orderings (weaker restriction), while our negative results

hold even under identical valuations (stronger restriction).
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Informally, Ai, after adding at most one good to it, must contain at least ⌈k/n⌉ goods among the k most

preferred goods of agent i in S, for each k ∈ [|S|].

Just as EF1 implies PROP1, we have that SD-EF1 implies SD-PROP1, and similarly to SD-EF1, if an

allocation A is SD-PROP1 for certain orderings {≽i}i∈N , then A will be PROP1 for any additive

valuation functions that induce {≽i}i∈N . Both these facts are proven in the Appendix B.

2.3 Temporal Fairness

In a temporal fair division instance given by a set of goods M partitioned as (M1, . . . ,Mk) across
k days, we can ask for fairness to hold at different levels of granularity, yielding various temporal

extensions of the fairness desiderata introduced above. These extensions also apply to any other type

of desiderata (e.g., efficiency).

Definition 5 (Per Day Fairness). For desideratum X , allocation A satisfies X per day if AMt satisfies X
for all t ∈ [k].

Definition 6 (Overall Fairness). For desideratumX , allocation A satisfiesX overall if AM = A satisfies
X .

Definition 7 (Up To Each Day Fairness). For desideratum X , allocation A satisfies X up to each day if
AMt

satisfies X for all t ∈ [k].

Note that ‘up to each day’ is a strengthening of ‘overall’, while ‘per day’ is incomparable to those

two. Plugging in our fairness desiderata into these three temporal extensions gives us the hierarchy of

fairness guarantees depicted in Figure 1. Because SD-EF1 is achievable for (regular) fair division (e.g.,

via a simple round-robin procedure [14]), SD-EF1 per day and SD-EF1 overall are both individually

achievable, implying the same for EF1, PROP1, and SD-PROP1.

3 General Preferences

In this section, we present temporal fair division results in the most general setting: an arbitrary set of

goods arrive each day, and each agent has arbitrary additive preferences over them. Let us present our

main result for this general setting.

Theorem 1. For any temporal fair division instance, an allocation that is SD-EF1 per day and PROP1
overall exists and can be computed in polynomial time.

We find such an allocation using Algorithm 1. The derivation of Theorem 1 can be divided into three

conceptual steps.

Identical ordering transformation. Algorithm 1 begins by creating an auxiliary temporal fair

division instance as follows. For each day t, it creates a new instance for that day with a set of goods

M ′
t and valuations v′ such that agents have identical orderings but with the same set of utility values

as they had previously. More formally, let M ′
t = {g′t,1, . . . , g′t,|Mt|}. Then, for each agent i ∈ N ,

v′i(g
′
t,1) ⩾ v′i(g

′
t,2) . . . ⩾ v′i(g

′
t,|M ′

t|
) (common ordering) and there exists a bijection oi,t betweenMt and

M ′
t such that vi(g) = v′i(oi,t(g)) for all g ∈ Mt (same utility values). This technique has been used

previously for designing algorithms to achieve (approximate) maximin share fairness (MMS) [12], but

we use it with a novel and nontrivial analysis to ensure PROP1.

Connection to cardinality constraints. Algorithm 1 invokes a key subroutine due to Biswas and

Barman [10] that returns an EF1 allocation subject to cardinality constraints summarized below.
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Algorithm 1 SD-EF1 per day + PROP1 Overall

1: // Identical Ordering Transformation

2: v′i = ∅ for all i ∈ N
3: for t ∈ [k] do
4: M ′

t ← {g′t,1, . . . , g′t,|Mt|}
5: for i ∈ N do
6: oi,t be the goods Mt in non-increasing order of vi
7: v′i(g

′
t,j)← vi(oi,t(j)) for all j ∈ [|Mt|]

8: end for
9: end for

10: // Invoking EF1 with Cardinality Constraints algorithm of Biswas and Barman [10]

11: for t ∈ [k] do
12: Partition M ′

t into groups of size n (last one may be smaller than n) as follows: Ct,1 ←
{g′t,1, . . . , g′t,n}, Ct,2 ← {g′t,n+1, . . . , g

′
t,2n}, . . ., Ct,⌈|M ′

t|/n⌉ ← {g
′
t,(⌈|M ′

t|/n⌉−1)n+1, . . . g
′
t,|M ′

t|
}

13: end for
14: A′ ← BiswasBarmanCC(

⋃
t∈[k]

⋃
j∈[⌈|M ′

t|/n⌉]
Ct,j , v

′)

15: // Final Allocation with Daily Picking Sequences based on A′

16: A← ∅
17: for t ∈ [k] do
18: for j ∈ [|Mt|] do
19: i← Agent allocated g′t,j in A′

20: g ← i’s favourite unallocated good fromMt

21: Ai ← Ai ∪ {g}
22: end for
23: end for
24: return A

Theorem 2 (Theorem 1 of [10]). Given p disjoint sets of goodsC1, . . . , Cp and n agents with heterogeneous
additive valuations, there always exists an EF1 allocation A such that ⌊|Cℓ|/n⌋ ⩽ |Ai ∩ Cℓ| ⩽ ⌈|Cℓ|/n⌉
for every agent i ∈ N and ℓ ∈ [p], and such an allocation can be computed in polynomial time.

Algorithm 1 invokes the algorithm of Theorem 2 on the following instance. Fix a day t. Recall that
agents have identical ranked preferences forM ′

t given as g′t,1 ≽ . . . ≽ g′t,|M ′
t|
. DivideM ′

t into groups

of size n in the decreasing order of value, breaking ties arbitrarily and letting the last group have

possibly fewer than n goods: that is, let Ct,1 = {g′t,1, . . . , g′t,n}, Ct,2 = {g′t,n+1, . . . , g
′
t,2n}, and so on.

By Theorem 2, we find an allocation A′
that is an EF1 allocation for

⋃
t∈[k]M

′
t and v′, and that each

agent is allocated at most one good from Ct,j for all t and j.

Final Allocation. Algorithm 1 then takes the allocation A′
and, for each dayM ′

t = {g′t,1, . . . , g′t,|M ′
t|
},

allocates Mt through a “serial dictatorship” with the picking sequence derived from A′
. First, the agent

that is allocated g′t,1 in A′
will pick their most favourite good fromMt (the original set of goods for day

t); next, the owner of g′t,2 picks their most favourite good among the remaining goods ofMt; and so on.

We now prove that the resulting allocation A is SD-EF1 per day and PROP1 overall.

Lemma 1. Algorithm 1 returns an allocation that is SD-EF1 per day.

Proof sketch. In the picking sequence for each day t, due to partitioning of the goodsCt,1, . . . , Ct,⌈|M ′
t|/n⌉

and the property that A′
satisfies the “at most one per group” requirement, each agent appears exactly

once in the first n positions, once in the next n positions, and so on. Additionally, each agent appears
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at most once among the last |Mt| mod n positions. Such a picking order is known as “recursively-

balanced”, and is known to yield SD-EF1 [3]. A detailed proof appears in Appendix C.

To prove that A is PROP1 overall, we use the following technical lemma, the proof of which appears in

the Appendix C.

Lemma 2. Let V be a multiset ofm real values, and A = {a1, . . . , ak} and A′ = {a′1, . . . , a′k} be two
subsets of V with equal size such that aj ⩾ a′j for all j ∈ [k]. Let g = max{x : x ∈ V \ A} and
g′ = max{x : x ∈ V \A′}. Then, there exists a bijection z from A∪ {g} to A′ ∪ {g′} such that x ⩾ z(x)
for all x ∈ A ∪ {g}.

Lemma 3. Algorithm 1 returns an allocation that is PROP1 overall.

Proof. Fix an agent i ∈ N . Take a day t ∈ [k]. Rename the goods so that A′
i ∩M ′

t = {g′1, . . . , g′|A′
i∩M ′

t|
}

are the goods that i is allocated in A′
in a non-increasing order of v′i. Similarly, let Ai ∩ Mt =

{g1, . . . , g|Ai∩Mt|} be the goods i picks according to the picking sequence in order. That is, g1 is the
good picked corresponding to g′1, g2 corresponding to g′2, and so on.

Towards invoking Lemma 2, a helpful observation is that vi(gj) ⩾ v′i(g
′
j) for all j ∈ [|Ai∩Mt|]. Suppose

g′j is the r-th preferred good among M ′
t . Since Mt and M ′

t share the same multiset of utility values

for i, and gj is the top pick of i when r − 1 goods are picked, gj is at least as good as i’s r-th most

preferred good among Mt (and hence, M ′
t). This argument, combined across all days, implies existence

of a bijection zi : Ai → A′
i such that vi(g) ⩾ v′i(zi(g)) for all g ∈ Ai.

By invoking Lemma 2 with A← Ai and A′ ← A′
i over the multiset V being i’s utility values, we have

that

vi(Ai) + max
g/∈Ai

vi(g) ⩾ v′i(A
′
i) + max

g/∈A′
i

v′i(g)

Every EF1 allocation is also PROP1 [15], therefore, since A′
is EF1 (Theorem 2), we have that

v′i(A
′
i) + max

g/∈A′
i

v′i(g) ⩾
1

n
v′i(M

′) =
1

n
vi(M),

the last equality being true from the way we constructedM ′
. Combining the two inequalities above,

we get vi(Ai) + maxg/∈Ai
vi(g) ⩾ 1

nvi(M). Thus, A is PROP1.

It is worth noting that PROP1 is not a monotonic property, i.e., if vi(Ai) ⩾ vi(A
′
i) and A′

i is PROP1,

it is possible that Ai is not PROP1 (as the best good for i inM \Ai could be worth less than the best

good inM \A′
i). This is why we needed to use a more involved argument in Lemmas 2 and 3.

4 Two Agents

In this section, we consider temporal fair division with two agents. We provide a complete picture of

temporal fairness notions that can be guaranteed in this case. We establish a strong positive result, then

show that it is the best possible by producing counterexamples for stronger desiderata.

4.1 Possibilities

Our main goal in this section is to show that SD-EF1 per day and EF1 up to each day can be achieved

for two agents. We begin by introducing an envy-balancing lemma, a powerful tool for finding temporal

allocations to two agents. We later use this lemma to derive not only the aforementioned guarantee,

but also other appealing guarantees.
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Definition 8 (Cancelling Allocations). We say that allocations B and B′ of a set of goods S to two agents
cancel out if vi(Bi)+ vi(B

′
i) ⩾ vi(B3−i)+ vi(B

′
3−i), ∀i ∈ [2]. In words, they cancel out if hypothetically

allocating two copies of each good in S, one according to B and the other according to B′, achieves (exact)
envy-freeness.

Lemma 4 (Envy-Balancing Lemma). Suppose that for each day t ∈ [k], we are given two EF1 allocations
Bt and B′

t of the set of goods Mt that cancel out. Then, we can compute, in polynomial time, an allocation
A of the set of all goods M = ∪t∈[k]Mt that is EF1 up to each day and AMt ∈ {Bt, B

′
t} for each day

t ∈ [k].

Note that the lemma achieves EF1 up to each day while not only retaining the EF1 per day property of

the input allocations, but in fact by using exactly one of the two input allocations on each day. Thus, if

the per day allocations given as input satisfy properties stronger than EF1, those properties are also

retained per day; this is important as we will use this lemma to derive such stronger per day guarantees.

We include the proof of the lemma in Appendix D. At a high level, it works by realizing that when

two allocations cancel out, we know that both agents have at least one of the two allocations where

they feel no envy (they like the bundle they were given more than the bundle given to the other agent).

With this in mind, we can carefully choose which allocation to assign on each day, in such a way that

whenever an agent is feeling too much envy, we can give them their preferred allocation on that day,

always keeping envy levels “balanced” after each time-step.

For readers familiar with the “informed” model of online fair division from He et al. [22], this can be

seen as a generalization of their two agent algorithm. While they achieve EF1 up to each day while

allocating a single good during each time step, we provide a similar guarantee while allocating batches

of goods and simultaneously maintaining fairness over the batches.

We are now ready to show that the pair of allocations required by the envy-balancing lemma — both

satisfying EF1 and cancelling each other out — exists and can be computed in polynomial time. In

fact, we find a single partition (Bt,1, Bt,2) of the goods in Mt such that both Bt = (Bt,1, Bt,2) and
B′

t = (Bt,2, Bt,1) satisfy the stronger property of SD-EF1.

Lemma 5. Given the preferences of two agents over a set of goods Mt, one can efficiently compute a
partition (Bt,1, Bt,2) ofMt such that bothBt = (Bt,1, Bt,2) andB′

t = (Bt,2, Bt,1) are SD-EF1 allocations.

We can plug these allocations into the envy-balancing lemma (Lemma 4) to get our desired main result.

Theorem 3. For temporal fair division with n = 2 agents, an allocation that is SD-EF1 per day and EF1
up to each day exists and can be computed in polynomial time.

We include both the proofs for Lemma 5 and Theorem 3 in Appendix D. For the interested reader,

we also include some notes on the connection between Lemma 5 and the well-known Bihierarchy

Theorem from Budish et al. [13], as well as how to achieve other fairness notions per day while using

the envy-balancing lemma, such as EFX and EF1+PO.

4.2 Impossibilities

We have shown that when there are only two agents, the strong guarantee of EF1 up to each day

can be obtained along with the guarantee of SD-EF1 per day. However, one wonders if even stronger

guarantees are possible, such as strengthening EF1 up to each day to SD-EF1 up to each day. We find

that not only is this strengthening impossible, but even if we relax SD-EF1 up to each day to SD-EF1

overall, it is impossible to achieve alongside EF1 per day. Together, these two impossibility results

prove that our guarantee of SD-EF1 per day and EF1 up to each day from Theorem 3 is the strongest

possible in the hierarchy shown in Figure 1. We include the counterexamples proving both these claims

in Appendix D.
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Theorem 4. For temporal fair division with n = 2 agents, SD-EF1 up to each day cannot be guaranteed.

Theorem 5. For temporal fair division with n = 2 agents, EF1 per day and SD-EF1 overall cannot be
guaranteed simultaneously.

4.3 Two Agents and Further Restrictions

As the final part of this section, we note that when further restrictions are placed on two-agent instances,

we receive even stronger results. Particularly, in Appendix D, we prove and provide a discussion of the

following theorem.

Theorem 6. For temporal fair division with n = 2 agents and identical days, an allocation that is SD-EF1
per day, SD-EF1 up to each day, and SD-EF up to each even day exists and can be computed in polynomial
time.

5 Identical Orderings

We next look at instances where agents have identical orderings over all goods in M . Not only are

results in this setting practically useful, as there many real life scenarios where participants agree on

the ordinal ranking of goods, but results under identical orderings are also very technically useful. As

can be seen from our main result in Section 3, reducing a general setting to one where agents have

similar orderings over the goods can lead to fairness guarantees in the original setting. We will show in

future sections that the possibility results we develop here can be applied as black-boxes to achieve

strong results in scenarios where agents have heterogeneous orderings.

Possibilities. Our main result for the case of identical orderings is the following theorem:

Theorem 7. For temporal fair division with identical orderings, an allocation that is SD-EF1 per day and
SD-EF1 overall exists and can be computed in polynomial time.

We provide a detailed proof of Theorem 7 in the Appendix E. Intuitively, we accomplish this by creating

two partitions over the set of goodsM , labeled P1 and P2, which are defined below.

P1 =

{
T (Mt, nr) \ T (Mt, n(r − 1)) : r ∈

[⌈
|Mt|
n

⌉]
, t ∈ [k]

}
,

P2 =

{
T (M,nr) \ T (M,n(r − 1)) : r ∈

[⌈
|M |
n

⌉]}
.

In words, P2 splits the entire set of goodsM into the agents’ most preferred n goods, their next most

preferred n goods, etc. P1 does a similar partitioning over M , but does the partitioning separately for

each day. It is known that when agents have identical orderings, guaranteeing that each agent receives

1 good from their n favourite goods, 1 good from their next n favourite goods, etc. will guarantee an

SD-EF1 allocation. We prove that it is possible to construct an allocation where each agent gets exactly

1 good from each set in P1 and from each set in P2, thereby ensuring SD-EF1 per day and overall.

To an initiated reader, the problem of finding an allocation that meets the above constraints may be

immediately reminiscent of the bihierarchy framework of Budish et al. [13]. We require that from each

set of (at most) n goods out of a family of sets, each agent receives (at most) one good. The sets produced

by each desideratum are mutually non-overlapping, forming a “hierarchy”, but the sets produced by one

desideratum can be overlapping with those produced by the other, resulting in two different hierarchies.

However, the problem is that with n > 2 agents, we have a third set of constraints: each good must be

assigned to (exactly) one agent. This forms a third hierarchy (which cannot be assimilated into either of

the two previous hierarchies), preventing one from applying the bihierarchy framework.
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Impossibilities. In the case of 2 agents, imposing the additional restriction of identical days allowed

for very strong results, making it possible to satisfy SD-EF1 per day and SD-EF1 up to each day. This

is unfortunately not the case when the identical days restriction is imposed in addition to identical

preferences. Below, we show via a fascinating counterexample that even when an instance has identical

preferences and identical days, it is not always possible to even achieve SD-EF1 up to each day by itself.

Theorem 8. For temporal fair division with identical days and identical preferences, SD-EF1 up to each
day cannot be guaranteed.

Proof. Consider the following instance in which twenty-four goods arrive over four identical days:

Mt = {g1,t, g2,t, g3,t, g4,t, g5,t, g6,t} for all t ∈ [4]. Twelve agents have identical valuations given by

v(g1,t) = 6, v(g2,t) = 5, v(g3,t) = 4, v(g4,t) = 3, v(g5,t) = 2, v(g6,t) = 1 (since we seek SD-EF1, it

only matters that the agents strictly prefer g1,t ≻ g2,t ≻ g3,t ≻ g4,t ≻ g5,t ≻ g6,t for all t ∈ [4], and are

indifferent between any two goods gl,t, gl,t′ for all l ∈ [6], t, t′ ∈ [4].

Consider how the requirement of SD-EF1 up to each day restricts how each good can be allocated:

• The bundle M2 will contain 12 goods. By the necessity condition of Proposition 1, we know

for AM2
to satisfy SD-EF1, it must be the case that each Agent receives exactly 1 good from

T (M2, 12) = M2.

• For AM3
to be SD-EF1, it must be the case that each agent receives exactly 1 of the goods in

T (M3, 12). This is because T (M3, 12) will contain goods g1,t, g2,t, g3,t, g4,t for all t ∈ [3]. The
next good in the agents’ ordering will be a copy of g5,t for some t, so all the goods in T (M3, 12)
are strictly preferred over the remaining goods inM3 \ T (M3, 12).

• ForAM4
to be SD-EF1, it must be the case that each agent gets exactly 1 of the goods in T (M4, 12).

This is because T (M4, 12) will contain goods g1,t, g2,t, g3,t for all t ∈ [4]. Similar to the previous

case, the next good in the agents’ ordering will be a copy of g4,t for some t, so it must be

the case that all the goods in T (M4, 12) are strictly preferred over the remaining goods in

M4 \ T (M4, 12). Since there are 24 total goods in M4, we can also say that each agent must

receive exactly 2 goods from the set T (M4, 24) = M4 . Since no agent can have more than 1
good from T (M4, 12), the only way to satisfy this condition is to give each agent exactly 1 good

from T (M4, 24) \ T (M4, 12).

t = 1 t = 2 t = 3 t = 4

g1 1 7 / /

g2 2 8 / /

g3 3 9 / /

g4 4 10 / /

g5 5 11 / /

g6 6 12 / /

Figure 2: Restrictions Placed on the Allocation by SD-EF1 Up To Any Day

Figure 2 makes these restrictions clear. The restrictions over M2 are shown in Blue, M3 in Green, and

M4 in Red. Each box represents a group of 12 goods that all must go to different agents. Notice that the

good g4,3 is contained in a restriction fromM3 andM4. Due to itsM3 restriction, it cannot be given

to an agent that has been assigned a good from T (M2, 8). Due to its M4 restriction, it cannot be given
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to an agent that been assigned a good from T (M, 12) \ T (M2, 6). However, these two groups together

make up the entire set of goodsM2, which contains 12 goods, each assigned to one of the 12 agents.
So there is no agent we can assign g4,3 to that will lead to the satisfaction of SD-EF1 for AM2

, AM3
and

AM4
.

6 Identical Days

In Section 3, we showed that in the general model, we can achieve SD-EF1 per day and PROP1 overall.

In this section, we will show if we assume the additional restriction that the sets of goods which arrive

on each day are identical, then a slightly stronger guarantee can be achieved overall.

Theorem 9. For any temporal fair division instance with identical days, it is possible to find an allocation
that is SD-EF1 per day and SD-PROP1 overall in polynomial time.

To achieve these guarantees, we use an algorithm that is almost identical to Algorithm 1, the algorithm

which was used to achieve SD-EF1 per day and PROP1 overall in the general case, but with one major

change.

Algorithm 1 first finds an EF1 overall allocation in a reduced version of the problem where agents have

identical orderings over all the goods on each day, and uses that to construct an allocation in the original

instance that is PROP1 overall. The key insight that can be leveraged to get stronger guarantees in

this less general setting is that when we have identical days, we know that the output of the “Identical

Ordering Transformation” from Algorithm 1 will result in an instance where all agents have identical

orderings over the entire set of goodsM , not just over the goods from each individual day. This stronger

guarantee from the Identical Ordering Transformation allows us to use Theorem 7 to find an SD-EF1

per day and SD-EF1 overall allocation over the reduced instance (rather than the algorithm of Biswas

and Barman [10] which only guarantees EF1 overall). We can then use this allocation as the basis for

the picking order that Algorithm 1 uses to construct the final allocation over the original instance. We

include a detailed proof of Theorem 9 in Appendix F, including why an SD-EF1 allocation over the

identical orderings instance will lead to a SD-PROP1 allocation in the original instance.

7 Discussion

In this work, we are able to find possibility and impossibility results that give a picture of what can be

achieved in the temporal fair division model. This picture is quite clear when focusing on special cases

such as two agents or identical orderings. However, we still leave many questions open for future work.

All of the entries in Table 1 marked by a “?” remain open. The most interesting question in the general

setting is:

Open Question: In temporal fair division, does an allocation that is SD-EF1 (or EF1) per day

and EF1 overall always exist?

Other interesting open questions include the existence of EF1 up to each day under identical orderings

or identical days, and the existence of (SD-)EF1 per day and (SD-)EF1 overall under identical days.

Finally, it would be an interesting further direction to take a more abstract view of the temporal fair

division model. In Appendix G, we introduce a generalized model of temporal fair division, where a fair

allocation must be found simultaneously over a set of goods, and over each set in a collection of subsets

of those goods. It would be very interesting to explore this interpretation of our model further.
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Appendix

A Additional Related Work

Repeated (or many-to-many) matching. Both our works are inspired by the earlier work of

Gollapudi et al. [21], who consider the repeated two-sided matching problem, where there are n agents

on each side of a two-sided market with agents on each side having preferences over those on the

other side, and the goal is to compute a perfect matching on each day over a period of days. They

also seek guarantees such as EF1 up to each day. However, their positive results are only for binary

valuations, and they leave achieving EF1 (for both sides) up to each day for general additive valuations

as an open question. Finally, note that repeated perfect matching effectively produces a many-to-many

matching. Freeman et al. [18] study how to achieve EF1 (for both sides) in this setting, which can

be viewed as an EF1 overall guarantee. They show how to achieve it when agents on each side have

identical preferences, but leave it open for the case of general additive valuations. Note that unlike

in fair division, EF1 overall is not straightforward in their case because EF1 needs to be achieved for

agents on both sides simultaneously.

Online Fair Division In addition to the online fair division work mentioned in the main body, Benadè

et al. [8] show thatO(
√
k log n) envy can be maintained up to k days, and also point out that randomized

algorithms may have much greater power against a nonadaptive adversary, who sets the full instance

before the algorithm starts making random choices, with no super-constant envy lower bound known

for this case. Online fair division with a nonadaptive adversary is still a stronger model than temporal

fair division due to the fact that the algorithm does not have knowledge of what goods will arrive in

future time periods.

Constrained fair division. We remarked that achieving an overall fairness guarantee can be reduced

to the one-shot fair division model, taking an instance with the set of all goodsM . When we additionally

14



seek a per-day fairness guarantee, this can be modeled as a constraint on the space of feasible allocations,

and the question becomes whether there is a constrained allocation that still achieves the desired fairness
guarantee. This model of constrained fair division has also been studied in the literature. Biswas

and Barman [10] study a model with cardinality constraints, whereM is partitioned into categories

(C1, . . . , Cp) and an allocationA is feasible only if |Ai∩Cℓ| ⩽ ⌈|Cℓ|/n⌉ for all i, ℓ. That is, the allocation
should divide the goods from each category as evenly as possible (in a “balanced” manner). As we

remark in Section 5, when agents have identical orderings over the goods, the SD-EF1 per day constraint

can be reduced to a cardinality constraint, immediately yielding an allocation that is SD-EF1 per day

and EF1 overall. However, for this case, we are able to achieve the stronger guarantee of SD-EF1 per

day and SD-EF1 overall. The algorithm of Biswas and Barman [10] relies on the envy-cycle elimination

technique of Lipton et al. [26] at the overall scale, which is very much reliant on the exact cardinal

values, and hence, fails to achieve SD-EF1 overall. We are able to make a better algorithm, round

robin, work via a non-trivial connection to the strong perfect graph theorem. Cardinality constraints

(partition matroid constraints) have been generalized to matroid constraints, and the existence of an

EF1 allocation subject to matroid feasibility constraints is a major open question [10, 16]. For further

discussion, see Section 7. Finally, the bihierarchy framework of Budish et al. [13] can also be viewed as

a method for finding a constrained allocation, which we use in some of our results. Although, our most

interesting results deal with sets of constraints that go beyond bihierarchies.

B Missing Proofs from Section 2

B.1 Properties of SD-EF1 Allocations

We will begin by noting some useful properties of SD-EF1 allocations. Specifically, in Section 2, we

establish the function Ti(S, r), which returns agent i’s top r ordered goods from a set S, breaking ties

according to some arbitrary rule consistent across all agents. In contrast, the definitions for SD-EF1 and

SD-PROP1 are based around sets of the form Hi(S, g) = {g′ ∈ S : g′ ≽i g}, which returns all goods

from S that are weakly preferred to g. As will be seen in other proofs in this Appendix, it is often very

useful to be able to look at a set of exactly size r of some agent’s top goods, which the sets Hi(S, g) do
not allow for. Below, we will show relations between the Ti(S, r) function, and the SD-EF1 definition,

that allows us to often use it without loss of generality when proving statements about SD-EF1 and

SD-PROP1, vastly simplifying many of our proofs.

Observation 1. For any agent i ∈ N and good g ∈ S, if |Hi(S, g)| = r, then Ti(S, r) = Hi(S, g),
regardless of the arbitrary tie-breaking order dictated by Ti.

Proof. This follows from the fact that agent i’s ordering ≽i over the goods in S will be transitive.

|Hi(S, g)| = r means that there are exactly r goods that i weakly prefers to g. It must be the case that

for any good g+ ∈ Hi(S, g), g
− ∈ S \ Hi(S, g), we must have that g+ ≻i g

−
. If there were some

goods g+ ∈ Hi(S, g), g
− ∈ S \Hi(S, g) such that g− ≽i g

+
, then by the transitivity of i’s ordering,

we know that g− ≽i g
+ ≽i g is true, contradicting that fact that g− ∈ S \Hi(S, g).

Therefore, when |Hi(S, g)| = r, we know that there are r goods in S that agent i strictly prefers to all

other goods in S. It is clear that Ti(S, r) will return exactly those goods, and will not need to use its

tie-breaking order in this case.

With this observation in mind, we can now list several necessary and sufficient conditions for an

allocation to be SD-EF1, which relate it directly to the Ti function.

Proposition 1. Let A be an allocation of a set of goods S.
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• (Sufficiency) If |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1 for all i ∈ N and r ∈ [|S|], then A is SD-EF1.
If n = 2, the condition can be written as |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋. If Ti(S, r) = Tj(S, r) for all
i, j ∈ N , the condition can be written as |Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}.

• (Necessity) If A is SD-EF1, then |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋ for all i ∈ N and r ∈ [|S|] conditioned on
g ≻i g

′ for all g ∈ Ti(S, r) and g′ ∈ S \ Ti(S, r). Further, if Ti(S, r) = Tj(S, r) for all i, j ∈ N ,
then the condition can be written as |Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}.

Proof. Below are the proofs for both the sufficiency and necessity conditions:

• (Sufficiency)

General Case Assume that some agent i has the ordering g1 ≽i g2 . . . ≽i gs over the set of
goods S, where some preferences may be strict. For contradiction, assume that for all r ∈ [|S|]
and j ∈ N , |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1, but for some g ∈ S and j ∈ N , we have

|Ai ∩Hi(S, g)| < |(Aj \ {gj}) ∩Hi(S, g)|, where gj is agent i’s most preferred good from Aj .

Let |Hi(S, g)| = r′. Then from Observation 1, we know that Ti(S, r
′) = Hi(S, g), and from our

assumption, we know that |Ai ∩ Ti(S, r
′)| ⩾ |Aj ∩ Ti(S, r

′)| − 1. Note that this is equivalent to
saying that |Ai ∩Hi(S, g)| ⩾ |Aj ∩Hi(S, g)| − 1.

To get the contradiction, we just need to notice that |(Aj \ {g∗}) ∩Hi(S, g)| ⩾ |Aj ∩Hi(S, g)|−
1 for all g∗ ∈ Aj , since if g∗ ∈ Hi(S, g), then we have |(Aj \ {g∗}) ∩Hi(S, g)| =
|Aj ∩Hi(S, g)| − 1, and otherwise we have |(Aj \ {g∗}) ∩Hi(S, g)| = |Aj ∩Hi(S, g)|.

2 Agents For the case of 2 agents (Agent i and Agent j), it is sufficient to notice that

|Ai ∩ Ti(S, r)| ⩾ ⌊r/2⌋ implies that |Aj ∩ Ti(S, r)| ⩽ ⌈r/2⌉, since Aj = S \Ai when there are

two agents. Since ⌊r/2⌋ ⩾ ⌈r/2⌉ − 1, this gives us that |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1 for

all i, j ∈ N and r ∈ [|S|], which we know implies SD-EF1.

Identical Orderings Finally, in this case, we can see that for all i ∈ N , r ∈ [|S|], |Ai ∩ Ti(S, r)| ∈
{⌊r/n⌋ , ⌈r/n⌉} implies that |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)|−1. This is due to the fact that since
Ti(S, r) = Tj(S, r) for all i, j, we must have that |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋ and |Aj ∩ Ti(S, r)| ⩽
⌈r/n⌉.

• (Necessity)

General Case For contradiction, assume this is false. There is some allocation A over a set of

goods S, some agent i and some r ∈ [|S|] such that A is SD-EF1 and |Ai ∩ Ti(S, r)| < ⌊r/n⌋,
and for all goods g ∈ Ti(S, r), g

′ ∈ S \ Ti(S, r), g ≻i g
′
. Assume that agent i has the following

order over the goods in S, g1 ≽i g2 . . . ≽i gs where some of the preferences may be strict.

Let g∗ be the good inTi(S, r) that is not strictly preferred to any other good inTi(S, r). Since agent
i strictly prefers all goods in Ti(S, r) to all goods that are not, we must have that |Hi(S, g

∗)| = r,
and thus by Observation 1, Ti(S, r) = Hi(S, g

∗). Therefore, we have that |Ai ∩Hi(S, g
∗)| <

⌊r/n⌋.
When |Ai ∩Hi(S, g

∗)| < ⌊r/n⌋, note that by the fact that every good must be allocated to one of

the n agents, there must exist some j ∈ N such that |Aj ∩Hi(S, g
∗)| ⩾ ⌊r/n⌋+ 1. This means

that for this j, we have |Ai ∩Hi(S, g
∗)| < |Aj ∩Hi(S, g

∗)| − 1. But that means that for any

gj ∈ Aj , we must have |Ai ∩Hi(S, g
∗)| < |(Aj \ {gj}) ∩Hi(S, g

∗)|, contradicting the fact that

A is SD-EF1.

Identical Orderings In the case where agents have identical orderings over the goods, it can be

seen that |Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉} follows as a consequence of the necessity statement

in the general case. When every agent gets at least items ⌊r/n⌋ of some set of size r, there must be
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some agent iwho gets exactly ⌊r/n⌋ items from the set. When n divides r, then each agent getting
at least ⌊r/n⌋ goods implies that each agent gets exactly r/n = ⌈r/n⌉ goods. Otherwise, we will
have ⌊r/n⌋ = ⌈r/n⌉− 1, and therefore, there can be no other agent j such that |Aj ∩ T (S, r)| >
⌈r/n⌉, or else it would immediately follow that |Ai ∩Hi(S, g

∗)| < |(Aj \ {gj}) ∩Hi(S, g
∗)| for

some g∗, and all gj ∈ Aj .

B.2 Properties of SD-PROP1

Here we formalize the fact that SD-EF1 implies SD-PROP1, and that SD-PROP1 implies PROP1, which

completes the hereditary relationships of desiderata shown in Figure 1.

Proposition 2. If an allocation A over a set of goods S is SD-EF1, then it will also be SD-PROP1.

Proof. Assume that this is false, and for some allocation A over a set of goods S, we have that A is

SD-EF1, but for some i ∈ N and some g∗ ∈ S, we have that |Ai ∩Hi(M, g∗)| < ⌊|Hi(S,g
∗)|/n⌋.

Note that since every good must be allocated to some agent, if |Ai ∩Hi(S, g
∗)| < ⌊|Hi(S,g

∗)|/n⌋ were
true, then there must be some other agent j ∈ N such that |Aj ∩Hi(S, g

∗)| ⩾ ⌊|Hi(S,g
∗)|/n⌋ + 1.

This would directly imply that |Ai ∩Hi(S, g
∗)| < |Aj ∩Hi(S, g

∗)| − 1, so clearly |Ai ∩Hi(S, g
∗)| <

|(Aj \ {gj}) ∩Hi(S, g
∗)| for any gj ∈ Aj . This contradicts the fact that A is SD-EF1.

Proposition 3. If an allocation A over a set of goods S is SD-PROP1, then it will also be PROP1.

Proof. Assume that some agent i has the ordering g1 ≽i g2 . . . ≽i g|S| over the set of goods S, where
some preferences may be strict, and ties are broken based on the the tie-breaking ordering of the

function Ti.

Define the bundle Pi = {g1, gn+1, g2n+1, . . .}. It must be the case that vi(Pi) ⩾ 1
nvi(S). To see this,

partition S into disjoint subsets of size n in the form of C1 = {g1, . . . , gn} , C2 = {gn+1, g2n} , C3 =
{g2n+1, g3n}, and so on. Notice that in each subset C , there is a single good in g ∈ Pi ∩ C , and that

good is weakly preferred to all other goods in C . Thus for each C , we must have that vi(g) ⩾ 1
nvi(C).

Summing over all subsets we get our desired inequality.

Next, notice that for any g ∈ S, |Ai ∩Hi(S, g)| ⩾ ⌊|Hi(S,g)|/n⌋ implies that |(Ai ∪ {g∗}) ∩Hi(M, g)| ⩾
⌈|Hi(S,g)|/n⌉, where g∗ is agent i’s most preferred good in S \Ai. This is because if |Ai ∩Hi(S, g)| ⩽
⌈|Hi(S,g)|/n⌉ were true, then there would need to be some good g′ such that g′ ∈ Hi(S, g) and g′ ̸∈ Ai.

Since g∗ is i’s most preferred good that is not inAi, then we know that g∗ ≽i g
′
, and thus g∗ ∈ Hi(S, g).

To complete the proof, we will show that Ai ∪ {g∗} ≽SD

i Pi, where g∗ is agent i’s most pre-

ferred good from S \ Ai. For contradiction, assume this were false, and that for some g ∈ S,
|(Ai ∪ {g∗}) ∩Hi(S, g)| < {Pi ∩Hi(S, g)}. Let |Hi(S, g)| = r. By Observation 1, we must have

that Hi(S, g) = Ti(S, r) = {g1, . . . , gr}. Because of the way that we constructed Pi, we know that

there cannot be more than ⌈r/n⌉ = ⌈|Hi(S,g)|/n⌉ goods from Pi in {g1, . . . , gr}. However, since we
know that A is SD-PROP1, it must be the case that |(Ai ∪ {g∗}) ∩Hi(S, g)| ⩾ ⌈|Hi(S,g)|/n⌉, giving a

contradiction, and showing that Ai ∪ {g∗} ≽SD

i Pi.

This tells us that vi(Ai ∪ {g∗}) ⩾ vi(Pi) ⩾ 1
nvi(S) for any i ∈ N .

Note that since SD-PROP1 only considers agents’ orderings over the goods inM , the above proposition

implies that an allocation that is SD-PROP1 for a set of orderings, is guaranteed to be PROP1 on any set

of valuation function that induce those orderings.
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C Missing Proofs from Section 3

C.1 Proof of Lemma 1

Proof of Lemma 1. Let A be the allocation returned by Algorithm 1. Due to Proposition 1, to prove that

A is SD-EF1 per-day, it is sufficient to show that |AMt,i ∩ Ti(Mt, r)| ⩾ |AMt,j ∩ Ti(Mt, r)| − 1 for all

i, j ∈ N , t ∈ [k], and r ∈ [|Mt|].

Let A′
represent the allocation that the algorithm finds for the identical orderings transformation

instance. In each day t ∈ [k], we have that M ′
t is partitioned into sets Ct,1 = {g′t,1, . . . , g′t,n}, Ct,2 =

{g′t,n+1, . . . , g
′
t,2n}, and so on, in order of utility value. Without loss of generality, assume that the

ordering of the labeling of the goods is also consistent with the tie-break ordering of Ti. The allocation

A′
M ′

t
will guarantee that no agent receives more than 1 good from each set Ct,l for all l. Note that this

will imply that for all i ∈ N and r ∈ [|M ′
t |], we will have |A′

i ∩ T (M ′
t , r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}. By the

sufficiency condition of Proposition 1, this means that A′
M ′

t
will be SD-EF1.

Next, Algorithm 1 uses a picking order procedure to construct the final allocationAMt fromA′
M ′

t
. It can

be seen that each agent is assigned exactly one “pick” over the goods inMt for each good they received

in the allocation A′
M ′

t
, with the ordering of these picks corresponding to the ordering ofM ′

t induced by

the Ti function. Therefore, we know that for any r ∈ [|Mt|], after the rth pick of the procedure, each

agent will have received either ⌊r/n⌋ or ⌈r/n⌉ picks. It can also be seen that after the rth pick of the

procedure, |Ai ∩ Ti(Mt, r)| ⩾ ⌊r/n⌋ will be true for each agent i. This is because at each pick r, the
picking agent will select their most preferred good from Mt that has not yet been picked. After pick r,
only r goods fromMt have been assigned, and |Ti(Mt, r)| = r, so each of an agent’s picks up to and

including the rth overall pick of the procedure will all have been used to select an item from their top r
goods from Mt.

For contradiction, assume our original claim is not true, the allocation on some day is not SD-EF1,

and therefore, there exists some agents i, j ∈ N , some day t ∈ [k], and some r ∈ [|Mt|], such that

|AMt,i ∩ Ti(Mt, r)| < |AMt,j ∩ Ti(Mt, r)| − 1.

Let r′ be the last pick in the picking sequence where agent j picked a good from Ti(Mt, r). We know

that |A′
i ∩ T (M ′

t , r
′)| ∈ {⌊r′/n⌋ , ⌈r′/n⌉}, so agent i must have received at least ⌊r′/n⌋ picks prior to

pick r′, and each of those picks must have been used to select a good from Ti(Mt, r) (Agent i would
never have used one of these picks to select a good not from Ti(Mt, r), since we know there was at

least one good from Ti(Mt, r) available, the good that agent j selected with pick r′). Similarly, we

know that

∣∣∣A′
j ∩ T (M ′

t , r
′)
∣∣∣ ∈ {⌊r′/n⌋ , ⌈r′/n⌉}, so agent j could only have had a maximum of ⌈r′/n⌉

picks up to and including the r′th overall pick. Since r′ is the last pick where agent j selected a good

from Ti(Mt, r), that means Aj can only contain at most ⌈r′/n⌉ goods from Ti(Mt, r). This gives us a
contradiction since ⌊r′/n⌋ ⩾ ⌈r′/n⌉ − 1.

C.2 Proof of Lemma 2

Proof of Lemma 2. In the case where g ⩾ g′, then z can be constructed by simply mapping g to g′ and
aj to a′j for all j ∈ [k].

Now, the case where g < g′. Suppose g is the rth element of V (ties broken such that g is ranked

lowest possible). Since g is the maximum among V \A, the first r − 1 elements of V are should be in

A. Therefore, {a1, . . . , ar−1} ∪ {g} are the top r elements of V , and we can simply create a bijection

from those elements to {a′1, . . . a′r−1} ∪ {g′} as desired. For the remaining k − r bottom ranks of both

A and A′
, we simply use z(aj) = a′j since we know from the statement that aj ⩾ a′j , which completes

the proof.
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Algorithm 2 Envy-Balancing Algorithm

Input for t ∈ [k], a pair of allocations (B1
t , B

2
t ) of the set of goodsMt that cancel out, with labels

assigned in such a way that if neither of the allocations is Envy-Free, then v1(B
1
t,1)− v1(B

1
t,2) ⩾ 0 and

v2(B
2
t,2)− v2(B

2
t,1) ⩾ 0.

Output An allocation A of the set of goodsM = ∪t∈[k]Mt

F ← ∅, S ← ∅, e1 ← 0, e2 ← 0
for t ∈ [k] do
if v1(B1

t,1) ⩾ v1(B
1
t,2) ∧ v2(B

1
t,2) ⩾ v2(B

1
t,1) then

F ← F ∪ {B1
t }

else if v1(B2
t,1) ⩾ v1(B

2
t,2) ∧ v2(B

2
t,2) ⩾ v2(B

2
t,1) then

F ← F ∪ {B2
t }

else
if e1 ⩽ 0 then
S ← S ∪ {B1

t }
e1 ← e1 + (v1(B

1
t,1)− v1(B

1
t,2))

e2 ← e2 + (v2(B
1
t,2)− v2(B

1
t,1))

else
S ← S ∪ {B2

t }
e1 ← e1 + (v1(B

2
t,1)− v1(B

2
t,2))

e2 ← e2 + (v2(B
2
t,2)− v2(B

2
t,1))

end if
end if
if e1 ⩾ 0 ∧ e2 ⩾ 0 then
F ← F ∪ S
S ← ∅, e1 ← 0, e2 ← 0

else if e1 ⩽ 0 ∧ e2 ⩽ 0 then
F ← F ∪ SWAP(S)
S ← ∅, e1 ← 0, e2 ← 0

end if
end for
F ← F ∪ S
A← allocation in which Mt is allocated according to the allocation ofMt in F , for each t ∈ [k]
return A

D Missing Proofs from Section 4

D.1 Proof of Lemma 4

Proof of Lemma 4. For any allocation A, we will use the following language to describe the agents’

relative valuations of their bundles compared to the other agent:

• For any allocation A where vi(A3−i) > vi(Ai) for some agent i ∈ {1, 2}, the negative value
vi(Ai)− vi(A3−i) will be refereed to as the “Envy” felt by Agent i in A.

• Similarly, for any allocation A where vi(Ai) > vi(A3−i) for some agent i ∈ {1, 2}, the positive
value vi(Ai)− vi(A3−i) will be referred to as the “surplus utility” that the respective agents feels
in A.

For each t ∈ [k], let B1
t , B

2
t be two allocations overMt that are both EF1 and cancel out. Since these

allocations cancel out, we can make the following assumption without loss of generality:

19



For every day t, If neither of B1
t or B2

t are envy-free, then without loss of generality, we say that

v1(B
1
t,1) > v1(B

1
t,2)

v2(B
1
t,1) > v2(B

1
t,2)

v1(B
2
t,1) < v1(B

2
t,2)

v2(B
2
t,1) < v1(B

2
t,2)

This is due to the fact that the allocations canceling out allows us to know that exactly one agent feels

envy in each allocation (if they both felt envy in some allocation then the other allocation would have

to be envy free in order to cancel out), and the same agent cannot feel envy in both allocations (or else

their envy would clearly not cancel out). For simplicity we assume that in this case, Agent 2 always
feels envy in B1

t , and Agent 1 always feels envy in B2
t . B

1
t can be thought of as Agent 1’s “preferred”

allocation, and B2
t as Agent 2’s “preferred” allocation. We can further conclude that the equalities in

each agent’s preferred allocation must be strict, since if any agent was indifferent between the bundles

of one allocation, they could not feel any envy in the other allocation, so therefore one of the two

allocations would need to be envy-free.

Algorithm 1 functions by examining each day in order, and picking one allocation from each day’s

pair. When the algorithm selects an allocation for some day, it puts it into one of two sets. F is the

“Final” set. If an allocation is put into F , that means that it will be in the final allocation returned by the

Algorithm. S is the “Swap” set. If an allocation is put into S, that means that it may be changed at some

point in the future. Specifically, the algorithm may perform a SWAP on S. This means that for every

day t ∈ [k], if an allocation from day t is in S, that allocation will be replaced with the other allocation

from day t that is not in S. We will refer to St and Ft as the contents of the sets S and F directly after

iteration t of the algorithm has completed, and will refer to SWAP(S) as the contents of S if a SWAP

were performed on it. With slight abuse of notation, for any set T containing allocations over some

days, we will refer to AT as the allocation induced by combining all the per-day allocations in T .

Clearly Algorithm 1 will produce an allocation that is EF1 Per-Day. We will show that it also produces

an allocation that is EF1 up to each day.

To do this, we will first note that for both agents i ∈ {1, 2}, for any possible set S during the runtime of

the algorithm, if an agent feels envy in the allocation AS , then they will not feel envy in the allocation

A
SWAP(S). This follows from the fact that performing a SWAP on S involves replacing each allocation

in B ∈ S with an allocation that cancels out B. Let D ⊆ [k] be a set of days such that S contains an

allocation Bt for each day t ∈ D. LetD+
be the days where the allocation Bt ∈ S is agent i’s preferred

allocation, and D− = D \D+
. From the fact that we know the pair of allocations (Bi

t, B
3−i
t ) on each

day cancels out, we have:

∑
t∈D+

(vi(B
i
t,i)− vi(B

i
t,3−i)) ⩾

∑
t∈D+

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i ))

∑
t∈D−

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩽

∑
t∈D−

(vi(B
i
t,i)− vi(B

i
t,3−i))

together gives us the following implication:

vi(AS,i)− vi(AS,3−i) =
∑
t∈D+

(vi(B
i
t,i)− vi(B

i
t,3−i))−

∑
t∈D−

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩽ 0

implies
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vi(ASWAP(S),i)−vi(ASWAP(S),3−i) =
∑
t∈D−

(vi(B
i
t,i)− vi(B

i
t,3−1i))−

∑
t∈D+

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩾ 0

Along with the above facts, proving the following inductive hypothesis will be sufficient to show that

the allocation returned by Algorithm 1 will be EF1 up to each day:

For all t ∈ [k], if the following conditions hold after the (t− 1)th iteration of the algorithm, they will

hold at the tth iteration.

• AFt is an envy-free allocation.

• ASt is an EF1 allocation.

• A
SWAP(St) is an EF1 allocation.

We will show this by analyzing each possible state the algorithm can be in after some iteration t.

First, we will show that this holds for some obvious cases.

• Day t has an EF Allocation When the pair (B1
t , B

2
t ) for some day t contains an EF allocation,

then the algorithm simply adds that allocation to F . This clearly maintains the envy-freeness of

Ft, and the contents of St will be the same as St−1.

• During iteration t, some allocationBi
t is added to S that causes neither agent to feel envy

over ASt−1∪{Bi
t} Directly after Bi

t has been added to S, AS will be an Envy-Free allocation,

and the algorithm will move the entire current contents of S to F . AFt will remain EF since the

algorithm is adding an EF allocation to it, and ASt , ASWAP(St) will trivially meet their conditions

since St will be empty.

• During iteration t, an allocation Bi
t is added to S that causes both agents to feel envy

over ASt−1∪{Bi
t} Similarly to above, directly after Bi

t has been added to S, both agents will

either feel envy in AS , or will be indifferent between the two bundles in AS . In this case, the

algorithm will perform a SWAP on S. The allocation induced by this newly swapped S will be

Envy-Free. The algorithm will then move the contents of S to F . AFt , ASt , and A
SWAP(St) will

meet the required conditions for the same reasons as in the case above.

• St−1 = ∅ Finally, in the case where S is empty at the beginning of iteration t, and there is no EF

allocation over Mt, the algorithm will add the allocation B1
t to S. AFt will be EF since it was not

altered, ASt will be EF1 since B
1
t is EF1, and SWAP(ASt) will be EF1 since B

2
t is EF1.

From this, whenever the algorithm executes iteration t and was not in one of the above cases, we can

conclude the following:

• Neither of B1
t or B2

t are envy-free.

• St−1 was not empty. Since we know that during iteration t− 1, if an allocation is added to S that

makes both agent feel envy or both agents have surplus utility, then St−1 would be empty, so we

can also conclude that exactly one agent must feel envy in ASt−1 , and the other must feel surplus

utility (notably, neither agent can be indifferent between the bundles).
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• St will not be empty. From this, we can conclude that exactly one agent must feel envy in ASt ,

while the other feels surplus utility. It also allows us to conclude that a SWAP was not performed

in iteration t, as a SWAP is always proceeded with moving the contents of S to T .

We can show that in this case as well, the inductive step holds.

In this case, there will be one agent i ∈ {1, 2} who feels envy in ASt−1 , while the other agent feels

surplus utility. During iteration t, the algorithm will select Agent i’s preferred allocation Bi
t , and add it

to S. By our hypothesis, we have that ASt−1 is EF1, so there must be some good g ∈ ASt−1,3−i that can

be taken away to eliminate all Agent i’s envy. Because we add in Agent i’s preferred allocation from

day t, we know that vi(ASt,i) − vi(ASt,3−i) > v1(ASt−1,i) − v1(ASt−1,3−i), meaning that ASt must

still be EF1 with respect to Agent i, as we can still remove g from ASt,3−i to eliminate all envy. We

can also show that ASt will be EF1 with respect to Agent 3− i. Since Bi
t is Agent 3− i’s unpreferred

allocation, we have that v3−i(ASt,3−i) − v3−i(ASt,i) < v3−i(ASt−1,3−i) − v3−i(ASt−1,i). However,
since we know that Bi

t is EF1, we know that there exists some g ∈ Bi
t,i such that v3−i(Bt,3−i) ⩾

v3−i(Bt,i)− v3−i(g). Combining this with the fact that v3−i(ASt−1,3−i) > v3−i(ASt−1,i), we get that
v3−i(ASt−1,3−i)+ v3−i(Bt,3−i) > v3−i(ASt−1,i)+ v3−i(Bt,i)− v3−i(g). Since we know that g ∈ ASt,i,

this gives us EF1 as desired.

The proof that A
SWAP(St) is EF1 can be done similarly. Notice that SWAP(St) will be equal to

SWAP(St−1) ∪ {B3−i
t }. We know A

SWAP(St−1) will be EF1, and in A
SWAP(St−1), we know that agent i

will feel surplus utility. Agent 3− i may feel envy in SWAP(St−1), but since B
3−i
t is their preferred

bundle, they cannot be the reason why ASWAP(St) is not EF1, as the envy they feel in A
SWAP(St−1)

strictly decreases from the envy they feel in A
SWAP(St) = A

SWAP(St−1)∪{B3−i
t }. Agent i cannot be the

reason why ASWAP(St) is not EF1, since there must be some good g ∈ B3−i
t that will eliminate all of

agent i’s envy over A
SWAP(St) when removed.

We also know that AFt will be EF since we have AFt = AFt−1 . In the base case, both S and F will be

empty at the beginning of the algorithm, thus all the conditions in the inductive statement will trivially

be true.

Finally, note that this inductive statement being true implies that the final allocation will be EF1 up to

each day. This is due to the fact that in the final allocation A outputted by the algorithm, for any t ∈ [k],
it must be true that the allocation AMt

∈
{
AFt∪St , AFt∪SWAP(St)

}
. This is due to the fact that the only

operation that can be performed on S is a SWAP, and the algorithm only ever moves the entirety of S
into F , never just part of it. Due to the fact that we know AFt will be EF and ASt and A

SWAP(St) must

be EF1, we know that AMt
must be EF1 as well.

D.2 Proof of Lemma 5

Proof of Lemma 5. Draw a graph G = (Mt, E) with the goods in Mt as the nodes. For each agent

i ∈ [2] and r ∈ [
⌊
|Mt|
2

⌋
], draw an edge between the two goods in Ti(Mt, 2r) \ Ti(Mt, 2(r − 1)). The

edges added for each agent form a matching, so this graph is a union of two matchings, and hence, a

bipartite graph. Thus, it admits a 2-coloring c : Mt → {1, 2}, which can be computed efficiently. Define

Bt = (Bt,1, Bt,2), where Bt,i = {g ∈Mt : c(g) = i} for each i ∈ [2].

Note that due to the way we added the edges, each agent i ∈ [2] receives exactly r of her 2r most

favorite goods, for each r ∈ [
⌊
|Mt|
2

⌋
]. This meets the sufficiency condition from Proposition 1, implying

that Bt is SD-EF1.

It is easy to see that the same reasoning also shows B′
t = (Bt,2, Bt,1) is also SD-EF1.

For readers familiar with the bihierarchy matrix decomposition theorem of Budish et al. [13], it is worth
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remarking that Lemma 5 can also be derived as a corollary. Specifically, we can define a binary variable

xg ∈ {0, 1} to indicate whether good g should be allocated to agent 1 (with 1− xg denoting whether it
should be allocated to agent 2, and write the set of constraints:

∀r ∈
[⌊
|Mt|
2

⌋]
:
∑

g∈T1(Mt,2r)\T1(Mt,2(r−1)) xg = 1,

∀r ∈
[⌊
|Mt|
2

⌋]
:
∑

g∈T2(Mt,2r)\T2(Mt,2(r−1))(1− xg) = 1.

It is easy to notice that this constraint set forms a “bihierarchy”, and since it admits a fractional

solution (xg = 1/2 for all g), the result of Budish et al. [13] implies the existence and polynomial-time

computability of an integral allocation satisfying them, which is what we need. However, we provide a

more direct proof for our specific constraint set because it is simpler to understand and leads to a faster

algorithm.

D.3 Proof of Theorem 3

Proof of Theorem 3. Consider the allocations Bt and B′
t generated by Lemma 5. Each is SD-EF1 and

because they use the same partition of Mt into bundles but do the opposite assignments, they trivially

cancel out. Thus, due to Lemma 4, these can be combined to compute an allocation that is SD-EF1 per

day and EF1 up to each day.

D.4 Other Fairness Desiderata that can be guaranteed by the Envy-Balancing Lemma

In the main body of the paper, we remarked that if one can always find two allocations over each day

Mt that cancel out, and satisfy some fairness desiderata that implies EF1, then one can find an allocation

over the entire set of goods that satisfies that desiderata per day, along with EF1 up to each day. We

showed that it is always possible to find such a pair of allocations that satisfies SD-EF1. Below, we will

show the same for two other interesting strengthenings of EF1.

Definition 9 (Envy-Freeness Up to Any Good (EFX)). An allocation A of a set of goods S is envy-free
up to any good (EFX) if for all i, j ∈ N and g ∈ Aj , vi(Ai) ⩾ vi(Aj \ {g}).

Theorem 10. For temporal fair division with n = 2 agents, an allocation that is EFX per day and EF1 up
to each day exists.

Proof. Due to Lemma 4, it is sufficient to prove that for any day t, there exist EFX allocations Bt and

B′
t of the goods inMt that cancel out.

We use the CutAndChoose++algorithm of Plaut and Roughgarden [29, Algorithm 4.2] to produce the

required two EFX allocations and show that they cancel out. Because their algorithm has a simpler

description for additive valuations (which we focus on), we explicitly describe the construction here.

Allocation Bt is constructed as follows.

1. Find a partition (P,Q) ofMt that minimizes |v1(P )− v1(Q)|. With loss of generality, assume

that v1(P ) ⩾ v1(Q).

2. If there are any goods g ∈ P such that v1(g) = 0, move them to Q. Note that this does not

change v1(P ) or v1(Q).

3. Allow agent 2 to pick their preferred bundle, and assign the other bundle to agent 1.
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Allocation B′
t is computed similarly, but reversing the roles of agents 1 (who picks) and agent 2 (who

cuts).

Plaut and Roughgarden [29, Theorem 4.3] show that the resulting allocations, Bt and B′
t are EFX. It

remains to show that they cancel out. Due to symmetry, we simply need to argue the cancellation for

agent 1, i.e.,

v1(Bt,1) + v1(B
′
t,1) ⩾ v1(Bt,2) + v1(B

′
t,2)⇔ v1(B

′
t,1)− v1(B

′
t,2) ⩾ v1(Bt,2)− v1(Bt,1).

Note that v1(B
′
t,1) − v1(B

′
t,2) ⩾ 0 because agent 1 picks their favorite out of the two bundles in B′

t.

Further, |v1(B′
t,1)−v1(B′

t,2)| ⩾ |v1(Bt,1)−v1(Bt,2)| because (Bt,1, Bt,2) is the partition that minimizes

the difference between agent 1’s value for the two bundles. Putting the two together, we get the desired
result.

Next, we derive the same result for EF1+PO. Interestingly, we use the two cancelling EFX allocations

produced for the previous result in order to show the existence of two cancelling EF1+PO allocations.

This requires adding a minor tie-breaking rule to the procedure for computing these EFX allocations

(the CutAndChoose++algorithm due to Plaut and Roughgarden [29]): when the chooser (agent 2
in Bt) is indifferent between the two bundles but the cutter (agent 1 in Bt) is not, the chooser must

pick the bundle the cutter values less. An interested reader can note that the allocations would have

remained EFX even if we had introduced this tie-breaking in the proof of Theorem 10, but it was not

needed there.

Definition 10 (Pareto Optimality (PO)). An allocation A of a set of goods S is Pareto optimal (PO) if
there is no allocation A′ such that vi(A′

i) ⩾ vi(Ai) for all i ∈ N and at least one inequality is strict.

Theorem 11. For temporal fair division with n = 2 agents, an allocation that is EF1+PO per day and EF1
up to each day exists.

Proof. Due to Lemma 4, it is sufficient to prove that for any day t, there exist EF1+PO allocations Bt

and B′
t of the goods inMt that cancel out.

We claim that for any day t, the existence of 2 EFX allocations that cancel out implies the existence of 2
EF1+PO allocations that cancel out. For contradiction, assume this were false, and for some instance

there are not 2 EF1+PO allocations that cancel out.

Let the allocation Bt be the allocation that was constructed by the process in Theorem 10, where the

bundles are chosen according to agent 1’s valuations, and agent 2 picks their preferred bundle. We

know that in this allocation, v2(Bt,2) ⩾ v2(Bt,1), and for all g ∈ Bt,2, v1(Bt,1) ⩾ v1(Bt,2 \ {g}). If Bt

is a PO allocation, then we do not have to deal with it further, otherwise, we know that there exists

some P ⊆ Bt,1, Q ⊆ Bt,2, such that the allocation ((Bt,1 \ P ) ∪ Q, (Bt,2 \ Q) ∪ P ) is PO, and that

v1((Bt,1 \ P ) ∪Q) ⩾ v1(Bt,1) and v2((Bt,2 \Q) ∪ P ) ⩾ v2(Bt,2).

First, note that in this PO allocation Q must be a strict subset of Bt,2. If this were not true, then

v2((Bt,2 \Q)∪P ) ⩾ v2(Bt,2) would tell us that v2(Bt,1) ⩾ v2(P ) ⩾ v2(Bt,2), with the first inequality

being due to the fact that P ⊆ Bt,1. By the process used to construct Bt, we already know that

v2(Bt,2) ⩾ v2(Bt,1), meaning v2(Bt,2) = v2(Bt,1), and by the tie-breaking mechanism in the cut-and-

choose algorithm, this would mean that ((Bt,1 \ P ) ∪Q, (Bt,2 \Q) ∪ P ) must be an EF+PO allocation.

This would lead to a contradiction, since 2 copies of any EF allocation clearly cancel out.

Therefore, we must have that Q ⊂ Bt,2. Due to this, we know that there will be some good g such that

g ∈ (Bt,2 \Q)∪ P and g ∈ Bt,2. After the reallocation, we know that no agent was made worse off, so

it will be the case that Agent 2 will not feel envy in the new PO allocation. We know that ((Bt,1 \ P ) ∪
Q, (Bt,2 \Q)∪P ) cannot be an EF allocation (by the logic from the above paragraph this would lead to

contradiction), so we know that Agent 1 does feel envy in the PO allocation. Since Bt is EFX, we know
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that for all g′ ∈ Bt,2, we have that v1(Bt,1) ⩾ v1(Bt,2)− v1(g
′). Since we only have 2 agents, we have

that v1(Bt,2) = v1(Mt)− v1(Bt,1), and thus v1(g
′) ⩾ v1(Mt)− 2v1(Bt,1) for all g

′ ∈ Bt,2. Therefore,

due to the fact that v1((Bt,1 \P )∪Q) ⩾ v1(Bt,1), we have that v1(g) ⩾ v1(Mt)−2v1((Bt,1 \P )∪Q),
which can be rearranged back into v1((Bt,1 \P )∪Q) ⩾ v1((Bt,2 \Q)∪P )− v1(g), showing that this
PO allocation is also EF1.

We can symmetrically repeat this procedure with the other EFX allocation B′
t where the bundles are

selected according to Agent 2’s valuations and Agent 1 chooses their preferred bundle. Since our PO

reallocation can only increase the utility of both agents (and thus lessen their envy), we can conclude

that if the original EFX allocations cancel out, the corresponding EF1+PO allocations also cancel out,

giving a contradiction.

We note that while we provided a polynomial-time algorithm in Theorem 3 for achieving SD-EF1 per

day and EF1 up to each day result, the constructions in Theorems 10 and 11 for achieving EFX or

EF1+PO per day are not efficient because they rely on partitioning a set of numbers into two subsets

with near-equal sum. This is NP-hard because PARTITION (which requires exactly equal sum) can be

trivially reduced to it. This raises the following interesting open question:

Open Question 2: For temporal fair division with n = 2 agents, can EFX or EF1+PO per day

and EF1 up to each day be achieved in polynomial time?

D.5 Proof of Theorem 4

Proof of Theorem 4. Consider the following instance in which four goods arrive over three days: M1 =
{g1, g4}, M2 = {g3}, and M3 = {g2}. Two agents have identical valuations given by v(g1) = 4,
v(g2) = 3, v(g3) = 2, and v(g4) = 1 (since we seek SD-EF1, only the fact that the agents strictly prefer

g1 ≻ g2 ≻ g3 ≻ g4 matters).

For an allocation A to be SD-EF1 up to each day, AMt
must be SD-EF1 for each t ∈ [3], where

M1 = {g1, g4} ,M2 = {g1, g3, g4}, and M3 = M = {g1, g2, g3, g4}.

By the necessity condition of Proposition 1, we can make the following claims:

• For AM1
to be SD-EF1, g1 and g4 must be given to different agents.

• For AM2
to be SD-EF1, g1 and g3 must be given to different agents.

• ForAM3
to be SD-EF1, the two goods in T (M, 2) = {g1, g2}must be allocated to different agents.

Since each agent must also get 2 goods from T (M, 4) = M , it follows that g3 and g4 must also

be allocated to different agents.

We now have the requirements that g1, g3, and g4 must all be pairwise given to different agents, which

is impossible since there are only two agents. Hence, in this instance, there is no allocation that is

SD-EF1 up to each day.

D.6 Proof of Theorem 5

Proof. Consider the following instance, in which eight goods arrive over three days: M1 = {g1, g5, g7},
M2 = {g2, g4, g6}, andM3 = {g3, g8}. The valuations are as follows:

v1(g1) = 8 v1(g2) = 7 v1(g3) = 6 v1(g4) = 5 v1(g5) = 4 v1(g6) = 3 v1(g7) = 2 v1(g8) = 1
v2(g2) = 8 v2(g3) = 7 v2(g1) = 6 v2(g4) = 5 v2(g6) = 4 v2(g8) = 3 v2(g5) = 2 v2(g7) = 1
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Notice that although each agent has a different strict ordering over M , their orderings restricted to the

goods in any day Mt are identical. Since there are only 2 or 3 goods given on any day and each agent

has strict preferences over them, for allocation AMt to be EF1, the same agent cannot receive both the

items from T (Mt, 2) (otherwise, the other agent, who receives at most one good from Mt that they

value strictly less than each good in T (Mt, 2), would envy them even after the removal of one of the

goods).

Thus, EF1 per day requires that among the pairs of goods (g1, g5), (g2, g4), and (g3, g8), the two goods

in each pair go to different agents.

Now consider what is required in order for the allocation AM to be SD-EF1 overall while adhering to

these constraints. Since both agents have strict preferences over the goods, by the necessity condition

of Proposition 1, we can say that for both i ∈ {1, 2}, |AM,i ∩ Ti(M, r)| ⩾ ⌊r/n⌋ must be true for all

r ∈ [|M |].

This means that each agent must receive at least one of their top 2 goods. Specifically, agent 1 must

receive one of T1(M, 2) = {g1, g2}, and agent 2 must receive at least one of T2(M, 2) = {g2, g3}.

It also means that each agent must receive at least 2 of their top 4 goods. Observe that Ti(M, 4) =
{g1, g2, g3, g4} for both agents, so, in order to satisfy this, each agent must receive exactly 2 goods from
{g1, g2, g3, g4}.

Notice that under these restrictions, in any allocation where agent 1 receives g2, they cannot receive

g3 (or they would have both of agent 2’s top 2 goods) or g4 (due to the per day constraints). Since the

allocation over the top 4 goods must be balanced (each agent receiving exactly two of them), the only

possible allocation AT1(M,4) in this scenario would be ({g1, g2}, {g3, g4}). Using the same logic, when

agent 2 receives g2, the only possible allocation is ({g1, g4}, {g2, g3}). Since one of the agents must be

given g2, these are the only two ways that the top 4 goods can be allocated. Note that in both of these

allocations, agent 1 gets g1 and agent 2 gets g3.

Finally, consider how the remaining goods {g5, g6, g7, g8}must be allocated to guarantee SD-EF1 overall.

Each agent must receive at least 3 of their top 6 goods, and since we know that each agent has exactly

2 of their top 4 goods, that means that agent 1 must receive at least one of {g5, g6}, and agent 2 must

receive at least one of {g6, g8}. Since we know that agent 1 must be allocated g1, the per-day constraints
say they cannot receive g5, so they must receive g6. Similarly, agent 2 is known to have g3, so they

cannot receive g8, which means they must also receive g6, which is a contradiction. Hence, in this

instance, there is no allocation that is EF1 per day and SD-EF1 overall.

D.7 Two Agents and Identical Days

In this section, we briefly discuss the implications of our results so far for the special case where we

have two agents and identical days. Recall that Igarashi et al. [23] focus only on the case of identical

days and many of their results hold for only two agents. In particular, they show that an allocation that

is EF1 per day and (exact) EF overall exists and can be computed in polynomial time when the number

of days k is even.

We prove a slightly stronger result via a much simpler technique, albeit only for allocating goods while

their result is for allocating a mixture of goods and chores.

Theorem 12. For temporal fair division with n = 2 agents and identical days, an allocation that is SD-EF1
per day, SD-EF1 up to each day, and SD-EF up to each even day exists and can be computed in polynomial
time.

Proof of Theorem 6. Consider the set of goods M1 on day 1 (each day has a set of goods identical to

this). Consider the two allocations B = (B1, B2) and B′ = (B2, B1) produced in Lemma 5 such that
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both B and B′
are SD-EF1 allocations ofM1. The desired allocation is one that uses B on every odd

day and B′
on every even day. Clearly, SD-EF1 per day is satisfied. Since the allocations completely

cancel out after every even day (each agent has exactly the same number of copies of each good), we

get SD-EF1 up to each day and SD-EF up to each even day.

E Missing Proofs from Section 5

E.1 Proof of Theorem 7

Proof of Theorem 7. Start by constructing two set families, P1 and P2.

P1 = {T (Mt, nr) \ T (Mt, n(r − 1)) : r ∈
[⌈
|Mt|
n

⌉]
, t ∈ [k]},

P2 = {T (M,nr) \ T (M,n(r − 1)) : r ∈
[⌈
|M |
n

⌉]
}.

In words, P2 splits the entire set of goodsM into the agents’ most preferred n goods, their next most

preferred n goods, etc. P1 does a similar partitioning, but splits the goods from each day separately.

Because preferences orderings of all agents are identical, we can use the sufficiency condition Propo-

sition 1, which states that if for all i ∈ N and r ∈ [|M |], |Ai ∩ Ti(M, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉} implies

SD-EF1 overall. Clearly, if each agent receives at most 1 good from each set in P2, this will be true.

Similarly, if each agent receives at most 1 good from each set in P1, then for all i ∈ N , t ∈ [k], and
r ∈ [|Mt|], we would have |Ai ∩ Ti(Mt, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}, implying SD-EF1 per day. Therefore,

any allocation which gives each agent at most 1 good from each of the sets in P1 ∪ P2 will be SD-EF1

per day and SD-EF1 overall. Our goal is to find an allocation that meets these constraints.

We will first start by adjusting the structure of the set families slightly to make the problem easier to

work with. Note that it must be the case that |P1| ⩾ |P2|. P2 will contain ⌈m/n⌉ sets. ⌊m/n⌋ set of
exactly n goods, and if m/n is not an integer, then 1 additional set will be included containing the

remaining goods. P1 will contain at least ⌈m/n⌉ sets, since it will be a disjoint partition of all the goods

in m, with each set having a maximum set size of n, but may contain up to k sets with size less than n
due to the fact that it is partitioning each day individually.

First, we will create |P1| − |P2| empty sets and place them in P2. This makes sure that P1 and P2 have

the same number of sets. Then, if |P1| > m
n , we will create n|P1| −m dummy goods (goods with 0

value to every agent), place each dummy good into a set from P1 and P2 in such a way that all |P1| sets
in both families contain exactly n goods each. Note that the restriction that each agent must receive

no more than 1 good from each of these updated families creates is a stronger constraint than what is

needed to guarantee SD-EF1. Any allocations that meets the constraints on the updated set families can

be clearly shown to meet the original SD-EF1 constraints simply by removing all the dummy goods.

After these updates, both P1 and P2 will contain the same number of sets, and the size of every set in

both families will be exactly n.

Next, construct a graph where each set from P1 or P2 is a vertex, and put an edge between two sets

in P1 and P2 if they share a good (there can be multiple edges between vertices). Label each edge

to correspond to the good it represents. Since both P1 and P2 are disjoint partitions over the set of

goods M + “the dummy goods”, there will be no edge between two sets from the same family, making

this a bipartite graph where each vertex has a degree of exactly n. Therefore, this bipartite graph can

be deconstructed into n perfect matching. Let each of these matchings denote a bundle of the items

corresponding to the edges in that matching. These n bundles will form a disjoint partition over the

full set of goodsM , and each bundle will contain at most 1 good from each set in P1 ∪ P2.
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Since there are n bundles, we can create an allocation by assigning each one arbitrarily to an agent. Any

allocation formed this way will meet the constraints for both P1 and P2, and thus will be be SD-EF1 per

day and SD-EF1 overall.

F Missing Proofs from Section 6

F.1 Helper Lemmas for Proving Theorem 9

Lemma 6. For any instance with identical days, the identical orderings transformation described in
Algorithm 1 will produce an instance where all agents have identical orderings overall.

Proof. Let M ′
represent the full set of goods in the identical orderings transformation instance, and for

each agent i, let v′i be i’s valuations over M
′
. Due to the original instance having identical days, we

know that for each pair of days t, t′ there must be a bijection f : Mt →Mt′ such that for each g ∈Mt

and each i ∈ N , vi(g) = vi(f(g)). By the way we constructed the identical orderings transformation

instance, we know that there must be an analogous bijection in the transformed instance f ′ : M ′
t →M ′

t′ .

Let M ′
t =

{
gt,1, . . . , gt,|M ′

t|

}
, where for each r, r′ ∈ [|Mt|] with r′ ⩾ r, we have that gt,r ≽ gt,r′ for all

agents. Without loss of generality, we can assume that the labeling on each day is consistent, and for

each day t, t′, the bijection f ′
maps gt,r to gt′,r for all r ∈ [|Mt|]. Therefore, we can assume that the

overall ordering of g1,1 ≽i g1, 2 ≽i . . . ≽i g1,k ≽i g2,1 ≽i . . . ≽i g|Mk|,k must hold.

Lemma 7. The algorithm described in Section 6 achieves SD-PROP1 Overall.

Proof. This proof involves reasoning with two separate bijections. The first is oi : M →M ′
, which is

the bijection formed by creating the identical ordering transformation in Algorithm 1. In this bijection,

we have that vi(g) = v′i(oi(g)) for each i ∈ N and g ∈ M , which implies that vi(M) = v′i(M
′) for

all i, and that the utility vectors formed by taking all of i’s utilities forM andM ′
, and ordering them

non-increasingly, will both be identical. The second is z : Ai ∪ {gi} → A′
i ∪ {g′i}, where Ai and A

′
i are

the bundles that i receives in the final allocation and the identical orderings transformation allocation

of Algorithm 1 respectively, and gi, g
′
i are agent i’s favourite good that they are not allocated in each of

those allocations. In this bijection, we will have that vi(g) ⩾ v′i(z(g)) for all i ∈ N and g ∈ Ai ∪ {gi},
implying that vi(Ai ∪ {gi}) ⩾ v′i(A

′
i ∪ {g′i}).

Since SD-EF1 implies EF1, and the allocation found over the transformed preferences reduction by this

algorithm will be SD-EF1 overall, it is easy to see that we can invoke the same logic from Lemma 2

and Lemma 3 to show that this allocation is PROP1 overall. To show that the allocation is in fact

SD-PROP1 overall, we can do a more detailed analysis on the proof technique from Lemma 3. Consider

the set of goodsM∗ = M ∪M ′
and each agent i’s ordering overM∗

that is induced by their valuation

functions vi and v′i. We note that when considering the set M∗
, the bijection from Lemma 3 not

only shows that vi(Ai ∪ {gi}) ⩾ v′i(A
′
i ∪ {g′i}), but also allows us to conclude the stronger claim

that Ai ∪ {gi} ≽SD

i A′
i ∪ {g′i}. This is because for each pair of items g∗, z(g∗), if we have that

vi(g
∗) ⩾ v′i(z(g

∗)), then we must also have g∗ ≽i z(g
∗).

Next, note that for each agent i ∈ N , and each g ∈ M , we must have that Hi(M
′, oi(g)) =

{oi(g′) : g′ ∈ Hi(M, g)}, since clearly,Hi(M
′, oi(g)) can be thought of as the set of all goods g∗ ∈M ′

such that g∗ ≽i oi(g), and similarly, Hi(M, g) is the set of goods g∗ ∈M such that g∗ ≽i g. From our

definition of oi, we have that for any g∗ ∈M , vi(g
∗) ⩾ vi(g) if and only if v′i(oi(g

∗)) ⩾ v′(oi(g)).

With this, we can conclude that |Hi(M, g)| = |Hi(M
′, oi(g))|, and also that

|(Ai ∪ {gi}) ∩Hi(M, g)| ⩾ |(A′
i ∪ {g′i}) ∩Hi(M

′, oi(g))| for all goods g ∈ M . The second

statement follows from the fact that for any g∗ ∈ Ai ∪ {gi}, if z(g∗) ∈ Hi(M
′, oi(g)), then

g∗ ∈ Hi(M, g) must be true as well, since we have that vi(g
∗) ⩾ v′i(z(g

∗)), and vi(g) = v′i(oi(g)).
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We know thatA′
i is SD-EF1, implying it is SD-PROP1 by Proposition 2. Therefore, for all g ∈M , we have

that |(Ai ∪ {gi}) ∩Hi(M, g)| ⩾ |(A′
i ∪ {g′i} ∩Hi(M

′, oi(g))| ⩾ ⌈|Hi(M
′,oi(g))|/n⌉ = ⌈|Hi(M,g)|/n⌉,

allowing us to conclude that A is SD-PROP1.

F.2 Proof of Theorem 9

Proof of Theorem 9. From Lemma 6, it is known that the identical days reduction will construct an

instance where each agent has the same overall ordering for the full set of goodsM ′
. This means that

by the results of Theorem 7, an allocation A′
over M ′

can be found that is SD-EF1 per day and SD-EF1

overall in polynomial time.

Using identical logic from Lemma 1, constructing the final allocation A by running the picking order

construction procedure from Algorithm 1 on A′
will result in an allocation that is SD-EF1 per day, since

A′
is SD-EF1 per day.

Finally, from Lemma 7, we know that A will also be SD-PROP1 overall, completing the proof.

G Laminar Fair Division

For any set of goodsM , a collection L of subsets ofM is a Laminar Set Family overM if for every pair

of subsets S, T ∈ L, we have that either S ∩ T = ∅, S ⊂ T , or T ⊂ S.

For each set S ∈ L, let D(S) : L → 2L be a function returning each set S′ ∈ L such that S′ ⊂ S. Let
C(S) : L → 2L be the function returning every maximal set of D(S) (every set in D(S) that is not
contained in some other set from D(S)).

We can say that a laminar set family L over M is Complete if and only if the following conditions hold:

• The set M is an element of L.

• For every set S ∈ L, either D(S) = ∅, or ∪S′∈D(S) = S.

We will assume that all laminar sets families we deal with in our setting are complete. This can be

assumed without loss of generality, as any laminar set L over a set of goodsM that is not complete can

be “completed” through the following simple procedure:

• If the full set of goodsM is not in L, addM to L.

• For every set S ∈ L, if 0 < | ∪S′∈D(S) | < |S|, then create a new set S∗ = S \ ∪S′∈D(S) and add

it to L.

After the above steps, Lwill remain a laminar set family. Lwill clearly remain laminar after the addition

ofM since every other set in Lwill be a strict subset ofM . Lwill also remain laminar after the addition

of each of the S∗
sets, since the definition of laminar families ensures that if none of the sets in L that

are subsets of a set S contain some good g, then the only other sets in the family that can contain g are

strict supersets of S. Therefore, the S∗
that the completion process adds to L will be a strict subset of

S, and thus a strict subset of all the sets containing g.

Note that in any complete laminar set family L, and any S ∈ L, C(S) will either be empty, or will form

a complete disjoint partitioning of S. If this were not true, then we would have that C(S) ̸= ∅, which
implies thatD(S) ̸= ∅. We would also have that ∪S′∈C(S) ⊂ S and ∪S′∈D(S) = S. Clearly, every good

g ∈ ∪S′∈D(S) must appear in some maximal set fromD(S), giving a contradiction. The fact that all the
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sets in C(S) will be disjoint follows immediately from the definition of a laminar set family and from

the fact that each set S′ ∈ C(S) is maximal in D(S).

One can think of the structure of a complete laminar set family L as a tree where each subset is a node.

M is the root node of the tree. For any set S ∈ L, D(S) are the descendants on S, and C(S) are
the children of S. The Leaf sets of L are any sets S ∈ L who has no descendants (i.e. D(S) = ∅).
Thinking of complete Laminar Set Families in this way will allow us to topographically sort the sets.

Particularly, thinking of L as a directed tree where there is a directed edge going from each child to its

parent, then a topographical sorting of L will result in no set S ∈ L appearing in the ordering before

any of its descendants.

Now, consider the following problem. A school district has received a new shipment of supplies and

must distribute them between the schools under their jurisdiction. Each item is used for a different

subject (there are microscopes for the biology lab, instruments for music class, easels and paint for

art class, etc.), and each school has different preferences over the items. The district wants to find an

allocation that is fair among the schools, but also wants to make sure that the allocations are fair with

respect to each individual subject. For example, the district may be able to construct an EF1 allocation

by giving all the biology supplies to one school, and all the art supplies to another school, but that would

be extremely unfair to the individual departments within those schools. Interestingly, this problem is

identical to finding an allocation over a temporal instance that is fair per day and fair overall, since both

are in essence looking at a pairwise-disjoint partition of some set of items M , and finding an allocation

that is fair with respect to M , and remains fair when only looking at any of the sets in the partition.

Up until this point, the best way to solve such a problem would be existing algorithms for constrained

fair division, such as the cardinality constraint algorithm of [10]. This algorithm would guarantee

an EF1 overall allocation, while also guaranteeing that each school got a balanced number of items

from each subject, but it gives no guarantee that the goods from each subject will be allocated fairly

according to the valuation functions of each of the schools. While our solution, Algorithm 1, only

achieves PROP1 overall, it achieves the very strong SD-EF1 fairness guarantee for each subject, making

it arguably a more desirable algorithm for use cases such as this. When there are 2 agents, or when all

agents’ orderings are identical, then we get strictly better guarantees, since we can still achieve SD-EF1

per day (which implies balancedness), while also achieving EF1 overall.

While the “per day” and “overall” desiderata translate very well into this broader interpretation of the

temporal fairness model, our other definition, “up to each day” does not. This is because “up to each day”

implicitly assumes that there is some ordering over the sets of goods in the partition. One intuitive way to

extend this concept is with laminar set families. In the school district example, the sets of itemswhere fair-

ness is required could be something like {Biology,Chemistry,Drawing,Music, Science,Arts}, where
Biology and Chemistry are subsets of Science and Drawing and Music are subsets of Arts.

With this in mind, we can introduce a new concept of fairness, which generalizes “up to each day” and

is more compatible with this abstract view of temporal fair division.

Definition 11 (Laminar Fairness). For desideratum X , allocation A is Laminar X with respect to some
laminar set family L if AS satisfies X for all S ∈ L.

It can be seen that achieving both “up to each day” and “per day” fairness is a special case of Laminar

Fairness. Figure 3 shows the laminar family induced by these constraints.

We present an upgrade to our two agent Envy-Balancing algorithm from Lemma 4 that allows us to

find EF1 allocations with respect to any laminar set family, a strictly stronger guarantee than simply

finding allocations that are EF1 up to each day.

Theorem 13. Given 2 agents, a set of goods M , and a laminar set family L over M , it is possible to find
an allocation to those agents that is Laminar EF1 with respect to L.

30



M1 M3M2

M1 ∪M2

M = M1 ∪M2 ∪M3

Figure 3: Representation of the “up to each day” and “per day” constraints for three days as a laminar set family.

An allocation that is EF1 up to each day and EF1 per day would be an allocation that is EF1 with respect to

every set in this family. To just represent the “up to each day” constraints, only the sets M1, M1 ∪M2 and

M1 ∪M2 ∪M3 would be required.

Proof. We begin by introducing a slight adaptation of the Envy-Balancing algorithm from Lemma 4,

which will serve as the basis for our algorithm to give the stronger guarantee of laminar fairness. We

will use the notation introduced in the proof of Lemma 4 to descibe the behaviour of the algorithm.

At the end of the Algorithm 2, the allocation A induced by F ∪ S is returned as the final allocation. A
is an EF1 allocation since we know that AF is an EF allocation and AS is EF1. Note that AF∪SWAP(S)

would also be an EF1 allocation for the same reason (The proof of Lemma 4 shows that at every point

in Algorithm 2, both AS and A
SWAP(S) are EF1 allocations). Also note that the two allocations AF∪S

and AF∪SWAP(S) will cancel out. This is because we know that neither agent feel envy in AF , and we

also know that AS , and A
SWAP(S) will cancel out for both i ∈ {1, 2}, due to the fact that a SWAP will

involve replacing every allocation in S with an allocation that cancels it out, so the sum of all these

allocations must also cancel out.

We will use this fact in order to construct Algorithm 3, named EnvyBalancing++. This algorithm takes

as input a set of goods S, and a partitioning C over the goods in S. If the partitioning is empty, then

EnvyBalancing++ simply returns 2 EF1 allocations over S that cancel out, using any of the methods

introduced in Section 4 to do so. Otherwise, if C is a complete and disjoint partition of S, then
EnvyBalancing++ runs Algorithm 2 on the input, but returns both AF∪S and AF∪SWAP(S) as the final

allocations.

Algorithm 4 takes in a laminar set family L, and finds an allocation that is Laminar EF1 with respect to

L by the following process:

• Sort the sets from L topographically such that no set appears in the order before any of its

descendants.

• Run EnvyBalancing++ on each set S ∈ L in the topographical order, with the partitioning of S
being giving by the pairs of allocations the algorithm has already found for each of the children

of S. If S is a leaf set, then C(S) = ∅, and the algorithm will return two arbitrary EF1 allocations

over S that cancel out. Otherwise, two allocations generated by the Envy-Balancing algorithm

will be returned.

• As the final output, return the 2 allocations over M , which will be the last set from L ordered

topographically. Each of these allocations are guaranteed to be EF1 with respect to every set

S ∈ L.

We will prove the following inductive statement: For any set S ∈ L, if the algorithm found 2 allocations
for each child S′ ∈ C(S) that are EF1 with respect to S′

and all the descendants of S′
, then the algorithm

will find 2 allocations over S that are EF1 with respect to S and all descendants of S.
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We will first start with the case where S is not a Leaf set. Since the algorithm visits each descendant of

S prior to visiting S, it will have already found 2 allocations for every set S′ ∈ C(S). If the hypothesis
holds, then each of these pairs of allocations will cancel out, will be EF1 with respect to S′

, and will

be EF1 with respect to every descendent of S′
. The algorithm will use these allocations as input to

EnvyBalancing++. Since we are assuming that L is a complete laminar set family, the children of S
will make a complete and disjoint partition of S. We know that EnvyBalancing++ will output two

allocations over S that cancel out and are EF1 over S. Further, we know that both allocations will be

EF1 with respect to all descendants of S due to the fact that the fact that the Envy-Balancing algorithm

constructs its allocations by picking one of the inputted allocations from each of its children, which are

known to be EF1 with respect to all their descendants from the hypothesis.

If S is a Leaf set, the algorithm uses any arbitrary method to find the two allocations for S. These
allocations will be EF1 with respect to S, and since leaf sets do not have any descendants, they will

vacuously be EF1 with respect to all descendants as well. This proves the base case and completes the

argument.

Finally, note that the topographical sorting of the sets runs in polynomial-time in the number of elements

in the tree it is traversing, and it is well-known that every laminar set family with a ground set M can

have at most 2|M | − 1 members. This together with the fact that EnvyBalancing++ runs in poly(m)
time allows us to conclude that the entire procedure will be poly(m).

We give the proof of this lemma in Appendix G.

Unfortunately, for the general case, laminar fairness will not always be possible. Since the “up to each

day” constraint can be modeled as a laminar set family, all of the impossibility results for “up to each

day” also hold for laminar fairness.
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Algorithm 3 EnvyBalancing++

Input for t ∈ [k], a pair of allocations (B1
t , B

2
t ) of the set of goodsMt that cancel out, with labels

assigned in such a way that if neither of the allocations is Envy-Free, then v1(B
1
t,1)− v1(B

1
t,2) ⩾ 0 and

v2(B
2
t,2)− v2(B

2
t,1) ⩾ 0.

Output An allocation A of the set of goodsM = ∪t∈[k]Mt

if C = ∅ then
(A,A′)← Two EF1 allocations of S that cancel out, determined by some arbitrary subroutine

else
F ← ∅, S ← ∅, e1 ← 0, e2 ← 0
for t ∈ [k] do
if v1(B1

t,1) ⩾ v1(B
1
t,2) ∧ v2(B

1
t,2) ⩾ v2(B

1
t,1) then

F ← F ∪ {Bt}
else if v1(B2

t,1) ⩾ v1(B
2
t,2) ∧ v2(B

2
t,2) ⩾ v2(B

2
t,1) then

F ← F ∪ {B′
t}

else
if e1 ⩽ 0 then
S ← S ∪ {B1

t }
e1 ← e1 + (v1(B

1
t,1)− v1(B

1
t,2))

e2 ← e2 + (v2(B
1
t,2)− v2(B

1
t,1))

else
S ← S ∪ {B2

t }
e1 ← e1 + (v1(B

2
t,1)− v1(B

2
t,2))

e2 ← e2 + (v2(B
2
t,2)− v2(B

2
t,1))

end if
end if
if e1 ⩾ 0 ∧ e2 ⩾ 0 then
F ← F ∪ S
S ← ∅, e1 ← 0, e2 ← 0

else if e1 ⩽ 0 ∧ e2 ⩽ 0 then
F ← F ∪ SWAP(S)
S ← ∅, e1 ← 0, e2 ← 0

end if
end for
A ← allocation in which Mt is allocated according to the allocation of Mt in F ∪ S, for each
t ∈ [k]
A′ ← allocation in whichMt is allocated according to the allocation ofMt in F ∪ SWAP(S), for
each t ∈ [k]

end if
return (A,A′)
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Algorithm 4 Laminar Envy-Balancing Algorithm

Input A Laminar Set L Output An allocation A of the set of goods M =
∪S∈L

T ← (S1, S2, . . . , S|L|) (A topographical ordering the sets in L)
∀S ∈ L, BS ← ∅
for t ∈ [|L|] do
(B1

S , B
2
S)← EnvyBalancing++(St, {BS′ : S′ ∈ C(St)})

BSt = (B1
S , B

2
S)

end for
return BS|L|
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