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Abstract

Several methods have been introduced in the literature to extend preferences over items from a
population to preferences over the groups they may form - a problem known as the Order Lifting
problem. The converse matter of deducing preferences over items from expressed preferences
over the coalitions that may be formed within a population - a problem known as the Social
Ranking Problem - has also been studied more recently.
In this paper, we investigate the links between these two problems: after an examination of the
general case, we consider the impact of missing information, by studying which social ranking
methods allow for the most accurate recovery of initial preferences over items, depending on the
amount of missing information about coalitions. Finally, we consider the specific case in which
preferences are only expressed over coalitions of same size, and examine the accuracy of social
ranking methods when facing partial information about preferences over k-sized coalitions.

1 Introduction

Decision-makers may express preferences over items in various forms. A moviegoer, for example, might
rank films from most to least preferred, but could also express preferences over bundles of films, by
evaluating different streaming platforms, each described as a set of films available to users. It seems
reasonable to assume that preferences over sets of items are related to the preferences over single items.

The order lifting problem (also known as “Ranking sets of objects") consists in deducing preferences
over sets of items from a given ranking of the items [11, 17]. It finds applications in many settings,
such as in computational social choice, when trying to deduce voters’ preferences over committees
or bundles from their individual preferences, as it proves less demanding to require preferences over
items than over all possible sets. In their overview of various approaches to the order lifting problem,
[2, 13] describe various ways of extending preferences over individual items into a ranking over all
the coalitions these items may form. Some of these methods consider that a decision maker will base
their evaluation on the performance of extreme elements in a set. The idea that one would prefer a
set containing the best item, or that one would dislike a set containing lowly-ranked items seem to
intuitively describe respectively optimistic and pessimistic ways to evaluate groups of items.

On the other hand, [15, 16] introduce the social ranking problem, to infer a ranking over items from
expressed preferences over the powerset of the population. The goal of this problem is to measure
items’ influence within the population, by measuring their impact on group performance: an item’s
influence is supposed linked to the positive or negative impact of its addition to a group to the latter’s
evaluation (see also [4, 10]).

In certain settings, however, it may happen that some information about a decision maker’s preferences
be missing, and that only a partial ranking is made available. For instance, the moviegoer may only
be able to rank existing streaming platforms, and their preferences over other combinations of films
remains unknown. Therefore, in this paper we are more interested in problems where preferences can
only be observed on a given collection of subsets. As far as we know, in the area of lifting preferences
from individual items to sets, this problem has been studied in the article [5], where only sets of a
fixed size are ranked, and in the article [14] where a ranking over a family of subsets is built using
alternative versions of the properties of dominance and independence. For a social ranking problem
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based on a given collection of subsets, we mention the article [21], where some lexicographic solutions
are axiomatically characterized using alternative domains of subsets of items. In other articles, a similar
problem has been studied in connection with specific applications of social rankings: to measure the
alignments of norms with moral values taking into account some compatibility constraints [20]; to
rank arguments based on their strength in an argumentation framework, and considering as input and
extension-ranking semantics providing a partial ordering over subsets of arguments [3]; and to sort
individual elements in a greedy heuristic aimed at solving a combinatorial optimization problem on the
basis of the performances of a limited set of groups of elements [22].

Our study explores whether social ranking solutions allow for the recovery of initial preferences over
items, when considering rankings over coalitions supposed to have been determined using a specific
lifting method. The interest in addressing this question is twofold. First, inferring preferences over
individual items based on a partial observation of the preferences over subsets can be useful to assess
the impact of each single element in the overall evaluation of groups of items, for instance, to rank
individual items according to their relevance for a user. Second, performing this inference through
the lens of a predefined lifting rule makes it possible to reverse the process and extend the observed
preferences over a limited family of subsets to all possible subsets in a consistent manner. This allows,
for instance, to select new most-preferred bundles of items for a user.

The first section of this paper formally introduces the order lifting and social ranking problems, as well
as some classic solutions proposed in the literature. We then study the links between the problems,
namely by wondering whether these are inverse problems, i.e. if giving the output data of problem A as
input to problem B will always lead to problem B’s output being problem A’s initial input. In a third
section, we study the robustness of these results when only partial preferences are available. Finally, we
focus on the particular scenario wherein (partial) preferences are given over coalitions of same size k.

2 Introduction to the problems

A binary relation ≿ over a finite set X is a subset of the Cartesian product X × X . It is called a
partial preorder (or simply a preorder) if it is reflexive (∀x ∈ X,x ≿ x) and transitive (∀x, y, z ∈
X, (x ≿ y) ∧ (y ≿ z) ⇒ x ≿ z). A binary relation ≻ is an order if it is irreflexive (∀x ∈ X,x ̸≻ x),
asymmetric (∀x, y ∈ X,x ≻ y ⇒ ¬(y ≻ x)) and transitive. A given (pre)order is said to be total if
∀x, y ∈ X, (x ≻ y) ∨ (y ≻ x). Given a finite set A ⊆ X and a total order ≻X over X , we denote by
min(A) (resp. max(A)) the worst (resp. the best) element in A, i.e. such that ∀x ∈ X,x ⪰ min(A)
(resp. max(A) ⪰ x).

Considering a population X of n items, and given a ranking over respectively items and the powerset
of the population P(X) = {C ⊆ X}, several solutions to the order lifting and social ranking problems
have been introduced in the literature.

2.1 Order lifting

Barberà et al. [2] introduce several order lifting methods, of which we consider four, that we deem best
suited to our ordinal framework: two minmax-based and two lexicographical order-based methods.

Minmax-based orderings compare two coalitions using only their best and worst components: minmax
considers a coalition C1 is preferred to another C2 if min(C1) is better than min(C2) or if they are of
similar worst element but its best elementmax(C1) is preferred tomax(C2); maxmin uses the same
process, but starts by comparingmax(C1) andmax(C2), then using the worst elements as tie-breakers.

Definition (Minmax ordering). The minmax ordering ≿mnx is such that, given a total order >X over
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X , ∀A,B ⊆ X ,

A ≿mnx B ⇔
{

min(A) >X min(B), or
min(A) = min(B) and max(A) >X max(B)

Definition (Maxmin ordering). The maxmin ordering ≿mxn is such that, given a total order >X over
X , ∀A,B ⊆ X ,

A ≿mxn B ⇔
{

max(A) >X max(B), or
max(A) = max(B) and min(A) >X min(B)

In a more detailed study of pairs of coalitions, lexicographical order-based orderings compare every
element in each coalition, considering them either from worst to best (leximin) or from best to worst
(leximax). Note that the leximin ordering is also known in the literature as the anti-lexcel ordering [20].

Definition (Leximin ordering). The leximin ordering ≿L
min is such that, given a total order >X overX ,

∀A,B ⊆ X , A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|},

A ≿L
min B ⇔


A = B, or
|A| > |B| and aσA(i) = bσB(i),∀i ∈ {1, . . . , |B|}, or
∃i ∈ {1, . . . ,min{|A|, |B|}} such that ∀j < i, aσA(j) = bσB(j) and aσA(i) >X bσB(i),

with σX : {1, . . . , |X|} → {1, . . . , |X|} a permutation such that aσX(i+1) >X aσX(i).

Definition (Leximax ordering). The leximax ordering ≿L
max is such that, given a total order >X over

X , ∀A,B ⊆ X , A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|},

A ≿L
max B ⇔


A = B, or
|A| < |B| and aρA(i) = bρB(i),∀i ∈ {1, . . . , |A|}, or
∃i ∈ {1, . . . ,min{|A|, |B|}} such that ∀j < i, aρA(j) = bρB(j) and aρA(i) >X bρB(i)

with ρX : {1, . . . , |X|} → {1, . . . , |X|} a permutation such that aρX(i) >X aρX(i+1).

Additionally, Darmann and Klamler [7] introduce an order lifting method using the Borda scores
traditionally employed in voting theory to associate a value to every coalition. Given a total order
>X over X , and let pos(x) denote the rank of item x in >X ,∀x ∈ X . Let b be a n-sized vector of
(decreasing) weights, such that bi is the weight associated to the element ranked at the i-th position,
the Borda value of a set A ⊆ X is defined using vector b such that

wb(A) =
∑
x∈A

bpos(x).

The Borda-sum ordering then ranks items based on their Borda value.

Definition (Borda-sum ordering). The Borda-sum ordering ≿b is such that, ∀A,B ⊆ X ,

A ≿b B ⇐⇒ wb(A) ≥ wb(B).

While these five order lifting methods are introduced in the literature using a total order as input, they
can be extended to total preorders in a similar manner.
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2.2 Social ranking

The purpose of the social ranking problem is to determine a ranking over items inX based on expressed
preferences ≿ over P(X), taking into account their interactions with other items from the population.

Let a, b be two same-sized vectors, we denote by ≥L the lexicographical relation such that a ≥L b ⇔
(a = b or ∃t s.t. at ≻ bt and ar ∼ br,∀r ∈ {1, . . . , t − 1}). An equivalence class, denoted by Σ, in
a preorder ≿ is a set of elements deemed equivalent by ≿. The quotient order of ≿ is denoted by
Σ1 ≻ · · · ≻ Σl, with each equivalence class Σk, k ∈ {1, . . . , l}, generated by the symmetric part of ≿.

Considering that the most influent item is the most present in top coalitions, [1, 4] introduce the
lexicographical excellence method, defined as follows:

Definition. Let ≿ be a ranking over the powerset of a given set X . The lexicographical excellence
(lexcel) preference relation is a binary relation ≥lex ⊆ X ×X such that, ∀i, j ∈ X ,

i ≥lex j ⇐⇒ θ≿(i) ≥L θ≿(j),

with θ≿(i) the occurrence vector of i, such that θ≿(i)k = |{C ∈ Σk | i ∈ C}|, ∀k ∈ {1, . . . , l}.

Example 1. Let X = {1, 2, 3}, and ≿ be such that

23 ≻ 1 ∼ 123 ≻ 2 ≻ 13 ≻ 3 ∼ 12,

we compute the vectors θ≿(1) = (0, 2, 0, 1, 1), θ≿(2) = (1, 1, 1, 0, 1) and θ≿(3) = (1, 1, 0, 1, 1), which,
compared using the lexicographical relation, lead to the preference relation 2 >lex 3 >lex 1.

In another interpretation of an item’s impact on coalitions, [10] determine pairwise preference relations
based on items’ impact ceteris paribus, i.e. all things considered equal. An element x ∈ X is therefore
preferred to another y ∈ X if a majority of coalitions C ∈ X \ {x, y} verifies that C ∪ {x} ≻ C ∪ {y}.

Definition. Let≿ be a ranking over the powerset of a given setX . The CP-majority preference relation
is a binary relation ≥CP ⊆ X ×X such that, ∀i, j ∈ X ,

i ≥CP j ⇐⇒ dij(≿) ≥ dji(≿),

with dij(≿) = |{S ⊆ X \ {i, j} | S ∪ {i} ≿ S ∪ {j}}|.

Example 2. Let X = {1, 2, 3}, and ≿ be such that

13 ≻ 1 ∼ 123 ≻ 3 ≻ 23 ≻ 2 ∼ 12.

To compare 1 and 2, we compare 1 to 2 and 13 to 23, and observe that 1 ≻ 2 and 13 ≻ 23, which leads
us to conclude that 1 ≥CP 2; to compare 2 and 3, we compare 2 to 3 and 12 to 13, and observe that
3 ≻ 2 and 13 ≻ 12, which leads us to conclude that 3 ≥CP 2; finally, to compare 1 and 3, we compare
1 to 3 and 12 to 23, and observe that 1 ≻ 3 and 23 ≻ 12, which leads us to conclude that 1 =CP 3.
Remark. The CP-majority relation may return non-transitive pairwise comparisons.

Given a ranking ≿ over the powerset of a given population X , and let i ∈ X , we denote by u
+,≿
i =

|{S ⊆ X | S ∪{i} ≻ S}| and u−,≿
i = |{S ⊆ X | S ≻ S ∪{i}}| the number of coalitions for which we

observe a respective increase and decrease when i is added. [12] adapts the Banzhaf index to an ordinal
framework, and evaluates the influence of an item x ∈ X by computing its marginal contribution to
all coalitions, i.e. counting positively the number of coalitions C ⊆ X \ {x} such that C ∪ {x} ≻ C ,
and negatively those verifying that C ≻ C ∪ {x}. Items are then ranked based on their marginal
contribution score.
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Definition. Let ≿ be a ranking over the powerset of a given set X . The ordinal Banzhaf preference
relation is a binary relation ≥Banz ⊆ X ×X such that, ∀i, j ∈ X ,

i ≥Banz j ⇐⇒ Score
≿
Banz(i) ≥ Score

≿
Banz(j),

with Score
≿
Banz(i) = u

+,≿
i − u

−,≿
i .

Example 3. Let X = {1, 2, 3}, and ≿ be such that

23 ≻ 1 ∼ 123 ≻ 2 ≻ ∅ ≻ 13 ≻ 3 ∼ 12,

we compute Score≿Banz(1) = |{∅, 3}| − |{2, 23}| = 0, Score≿Banz(2) = |{∅, 3, 13}| − |{1}| = 2 and
Score

≿
Banz(3) = |{2, 12}|− |{∅, 1}| = 0, which leads to the preference relation 2 ≥Banz 1 =Banz 3.

3 From Social Ranking to Order Lifting, and back

As each problem’s input fits the other’s output (and conversely), we investigate whether giving problem
A’s output as input to problem B returns the initial input to problem A, i.e. if these are inverse problems.

Rankings over
items in X

Rankings over
items in X

Rankings over
coalitions in P(X)

Rankings over
coalitions in P(X)

Identity? Social ranking

Identity?

Order lifting

Social ranking
Order lifting

Figure 1: Representation of the studied links between the problems

3.1 Order Lifting applied to Social Ranking

We start by considering the application of order lifting methods to social ranking results, as represented
by the red arrows in Figure 1. Thus, from a ranking≥m overX , withm ∈ {lex, CP,Banz} indicating
that the social ranking rule used is respectively Lexcel, CP-majority or ordinal Banzhaf, we investigate
whether the order lifting solutions introduced in subsection 2.1 allow for the recovery of the initial
ranking ≿ over coalitions from which ≥m has been obtained.

Proposition 1. 1 Given a population of elementsX , and let ≥m be the preferences overX obtained using
a social ranking methodm ∈ {lex, CP,Banz} on given preferences ≿ over P(X). No order lifting rule
may systematically return the correct preferences on P(X) from ≥m.

In particular, for each of the introduced order lifting solutions, we find that there exists an example for
which it returns an incorrect ranking over coalitions. This result is as expected for several reasons, but
notably because, as detailed in subsection 2.2, the social ranking problem is set on detecting interactions
between elements, while all introduced order lifting solutions consider extensions of preferences over
items to be the sole indicator of set evaluation, without accounting for possible reaction to other items’
presence. It would therefore be too optimistic to expect order lifting rules to account for interactions
over which they have no knowledge.

1Proofs for every proposition in this paper are available in the Appendix
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However, social ranking methods may still respond well to preferences which do not model any
interaction between items. In the following subsection, we investigate social ranking solutions’ ability
to recover the correct ranking over items based on their lifted preferences, as represented by the blue
arrows in Figure 1.

3.2 Social Ranking applied to Order Lifting

Let ≿ be a preorder over P(X) given as input to the social ranking problem, obtained by applying one
of the order lifting rules introduced in subsection 2.1 to a total order >X over X , we look into each
social ranking rule’s (as introduced in subsection 2.2) ability to recover >X .

Proposition 2. Given a total order >X over elements in a set X , and let ≿ be the ranking obtained
over P(X) by applying an order lifting solution on >X , i.e. ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max}. Lexcel,

CP-majority and ordinal Banzhaf always return the correct order >X over X from ≿.

Using the “classic" Borda weight vector b = (n− 1, . . . , 1, 0), one notices that the Borda-sum ordering
is not monotonic, because of the Irrelevance of Worst Object axiom introduced in [7]: being of weight 0,
the worst element inX can be removed from any coalition without changing the coalition’s evaluation.
Therefore, it is not always true that adding any element to a coalition strictly improves its performance
- this only holds if the added element is not the element placed last by ≿b.

Proposition 3. Given a total order >X over items in X , and let ≿b be the preorder obtained over P(X)
by applying the Borda-sum extension rule on >X using the weight vector b = (n− 1, . . . , 1, 0). Lexcel
and CP-majority always return the correct order over X from ≿b.

Proposition 4. Given a total order >X over items in X , and let ≿b be the preorder obtained over P(X)
by applying the Borda-sum extension rule on >X using the weight vector b = (n− 1, . . . , 1, 0). Ordinal
Banzhaf will never return the correct order over X from ≿b.

The Order Lifting Problem and the Social Ranking Problem are therefore not inverse problems, as, from
the order over items determined by a social ranking method, no order lifting method systematically
manages to recover the initial order over coalitions. However, aside from ordinal Banzhaf’s negative
reaction to Borda-sum orderings, our social ranking rules always recover the correct initial order over
items given the order over coalitions obtained using any of the introduced order lifting methods.

4 Recovering initial preferences from partial extensions: Social ranking applied to
partially-lifted orders

Note that when all singletons are present in the expressed preferences over coalitions, and knowing
that these preferences are the product of an order lifting method, the problem of determining the
correct order over items is trivial: it is sufficient to remove all coalitions of size greater than 1 from
the preferences. This problem becomes harder when at least a couple of the singletons are missing
from the ranking, i.e. when a partial preorder is taken as input. Furthermore, preferences over the
entirety of a population’s powerset are in practice rare and rather impractical to obtain: it is much
more common to only have access to preferences over some coalitions, with an idea of the underlying
reasoning behind this ranking. There has been work dealing with incomplete preference such as [19],
which is focused on completing partial preorders over coalitions to uncover individual preferences
using elicitation. However, we choose to consider that no additional information over the preorder is
made available, and study the impact of this lack of information on social ranking methods’ efficiency
in recovering the initial order over items.
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We now consider a variant of the social ranking problem, in which, given a partial preorder over the
powerset of a population, and with the knowledge that these preferences have been obtained through
an order lifting method, we try and recover the initial order over items. Note that, from this point on,
we only consider partial preorders in which at least two singletons are missing from the ranking, so as
to ensure we do not consider trivial cases.

4.1 Theoretical results

We start by studying expected results from the three social ranking methods, and try to determine if
one specific method may (in theory) fare better than the others under partial information. In the rest
of this paper, we will say that a preorder ≿ is compatible with another preorder ≿+ iff ≿ ⊆ ≿+, i.e.
∀x, y ∈ X,x ≿ y ⇒ x ≿+ y.

We define three levels of precision, which must hold for any preorder given as input, with level 0
representing the lowest threshold for precision, and level 2 the highest before exactness:

• Level 0: (Impossibility of reversal) the social ranking rule may not return a preorder that is the
reverse of the initial one, i.e. >X ̸= ∅ and ∃x, y ∈ X s.t. x >X y and the rule m returns that
x ≥m y.

• Level 1: (Preservation of the extremes) the social ranking rule may return incorrect pairwise
preferences, but in a worst-case scenario where it would return the worst element as a top element
(i.e. w ∈ X such that ∀x ∈ X \ {w}, x ≥X w is also such that w ≥m x), it will also return
the best element as top element. Similarly, in a worst-case scenario where it would return the
best element as a bottom element (i.e. b ∈ X such that ∀x ∈ X \ {w}, b ≥X x is also such that
x ≥m b), it will also return the worst element as bottom element.

• Level 2: (Preservation of pairwise preferences) let x, y ∈ X be such that x >X y, the social ranking
rulem will never determine that y >m x (note that it may however return that x =m y).

We then study the level of precision achieved by each social ranking method. Note that if a given rule
does not verify level i of precision, it will not verify any level j such that j > i.

Proposition 5. Given a ranking >X over X from which we determine ≿ using one of the introduced
order lifting rules, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, lexcel
does not satisfy level 0 of precision, ∀ ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max,≿b}.

Proposition 6. Given a ranking >X over X from which we determine ≿ using one of the minmax-based
orderings, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, ordinal Banzhaf
satisfies level 1 of precision but not level 2, ∀ ≿∈ {≿mnx,≿mxn}.

Proposition 7. Given a ranking >X overX from which we determine ≿ using one of the lexicographical
order-based orderings. Let b be the best item according to >X , and let ≿′ be a partial preorder over P(X)
compatible with ≿ such that ∃C ⊆ X \ {b} verifying that C,C ∪ {b} ∈ ≿′. When applied to ≿′, ordinal
Banzhaf satisfies level 1 of precision but not level 2, ∀ ≿∈ {≿L

min,≿
L
max}.

Remark. If there is no coalition C ⊆ X \ {b} verifying that C,C ∪ {b} ∈ ≿′, ordinal Banzhaf may not
satisfy level 1 of precision from lexicographical order-based orderings.

Proposition 8. Given a ranking>X overX from which we determine≿ using one of the introduced order
lifting rules, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, CP-majority
satisfies level 2 of precision, ∀ ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max,≿b}.
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For all five order lifting solutions, Lexcel does not verify even level 0 of precision, while CP-majority
satisfies level 2, which indicates that CP-majority should be the recommended method in every scenario.
We note that ordinal Banzhaf satisfies level 1 of precision, although, for the lexicographical order-based
rules, with a hypothesis on the presence of at least one coalition. Note that this hypothesis is not very
limiting, however, and ordinal Banzhaf thus remains a better option than Lexcel.

4.2 Experimental results

We proceed to several experiments over synthetic data to test each method’s performance in practice.
For each order lifting method, we randomly generate a ranking over items, from which we infer a
ranking over coalitions. We remove a varying number of coalitions from the latter ranking, so that
only a given percentage of the coalitions (among the 2n) remains available: this constitutes the partial
ranking given as input to each social ranking method. We then observe the output of each social ranking
method and compare it to the correct initial ranking over items.

Recovering the initial order We start by studying the impact of missing coalitions on each social
ranking method’s ability to recover the correct initial order. In this section, we count as a success each
occurrence in which a social ranking method has managed to recover the initial ranking over items
such that errors (i.e. a >X b, but it is determined that b >m a, with m the social ranking method) or
imprecision (i.e. there exists a strict preference between a and b, but the social ranking method m finds
that a =m b) are avoided.

Figure 2 displays experimental results for a population of size 4; Figure 3 for a population of size 8. We
already notice changes in conclusions: lexcel performs particularly well over a small population when a
relatively small percentage of coalitions is available, while CP-majority appears to be systematically
more efficient over a larger population. This is explained by the fact that, the smaller the population,
the smaller the number of coalitions studied when considering a given percentage p of P(X). As we
will observe in the next figures, CP-majority will often be unable to distinguish between elements when
faced with fewer coalitions, while lexcel has a better chance to have access to informative top coalitions
when P(X) is smaller, regardless of p. Naturally, as the total number of coalitions in the powerset
increases, we observe that it is harder for all social ranking methods to determine the correct order
based on only a small percentage of all the coalitions. This result differs when it comes to the Borda-sum
ordering (cf. Figure 3e), which succeeds in retrieving the correct initial order for over half of the runs
with as little as 20% of all the coalitions. This result is due to the weakly additive nature of Borda-sum,
to which CP-majority reacts rather well. Additionally, these experimental results are also coherent
with our theoretical findings, displaying ordinal Banzhaf’s poor reaction to preferences extended using
Borda-sum (cf. Figures 2e and 3e). What’s more, it appears that ordinal Banzhaf is always suboptimal,
regardless of the type of lifting rule considered.

Finally, we observe that, over a small population, the performance of each social ranking method
(excepted ordinal Banzhaf for Borda-sum) remains somewhat similar over each lifting rule. That is
not the case, however, when the size of the population increases, as Figure 3a and 3b highlight an
impossibility for any social ranking method to find the correct initial order with fewer than 60% of all
coalitions if the preferences have been obtained via minmax-based orderings.

To get a better sense of the difference in performance between all three social ranking methods, we
then focus on what we will refer to as the weak Kendall-Tau distance between the ranking uncovered
by a social ranking method and the correct initial order. It is defined over two rankings ≥1 and ≥2 as
the number of pairs (a, b) ∈ X such that (a, b) ∈ ≥1 but (a, b) /∈ ≥2. This weakened version of the
classic Kendall-Tau distance will allow us to highlight a key characteristic of the results of CP-majority.
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(a)Minmax ordering (b)Maxmin ordering (c) Leximin ordering

(d) Leximax ordering (e) Borda-sum ordering

Figure 2: Percentage of runs for which each social ranking method finds the correct initial order (over 10000
runs with |X| = 4) for each lifting rule

A study of weak Kendall-Tau distance to the correct ranking We now focus on measuring the
distance between the output ranking over items and the initial ranking.

Figure 4 displays experimental results of each social ranking method for a population of size 8. A
surprising observation relates to CP-majority, for which we have shown that no incorrect preference
may be returned, i.e. if a >X b, then CP-majority cannot return that b >CP a. Yet, for every lifting
rule, and every population size, we observe that CP-majority systematically displays the worst weak
Kendall-Tau distance to the truth when only a few coalitions are available. This is explained by the fact
that the weak Kendall-Tau distance considers equivalence to be a difference: if a is preferred to b in
one order, but another order considers a to be equivalent to b, then the pair (a, b) is counted by the
weak Kendall-Tau method. These figures therefore show that CP-majority returns many equivalences,
particularly when only a small percentage of coalitions is available.

While this seems a reasonable phenomenon to observe, as the more information is lacking, the harder it
will be to determine a strict preference with certainty, we note that lexcel maintains what appears to be
a low weak Kendall-Tau distance, providing distinct preferences between the items.

This leads to a dual conclusion, relative to one’s position regarding equivalence and exactness of results.
Indeed, if one favours the robustness of the resulting ranking over its guaranteed expressiveness, then
CP-majority appears to be the best method. If, however, one wishes to get clear preferences, with some
tolerance for possible errors, then it would appear best to favour lexcel - at least when only a small
percentage of all coalitions is available.

Combining social ranking methods It is worth noting that some pairs of items over which lexcel
returns an incorrect strict preference may be such that their strict preference relation is returned
correctly by CP-majority. This leads us to introduce another method altogether, which combines the
guarantee of CP-majority’s strict preference results and lexcel’s low weak Kendall-Tau distance. We
choose to combine the two rules, starting from the ranking determined using CP-majority, then using
lexcel as a tie-breaker for any pair of items determined equivalent. We also study a version where
ordinal Banzhaf is used as a tie-breaker, to compare the performance of both combinations.

9



(a) Minmax extension (b) Maxmin extension (c) Leximin extension

(d) Leximax extension (e) Borda-sum extension

Figure 3: Number of times where each social ranking method finds the correct initial order (over 10000 runs
with |X| = 8) for each extension

Figure 5 displays experimental results of each combination of social ranking methods for a population
of size 8. Its subfigure 5a seems to indicate that the combination of CP-majority and Banzhaf is optimal
under minmax-based orderings, while the combination of CP-majority and lexcel is the optimal method
for all other lifting rules. We also observe that, in any case, both combinations yield results with a lower
weak Kendall-Tau distance to the truth than any social ranking method by itself. This reinforces our
assumption that the tie-breaking combination improves the overall result, and leads us to conclude that
it is always better to opt for one of these combinations.

(a) Minmax-based ordering (b) Lex. order-based orderings (c) Borda-sum ordering

Figure 4: Weak Kendall-Tau distance to the initial order (over 10000 runs with |X| = 8) for each method and
each family of lifting rules

All in all, while it appears that CP-majority yields the overall best results by itself, it seems to display a
weakness in its propensity to return equivalence when faced with insufficient information. While this
may be a reasonable weakness, as one may consider that, in situations of severe lack of information, it
is reasonable to answer that strict preferences over items are not retrievable, it can also present as a
drawback if one prefers to obtain strict preferences with a tolerance for some errors. In the latter case,
we observe that using another social ranking method as a tie-breaker on CP-majority’s results allow
for a more decisive resulting ranking (in that it will contain more strict preferences) while maintaining
the lowest weak Kendall-Tau distance to the truth, therefore guaranteeing the highest possible level
of correctness of strict preferences among all other methods. Note, however, that adding other social

10



(a)Minmax-based orderings (b) Lex. order-based orderings (c) Borda-sum ordering

Figure 5: Weak Kendall-Tau distance to the initial order (over 10000 runs with |X| = 8) for each combination of
methods and each family of lifting rules

ranking methods to CP-majority as tie-breakers weakens its preciseness level. Indeed, as lexcel and
ordinal Banzhaf can return incorrect orders, Preservation of pairwise preferences may be violated when
they are used to decide the preference relation between elements deemed equivalent by CP-majority.

Finally, we consider a second variation of the social ranking problem, in which the input (partial)
ranking is only over coalitions of a same size k.

5 On the impact of structured preferences: the case of k-sized coalitions

In real-life applications, it is often the case that only groups of a certain size are studied and compared.
Sports teams, for instance, are generally of a fixed size, and it is not particularly relevant or possible to
consider teams of smaller or larger sizes. [6] namely studies the application of social ranking rules to a
real-life dataset of NBA games between teams of 5 players, and highlights the challenges caused by the
absence of coalitions of any other size, as well as missing comparisons between some pairs of teams.

In this section, we investigate the ability of social ranking rules to recover the correct order over items
based on a (partial) preorder over coalitions of a given size k, when this preorder is supposed to have
been obtained using one of the five introduced order lifting solutions. Given preferences ≿ over P(X),
we will denote by Xk = {C ⊆ X | |C| = k} the set of coalitions of a given size k, and by ≿k the
preferences restricted to the set Xk. Note that ≿k is total over Xk.

From this point on, we only consider (partial) preorders over k-sized coalitions in a population X =
{1 . . . , n}, for k ∈ {2, . . . , n− 1}, as the reader can easily convince themselves that considering k = 1
renders the problem trivial, and k = n impossible. Finally, by construction, ordinal Banzhaf is unable
to evaluate any item using only coalitions of a same size k, and will therefore always return as a result
that all elements are equivalent (because all elements have a score 0), which makes it irrelevant in this
particular setting, and we will therefore only consider lexcel and CP-majority going forward.

5.1 Theoretical results

We investigate each social ranking method’s ability to recover the initial order over items, based on the
ranking obtained using order lifting solutions only over the set Xk.

Proposition 9. When k ≤ ⌈n2 ⌉, lexcel recovers the initial order >X from the total preorder ≿, ∀ ≿ ∈
{≿k

mnx,≿
k
mxn}.

Proposition 10. When k ≤ ⌈n2 ⌉, CP-majority recovers the initial order >X from the total preorder ≿,
∀ ≿ ∈ {≿k

mnx,≿
k
mxn}.

11



Proposition 11. Lexcel always recovers the initial order >X from the preorder ≿,∀ ≿ ∈ {(≿L
min

)k, (≿L
max)

k),≿k
b}.

Proposition 12. CP-majority always recovers the initial order >X from the preorder ≿,∀ ≿ ∈ {(≿L
min

)k, (≿L
max)

k),≿k
b}.

We observe that Maxmin-based extensions are more restrictive, as they only allow for the recovery of
the initial preferences when k is at most ⌈n2 ⌉, while other order lifting solutions allow for each social
ranking method to recover the correct order over items, regardless of the value of k ∈ {2, . . . , n− 2}.
In the next subsection, we proceed to experiments to observe the impact of missing coalitions on the
precision of the recovery of the initial order, when considering a ranking over Xk, for a given size k.

5.2 Experimental results

We proceed to experiments on the impact of missing information when considering only k-sized
coalitions, for each applicable social ranking rule (as well as their combination), and for different
population sizes2. Our results seem to indicate that, the closer k gets to n

2 , the easier it gets for each
method to determine the correct ranking over items, even from only partial preferences over the
coalitions. That is particularly true for the minmax and maxmin extensions (respectively rules 1 and 2 in
the tables). This may be explained by the fact that, as k gets closer to n

2 , the number of coalitions of size k
(i.e.

(
n
k

)
) increases. Therefore, as there are more coalitions to choose from, 10% of that set will represent

a larger amount of useable coalitions. We also note that, while lexcel seems to be (slightly) more efficient
with very little information, CP-majority rapidly outperforms it as the amount of accessible coalitions
increases, but that the combination of CP and lexcel proves to be the most efficient approach.

It appears that the Borda-sum orderings lead to far better results than any other rule. On the other
hand, we can observe that, while on small populations, the remaining four lifting rules seem to share
similar results, the lexicographical order-based rules seem to lose efficiency as the size of the population
grows, which is a different result than observed in section 4.2. Finally, we also observe that all lifting
rules present poor results when k = n− 1, a scenario in which Xk is small, and missing information
about coalitions is therefore particularly costly.

6 Conclusions and perspectives

We have determined in this work that, while the order lifting problem is not the inverse of the social
ranking problem, the latter allows for the recovery of initial preferences over individuals, when they have
been extended via preference lifting methods. Considering scenarios in which some information about
the coalition ranking may be missing, we observed that CP-majority has some theoretical appealing
properties, as well as encouraging experimental results, which leads us to believe that it is the best single
method to recover individual preferences. However, we observe that combining methods increases
efficiency: namely, using lexcel or ordinal Banzhaf as tie-breakers for the results yielded by CP-majority
leads to better results than any social ranking method by itself.

While we have selected several methods for the order lifting and the social ranking problems, there exist
many more: the order lifting and social ranking methods studied in this paper correspond to specific
archetypes of decision makers, but others may allow for the description of different approaches to
determining preferences over subsets. We therefore believe it to be of interest to see if our observations
and results hold for other solutions. In particular, some approaches to preference modeling allow
for the integration of possible interactions between items [8, 9, 18], which is a notion present in the
social ranking problem, but not in order lifting. We believe that extending this work to consider such
preference models to derive an order over coalitions from preferences over items could prove interesting.

2Tables detailing experimental results for varying population sizes are provided in the Appendix
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- Appendix -

3 From Social Ranking to Order Lifting, and back

3.1 Order Lifting applied to Social Ranking

Proposition 1. Given a population of elements X, and let ≥m be the preferences over X obtained using a
social ranking method m ∈ {lex, CP,Banz} on given preferences ≿ over P(X). No order lifting rule may
systematically return the correct preferences on P(X) from ≥m.

Proof. A social ranking rule is a function taking as input the powerset of a given population X, and returning
as output a ranking over the items in X. On the other hand, an order lifting rule is a function taking as
input a ranking over X, and returning as output a ranking over its powerset P(X).

Since the cardinality of the set of rankings on items is lower than the cardinality of the set of rankings
on coalitions, no mapping from the former to the latter may be surjective. This implies that there can be no
bijection between the two and therefore no inverse function: no order lifting rule may systematically return
the correct ranking over coalitions from the ranking over items.

In particular, in the following counter-examples we present instances where each of the introduced order
lifting rules returns an incorrect order over coalitions from preferences over items determined by each social
ranking rule:

Example 1.
1. The rankings ≿mnx, ≿mxn, ≿L

min, ≿L
max and ≿b obtained from ≥lex may return preferences on P(X)

different than ≿.

Let X = {1, 2, 3}, and given the preorder ≿ over P(X) such that

3 ≻ 12 ≻ 13 ≻ 1 ≻ 2 ≻ 123 ≻ 23.

From ≿, lexcel will determine that 3 >lex 1 >lex 2.
From ≥lex, using the order lifting solutions, we obtain the following preorders over P(X):

• Minmax:
3 ≻mnx 13 ≻mnx 1 ≻mnx 123 ∼mnx 23 ≻mnx 12 ≻mnx 2,

• Maxmin:
3 ≻mxn 13 ≻mxn 23 ∼mxn 123 ≻mxn 1 ≻mxn 12 ≻mxn 2,

• Leximin:
3 ≻L

min 13 ≻L
min 1 ≻L

min 23 ≻L
min 123 ≻L

min 12 ≻L
min 2,

• Leximax:
3 ≻L

max 13 ≻L
max 123 ≻L

max 23 ≻L
max 1 ≻L

max 12 ≻L
max 2.

All of these rankings are different from ≿.

2. The rankings ≿mnx, ≿mxn, ≿L
min, ≿

L
max and ≿b obtained from ≥CP may return preferences on P(X)

different than ≿.

Let X = {1, 2, 3}, and given the preorder ≿ over P(X) such that

23 ∼ 13 ≻ 123 ≻ 3 ∼ 1 ≻ 12 ≻ 2.

From ≿, CP-majority will determine that 3 >CP 1 >CP 2.

1



From ≥CP , using the order lifting solutions, we obtain the same preorders than for 1., all of which are
different from ≿.

3. The rankings ≿mnx, ≿mxn, ≿L
min, ≿

L
max and ≿b obtained from ≥Banz may return preferences on P(X)

different than ≿.

Let X = {1, 2, 3}, and given the preorder ≿ over P(X) such that

12 ≻ 3 ≻ ∅ ≻ 13 ≻ 123 ≻ 23 ≻ 2 ≻ 1.

From ≿, ordinal Banzhaf will determine that 3 >Banz 1 >Banz 2.
From ≥Banz, using the order lifting solutions, we obtain the same preorders than for 1., all of which are

different from ≿.

3.2 Social Ranking applied to Order Lifting

Proposition 2. Given a total order >X over elements in a set X, and let ≿ be the ranking obtained over
P(X) by applying an order lifting solution on >X , i.e. ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max}. Lexcel, CP-majority

and ordinal Banzhaf always return the correct order >X over X from ≿.

Proof. Let x, y ∈ X be such that x >X y.
1. Lexcel, CP-majority and Ordinal Banzhaf always return the correct order >X over X from ≿mnx.

• Lexcel: The comparison between x and y will be determined by the relation between the best non-
equivalent coalitions Cx,−y (i.e. such that x ∈ Cx,−y and y /∈ Cx,−y) and Cy,−x. By construction, any
coalition Cx,−y must be such that its minimal element is at best x; similarly, any coalition Cy,−x must
be of minimal element at best y. Since x >X y, there will exist no coalition containing y and not x
which will be preferred to a coalition containing x and not y, and lexcel will therefore determine that
x >lex y.

• CP-majority: In comparing x and y, CP-majority will consider every coalition S ⊆ X \ {x, y} and
compare S ∪ {x} to S ∪ {y}. As coalitions are ranked according to their minimal element (and their
maximal if there is a tie), any coalition S containing at least one element preferred to x and one to
which y is preferred will lead to an indifference between S∪{x} and S∪{y} (as they will have identical
extreme elements), and will thus be irrelevant to the distinction between x and y. We therefore consider
the two possible scenarios in which CP-majority will be able to observe a strict preference:

1. if no element in S is preferred to x, then min(S∪{x}) = min(S) and min(S∪{y}) = min{min(S), y}.
Since x >X y, and, by hypothesis, x >X min(S), it must hold that S ∪ {x} ≻mnx S ∪ {y}.

2. if no element in S is ranked lower than y, then min(S∪{x}) = min{min(S), x} and min(S∪{y}) =
y. Since x >X y and, by hypothesis, min(S) >X y, it must hold that S ∪ {x} ≻mnx S ∪ {y}.

In any case, any coalition S ⊆ X \ {x, y} will lead to the observation that S ∪ {x} ≿mnx S ∪ {y}, with
at least one coalition S∗ ⊆ X \{x, y} verifying that S∗∪{x} ≻mnx S∗∪{y}. CP-majority will therefore
determine that x >CP y.

• Ordinal Banzhaf: To compare x and y, ordinal Banzhaf will compute their scores based on their marginal
contributions to coalitions. By construction, S∪{x} ≻mnx S iff x >X max(S), therefore any coalition S
composed only of elements strictly worse than x will see its performance improve when x is added to it;
similarly, S ≻mnx S∪{x} iff min(S) >X x, therefore any coalition S composed only of elements strictly
better than x will see its performance worsen when x is added to it. Even in the worst-case scenario, in

which x and y are directly adjacent in >X , we know that u
+,≿mnx
x > u

+,≿mnx
y , and u

−,≿mnx
x < u

−,≿mnx
y ,

therefore x will have a greater score than y, and ordinal Banzhaf will rank it before y.

2. Lexcel, CP-majority and Ordinal Banzhaf always return the correct order >X over X from ≿mxn.
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• Lexcel: The comparison between x and y will be determined by the relation between the best non-
equivalent coalitions Cx,−y (i.e. such that x ∈ Cx,−y and y /∈ Cx,−y) and Cy,−x. By construction, any
coalition Cx,−y must contain the best element and x (or just x if it is the best element) - note that it may
also contain any element a ∈ X \{x, y} such that a >X x; similarly, any of coalition Cy,−x must contain
the best element (or second best if x is the best) and y - note that it may, too, contain any element
a ∈ X \{x, y} such that a >X y. Therefore max(Cx,−y) = max(X) and max(Cy,−x) = max(X \{x}). If
max(X) = max(X \ {x}), then the minimal element will be used as a tie-breaker, with min(Cx,−y) = x
and min(Cy,−x) = y. From our hypothesis, it must then hold that Cx,−y ≻ Cy,−x. Lexcel will therefore
determine that x >lex y.

• CP-majority: In comparing x and y, CP-majority will consider every coalition S ⊆ X \ {x, y} and
compare S ∪ {x} to S ∪ {y}. As coalitions are ranked according to their maximal element (and their
minimal if there is a tie), any coalition S containing at least one element worse than y and one preferred
to x will lead to an indifference between S∪{x} and S∪{y} (as they will have identical extreme elements),
and will thus be irrelevant to the distinction between x and y. We therefore consider the two possible
scenarios in which CP-majority will be able to observe a strict preference:

1. if no element in S is preferred to x, then max(S ∪{x}) = x and max(S ∪{y}) = max{max(S), y}.
Since x >X y, and, by hypothesis, x >X max(S), it must hold that S ∪ {x} ≻mxn S ∪ {y}.

2. if no element in S is ranked lower than y, then if max(S ∪ {x}) = max(S ∪ {y}), we compare
min(S ∪ {x}) = min{min(S), x} to min(S ∪ {x}) = y and, since x >X y and min(S) >X y, it
must hold that S ∪ {x} ≻mxn S ∪ {y} ; if max(S ∪ {x}) ̸= max(S ∪ {y}), then we must be in the
previous scenario, and it must hold that S ∪ {x} ≻mxn S ∪ {y}.

In any case, any coalition S ⊆ X \ {x, y} will lead to the observation that S ∪ {x} ≿mxn S ∪ {y}, with
at least one coalition S∗ ⊆ X \{x, y} verifying that S∗∪{x} ≻mxn S∗∪{y}. CP-majority will therefore
determine that x >CP y.

• Ordinal Banzhaf: To compare x and y, ordinal Banzhaf will compute their scores based on their marginal
contributions to coalitions. By construction, S∪{x} ≻mxn S iff x >X max(S), therefore any coalition S
composed only of elements strictly worse than x will see its performance improve when x is added to it;
similarly, S ≻mxn S∪{x} iff min(S) >X x, therefore any coalition S composed only of elements strictly
better than x will see its performance worsen when x is added to it. Even in the worst-case scenario, in

which x and y are directly adjacent in >X , we know that u
+,≿mxn
x > u

+,≿mxn
y , and u

−,≿mxn
x < u

−,≿mxn
y ,

therefore x will have a greater score than y, and ordinal Banzhaf will rank it before y.

3. Lexcel, CP-majority and Ordinal Banzhaf always return the correct order >X over X from ≿L
min.

• Lexcel:
Lemma: Let x, y ∈ X be such that x >X y, and let C be the most preferred coalition in ≿L

min verifying
that y ∈ C and x /∈ C. There exists a coalition C ′ verifying that x ∈ C ′, y /∈ C ′ and C ′ ≻L

min C.
Proof: Let S = C \ {y}, with |S| = k, and consider C ′ = S ∪ {x}. Since C ′ and C differ by only one
element, ∃i ≤ k + 1 st ∀j < i, c′σC′ (j)

= cσC(j) = sσS(j) but c′σC′ (i)
̸= cσC(i). By construction of σ, it

must then hold that cσC(i) = y and c′σC′ (i)
= min{x, sσS(i)}. Since x >X y and sσS(i) >X y (because y

has been inserted before sσS(i)), it must hold that c′σC′ (i)
>X cσC(i), and therefore C ′ ≻L

min C.

Lexcel will consequently determine that x >lex y.

• CP-majority: Let S ⊆ X \ {x, y} such that |S| = k. When comparing A = S ∪ {x} to B = S ∪ {y},
∃i ≤ k + 1 st ∀j < i, aσA(j) = bσB(j) = sσS(j) but aσA(i) ̸= bσB(i). By construction of σ, it must then
hold that bσB(i) = y <X aσA(i) = min{x, sσS(i)}. Therefore S ∪ {x} ≻L

min S ∪ {y}, which means that
CP-majority will find that x >CP y.

• Ordinal Banzhaf: Let S ⊆ X \ {x}, and denote by A the set S ∪ {x}. If x >X max(S), then by
construction of σ, it must hold that ∀i ∈ {1, . . . , |S|}, sσS(i) = aσA(i) which, by definition, indicates that
A ≻L

min S and will increase the score of x; if, however, x <X max(S), then ∃j ∈ {1, . . . , |S|} such that
∀i < j, sσS(i) = aσA(i) but sσS(j) ̸= aσA(j) and by construction, it must hold that sσS(i) >X aσA(i) = x,
therefore S ≻L

min A. This means that coalitions containing only worse elements than x increase its
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score; any other coalition will decrease it.
However, since x >X y, and let x− denote the number of elements to which x is preferred, we know
that x− > y−, therefore 2x

−
> 2y

−
coalitions will increase the score of each compared element and

2n−1 − 2x
−

< 2n−1 − 2y
−

will decrease it, which means that ScoreBanz(x) > ScoreBanz(y). In each
case, ordinal Banzhaf will determine that x >Banz y.

4. Lexcel, CP-majority and Ordinal Banzhaf always return the correct order >X over X from ≿L
max.

• Lexcel:
Lemma: Let x, y ∈ X be such that x >X y, and let C be the most preferred coalition in ≿L

max verifying
that y ∈ C and x /∈ C. There exists a coalition C ′ verifying that x ∈ C ′, y /∈ C ′ and C ′ ≻L

max C.
Proof: Let S = C \ {y}, with |S| = k, and consider C ′ = S ∪ {x}. Since C ′ and C differ by only one
element, ∃i ≤ k + 1 st ∀j < i, c′ρC′ (j)

= cρC(j) = sρS(j) but c′ρC′ (i)
̸= cρC(i). By construction of ρ, it

must then hold that c′ρC′ (i)
= x >X cρC(i) = max{y, sρS(i)}. Since x >X y and x >X sρS(i) (because x

has been inserted before sρS(i)), it must hold that C ′ ≻L
max C.

Therefore, lexcel will determine that x >lex y.

• CP-majority: Let S ⊆ X \ {x, y} such that |S| = k. When comparing A = S ∪ {x} to B = S ∪ {y},
∃i ≤ k + 1 st ∀j < i, aρA(j) = bρB(j) = sρS(j) but aρA(i) ̸= bρB(i). By construction of ρ, it must then
hold that aρA(i) = x >X bρB(i) = max{y, sρS(i)}. Therefore S ∪ {x} ≻L

max S ∪ {y}, which means that
CP-majority will find that x >CP y.

• Ordinal Banzhaf: Let S ⊆ X \ {x}, and denote by A the set S ∪ {x}. If x >X min(S), then ∃j ∈
{1, . . . , |S|} st ∀i < j, sρS(i) = aρA(i) but sρS(j) ̸= aρA(j) and, by construction of ρ, it must hold
that sρS(j) <X aρA(j) = x because x was inserted before sρS(j), therefore A ≻L

max S; if, however,
x <X min(S), then by construction, ∀i ∈ {1, . . . , |S|}, sρS(i) = aρA(i), which indicates that S ≻L

max A.
This means that coalitions containing only better elements than x will decrease its score; any other
coalition will increase it.
However, since x >X y, and let x+ denote the number of elements preferred (or equivalent) to x, we

know that x+ < y+, therefore 2x
+

< 2y
+

coalitions will decrease the score of each compared element,
but 2n−1− 2x

+

> 2n−1− 2y
+

will increase it, which means that ScoreBanz(x) > ScoreBanz(y). In each
case, ordinal Banzhaf will determine that x >Banz y.

Proposition 3. Given a total order >X over items in X, and let ≿b be the preorder obtained over P(X)
by applying the Borda-sum extension rule on >X using the weight vector b = (n − 1, . . . , 1, 0). Lexcel and
CP-majority always return the correct order over X from ≿b.

Proof. Let x, y ∈ X be such that x >X y, and let w be the worst element in X according to >X .

• Lexcel: The comparison between x and y will be determined by the relation between the best non-
equivalent coalitions Cx,−y (i.e. such that x ∈ Cx,−y and y /∈ Cx,−y) and Cy,−x. By construction of the
Borda-sum ordering, Cx,−y will beX\{y} (equivalent to X\{y, w}), and Cy,−x will beX\{x} (equivalent
to X \ {x,w}). Without loss of generality, it thus holds that wb(Cx,−y) = wb(X \ {x, y}) + bpos(x)
and wb(Cy,−x) = wb(X \ {x, y}) + bpos(y). Since, by hypothesis, x >X y, then it must hold that
bpos(x) > bpos(y), hence wb(Cx,−y) > wb(Cy,−x). This means that Cx,−y ≻b Cy,−x, and lexcel will
therefore determine that x >lex y.

• CP-majority: In comparing x and y, CP-majority will consider every coalition S ⊆ X \ {x, y} and
compare S∪{x} to S∪{y}. By construction, wb(S∪{x}) = wb(S)+ bpos(x) and wb(S∪{y}) = wb(S)+
bpos(y). Since, by hypothesis, x >X y, then it must hold that bpos(x) > bpos(y), hence wb(S ∪ {x}) >
wb(S ∪ {y}). This means that, ∀S ⊆ X \ {x, y}, S ∪ {x} ≻b S ∪ {y}, and CP-majority will therefore
determine that x >CP y.

Proposition 4. Given a total order >X over items in X, and let ≿b be the preorder obtained over P(X) by
applying the Borda-sum extension rule on >X using the weight vector b = (n− 1, . . . , 1, 0). Ordinal Banzhaf
will never return the correct order over X from ≿b.
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Proof. Let w ∈ X be the worst element in X according to >X . Using the weight vector b = (n− 1, . . . , 1, 0),
the addition of any element other than w to a coalition systematically improves its Borda-sum score, i.e.
∀x ∈ X \ {w},∀S ⊆ X \ {x}, S ∪ {x} ≻b S. Therefore, any element in X \ {w} will get the same Banzhaf
score of 2n−1. As for w, since the weight associated to the worst element by b is 0, then it holds that
∀S ⊆ X \ {w}, S ∼b S ∪ {w}, and its Banzhaf score will always be of 0. Therefore, ordinal Banzhaf will
always yield the following ranking:

{x | x ∈ X \ {w}} >Banz w,

regardless of the correct initial ranking >X .

4 Recovering initial preferences from partial extensions: Social
ranking applied to partially-lifted orders

4.1 Theoretical results

• Level 0: (Impossibility of reversal) the social ranking rule may not return a preorder that is the reverse
of the initial one, i.e. >X ̸= ∅ and ∃x, y ∈ X s.t. x >X y and the rule m returns that x ≥m y.

• Level 1: (Preservation of the extremes) the social ranking rule may return incorrect pairwise pref-
erences, but in a worst-case scenario where it would return the worst element as a top element (i.e.
w ∈ X such that ∀x ∈ X \ {w}, x ≥X w is also such that w ≥m x), it will also return the best element
as top element. Similarly, in a worst-case scenario where it would return the best element as a bottom
element (i.e. b ∈ X such that ∀x ∈ X \ {w}, b ≥X x is also such that x ≥m b), it will also return the
worst element as bottom element.

• Level 2: (Preservation of pairwise preferences) let x, y ∈ X be such that x >X y, the social ranking
rule m will never determine that y >m x (note that it may however return that x =m y).

Proposition 5. Given a ranking >X over X from which we determine ≿ using one of the introduced order
lifting rules, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, lexcel does not
satisfy level 0 of preciseness, ∀ ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max,≿b}.

Example 2. Let X = {1, 2, 3, 4}, and let 1 >X 2 >X 3 >X 4.

• Minmax: The preference relation ≿mnx obtained from >X is

1 ≻mnx 12 ≻mnx 2 ≻mnx 13 ∼mnx 123 ≻mnx 23 ≻mnx 3 ≻mnx 1234 ∼mnx 134 ∼mnx 124 ∼mnx 14

≻mnx 234 ∼mnx 24 ≻mnx 34 ≻mnx 4.

Consider the partial preorder ≿′
mnx compatible with ≿mnx and such that 234 ≻′

mnx 34 ≻′
mnx 4. Lexcel

determines from ≿′
mnx that 4 >lex 3 >lex 2 >lex 1, which is the reverse order to >X .

• Maxmin: The preference relation ≿mxn obtained from >X is

1 ≻mxn 12 ≻mxn 13 ∼mxn 123 ≻mxn 14 ∼mxn 124 ∼mxn 134 ∼mxn 1234 ≻mxn 2 ≻mxn 23

≻mxn 24 ∼mxn 234 ≻mxn 3 ≻mxn 34 ≻mxn 4

Consider the partial preorder ≿′
mxn compatible with ≿mxn and such that 234 ≻′

mxn 34 ≻′
mxn 4. Lexcel

determines from ≿mxn that 4 >lex 3 >lex 2 >lex 1, which is the reverse order to >X .

• Leximin: The preference relation ≿L
min obtained from >X is

1 ≻L
min 12 ≻L

min 2 ≻L
min 13 ≻L

min 123 ≻L
min 23 ≻L

min 3 ≻L
min 14 ≻L

min 124 ≻L
min 24 ≻L

min 134

≻L
min 1234 ≻L

min 234 ≻L
min 34 ≻L

min 4

Consider the partial preorder ≿′
minL compatible with ≿L

min and such that 234 ≻′
minL 34 ≻′

minL 4. Lexcel
determines from ≿′

minL that 4 >lex 3 >lex 2 >lex 1, which is the reverse order to >X .
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• Leximax: The preference relation ≿L
max obtained from >X is

1 ≻L
max 12 ≻L

max 123 ≻L
max 1234 ≻L

max 124 ≻L
max 13 ≻L

max 134 ≻L
max 14 ≻L

max 2 ≻L
max 23 ≻L

max 234

≻L
max 24 ≻L

max 3 ≻L
max 34 ≻L

max 4

Consider the partial preorder ≿′
maxL compatible with ≿L

max and such that 234 ≻′
maxL 34 ≻′

maxL 4.
Lexcel determines from ≿′

maxL that 4 >lex 3 >lex 2 >lex 1, which is the reverse order to >X .

• Borda-sum: The preference relation ≿b obtained from >X is

1234 ∼b 123 ≻b 12 ∼b 124 ≻b 13 ∼b 134 ≻b 1 ∼b 14 ∼b 23 ∼b 234 ≻b 2 ∼b 24 ≻b 3 ∼b 34 ≻b 4 ∼b ∅.

Consider the partial preorder ≿′
b compatible with ≿b and such that 234 ≻′

b 34 ≻′
b 4. Lexcel determines

from ≿′
b that 4 >lex 3 >lex 2 >lex 1, which is the reverse order to >X .

Proposition 6. Given a ranking >X over X from which we determine ≿ using one of the introduced order
lifting rules, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, ordinal Banzhaf
satisfies level 1 of preciseness but not level 2, ∀ ≿∈ {≿mnx,≿mxn,≿L

min}.

Proof. Let x, y ∈ X be such that x >X y.

1. When applied to ≿′, ordinal Banzhaf satisfies level 1 of preciseness.
Let b ∈ X be the best element, and w ∈ X be the worst element according to >X , and suppose that w is
returned by ordinal Banzhaf as a top element.

• Minmax: By construction of ≿mnx, an element x is improving when added to a coalition C ⊆ {a ∈
X | x >X a}, because min(C) = min(C ∪ {x}), yet max(C ∪ {x}) >X max(C), which means that
C ∪ {x} ≻mnx C; it is on the other hand detrimental to the performance of any coalition C ′ ⊆ {a ∈
X | a ≻ x}, because min(C ′) >X min(C ′ ∪ {x}) = x, which means that C ′ ≻mnx C ′ ∪ {x}. Note that
adding x to any other coalition will lead to an equivalence between the coalition and its augmented
version.
Therefore, let x+ denote the number of elements in X that are preferred to x according to >X ; x− the
number of elements to which x is preferred. Any coalition containing exclusively elements of strictly
higher rank will count negatively, while any coalition containing exclusively elements of strictly lower
rank will count positively. This means that the Banzhaf score of w will always be negative or null
(because it will lower the performance of any coalition it is added to), while the Banzhaf score of b will
always be positive or null.

By hypothesis, w is a top element according to ordinal Banzhaf, its score must be at least as good as that
of b. This can only happen if ScoreBanz(w) = ScoreBanz(b) = 0, which means that, ∀C ⊆ X \ {b}, C
or C ∪ {b} is absent from ≿′

mnx (i.e. no interaction is counted for b, for any interaction would have a
positive impact). Similarly, this means that, ∀C ⊆ X \ {w}, C or C ∪ {w} is absent from ≿′

mnx (i.e.
no interaction is counted for w, for any interaction would have a negative impact).
As w is a determined to be a top element by ordinal Banzhaf, then any element of similar score must
also be a top element: this includes b.

Similarly, under the other hypothesis that b is a bottom element according to Banzhaf, its score must
be at least as low as that of w. This can only happen if ScoreBanz(w) = ScoreBanz(b) = 0.
As b is a determined to be a bottom element by ordinal Banzhaf, then any element of similar score
must also be a bottom element: this includes w.

• Maxmin: By construction of ≿mxn, an element x is improving when added to a coalition C ⊆ {a ∈
X | x >X a}, because max(C) <X max(C ∪ {x}), which means that C ∪ {x} ≻mxn C; it is on
the other hand detrimental to the performance of any coalition C ′ ⊆ {a ∈ X | a ≻ x}, because
max(C ′) = max(C ′ ∪ {x}), yet min(C ′) >X min(C ′ ∪ {x}), which means that C ′ ≻mxn C ′ ∪ {x}. Note
that adding x to any other coalition will lead to an equivalence between the coalition and its augmented
version containing x.
This puts us in the same setting as the proof for Minmax, therefore we reach the same conclusion: if
w is determined to be a top element by ordinal Banzhaf, then b will also be determined a top element.
Similarly, if b is determined to be a bottom element by ordinal Banzhaf, then w will also be determined
as such.
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2. When applied to ≿′, ordinal Banzhaf does not satisfy level 2 of preciseness.
Let X = {1, 2, 3, 4} and >X be such that 1 >X 2 >X 3 >X 4.

• Minmax: The preorder ≿mnx derived from >X is such that

1 ≻mnx 12 ≻mnx 2 ≻mnx 13 ∼mnx 123 ≻mnx 23 ≻mnx 3 ≻mnx 14 ∼mnx 124 ∼mnx 134 ∼mnx 1234

≻mnx 24 ∼mnx 234 ≻mnx 34 ≻mnx 4.

Consider the partial preorder ≿′ compatible with ≿mnx and such that

1 ≻′ 12 ≻′ 13 ∼′ 123 ≻′ 23 ≻′ 14 ∼′ 124 ∼′ 134 ∼′ 1234 ≻′ 234 ≻′ 4,

ScoreBanz(2) = −1 but ScoreBanz(3) = 0, therefore ordinal Banzhaf will determine that 3 >Banz 2
even though 2 >X 3.

• Maxmin: The preorder ≿mxn derived from >X is such that

1 ≻mxn 12 ≻mxn 123 ∼mxn 13 ≻mxn 14 ∼mxn 124 ∼mxn 134 ∼mxn 1234 ≻mxn 2 ≻mxn 23

≻mxn 24 ∼mxn 234 ≻mxn 3 ≻mxn 34 ≻mxn 4.

Consider the partial preorder ≿′ compatible with ≿mxn and such that

1 ≻′ 12 ≻′ 123 ≻′ 14 ∼′ 124 ∼′ 134 ∼′ 1234 ≻′ 23 ≻′ 3 ≻′ 34 ≻′ 4,

ScoreBanz(2) = −1 but ScoreBanz(3) = 0, therefore ordinal Banzhaf will determine that 3 >Banz 2
even though 2 >X 3.

Proposition 7. Given a ranking >X over X from which we determine ≿ using one of the lexicographical
order-based orderings. Let b be the best and w the worst item according to >X , and let ≿′ be a partial preorder
over P(X) compatible with ≿ such that ∃C ⊆ X \ {b} verifying that C,C ∪ {b} ∈≿′. When applied to ≿′,
ordinal Banzhaf satisfies level 1 of preciseness but not level 2, ∀ ≿∈ {≿L

min,≿
L
max}.

Proof.

1. When applied to ≿′, ordinal Banzhaf satisfies level 1 of preciseness.
Let b ∈ X be the best element, and w ∈ X be the worst element according to >X , and suppose that w is
returned by ordinal Banzhaf as a top element.

• Leximin: By construction of ≿L
min, an element x is improving when added to a coalition C ⊆ X \ {x}

such that x >X max(C); it is on the other hand detrimental when added to a coalition C ⊆ X \ {x}
such that max(C) >X x.
By definition of a best element, there can be no coalition C ⊆ X \ {b} such that max(C) >X b, which
means that the Banzhaf score of b can never be strictly negative: in the worst case scenario, if it is
impossible to find a coalition C ⊆ X \ {b} such that both C and C ∪ {b} are in ≿′, the Banzhaf score
of b will be null. Similarly, by definition of a worst element, the only coalition C ⊆ X \ {w} such that
w >X max(C) is the empty set, which means that the Banzhaf score of w can never be higher than
1: in the best case scenario, if the empty set is the only coalition C ⊆ X \ {w} such that both C and
C ∪ {w} are in ≿′, the Banzhaf score of w will be 1.
One of our hypotheses states that w is returned as a top element by ordinal Banzhaf, which may only
occur if its Banzhaf score is the best it can possibly be (in what we have called its best-case scenario).
Our other hypothesis indicates that there exists at least one coalition C ⊆ X \ {b} such that C and
C ∪ {b} are present in ≿′. In this case, the Banzhaf score of b is at least of 1, which is w’s maximal
Banzhaf score.

Therefore, if w is determined as a top element by ordinal Banzhaf, then it must hold that b is also
determined as a top element.

Similarly, if b is determined to be a bottom element by ordinal Banzhaf, then it must be at its lowest
possible score, which we have shown to be w’s highest possible score. Therefore, if b is determined as
a bottom element by ordinal Banzhaf, it must hold that w is also determined as such.
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• Leximax: By construction of ≿L
max, an element x is improving when added to a coalition C ⊆ X \ {x}

such that x >X min(C) (note that the empty set is a special case, as it is preferred to any other
coalition).
By definition of a best element, there can be no coalition C ⊆ X \ {b}, C ̸= ∅ such that min(C) >X b,
therefore b is improving to any coalition other than the empty set. Note that, as we are working under
the hypothesis that there exists at least one coalition C ⊆ X \ {b} such that C and C ∪{b} are present
in ≿′, b’s lowest possible Banzhaf score is 0. Similarly, there exists no coalition C ⊆ X \ {w} such that
min(C) <X w, therefore w’s highest possible Banzhaf score is 0, in a best-case scenario where there
exists no coalition C ⊆ X \ {w} such that C ∈ ≿′ and C ∪ {w} ∈ ≿′.

Therefore, if w is determined as a top element by ordinal Banzhaf, then it must hold that b is also a
determined as a top element.

Similarly, if b is determined to be a bottom element by ordinal Banzhaf, then it must be at its lowest
possible score, which we have shown to be w’s highest possible score. Therefore, if b is determined as
a bottom element by ordinal Banzhaf, it must hold that w is also determined as such.

2. When applied to ≿′, ordinal Banzhaf does not satisfy level 2 of preciseness.
Let X = {1, 2, 3, 4} and >X be such that 1 >X 2 >X 3 >X 4.

• Leximin: The preference relation ≿L
min obtained from >X is

1 ≻L
min 12 ≻L

min 2 ≻L
min 13 ≻L

min 123 ≻L
min 23 ≻L

min 3 ≻L
min 14 ≻L

min 124 ≻L
min 24 ≻L

min 134

≻L
min 1234 ≻L

min 234 ≻L
min 34 ≻L

min 4 ≻L
min ∅

Consider the partial preorder ≿′ compatible with ≿L
min and such that

1 ≻′ 12 ≻′ 13 ≻′ 3 ≻′ 14 ≻′ 124 ≻′ 134 ≻′ 1234 ≻′ 34 ≻′ 4 ≻′ ∅,

ScoreBanz(2) = −4 but ScoreBanz(3) = −1, therefore ordinal Banzhaf will determine that 3 >Banz 2
when 2 >X 3.

• Leximax: The preference relation ≿L
max obtained from >X is

∅ ≻L
max 1 ≻L

max 12 ≻L
max 123 ≻L

max 1234 ≻L
max 124 ≻L

max 13 ≻L
max 134 ≻L

max 14 ≻L
max 2 ≻L

max 23 ≻L
max 234

≻L
max 24 ≻L

max 3 ≻L
max 34 ≻L

max 4

Consider the partial preorder ≿′ compatible with ≿L
max and such that

∅ ≻′ 1 ≻′ 12 ≻′ 1234 ≻′ 124 ≻′ 134 ≻′ 14 ≻′ 2 ≻′ 234 ≻′ 24 ≻′ 3 ≻′ 34 ≻′ 4,

ScoreBanz(2) = 2 but ScoreBanz(3) = 3, therefore ordinal Banzhaf will determine that 3 >Banz 2 when
2 >X 3.

.

Remark. If there is no coalition C ⊆ X \ {b} verifying that C,C ∪ {b} ∈ ≿′, ordinal Banzhaf may not satisfy
level 1 of precision, but it will still satisfy level 0.

Proof.

1. When applied to ≿′, ordinal Banzhaf satisfies level 0 of preciseness.
Let w ∈ X be the worst element and b ∈ X be the best element according to >X . In the proof of Proposition
7, we have determined that the highest possible Banzhaf score for w is 0, whereas the lowest possible Banzhaf
score for b is 1. As Banzhaf scores always take integer values, and the only way w >Banz b is if both elements
respectively take on their highest and lowest possible Banzhaf values, there can be no scenario in which an
element a ∈ X \{b, w} is such that ScoreBanz(w) > ScoreBanz(a) > ScoreBanz(b), which would be necessary
for ordinal Banzhaf to return the reverse of >X .

2. When applied to ≿′, ordinal Banzhaf does not satisfy level 1 of preciseness.
Let X = {1, 2, 3, 4} st 1 >X 2 >X 3 >X 4.
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• Leximin: The preference relation ≿L
min derived from >X is

1 ≻L
min 12 ≻L

min 2 ≻L
min 13 ≻L

min 123 ≻L
min 23 ≻L

min 3 ≻L
min 14 ≻L

min 124 ≻L
min 24 ≻L

min 134

≻L
min 1234 ≻L

min 234 ≻L
min 34 ≻L

min 4 ≻L
min ∅.

Consider the partial preorder ≿′ compatible with ≿L
min and such that 12 ≻′ 13 ≻′ 123 ≻′ 234 ≻′ 4 ≻′ ∅,

then ScoreBanz(1) = ScoreBanz(2) = 0, ScoreBanz(3) = −1 but ScoreBanz(4) = 1, therefore ordinal
Banzhaf would return 4 >Banz 1 =Banz 2 >Banz 3, determining that the worst element according to
>X is the unique top element.

• Leximax: The preference relation ≿L
max derived from >X is

∅ ≻L
max 1 ≻L

max 12 ≻L
max 123 ≻L

max 1234 ≻L
max 124 ≻L

max 13 ≻L
max 134 ≻L

max 14 ≻L
max 2 ≻L

max 23 ≻L
max 234

≻L
max 24 ≻L

max 3 ≻L
max 34 ≻L

max 4.

Consider the partial preorder ≿′ compatible with ≿L
max and such that ∅ ≻′ 1 ≻′ 12 ≻′ 13, then

ScoreBanz(1) = ScoreBanz(2) = ScoreBanz(3) = −1 but ScoreBanz(4) = 0, therefore ordinal Banzhaf
would return 4 >Banz 1 =Banz 2 =Banz 3, determining that the worst element according to >X is the
unique top element.

Proposition 8. Given a ranking >X over X from which we determine ≿ using one of the introduced order
lifting rules, let ≿′ be a partial preorder over P(X) compatible with ≿. When applied to ≿′, CP-majority
satisfies level 2 of preciseness, ∀ ≿∈ {≿mnx,≿mxn,≿L

min,≿
L
max,≿b}.

Proof. Let x, y ∈ X be such that x >X y.

• Minmax: If y >CP x, there must be more coalitions S ∈ P(X \ {x, y}) such that S ∪ {x} ≻mnx S ∪ {y}
than coalitions T ∈ P(X \ {x, y}) such that T ∪{y} ≻mnx T ∪{x}. Let C ∈ P(X \ {x, y}), we consider
all the possible scenarios:

– If min(C) <X y, then the comparison between C ∪ {x} and C ∪ {y} is based on their maximal
elements.

∗ if max(C) >X x, then C∪{x} ∼mnx C∪{y}, and both coalitions will be equivalent - comparing
them will advantage neither x not y.

∗ if max(C) <X x, then max(C ∪ {x}) = x, and max(C ∪ {y}) = max(y,max(C)). As x >X y,
and since max(C) <X x, it must hold that max(C∪{x}) ≻ max(C∪{y}), therefore comparing
these coalition will count in favour of x.

– if min(C) >X y, then min(C ∪ {y}) = y and min(C ∪ {x}) = min(x,min(C)). As x >X y and
since min(C) >X y, it must hold that min(C ∪ {x}) >X min(C ∪ {y}), therefore comparing these
coalitions will count in favour of x.

None of the possible scenarios can be strictly in favour of y, therefore it is impossible for more coalitions
to be evaluated in favour of y than of x using CP-majority. It is thus impossible to determine that
y >CP x.

• Maxmin: If y >CP x, there must be more coalitions S ∈ P(X \ {x, y}) such that S ∪ {x} ≻mxn S ∪ {y}
than coalitions T ∈ P(X \ {x, y}) such that T ∪{y} ≻mxn T ∪{x}. Let C ∈ P(X \ {x, y}), we consider
all the possible scenarios:

– If max(C) >X x, then the comparison between C ∪ {x} and C ∪ {y} is based on their minimal
elements.

∗ if min(C) <X y, then C∪{x} ∼mxn C∪{y}, and both coalitions will be equivalent - comparing
them will advantage neither x not y.

∗ if min(C) >X y, then min(C∪{y}) = y, and min(C∪{x}) = min(x,min(C)). As x >X y, and
since min(C) >X y, it must hold that min(C ∪ {x}) >X min(C ∪ {y}), therefore comparing
these coalition will count in favour of x.
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– if max(C) <X x, then max(C ∪ {x}) = x and max(C ∪ {y}) = max(y,max(C)). As x >X y and
since x >X max(C), it must hold that max(C ∪{x}) >X max(C ∪{y}), therefore comparing these
coalitions will count in favour of x.

None of the possible scenarios can be strictly in favour of y, therefore it is impossible for more coalitions
to be evaluated in favour of y than of x using CP-majority. It is thus impossible to determine that
y >CP x.

• Leximin: Let S ⊆ X \ {x, y}. When comparing A = S ∪ {x} to B = S ∪ {y}, ∃i ≤ k + 1 st ∀j <
i, aρA(j) = bρB(j) = sσS(j) but aρA(i) ̸= bρB(i). By construction of ρ, it must then hold that aρA(i) =
min{x, sρS(i)} >X bρB(i) = y. Therefore, S ∪ {x} ≻L

min S ∪ {y}, ∀S ⊆ X \ {x, y}, and CP-majority will
determine that x >CP y. This means that if ∃S ⊆ X \ {x, y} s.t. S ∪ {x} and S ∪ {y} are present in
≿′

minL , then CP-majority will find the correct relation. If, however, there exists no such coalition S,
CP-majority will be unable to compare x and y, and will therefore consider them equivalent. In any
case, CP-majority cannot find that y >CP x.

• Leximax: Let S ⊆ X \ {x, y}. When comparing A = S ∪ {x} to B = S ∪ {y}, ∃i ≤ k + 1 st
∀j < i, aσA(j) = bσB(j) = sσS(j) but aσA(i) ̸= bσB(i). By construction of σ, it must then hold that
aσA(i) = x ≻ bσB(i) = max{y, sσS(i)}. Therefore, S ∪ {x} ≻L

max S ∪ {y}, ∀S ⊆ X \ {x, y}, and CP-
majority will determine that x >CP y. This means that if ∃S ⊆ X \ {x, y} s.t. S ∪ {x} and S ∪ {y}
are present in ≿′

maxL , then CP-majority will find the correct relation. If, however, there exists no
such coalition S, CP-majority will be unable to compare x and y, and will therefore consider them
equivalent. In any case, CP-majority cannot find that y >CP x.

• Borda-sum: Let S ⊆ X\{x, y}. When comparing S∪{x} to S∪{y}, the Borda-sum lifting rule compares
their Borda-sum scores. By definition, wb(S ∪{x}) = wb(S)+wb(x), and wb(S ∪{y}) = wb(S)+wb(y).
Since x >X y, it must hold that wb(x) > wb(y), meaning that wb(S ∪ {x}) > wb(S ∪ {y}). Therefore,
there exists no coalition C ⊆ X \ {x, y} such that C ∪ {x} ≻b C ∪ {y}, and CP-majority will always
determine that x >CP y.

5 On the impact of structured preferences: the case of k-sized
coalitions

5.1 Theoretical results

Proposition 9. When k ≤ ⌈n
2 ⌉, lexcel recovers the initial order >X from the total preorder ≿, ∀ ≿ ∈ {≿k

mnx

,≿k
mxn}.

Proof. Let x, y ∈ X be such that x >X y. The preference relation between x and y will be determined by
the relation between the best non-equivalent coalitions Ck

x,−y (i.e. of size k and such that x ∈ Ck
x,−y and

y /∈ Ck
x,−y) and Ck

y,−x.

• Maxmin: By construction of the maxmin ordering, any coalition Ck
x,−y must contain the best k − 1

elements and x (resp. the best k elements, if x is among the k− 1 best.). Similarly, Ck
y,−x must contain

the best k − 1 elements and y.
If y is not among the best k−1 elements, both coalitions are of identical best element, but since x >X y,
it must hold that min(Ck

x,−y) >X min(Ck
y,−x), meaning that Ck

x,−y ≻mxn Ck
y,−x.

Otherwise, if y is also among the k − 1 best elements in the population, then no coalition of size k
will allow us to distinguish x from y as long as they are of identical best and worst elements. Since
lexcel considers the coalitions from best to worst, the best non-equivalent coalitions containing x and
not y (resp. y but not x) will therefore be coalitions of best element x (resp. y). Note that Ck

x,−y must
therefore contain x and the next k− 1 best elements in >X . We know this coalition exists because, for
both x and y to be among the k−1 best elements, and since k ≤ ⌈n

2 ⌉, there must be n−(k−2) elements
ranked lower than x. In the worst-case scenario, i.e. if k = ⌈n

2 ⌉, n− (k − 2) = n− ⌈n
2 ⌉+ 2 = ⌈n

2 ⌉+ 1.
As there are n elements in total, and x is among the ⌈n

2 ⌉ − 2 first elements, there will indeed remain
⌈n
2 ⌉− 1 elements to add to x to form Ck

x,−y as described. Similarly, there must be n− (k− 1) elements
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ranked lower than y, which means Ck
y,−x may also be formed as described.

Since x >X y, it will hold that max(Ck
x,−y) >X max(Ck

y,−x), meaning that Ck
x,−y ≻mxn Ck

y,−x.

In either case, lexcel will therefore (correctly) determine that x >lex y.

• Minmax: By construction of the minmax ordering, any coalition Ck
x,−y must contain the best k − 1

elements and x (resp. the best k elements, if x is among the k− 1 best.). Similarly, Ck
y,−x must contain

the best k − 1 elements and y.
If y is not among the best k − 1 elements, and since x >X y, it must hold that min(Ck

x,−y) >X

min(Ck
y,−x), meaning that Ck

x,−y ≻mnx Ck
y,−x.

Otherwise, if y is also among the k− 1 best elements in the population, then no coalition of size k will
allow us to distinguish x from y as long as they are of identical best and worst elements. Since lexcel
considers the coalitions from best to worst, the best non-equivalent coalitions containing x and not y
(resp. y but not x) will therefore be coalitions of best element x (resp. y), i.e. coalitions containing x
(resp. y) and its k − 1 next best elements. As detailed in the proof for maxmin, we know that such
coalitions will always exist. Since x >X y, y will be among the k − 1 elements added to x to form
Ck

x,−y, meaning that min(Ck
x,−y) <X min(Ck

y,−x), thus C
k
x,−y ≻mnx Ck

y,−x.

In either case, lexcel will therefore (correctly) determine that x >lex y.

Proposition 10. When k ≤ ⌈n
2 ⌉, CP-majority recovers the initial order >X from the total preorder ≿,

∀ ≿ ∈ {≿k
mnx,≿

k
mxn}.

Proof. Let x, y ∈ X be such that x >X y. To determine the preference relation between x and y, CP-majority
will consider any coalition C ⊆ X \ {x, y} of size k − 1 and compare C ∪ {x} to C ∪ {y}.

• Maxmin: By construction of the maxmin ordering, if C is such that max(C) >X x and min(C) <X y,
then it will always hold that C∪{x} ∼mxn C∪{x}, and C will therefore not be useful in the comparison
of x and y.

In the worst-case scenario, x and y are directly adjacent and ranked in the middle positions of >X .
As k ≤ ⌈n

2 ⌉, however, there will always exist a coalition C of size k − 1 such that max(C) <X x or
min(C) >X y.

In the former case, max(C ∪ {x}) = x and max(C ∪ {y}) = max{max(C), y}: since x >X y and
x >X max(C), it will hold that max(C ∪ {x}) >X max(C ∪ {y}); in the latter case, max(C ∪ {x}) =
max{max(C), x} and max(C ∪ {y}) = max{max(C), y}: either C ∪ {x}’s best element is preferred to
C ∪ {y}’s (if max(C ∪ {x}) = x), or both are of similar best element, in which case we then consider
the worst element and, knowing that min(C ∪ {x}) = min{min(C), x} and min(C ∪ {y}) = y, it will
hold that min(C ∪ {x}) >X min(C ∪ {y}).
In both cases, this will lead us to observe that C ∪ {x} ≻mxn C ∪ {y}. CP-majority will therefore
always observe that C ∪ {x} ≿mxn C ∪ {y}, with at least one coalition C∗ ⊆ X \ {x, y} of size k such
that C∗ ∪ {x} ≻mxn C∗ ∪ {y}, and determine that x >CP y.

• Minmax: By construction of the minmax ordering, if C is such that max(C) >X x and min(C) <X y,
then it will always hold that C∪{x} ∼mnx C∪{x}, and C will therefore not be useful in the comparison
of x and y.

In the worst-case scenario, x and y are directly adjacent and ranked in the middle positions of >X .
As k ≤ ⌈n

2 ⌉, however, there will always exist a coalition C of size k − 1 such that min(C) >X y or
max(C) <X x.

In the former case, min(C ∪ {x}) = min{min(C), x} and min(C ∪ {y}) = y: since x >X y and
min(C) >X y, it will hold that min(C∪{x}) >X min(C∪{y}); in the latter case, min(C∪{x}) = min(C)
and min(C ∪ {y}) = min{min(C), y}: either C ∪ {x}’s worst element is preferred to C ∪ {y}’s (if
min(C ∪ {y}) = y), or both are of similar worst element, in which case we then consider the best
element, and, knowing that max(C ∪ {x}) = x and max(C ∪ {y}) = max{max(C), y}, it will hold that
max(C ∪ {x}) >X max(C ∪ {y}).
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In both cases, this will lead us to observe that C ∪ {x} ≻mnx C ∪ {y}. CP-majority will therefore
always observe that C ∪ {x} ≿mnx C ∪ {y}, with at least one coalition C∗ ⊆ X \ {x, y} of size k such
that C∗ ∪ {x} ≻mnx C∗ ∪ {y}, and determine that x >CP y.

Proposition 11. Lexcel always recovers the initial order >X from the preorder ≿,∀ ≿ ∈ {(≿L
min)

k, (≿L
max

)k),≿k
b}.

Proof. Let x, y ∈ X be such that x >X y. Let Ck
x,−y (resp. Ck

y,−x) be the coalition of size k containing x
and not y (resp. y and not x) ranked the highest in ≿.

• Leximin: By construction of leximin, Ck
x,−y must be composed of the k − 1 best elements according to

>X and of x (or the k best elements if x is among them). Similarly, Ck
y,−x must be composed of the

k − 1 best elements different from x, and y.

If y is not among the k − 1 best elements, then min(Ck
x,−y) >X min(Ck

y,−x) = y, therefore leximin will

determine that Ck
x,−y ≻L

min Ck
y,−x.

If, however, y is among the k−1 best elements, then so is x. Therefore Ck
x,−y and Ck

y,−x will differ from
one element : x or y. By construction, there exists a ∈ X ⊆ {y} such that a is ranked directly before
y in >X , i.e. such that a >X y, then x will be inserted after a in the vector associated with Ck

x,−y (if
it is different from a - otherwise it will be placed as a), while y will be inserted before a in the vector
associated with Ck

y,−x. During the lexicographical comparison of the vectors, the first non-identical pair

of elements to be compared will be a and y, which will lead to the conclusion that Ck
x,−y ≻L

min Ck
y,−x.

Lexcel will therefore determine that x >lex y.

• Leximax: By construction of leximax, Ck
x,−y must be composed of the k− 1 best elements according to

>X and of x (or the k best elements if x is among them). Similarly, Ck
y,−x must be composed of the

k − 1 best elements different from x, and y.

If y is not among the k − 1 best elements, then max(Ck
x,−y) = max(Ck

y,−x) but min(Ck
x,−y) >X

min(Ck
y,−x) = y, therefore leximax will determine that Ck

x,−y ≻L
max Ck

y,−x.

If, however, y is among the k−1 best elements, then so is x. Therefore Ck
x,−y and Ck

y,−x will differ from
one element : x or y. If there exists a ∈ X ⊆ {x, y} such that x >X a >X y, then x will be inserted
before a in the vector associated with Ck

x,−y, while y will be inserted after a in the vector associated with

Ck
y,−x. During the lexicographical comparison of the vectors, the first non-identical pair of elements to

be compared will be x and a, which will lead to the conclusion that Ck
x,−y ≻L

max Ck
y,−x. If, however,

there exists no such a, then the first pair of non-identical elements to be compared will be x and y,
which will also lead to the conclusion that Ck

x,−y ≻L
max Ck

y,−x. In any case, lexcel will determine that
x >lex y.

• Borda-sum: Let TX
k−1 denote the k − 1 best elements from the population X according to >X , then

Ck
x,−y =

{
TX
k−1 ∪ {x} if x /∈ TX

k−1

T
X\{y}
k if x ∈ TX

k−1

Similarly,

Ck
y,−x =

{
T

X\{x}
k−1 ∪ {y} if y /∈ T

X\{y}
k−1

T
X\{x}
k if y ∈ T

X\{x}
k−1

Since x >X y, we know that wb(x) > wb(y).

If y /∈ TX
k , then wb(C

k
x,−y) = wb(Tk−1) + wb(x), and wb(C

k
y,−x) = wb(Tk−1) + wb(y), therefore

wb(C
k
x,−y) > wb(C

k
y,−x), meaning that Ck

x,−y ≻b C
k
y,−x.

If, however, y ∈ TX
k , since we know that wb(T

X\{y}
k ) > wb(T

X\{x}
k ), since the former contains x where

the latter contains y, it must also hold that wb(C
k
x,−y) > wb(C

k
y,−x), meaning that Ck

x,−y ≻b C
k
y,−x.

In any case, lexcel will determine that x >lex y.
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Proposition 12. CP-majority always recovers the initial order >X from the total preorder ≿,∀ ≿ ∈ {(≿L
min

)k, (≿L
max)

k),≿k
b}.

Proof. Let x, y ∈ X be such that x >X y, and let S ⊆ X \ {x, y}, |S| = k − 1.

• Leximin: The preference between S ∪ {x} and S ∪ {y} is determined by leximin via a comparison of its
components from worst to best. As all elements in S remain unchanged, only the insertion of x and y
will impact the lexicographical comparison. Since we know that x >X y, then

1. if ∃a ∈ X \ {x, y} such that x >X a >X y and a ∈ S, then y is placed before a in the vector
associated to S ∪ {y}, while x is placed after a in the vector associated to S ∪ {x}. The element
y will therefore be compared to a, and since a >X y, it must hold that S ∪ {x} ≻L

min S ∪ {y}
2. otherwise, x and y will be compared to each other: since x >X y, it will hold that S ∪ {x} ≻L

min

S ∪ {y}

Therefore, CP-majority will determine that x >CP y from (≿L
min)

k, ∀k, ∀k ∈ {2, . . . , n− 1}

• Leximax: The preference between S ∪ {x} and S ∪ {y} is determined by leximax via a comparison of
its components from best to worst. As all elements in S remain unchanged, only the insertion of x and
y will impact the lexicographical comparison. Since we know that x >X y, then

1. if ∃a ∈ X \ {x, y} such that x >X a >X y and a ∈ S, then x is placed before a in the vector
associated to S ∪ {x}, while y is placed after a in the vector associated to S ∪ {x}. The element
x will therefore be compared to a, and since x >X a, it must hold that S ∪ {x} ≻L

max S ∪ {y}
2. otherwise, x and y will be compared to each other: since x >X y, it will hold that S ∪ {x} ≻L

max

S ∪ {y}

Therefore, CP-majority will determine that x >CP y from (≿L
max)

k, ∀k, ∀k ∈ {2, . . . , n− 1}

• Borda-sum: The preference between S ∪ {x} and S ∪ {y} is determined by comparing their Borda-sum
scores. By definition, wb(S ∪ {x}) = wb(S) + wb(x) and wb(S ∪ {y}) = wb(S) + wb(y). Since x >X y,
wb(x) > wb(y), therefore it must hold that wb(S ∪ {x}) > wb(S ∪ {x}), i.e. that S ∪ {x} ≻b S ∪ {y}.
Therefore, CP-majority will determine that x >CP y from ≿k

b ,∀k ∈ {2, . . . , n− 1}
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5.2 Experimental results

This section contains the numerical results of experiments over the amount of missing information over
coalitions of size k. For each lifting rule, serving as the structure for the preferences over Xk, we study the
number of runs (out of 10 000) for which each social ranking rule (or combination of social ranking rules)
manages to recover the exact initial order >X when only a given percentage of Xk is available. We consider
different values for n, the population size, and consider each possible value of k ∈ {2, . . . , n− 1}, indicating
how many coalitions of such a size exist in the population.

Note that, as we’ve shown that ordinal Banzhaf is not efficient in the k-sized setting, it is excluded from
the results. Similarly, as we have shown that Minmax and Maxmin only allow for the recovery of >X if
k ≤ ⌈n

2 ⌉, they are excluded from tests where k is higher.
N
=
4

k
=
2
(6

c
o
a
ls
)

rule SR 40% (3) 60% (4) 70% (5)

1
lexcel 1923 3937 6633
CP 0 0 10 000

CP+lex 1923 5217 10 000

2
lexcel 2031 3967 6630
CP 0 0 10 000

CP+lex 2031 5219 10 000

3
lexcel 2022 3968 6614
CP 0 0 10 000

CP+lex 2022 5133 10 000

4
lexcel 1915 4022 6696
CP 0 0 10 000

CP+lex 1915 5289 10 000

5
lexcel 2991 6021 10 000
CP 0 8001 10 000

CP+lex 4463 10 000 10 000

k
=
3
(4

)

rule SR 50% (2) 60% (3)

3
lexcel 0 2535
CP 0 0

CP+lex 0 2535

4
lexcel 0 2503
CP 0 0

CP+lex 0 2503

5
lexcel 0 2478
CP 0 0

CP+lex 0 2478

Table 1: Number of times (out of 10 000 runs) each SR method finds the exact correct order over parts of the
k-sized coalitions, depending on the lifting rule (1=minmax, 2=maxmin, 3=leximin, 4=leximax, 5=borda)
for n = 4
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N
=
5

k
=
2
(1

0
c
o
a
ls
)

rule SR 20% (2) 30% (3) 40% (4) 50% (5) 60% (6) 70% (7) 80% (8) 90% (9)

1
lexcel 0 260 930 1905 3154 4511 6254 8009
CP 0 0 0 0 732 5818 10 000 10 000

CP+lex 0 275 1101 2809 5531 8533 10 000 10 000

2
lexcel 0 253 701 1356 2174 3306 4820 7033
CP 0 0 0 0 684 5831 10 000 10 000

CP+lex 0 283 936 2344 4951 8264 10 000 10 000

3
lexcel 0 216 879 1890 3062 4555 6251 7986
CP 0 0 0 0 729 5897 10 000 10 000

CP+lex 0 228 1043 2816 5519 8596 10 000 10 000

4
lexcel 0 227 723 1401 2140 3371 4946 6994
CP 0 0 0 0 682 5758 10 000 10 000

CP+lex 0 270 970 2395 4951 8182 10 000 10 000

5
lexcel 0 319 1126 2859 5759 10 000 10 000 10 000
CP 0 0 862 5642 10 000 10 000 10 000 10 000

CP+lex 0 865 4189 8513 10 000 10 000 10 000 10 000

k
=
3
(1

0
)

rule SR 20% (2) 30% (3) 40% (4) 50% (5) 60% (6) 70% (7) 80% (8) 90% (9)

1
lexcel 0 515 2035 4966 10 000 10 000 10 000 10 000
CP 0 0 0 3302 10 000 10 000 10 000 10 000

CP+lex 0 515 2686 6596 10 000 10 000 10 000 10 000

2
lexcel 0 497 2058 4942 10 000 10 000 10 000 10 000
CP 0 0 0 3294 10 000 10 000 10 000 10 000

CP+lex 0 497 2651 6663 10 000 10 000 10 000 10 000

3
lexcel 0 275 675 1386 2207 3354 4883 7056
CP 0 0 0 0 698 5818 10 000 10 000

CP+lex 0 275 804 2311 5074 8319 10 000 10 000

4
lexcel 0 234 958 1878 3168 4597 6270 7958
CP 0 0 0 0 693 5787 10 000 10 000

CP+lex 0 234 1054 2672 5419 8503 10 000 10 000

5
lexcel 0 306 1189 2835 5666 10 000 10 000 10 000
CP 0 0 889 5705 10 000 10 000 10 000 10 000

CP+lex 0 858 4118 8571 10 000 10 000 10 000 10 000

k
=
4
(5

)

rule SR 40% (2) 50% (3) 40% (4)

3
lexcel 0 0 1943
CP 0 0 0
CP 0 0 1943

4
lexcel 0 0 1972
CP 0 0 0

CP+lex 0 0 1972

5
lexcel 0 0 2038
CP 0 0 0

CP+lex 0 0 2038

Table 2: Number of times (out of 10 000 runs) each SR method finds the exact correct order over parts of the
k-sized coalitions, depending on the lifting rule (1=minmax, 2=maxmin, 3=leximin, 4=leximax, 5=borda)
for n = 5
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