
Whoever Said Money Won’t Solve All Your Problems?
Weighted Envy-free Allocation with Subsidy

Noga Klein-Elmalem, Haris Aziz, Rica Gonen, Xin Huang, Kei Kimura, Indrajit Saha, Erel
Segal-Halevi, Zhaohong Sun, Mashbat Suzuki and Makoto Yokoo

Abstract

We explore solutions for fairly allocating indivisible items among agents assigned weights
representing their entitlements. Our fairness goal is weighted-envy-freeness (WEF), where
each agent deems their allocated portion relative to their entitlement at least as favorable as any
other’s relative to their own. Often, achieving WEF necessitates monetary transfers, which can
be modeled as third-party subsidies. The goal is to attain WEF with bounded subsidies.
Previous work relied on characterizations of unweighted envy-freeness (EF), that fail in the
weighted setting. This makes our new setting challenging. We present polynomial-time al-
gorithms that compute WEF allocations with a guaranteed upper bound on total subsidy for
monotone valuations and various subclasses thereof.
We also present an efficient algorithm to compute a fair allocation of items and money, when the
budget is not enough to make the allocationWEF. This algorithm is new even for the unweighted
setting.

1 Introduction

The mathematical theory of fair item allocation among agents has practical applications, such as
inheritance and partnership dissolutions. When agents have equal entitlements, each expects a share at
least as good as others’, known as an envy-free (EF) allocation. For indivisible items, an EF allocation
might not exist. A common solution is using money to compensate for envy. Recent studies assume a
hypothetical third-party provides a non-negative subsidy for each agent, and focus on minimizing the
total subsidy needed for envy-freeness.

Halpern and Shah [24] showed that for any allocation, there exists a permutation of bundles that is
envy-freeable (EF-able), meaning it can be made EF with subsidies. They proved the required subsidy is
at most (n−1)mV , wherem is the number of items, n the number of agents, and V the maximum item
value, and this bound is tight when the allocation is given. Brustle et al. [10] presented an algorithm
using iterative maximum matching, that computes an EF-able allocation with subsidy at most (n− 1)V ,
also tight.

We extend the study to agents with different entitlements, or weights, as in partnership dissolutions,
where agents hold varying numbers of shares. For example, an agent with twice the entitlement of
another expects a bundle worth at least twice as much.

Formally, an allocation is weighted envy-free (WEF) (see e.g., [30, 41, 12]) if, for any two agents i and j,
1
wi

times the utility i assigns to their own bundle is at least 1
wj

times the utility i assigns to j’s bundle,
where wi and wj are their entitlements.

We define weighted envy-freeability (WEF-ability) analogously to EF-ability: An allocation is WEF-able
if it can be made WEF with subsidies. Specifically, for any two agents i and j, 1

wi
times the sum of

the utility that i assigns to his own bundle and the subsidy he receives is at least as high as 1
wj

times
the sum of the utility that i assigns to the bundle of j and the subsidy j receives. Here, we assume
quasi-linear utilities.

To illustrate the challenges in the generalized setting of unequal entitlements, we demonstrate that the

1

results from [24, 10] for additive valuations fail when agents have different entitlements.

Example 1.1 (No permutation of bundles is WEF-able). There are two items o1, o2 and two agents
i1, i2, with weights w1 = 1, w2 = 10 and valuation functions o1 o2

i1 1 1
i2 100 100


Consider the bundlesX1 = {o1} andX2 = {o2}, where i1 receivesX1 and i2 receivesX2. Let p1 and p2
represent the subsidies for i1 and i2, respectively. The utility of i1 for their own bundle is 1+p1, and for
i2’s bundle, it is 1+ p2. To satisfy WEF, we need: 1+p1

1 ≥ 1+p2
10 , which implies p2 ≤ 9+10p1. Similarly,

for agent i2, WEF requires: 100+p2
10 ≥ 100+p1

1 , which implies p2 ≥ 900 + 10p1. These two conditions
are contradictory, so no subsidies can make this allocation WEF. The opposite allocation, where agent
i1 receives X2 and i2 receives X1 leads to a symmetric contradiction. Hence, no permutation of the
bundles satisfies WEF.

Example 1.1 also implies that the Iterated Maximum Matching algorithm [10] does not guarantee WEF,
as that algorithm yields an allocation where all agents receive the same number of items.

When valuations are not additive, even more results from the unweighted setting fail to hold.

Example 1.2 (Welfare-maximizing allocation is not WEF-able). There are two agents with weights
w1 = 1, w2 = 3. There are two identical items. The agents have unit demand: agent 1 values any
bundle with at least one item at 30, and agent 2 at 90. We show that, contrary to the result in [24], the
allocation maximizing the social welfare (sum of utilities) is not WEF-able.

The social welfare is maximized by allocating one item to each agent. Note that this is also the
only allocation that is non-wasteful (Definition B.2). WEF requires 30+p1

1 ≥ 30+p2
3 , which implies

p2 ≤ 3p1 + 60; and 90+p2
3 ≥ 90+p1

1 , which implies p2 ≥ 3p1 + 180 — a contradiction.

These examples demonstrate that the weighted case is more challenging than the unweighted case and
requires new ideas.

Of course, since the unweighted case is equivalent to the weighted case where each weight wi = 1/n,
all negative results from the unweighted setting extend to the weighted case. In particular, it is NP-hard
to compute the minimum subsidy required to achieve (weighted) envy-freeness, even in the binary
additive case, assuming the allocation is non-wasteful (as shown in [24, Corollary 1]). Thus, following
previous work, we develop polynomial-time algorithms that, while not necessarily optimal, guarantee
an upper bound on the total subsidy.

Specifically, we address three main research questions:

1. Can we bound (above and below) the subsidy required for WEF, given the number of agents,
items, and their weights, under various preference classes?

2. If so, can we compute a WEF allocation with such a bounded subsidy in polynomial time?

3. If the budget is insufficient for full WEF, how can the available money be allocated fairly?

1.1 Our Results

We provide affirmative answers to the three research questions. Our subsidy bounds for achieving WEF
allocations are expressed as functions of n (number of agents), m (number of items), wmin (smallest
agent weight),W (total agent weights), and V (maximum item value); see Section 2 for definitions.

2

For general monotone valuations, we show that a total subsidy of
(

W
wmin

− 1
)
mV suffices for WEF, and

that this bound is tight in the worst case (Section 3). The factor W
wmin

can be seen representing the
"distance from the unweighted setting": it equals n when all weights are equal, and becomes larger as
the span of weights increases.

For supermodular and superadditive valuations, we further show thatWEF can be attained simultaneously
with maximizing the social welfare and truthfulness (Appendix D).

For additive valuations, assuming all weights are integers, we further show an upper bound that is
independent ofm: it is W−wmin

gcd(w) V , where gcd(w) is the greatest common divisor of all weights — largest
number d such that wi/d is an integer for all i ∈ N (Section 4). Our algorithm extends the one in [10];
when all entitlements are equal it guarantees the same upper bound (n− 1)V .

We also study WEF relaxations introduced for the setting without subsidy: WEF (x, y) [14] and
WWEF1 [13]. We prove that WEF-ability is incompatible with WWEF1 or with WEF(x, y) for
x + y < 2, but show an algorithm for two agents that finds a WEF-able and WEF (1, 1) allocation
(Section 4.1).

For identical additive valuations (Section 5), we compute a WEF-able and WEF(0, 1) allocation with
total subsidy at most (n− 1)V , which is tight even in the unweighted case.

For binary additive valuations, we adapt the General Yankee Swap algorithm [36] to compute aWEF-able
and WEF(0, 1) allocation with total subsidy at most W

wmin
− 1, reducing to n − 1 for equal weights

(Section 6). For matroidal valuations, we show a linear lower bound inm (Appendix G.5).

For identical items, we derive an almost tight bound of V
∑

2≤i≤n

(
wi
∑

1≤j≤i
1
wj

)
, where agents are

sorted by descending order of their value for a single-item (Appendix H). In particular, with nearly
equal but different weights, the required subsidy may be in Ω(n2V), unlike the O(nV) bound for equal
weights. Additionally, we present a polynomial-time algorithm for computing a WEF-able allocation
that requires the smallest possible amount of subsidy for each specific instance. This is in contrast to
the other sub-cases of additive valuations (binary additive and identical additive), in which computing
the minimum subsidy per instance is known to be NP-hard.

Finally, we address scenarios with limited subsidy budgets (e.g., leftover cash in partnership dissolutions),
exploring relaxed fairness under subsidy constraints (Appendix I).

Our contributions are summarized in Table 1. In Appendix J, we present preliminary experiments on
the required subsidy in random instances and compare our algorithms with theoretical bounds.

All omitted proofs can be found in the appendix.

1.2 Related Work

Our work integrates two lines of research: fair allocation with monetary transfers and fair allocation
with different entitlements. We survey each line separately in Appendix A.1.

There are few works that combine both different entitlements and subsidies. Wu et al. [40] presented a
polynomial-time algorithm for computing a weighted proportional allocation of chores among agents
with additive valuations, with total subsidy at most (n−1)V

2 . In a subsequent work [39], they further
improved this bound to

(
n
3 −

1
6

)
V .

As far as we know, weighted envy-freeness with subsides has not been studied yet. Our paper aims to
fill this gap.

3

Table 1: Upper and lower bounds on worst-case total subsidy in weighted envy-freeable allocations. All subsidy
upper bounds are attainable by polynomial-time algorithms. Here, w2 represents the second-smallest weight.

Valuation Lower bound Upper bound
General,

superadditive,
supermodular

(
W

wmin
− 1
)
mV

for non-zero-social-
welfare allocation

[Theorem 3.8]
(

W
wmin

− 1
)
mV [Theorem 3.8]

Additive
(

W
wmin

− 1
)
V [Theorem 4.2]

W−wmin
gcd(w) V

for integer entitlements
[Lemma 4.6]

Identical additive (n− 1)V [Theorem 5.1] (n− 1)V [Theorem 5.2]

Binary additive W
w2
− 1 [Proposition 6.1] W

wmin
− 1 [Theorem 6.4]

Matroidal m
n

(
W

wmin
− n

)
[Theorem G.9]

(
W

wmin
− 1
)
m [Theorem 3.8]

Additive,
identical items

∑
2≤i≤n

V wi

∑
1≤j<i

1

wj

 [Theorem H.2]
∑

2≤i≤n

V wi

∑
1≤j≤i

1

wj

 [Theorem H.4]

2 Model

Agents and valuations. Let [t] = {1, 2, . . . , t} for any positive integer t. We consider n agents in
N and m items in M . Each agent i ∈ N has a valuation function vi : 2

M → R+
0 . The function vi

specifying a non-negative real value vi(A) for a given bundle A ⊆M . We write vi(o1, ..., ot) instead
of vi({o1, ..., ot}).

We assume that vi(∅) = 0 for all i ∈ N .1 We also assume the valuations are monotone, i.e., for each

i ∈ N and A ⊆ B ⊆ M , vi(A) ≤ vi(B). We denote V := max
i∈N,A⊆M,A ̸=∅

vi(A)

|A|
. Note that when the

valuations are additive, V equals to max
i∈N,o∈M

vi(o).2 Also,max
i∈N

vi(M) ≤ m · V .

An allocation X = (X1, . . . , Xn) is a partitioning of the items into n bundles where Xi is the bundle
allocated to agent i. We assume allocation X must be complete, i.e.,

⋃
i∈N Xi = M holds;

An outcome is a pair consisting of the allocation and the subsidies received by the agents, that is, a pair
(X,p) is the allocation that specifies bundle Xi ⊆M for agent i and p ∈ (R+

0)
n specifies the subsidy

pi received by agent i.

An agent i’s utility for a bundle-subsidy pair (Xj , pj) is vi(Xj) + pj . In other words, we assume
quasi-linear utilities.

Envy. An outcome (X,p) is envy-free (EF) if for all i, j ∈ N , it holds that vi(Xi)+ pi ≥ vi(Xj)+ pj .
An allocation X is envy-freeable (EF-able) if there exists a subsidy vector p such that (X,p) is EF.

Entitlements. Each agent i ∈ N is endowed with a fixed entitlement wi ∈ R>0. We also refer to
entitlement as weight. We assume, without loss of generality, that the entitlements are ordered in
increasing order, i.e., wmin = w1 ≤ w2 ≤ . . . ≤ wn = wmax. We denoteW :=

∑
i∈N wi.

Definition 2.1 (Weighted envy-freeability). An outcome (X,p) is weighted envy-free (WEF) if for all
1We do not assume that all agents value the grand bundle the same way.
2In previous work it was assumed that V = 1.

4

i, j ∈ N : vi(Xi)+pi
wi

≥ vi(Xj)+pj
wj

.

An allocation X is weighted envy-freeable (WEF-able) if there is subsidy vector p, such that (X,p) is
WEF.

The term vi(Xi)
wi

represents the value per unit entitlement for agent i in their allocation. The WEF
condition ensures that this value is at least as high as vi(Xj)

wj
, denoting the corresponding value per unit

entitlement for agent j in the same allocation. WEF seamlessly reduces to envy-free (EF) concept when
entitlements are equal, i.e., wi = wj for all i, j ∈ N .

Efficiency concepts. For the definitions of Pareto efficiency, non-wastefulness, maximizing social
welfare allocation (MSW), and non-zero social welfare, see Appendix B.1.

3 Characterization for General Monotone Valuations

In this section we answer our first two research questions affirmatively in a setting where we allow
agents to have arbitrary monotone valuations. We give a characterization of WEF-able allocations. For
the characterization, we generalize a couple of previously studied mathematical objects to the weighted
case.

Definition 3.1 (Weighted reassignment-stability). We say that an allocationX isweighted reassignment-
stable if ∑

i∈N

vi(Xi)

wi
≥
∑
i∈N

vi(Xπ(i))

wπ(i)
(1)

for all permutations π of N .

With equal weights, reassignment-stability implies that X maximizes the sum of utilities. But with
different weights, it does not imply that X maximizes the sum of utilities, nor the weighted sum of
utilities, nor any other aggregate function of the utilities.

Definition 3.2 (Weighted envy-graph). For any given allocation X , the corresponding weighted envy-
graph, GX,w, is a complete directed graph with vertex set N , each assigned a weight wi.

For any pair of agents i, j ∈ N , costX(i, j) is the cost of edge (i, j) in GX,w, which presents the fact
that agent i has envy toward agent j under the allocationX : costX(i, j) =

vi(Xj)
wj
− vi(Xi)

wi
. Note that

costX can take negative values. For any path or cycle C in the graph, costX(C) is the cost of the C
under allocation X , which is the sum of costs of edges along C in GX,w.

With these definitions, ℓi,j(X) represents the cost of the maximum-cost path from i to j in GX,w, and
ℓi(X) = costX(Pi(X)) represents cost of the maximum-cost path in GX,w starting at i, denoted as
Pi(X).

Similar to the previous work of Halpern and Shah [24] (in the unweighted setup), we provide necessary
and sufficient conditions for a WEF-able allocation:

Theorem 3.3. The following are equivalent for allocation X :

1. X is WEF-able;

2. X is weighted reassignment-stable;

5

3. The graph GX,w has no positive-cost cycle.

Theorem 3.3 presents an effective method for verifying whether a given allocation is WEF-able.

Proposition 3.4. Given an allocation X , it can be checked in polynomial time whether X is WEF-able.

Deciding that an allocationX is WEF-able is not enough. we also need to find a minimal subsidy vector,
p, that ensures WEF for (X,p). The following theorem is similar to [24, Theorem 2], which states the
minimum subsidy required when given a WEF-able allocation.

Theorem 3.5. For any WEF-able allocation X , let p∗ be a subsidy vector defined by p∗i := wiℓi(X), for
all i ∈ N . Then

1. The allocation (X,p∗) is WEF;

2. Any other subsidy vector p, such that (X,p) is WEF, satisfies p∗i ≤ pi for all i ∈ N ;

3. p∗ can be computed in O(nm+ n3) time;

4. There exists at least one agent i ∈ N for whom p∗i = 0.

Now we can find the minimum subsidy needed in the worst-case scenario for agents with different
entitlements, whether the allocation is given or can be chosen.

Theorem3.6. For every weight vector and every givenWEF-able allocationX , letting pi := p∗i = wiℓi(X),

the total subsidy
∑
i∈N

pi is at most
(

W
wmin

− 1
)
mV . This bound is tight in the worst case.

In the unweighted case W/wmin = n, so the upper bound on the subsidy becomes (n− 1)mV . This is
the same upper bound proved by [24] for the unweighted case and additive valuations.

The following lemma is useful for showing weighed envy-freeability and the subsidy bounds.

Lemma 3.7. For an allocation X , if for all i, j ∈ N , vi(Xi) ≥ vj(Xi) holds, then X is WEF-able, and
the cost of any path from agent i to j is at most vj(Xj)

wj
− vi(Xi)

wi
.

We now prove the main positive result of this section.

Theorem 3.8. For every instance with monotone valuations, there exists a WEF-able, non-zero-social-
welfare allocation with total subsidy at most

(
W

wmin
− 1
)
mV . This bound is tight in the worst case.

Importantly, the maximum worst-case subsidy in the weighted setting depends on the proportion
of wmin in the total weight W , which can be much larger than the number of agents n used in the
unweighted setting bounds.

Theorem 3.8 guarantees only a very weak efficiency notion: non-zero-welfare. We do not know if WEF
is compatible with Pareto-efficiency for general monotone valuations. However, for the large sub-class
of superadditive valuations, we prove in the following section that every allocation maximizing the
sum of utilities (maximizing social welfare or MSW) is WEF-able. In particular, a Pareto-efficient WEF
allocation always exists. Moreover, we prove that such an allocation can always be attained by a truthful
mechanism — which induces agents to reveal their true utility functions.

6

4 Additive Valuation

In this section we continue to answer our first two research questions however in a setting where
agents have additive valuations. The valuation function of an agent i is called Additive if for each
i ∈ N and A,B ⊆M such that A ∩B = ∅, vi(A ∪B) = vi(A) + vi(B). Without loss of generality,
we assume that each item is valued positively by at least one agent; items that are valued at 0 by all
agents can be allocated arbitrarily without affecting the envy. [24] prove that, with additive valuations,
the minimum subsidy required in the worst case is at least (n− 1)V , even for binary valuations, when
the allocation can be chosen. We generalize their results as follows.

Lemma 4.1. Suppose there are n agents, and only one item o.Then an allocation is WEF-able iff o is given
to an agent i with the highest vi(o).

Theorem 4.2. For every weights vector w and integer n ≥ 2, there exists an instance with n agents with
additive valuations, where the any WEF allocation requires a total subsidy of at least

(
W

wmin
− 1
)
V .

In Example 1.1, we showed that the iterated-maximum-matching algorithm [10] might produce an
allocation that is not WEF-able.

We now introduce a new algorithm, Algorithm 1, which extends the iterated-maximum-matching
approach to the weighted setting, assuming all weights are integers. The algorithm finds a one-to-many
maximum matching between agents and items, ensuring that each agent i ∈ N receives exactly wi

items. If the number of items remaining in a round is less thanW , we add dummy items (valued at 0 by
all agents) so that the total number of items becomes W . In Example 1.1, we add 9 dummy items, and
perform a one-to-many maximum-value matching between agent and items, resulting in a WEF-able
allocation: X1 = ∅, X2 = {o1, o2}.

The algorithm runs in ⌈m/W ⌉ rounds. In each round t, the algorithm computes a one-to-many
maximum-value matching {Xt

i}i∈N between all agents and unallocated items Ot, where each agent
i ∈ N receives exactly wi items.

To achieve this, we reduce the problem to the minimum-cost network flow problem [22] by constructing
a flow network and computing the maximum integral flow of minimum cost. The flow network is
defined as follows:

• Layer 1 (Source Node). a single source node s.

• Layer 2 (Agents). a node for each agent i ∈ N , with an arc from s to i, having cost 0 and
capacity wi.

• Layer 3 (Unallocated Items). a node for each unallocated item o ∈ Ot, with an arc from each
agent i ∈ N to item o, having cost −vi(o) and capacity 1.

• Layer 4 (Sink Node). a single sink node t, with an arc from each item o ∈ Ot to t, having 0 cost
and capacity 1.

Any integral maximum flow in this network corresponds to a valid matching where each agent i ∈ N
receives exactly wi items from Ot, and each item is assigned to exactly one agent, the result is a
minimum-cost one-to-many matching based on the costs in the constructed network. Because we
negate the original costs in our construction, the obtained matching {Xt

i}i∈N maximizes the total value
with respect to the original valuations. After at most ⌈m/W ⌉ iterations, all items are allocated.

A detailed description of the algorithm appears in Appendix E.1.

Proposition 4.3. For each round t in Algorithm 1, Xt is WEF-able.

7

Proof sketch. By Theorem 3.3, it is sufficient to prove that its weighted envy-graph has no positive-cost
cycles. We prove this indirectly, using a (hypothetical) randomized transfer.

As the allocation in each iteration is WEF-able, the output allocation X is WEF-able too.

To compute an upper bound on the subsidy, we adapt the proof technique in [10].

Lemma 4.4. Let X be a WEF-able allocation. For any positive number z, if costX(i, k) ≥ −z for every
edge (i, k) in GX,w, then the maximum subsidy required is at most wiz per agent i ∈ N .

In most allocations, including the one resulting fromAlgorithm 1, it is not always true that costX(i, k) ≥
−V for every edge (i, k). We use Lemma 4.4 with a modified valuation function v̄i, derived from the
weighted valuation vi(Xi)

wi
. Specifically, for each agent i ∈ N , we define v̄i(Xt

i) as before, while for any

other agent j ̸= i, we set v̄i(Xt
j) = max{vi(X

t
j)

wj
,
vi(X

t+1
i)

wi
}, whereXt+1

i is the bundle assigned to agent
i in the next iteration of the algorithm.

We prove that an allocation that is WEF-able for the original valuations is alsoWEF-able for the modified
valuations (Proposition E.2), and that the maximum subsidy required by each agent for the original
valuations is bounded by the subsidy required for the modified valuations (Proposition E.3).

Next, we demonstrate that under the modified valuations, the cost of each edge is at least −V . Finally,
by Lemma 4.4, we conclude that the maximum subsidy required for any agent i ∈ N is wiV for the
modified valuation v̄ (Proposition E.4) and for the original valuations v as well. The complete details
are outlined in Appendix E.2.1.

We are now prepared to prove the main theorem.

Theorem 4.5. For additive valuations and integer entitlements, Algorithm 1 computes in polynomial time
a WEF-able allocation where the subsidy to each agent is at most wiV and the total subsidy is at most
(W − wmin)V .

The WEF condition is unchanged when the weight vector is scaled. This can be used in two ways: (1) If
the weights are not integers, but their ratios are integers, we can still use Algorithm 1. For example,
if w1 = 1/3 and w2 = 2/3 (or even if wi’s are irrational numbers such as w1 =

√
2 and w2 = 2

√
2),

Algorithm 1 works correctly by resetting w1 = 1 and w2 = 2. (2) If the integer weights have a gcd
greater than 1, we can divide all weights by the gcd to get a better subsidy bound:

Lemma 4.6. For additive valuations and integer entitlements, there exists an algorithm computes in
polynomial time a WEF-able allocation with subsidies of at most wiV/ gcd(w) per agent and a total of at
most (W − wmin)V/ gcd(w), where gcd(w) is the greatest common divisor of all the wi.

Proof. Algorithm 1 works correctly, even if we divide each wi by the greatest common divisor of wi’s.
In other words, letting d = gcd(w1, ..., wn), w′

i = wi/d, W ′ = W/d, and running Algorithm 1 with
w′
i’s, we get the bound (W ′ − w′

min)V of the total subsidy.

A discussion about the tightness of the bound can be found in Appendix E.3.

4.1 Combining WEF-able and Approximate-WEF

In the setting without money and additive valuations, WEF can be relaxed by allowing envy up to an
upper bound based on item values. We adopt the generalization of allowable envy,WEF(x, y), proposed

8

by Chakraborty et al. [14] 3, as well as another relaxation of WEF,WWEF1, introduced in [12].

Definition 4.7 (Chakraborty et al. [14]). For x, y ∈ [0, 1], an allocation X is said to satisfy WEF(x,y) if
for any i, j ∈ N , there exists B ⊆ Xj with |B| ≤ 1 such that vi(Xi)+yvi(B)

wi
≥ vi(Xj)−xvi(B)

wj
.

WEF(x, y) captures various conditions related to WEF: WEF(0, 0) corresponds to WEF, WEF(1, 0)
coincides with (strong) weighted envy-freeness up to one item (WEF1) [12], and WEF(1, 1) coincides
with weighted envy-free up to one item transfer (WEF1-T) [3, 25].

Definition 4.8 ([12]). An allocationX is said to be weakly weighted envy-free up to one item (WWEF1) if
for any pair of agents i, j withXj ̸= ∅, there exists an item o ∈ Xj such that either vi(Xi)

wi
≥ vi(Xj\{o})

wj

or vi(Xi∪{o})
wi

≥ vi(Xj)
wj

.

Halpern and Shah proved in [24] that, if an allocationX is EF-able and EF1, the total subsidy of at most
(n− 1)2V is sufficient. The following theorem generalizes this result to the weighted setting.

Theorem 4.9. Let X be both WEF-able and WEF(x, y) for some x, y ∈ [0, 1]. Then there exists a subsidy
vector p, such that (X,p) is WEF, with total subsidy at most (x+ y)

(
W

wmin
− 1
)
(n− 1)V .

Brustle et al. [10] proved that the allocation resulting from their algorithm satisfies both EF and EF1.
However, in the weighted setup, a WEF-able allocation may not satisfy WEF(x, y) for any x, y with
x+ y < 2. This also holds for the allocation produced by Algorithm 1.

Proposition 4.10. For any x, y ≥ 0 with x+ y < 2, there exists a weight vector and an instance with
additive valuations in which every WEF-able allocation fails to satisfy WEF(x, y) or WWEF1.

Biased Weighted Adjusted Winner Procedure Proposition 4.10 is partly complemented by the
result below (Theorem 4.12) that states that WEF-ability and WEF(1,1) are compatible for two agents
having additive valuations. The theorem uses a particular version of the Weighted Adjusted Winner
procedure [12]. The original procedure finds a WEF(1, 0) and Pareto efficient allocation. We call our
variant Biased Weighted Adjusted Winner Procedure, as it is biased towards the agent who expresses a
higher value for a ‘contested’ item. The resulting allocation may not be WEF(1, 0), but it is WEF(1, 1)
and WEF-able.

Remark 4.11. Here, we use a different definition of subsidy: agents are unaware of the subsidies
received by others.

We first observe that for two agents, the WEF condition for each agent i is equivalent to the weighted
proportionality (WPROP) condition: vi(Xi) ≥ wi

W · vi(M).

1. Normalize the valuations so that the sum of values over all items is 1 for both agents. Sort the
items such that v1(o1)

v2(o1)
≥ v1(o2)

v2(o2)
≥ · · · ≥ v1(om)

v2(om) .

2. Let d ∈ {1, 2, ...,m} be the unique number satisfying 1
w1

∑d−1
r=1 v1(or) <

1
w2

∑m
r=d v1(or) and

1
w1

∑d
r=1 v1(or) ≥

1
w2

∑m
r=d+1 v1(or). We call od the contested object.

3. Denote L := {o1, . . . , od−1} and R := {od+1, . . . , om} (the “Left" and “Right" parts); note that
each of them might be empty. Give L to agent 1 and R to agent 2.

3The definition of WEF(x, y) does not apply to non-additive valuations. Montanari et al. [28] introduced two extensions
to this definition; but they are outside the scope of our paper.

9

4. Finally, give od to the agent i with largest vi(od) (break ties arbitrarily).

Theorem 4.12. The outcome of the Biased Weighted Adjusted Winner Procedure is both WEF(1, 1) and
WEF-able.

It remains open whether weighted envy-freeability and WEF(1,1) are compatible for n ≥ 3 agents.

5 Identical Additive Valuation

This section deals with the case where all agents have identical valuations, that is, vi ≡ v for all i ∈ N .
With identical valuations, any allocation is WEF-able by Lemma 3.7. Furthermore, all allocations are
non-wasteful. We present a polynomial-time algorithm for finding a WEF-able allocation with a subsidy
bounded by V per agent and a total subsidy bounded by (n− 1)V . The following shows that this bound
is tight for any weight vector:

Theorem 5.1. For any integer weights vector and any integer n ≥ 2, there exists an instance with n
agents with identical additive valuations where, in any WEF allocation, at least one agent requires subsidy
at least V , and the total subsidy required is at least (n− 1)V .

Algorithm 2 presents our WEF-able allocation method with bounded subsidy.

The algorithm traverses the items in an arbitrary order. At each iteration it selects the agent that
minimizes the expression v(Xi∪{o})

wi
, with ties broken in favor of the agent with the larger wi, and

allocates the next item to that agent. Intuitively, this selection minimizes the likelihood that weighted
envy is generated.

The formal details of the algorithm are provided in Appendix F.1, and an illustrative example of
Algorithm 2 is given in Appendix F.2.

Theorem 5.2. For identical additive valuation, there exists a polynomial time algorithm to find aWEF-able
and non-wasteful allocation such that the subsidy per agent is at most V . Therefore, the total subsidy
required is at most (n− 1)V .

Note that W ≥ nwmin. Therefore, this bound is better than the one proved in Theorem 4.5 for integer
weights: (W − wi)V ≥ (n− 1)wiV ≥ (n− 1)V .

The upper bound of (n− 1)V is tight even for equal entitlements [24]. Interestingly, when either the
valuations or the entitlements are identical, the worst-case upper bound depends on n, whereas when
both valuations and entitlements are different, the bound depends onW .

6 Binary Additive Valuation

In this section we focus on the special case of agents with binary additive valuations. We assume
vi(o) ∈ {0, 1} for all i ∈ N and o ∈M . We start with a lower bound.

Proposition 6.1. For every n ≥ 2 and weight vectorw, there is an instance with n agents with binary
valuations in which the total subsidy in any WEF allocation is at least W

w2
− 1.

Below, we show how to compute a WEF-able allocation where the subsidy given to each agent i ∈ N is
at most wi

wmin
V = wi

wmin
, and the total subsidy is at most W

wmin
− 1.

In the case of binary valuations, Algorithm 1 is inefficient in three ways: (1) the maximum-value
matching does not always prioritize agents with higher entitlements, (2) there may be situations where

10

an agent prefers items already allocated in previous iterations, while the agent holding those items
could instead take unallocated ones, and (3) it works only for agents with integer weights.

We address these issues by adapting the General Yankee Swap (GYS) algorithm introduced by
Viswanathan et al. in [36].

GYS starts with an empty allocation for all agents. We add a dummy agent i0 and assume that all items
are initially assigned to i0: Xi0 = M .

Algorithm 3 presents our approach for finding a WEF-able allocation with a bounded subsidy. The
algorithm runs inT iterations. We denote byXt the allocation at the end of iteration t ∈ [T]. Throughout
this algorithm, we divide the agents into two sets:

• R: The agents remaining in the game at the beginning of the iteration t;

• N \ R: The agents who were removed from the game in earlier iteration t′ < t. Agents are
removed from the game when the algorithm deduces that their utility cannot be improved.

As long as not all the objects have been allocated, at every iteration t, the algorithm looks for the agents
maximizing the gain function ([36]) among R, i.e., the agents remaining in the game at this iteration.

We use the gain function: wi

vi(X
t−1
i)+1

, which selects agents with the minimal potential for increasing
envy. If multiple agents have the same value, we select one arbitrarily.

The selected agent then chooses either to acquire an unallocated item or take an item from another
agent. In either case, their utility increases by 1. If the agent takes an item from another, the affected
agent must decide whether to take an unallocated item or another allocated item to preserve their
utility, and so on. This process creates a transfer path from agent i to the dummy agent i0 , where
items are passed until an unallocated item is reached. Formally, we represent this as a directed graph,
where nodes are agents, and an edge (i, j) if and only if there exists an item in j’s bundle that i values
positively. A transfer path is any directed path in that graph, that ends at the dummy agent i0.

When an agent is selected, the algorithm attempts to find a transfer path from that agent, preserving
utilities for all agents except the initiator, whose utility increases by 1. If no path is found, the agent
is removed from the game. We use the polynomial-time method by Viswanathan et al. [36] to find
transfer paths.

Algorithm 3 differs from GY S in the following way: at the beginning of iteration t, the algorithm first
removes all agents without a transfer path originating from them (line 3). Then, it selects an agent
based on the gain function to allocate a new item to that agent. For convenience, we denote by R(t)
the agents who have a transfer path originating from them at the beginning of iteration t (line 3).

The algorithm is formally described in Appendix G.2, and an illustrative example is provided in ??.

Definition 6.2 (Viswanathan and Zick [36]). An allocation X is said to be non-redundant if for all
i ∈ N , we have vi(Xi) = |Xi|.

That is, vj(Xi) ≤ |Xi| = vi(Xi) for every i, j ∈ N , and therefore, every non-redundant allocation
is also WEF-able by Lemma 3.7. Lemma 3.1 in [36] shows that the allocation produced by GYS is
non-redundant. The same is true for our variant:

Lemma 6.3. At the end of any iteration t of Algorithm 3, the allocation Xt is non-redundant.

Based on Lemma 6.3 it is established that at the end of every iteration t ∈ [T], Xt is WEF-able. The
remaining task is to establish subsidy bounds.

We focus on two groups: R and N \R.

11

The selection rule simplifies limit-setting for R and ensures a subsidy bound of 1 (Proposition G.4).
However, understanding the dynamics of the second group,N \R, presents challenges, as the selection
rule is not applicable for them. For an agent i ∈ N \R, we prove a subsidy bound of wi · 1

wj
, for some

j ∈ R. In particular, the bound is at most wi
wmin

. For the full proofs, refer to Appendix G.3.

Theorem 6.4. For additive binary valuations, Algorithm 3 computes a WEF-able allocation where the
subsidy to each agent i ∈ N is at most wi

wmin
in polynomial-time. Moreover, the total subsidy is bounded by

W
wmin

− 1.

In Appendix G.4, we present a tighter bound that is closer to the lower bound, along with a detailed
discussion on its tightness.

Notice that since the output allocation from Algorithm 3 is non-redundant, X maximizes the social
welfare. Moreover, as shown in Appendix G.1, X might not be WEF(1,0) (No matter which item is
removed from i2’s bundle, i1 still envies). However, it isWEF(0,1).

Proposition 6.5. For additive binary valuations, Algorithm 3 computes aWEF (0, 1) allocation.

7 Future Work

Although several important techniques from the unweighted setting do not work in the weighted
setting, we have managed to develop new techniques and used them to prove that WEF allocations with
subsidies can be computed for agents with general monotone valuations. We even proved a worst-case
upper bound on the amount of subsidy required to attain WEF. Our bounds are tight for general
monotone valuations, superadditive and supermodular valuations, and identical additive valuations;
however, for additive and binary valuations our bounds are not tight. Tightening these bounds is one
of the main problems left open by the present paper. Another natural direction is to explore the case of
irrational weights, as our current algorithms crucially rely on the integrality of weights.

Preliminary simulation experiments (Appendix J) show that our algorithms require less subsidy than
the worst-case bound, but more than the optimal amount. We plan to perform more comprehensive
experiments in the future.

Moreover, it remains an open problem to find a WEF-able allocation for additive valuations when the
ratios between the agents’ weights are non-integer, as well as to find a WEF-able allocation for identical
items with a minimum subsidy.

In this paper, we assume that the social planner has a priori knowledge of the value of wi for each agent
i. An interesting direction for future research is to explore the implications of relaxing this assumption
and considering scenarios in which the planner has only partial information about wi for each agent i.
Such settings may give rise to strategic behavior, where agents have an incentive to misreport their
entitlements.

Finally, the MWEF concept offers a natural framework and an elegant algorithm, inspired by classical
room-rent envy-free methods for unweighted cases. While classical algorithms fully eliminate the
maximum-cost path agent’s envy (given sufficient funds), our approach reduces it gradually and carefully.
Future work could explore alternative concepts and techniques for distributing limited subsidies more
effectively.

12

References

[1] H. Aziz, H. Chan, and B. Li. Weighted maxmin fair share allocation of indivisible chores. In
Proceedings of the 28h International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[2] Haris Aziz. Achieving envy-freeness and equitability with monetary transfers. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 5102–5109, 2021.

[3] Haris Aziz, Aditya Ganguly, and Evi Micha. Best of both worlds fairness under entitlements. In
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems,
pages 941–948, 2023.

[4] Moshe Babaioff, Tomer Ezra, and Uriel Feige. Fair and truthful mechanisms for dichotomous
valuations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
5119–5126, 2021.

[5] Moshe Babaioff, Tomer Ezra, and Uriel Feige. Fair-share allocations for agents with arbitrary
entitlements. Mathematics of Operations Research, 49(4):2180–2211, 2024.

[6] S Barman, A Krishna, Y Narahari, and S Sadhukan. Achieving envy-freeness with limited subsidies
under dichotomous valuations. In IJCAI International Joint Conference on Artificial Intelligence,
pages 60–66. International Joint Conferences on Artificial Intelligence, 2022.

[7] Siddharth Barman and Paritosh Verma. Existence and computation of maximin fair allocations
under matroid-rank valuations. arXiv preprint arXiv:2012.12710, 2020.

[8] Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. Finding fair and efficient
allocations for matroid rank valuations. ACM Transactions on Economics and Computation, 9(4):
1–41, 2021.

[9] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge
University Press, 1996.

[10] Johannes Brustle, Jack Dippel, Vishnu V Narayan, Mashbat Suzuki, and Adrian Vetta. One dollar
each eliminates envy. In Proceedings of the 21st ACM Conference on Economics and Computation,
pages 23–39, 2020.

[11] Ioannis Caragiannis and Stavros D Ioannidis. Computing envy-freeable allocations with limited
subsidies. In International Conference on Web and Internet Economics, pages 522–539. Springer,
2021.

[12] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. Weighted envy-freeness
in indivisible item allocation. ACM Transactions on Economics and Computation (TEAC), 9(3):1–39,
2021.

[13] Mithun Chakraborty, Ulrike Schmidt-Kraepelin, and Warut Suksompong. Picking sequences and
monotonicity in weighted fair division. Artificial Intelligence, 301:103578, 2021.

[14] Mithun Chakraborty, Erel Segal-Halevi, and Warut Suksompong. Weighted fairness notions
for indivisible items revisited. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 4949–4956, 2022.

[15] Edward H Clarke. Multipart pricing of public goods. Public choice, pages 17–33, 1971.
[16] Peter C Cramton, Yoav Shoham, Richard Steinberg, and Vernon L Smith. Combinatorial auctions,

volume 1. MIT press Cambridge, 2006.
[17] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal of political

economy, 94(4):863–872, 1986.
[18] Jack Edmonds and RichardMKarp. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.
[19] Duncan Karl Foley. Resource allocation and the public sector. Yale University, 1966.
[20] Hiromichi Goko, Ayumi Igarashi, Yasushi Kawase, Kazuhisa Makino, Hanna Sumita, Akihisa

Tamura, Yu Yokoi, and Makoto Yokoo. A fair and truthful mechanism with limited subsidy. Games
and Economic Behavior, 144:49–70, 2024.

[21] Andrew V Goldberg and Robert E Tarjan. Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM (JACM), 36(4):873–886, 1989.

13

[22] Andrew V Goldberg, Éva Tardos, and Robert Tarjan. Network flow algorithm. Technical report,
Cornell University Operations Research and Industrial Engineering, 1989.

[23] Theodore Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages
617–631, 1973.

[24] Daniel Halpern and Nisarg Shah. Fair division with subsidy. In Algorithmic Game Theory: 12th
International Symposium, SAGT 2019, Athens, Greece, September 30–October 3, 2019, Proceedings 12,
pages 374–389. Springer, 2019.

[25] Martin Hoefer, Marco Schmalhofer, and Giovanna Varricchio. Best of both worlds: Agents with
entitlements. Journal of Artificial Intelligence Research, 80:559–591, 2024.

[26] Yasushi Kawase, Kazuhisa Makino, Hanna Sumita, Akihisa Tamura, and Makoto Yokoo. Towards
optimal subsidy bounds for envy-freeable allocations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 9824–9831, 2024.

[27] Shengxin Liu, Xinhang Lu, Mashbat Suzuki, and Toby Walsh. Mixed fair division: A survey. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 22641–22649, 2024.

[28] Luisa Montanari, Ulrike Schmidt-Kraepelin, Warut Suksompong, and Nicholas Teh. Weighted
envy-freeness for submodular valuations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 9865–9873, 2024.

[29] Szilvia Pápai. Groves sealed bid auctions of heterogeneous objects with fair prices. Social choice
and Welfare, 20(3):371–385, 2003.

[30] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK Peters/CRC
Press, 1998.

[31] David Schmeidler and Menahem Yaari. Fair allocations. Unpublished Manuscript, 1971.
[32] Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
[33] Warut Suksompong and Nicholas Teh. On maximum weighted nash welfare for binary valuations.

Mathematical Social Sciences, 117:101–108, 2022.
[34] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of

finance, 16(1):8–37, 1961.
[35] Vignesh Viswanathan and Yair Zick. Yankee swap: A fast and simple fair allocation mechanism

for matroid rank valuations. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 179–187, 2023.

[36] Vignesh Viswanathan and Yair Zick. A general framework for fair allocation under matroid rank
valuations. In Proceedings of the 24th ACM Conference on Economics and Computation, pages
1129–1152, 2023.

[37] Eric W Weisstein. Floyd-warshall algorithm. https://mathworld. wolfram. com/, 2008.
[38] Simon Wimmer and Peter Lammich. The floyd-warshall algorithm for shortest paths. Arch. Formal

Proofs, 2017, 2017.
[39] Xiaowei Wu and Shengwei Zhou. Tree splitting based rounding scheme for weighted proportional

allocations with subsidy. arXiv preprint arXiv:2404.07707, 2024.
[40] Xiaowei Wu, Cong Zhang, and Shengwei Zhou. One quarter each (on average) ensures propor-

tionality. In International Conference on Web and Internet Economics, pages 582–599, 2023.
[41] Dao-Zhi Zeng. Approximate envy-free procedures. Game Practice: Contributions from Applied

Game Theory, pages 259–271, 2000.

Noga Klein-Elmalem
The Open University of Israel
Raanana, Israel
Email: noga486@gmail.com

14

noga486@gmail.com

Haris Aziz
UNSW
Sydney, Australia
Email: haris.aziz@unsw.edu.au

Rica Gonen
The Open University of Israel
Raanana, Israel
Email: ricagonen@gmail.com

Xin Huang
Kyushu University
Fukuoka, Japan
Email: kidxshine@gmail.com

Kei Kimura
Kyushu University
Fukuoka, Japan
Email: kkimura@inf.kyushu-u.ac.jp

Indrajit Saha
Kyushu University
Fukuoka, Japan
Email: indrajitor@gmail.com

Erel Segal-Halevi
Ariel University
Ariel, Israel
Email: erelsgl@gmail.com

Zhaohong Sun
Kyushu University
Fukuoka, Japan
Email: sunzhaohong1991@gmail.com

Mashbat Suzuki
UNSW
Sydney, Australia
Email: mashbats@gmail.com

15

haris.aziz@unsw.edu.au
ricagonen@gmail.com
kidxshine@gmail.com
kkimura@inf.kyushu-u.ac.jp
indrajitor@gmail.com
erelsgl@gmail.com
sunzhaohong1991@gmail.com
mashbats@gmail.com

Makoto Yokoo
Kyushu University
Fukuoka, Japan
Email: yokoo@inf.kyushu-u.ac.jp

16

yokoo@inf.kyushu-u.ac.jp

A Supplement for Section 1 (Introduction)

A.1 Further Related Work

Equal entitlements. [32] initiated fair allocation with the cake-cutting problem, followed by Foley’s
[19] advocacy for envy-free resource allocation. Challenges with indivisible items were outlined by
Schmeidler and Yaari [31].

Fair allocation with Monetary Transfers. The concept of compensating an indivisible resource
allocation with money has been explored in the literature ever since Demange, Gale, and Sotomayor [17]
introduced an ascending auction for envy-free allocation using monetary payments for unit demand
agents.

Recently, the topic of multi-demand fair division with subsidies has attracted significant attention (see,
e.g., a survey article [27]). Halpern and Shah [24] showed that an allocation is envy-freeable with money
if and only if the agents cannot increase social welfare by permuting bundles. Brustle et al. [10] study
the more general class of monotone valuations. They demonstrate that a total subsidy of 2(n− 1)2V is
sufficient to guarantee the existence of an envy-freeable allocation. Moreover, they showed that for
additive valuations where the value of each item is at most V , giving at most V to each agent (i.e., a
total subsidy of at most (n− 1)V) is sufficient to eliminate envies. Kawase el al. [26] improved this
bound to n2−n−1

2 .

Caragiannis and Ioannidis [11] developed an algorithm that approximates the minimum subsidies with
any required accuracy for a constant number of agents, though with increased running time. However,
for a super-constant number of agents, they showed that minimizing subsidies for envy-freeness is
both hard to compute exactly and difficult to approximate.

Aziz [2] presented a sufficient condition and an algorithm to achieve envy-freeness and equitability
(every agent should get the same utility) when monetary transfers are allowed for agents with quasi-
linear utilities and superadditive valuations (positive or negative).

Barman et al. [6] studied agents with dichotomous valuations (agents whose marginal value for any
good is either zero or one), without any additivity requirement. They proved that, for n agents, there
exists an allocation that achieves envy-freeness with total required subsidy of at most n− 1, which is
tight even for additive valuations.

Goko et al. [20] study an algorithm for an envy-free allocation with subsidy, that is also truthful, when
agents have submodular binary valuations. The subsidy per agent is at most V = 1. Their algorithm
works only for agents with equal entitlements.

The case where multiple items can be allocated to each agent while the agents pay some amount of
money to themechanism designer, is extensively studied in combinatorial auctions [16]. A representative
mechanism is the well-known Vickrey-Clarke-Groves (VCG) mechanism [15, 23, 34], which is truthful
and maximizes social welfare. Envy-freeness is not a central issue in combinatorial auctions, with a
notable exception presented by Pápai [29].

Different entitlements. In the past few years, several researchers have examined a more general
model in which different agents may have different entitlements, included weighted fairness models
like weighted maximin share fairness (WMMS) and weighted proportionality up to one item (WPROP1)
[13, 5, 1]. Chakraborty et al. [12] established maximum weighted Nash welfare (MWNW) satisfies
Pareto optimality and introduced a weighted extension of EF1. Suksompong and Teh [33] demonstrated
MWNW properties under binary additive valuations and its polynomial-time computability. They
further extended these findings to various valuation types.

17

Different entitlements with subsidies. There is a long-standing tradition in fair division to revisit
settings and extend them to the case of weighted entitlements. In a classic book by Brams and Taylor [9],
many algorithms and results are extended to the cases of weighted entitlements. This tradition continues
in the context of the allocation of indivisible items. Wu et al. [40] presented a polynomial-time algorithm
for computing a PROP allocation of chores among agents with additive valuations, with total subsidy
at most nV

4 , which is tight. For agents with different entitlements, they compute a WPROP allocation
with total subsidy at most (n−1)V

2 . In a subsequent work [39], they further improved this bound to
(n3 −

1
6)V .

As far as we know, weighted envy-freeness with subsides has not been studied yet. Our paper aims to
fill this gap.

Matroid-rank valuations. Recent studies have considered matroid-rank valuation (binary submod-
ular). Montanari et al. [28] introduce a new family of weighted envy-freeness notions based on the
concept of transferability and provide an algorithm for computing transferable allocations that maximize
welfare. Babaioff et al. [4] design truthful allocation mechanisms that maximize welfare and are fair.
Particularly relevant to our work is a recent work by Viswanathan and Zick [35], who devised a fair
allocation method inspired by Yankee Swap, achieving efficient and fair allocations when agents have
submodular binary valuations. We use some of their techniques in our algorithms. Later, Viswanathan
and Zick in [36] generalize the Yankee Swap algorithm to efficiently compute allocations that maximize
any fairness objective, called General Yankee Swap.

B Supplement for Section 2 (Model)

B.1 Further Definitions

Definition B.1 (Pareto efficiency). We say allocation X dominates another allocation X ′ if ∀i ∈
N, vi(Xi) ≥ vi(X

′
i) and ∃j ∈ N , vj(Xj) > vj(X

′
j) hold. We say X is Pareto efficient if it is not

dominated by any other allocation.

Definition B.2 (Non-wastefulness). We say allocation X is non-wasteful if ∀i ∈ N , ∀o ∈ Xi, if
vi(Xi) = vi(Xi \ {o}) holds, then vj(Xj ∪ {o}) = vj(Xj) for all j ̸= i.

In other words, no item can be transferred from one agent to another, and the transfer results in a
Pareto improvement.

For an allocation X and a subset S ⊆ N of agents, the social welfare of S is defined as SWS(X) :=∑
i∈S vi(Xi).

Definition B.3 (Maximizing social welfare allocation (MSW)). We say allocation XS,A ∈ X S,A

maximizing social welfare with respect to S and A (MSWS,A) if SWS(XS,A) ≥ SWS(X) holds for
any X ∈ X S,A 4.

Any MSW allocation is Pareto efficient, but not vice versa.

Weighted envy-freeability and non-wastefulness are generally incompatible (Example 1.2). To address
this, we propose a weaker efficiency property:

Definition B.4 (Non-zero social welfare). We say allocationX satisfies non-zero social welfare property
if SWN (X) = 0, then for any other allocation X ′, SWN (X ′) = 0 holds.

4If S = N and A = M , we omit “with respect to N and M” and just say a maximizing social welfare (MSW) allocation.

18

This property allows choosing an allocation X such that SWN (X) = 0 only if social welfare is zero
for all allocations.

Pareto efficiency implies both non-wastefulness and non-zero social welfare, but the reverse is not true.
Non-wastefulness and non-zero social welfare are independent properties.

C Supplement for Section 3 (Characterization for General Monotone Valuations)

Theorem 3.3. The following are equivalent for allocation X :

1. X is WEF-able;

2. X is weighted reassignment-stable;

3. The graph GX,w has no positive-cost cycle.

Proof. 1 ⇒ 2. Suppose the allocation X is WEF-able. Then, there exists a subsidy vector p such
that for all agents i, j vi(Xi)+pi

wi
≥ vi(Xj)+pj

wj
. Equivalently, vi(Xj)

wj
− vi(Xi)

wi
≤ pi

wi
− pj

wj
. Consider any

permutation π of N . Then,

∑
i∈N

(
vi(Xπ(i))

wπ(i)
− vi(Xi)

wi

)
≤
∑
i∈N

(
pi
wi
−

pπ(i)

wπ(i)

)
= 0.

The last entry is zero as all the weighted subsidies are considered twice, and they cancel out each other.
Hence the allocation X is weighted reassignment-stable.

2 ⇒ 3. Suppose some allocation X has a corresponding weighted envy-graph with a cycle C =
(i1, . . . , ir) of strictly positive cost. Then consider a permutation π, defined for each agent ik ∈ N as
follows:

π(ik) =


ik, ik /∈ C

ik+1, k ∈ {1, . . . , r − 1}
i1 k = r

.

In that case 0 < costX(C) ⇔
∑

i∈N
vi(Xi)
wi

<
∑

i∈N
vi(Xπ(i))

wπ(i)
, which means that X is not weighted

reassignment-stable.

3 ⇒ 1. Suppose (3) holds. As there are no positive-weight cycles in GX,w, we can define, for each
agent i, the maximum cost of any path in the weighted envy-graph that starts at i. We denote this
path by ℓi(X). Let each agent i’s subsidy be pi = ℓi(X) · wi. Then for any other agent j ̸= i ∈ N ,
pi
wi

= ℓi(X) ≥ costX(i, j)+ ℓj(X) =
vi(Xj)
wj
− vi(Xi)

wi
+

pj
wj

. This implies that (X, p) is WEF, and hence
X is WEF-able.

Proposition 3.4. Given an allocation X , it can be checked in polynomial time whether X is WEF-able.

Proof. According to Theorem 3.3, determining whetherX is is WEF-able is equivalent to verifying ifX
is weighted reassignment-stable. To analyze this, consider a complete bipartite graph G with N nodes
on each side. The weight of each edge connecting i on the left to j on the right is defined as vi(Xj)

wj
.

This graph can be constructed in O(mn + n2) time. Next, the maximum-value matching for G can
be computed in O(n3) time [18]. If the value of the matching that contains edge (i, i) for all i ∈ N

is equal to the maximum value, it follows that
∑

i∈N
vi(Xi)
wi

≥
∑

i∈N
vi(Xπ(i))
wπ(i)

for any permutation
π : N → N . This condition aligns with the definition of weighted reassignment-stability. The total
running time is O(mn+ n3).

19

Another approach involves verifying the absence of positive-cost cycles in the weighted envy-graph
GX,w . This can be achieved by transforming the graph by negating all edge weights and then checking
for the presence of negative-cost cycles. Using the Floyd-Warshall algorithm [37, 38] on the graph
obtained by negating all edge cost in GX,w requires O(n3) time. Constructing the initial graph GX,w

takes O(mn) time, resulting in an overall complexity of O(mn+ n3).

Theorem 3.5. For any WEF-able allocation X , let p∗ be a subsidy vector defined by p∗i := wiℓi(X), for
all i ∈ N . Then

1. The allocation (X,p∗) is WEF;

2. Any other subsidy vector p, such that (X,p) is WEF, satisfies p∗i ≤ pi for all i ∈ N ;

3. p∗ can be computed in O(nm+ n3) time;

4. There exists at least one agent i ∈ N for whom p∗i = 0.

Proof. 1. The establishment of condition 3 implying condition 1 in Theorem 3.3 has already demon-
strated that (X,p∗) is WEF.

2. Let p be a subsidy vector, such that (X,p) is WEF, and i ∈ N be fixed. Consider the highest-cost
path originating from i in the graph GX,w, Pi(X) = (i = i1, ..., ir), with costX(Pi(X)) =

ℓi(X) =
p∗i
wi
.

Due to the WEF nature of (X,p), it follows that for each k ∈ [r − 1], the following inequality
holds:

vik(Xik) + pik
wik

≥
vik(Xik+1

) + pik+1

wik+1

⇒ pik
wik

−
pik+1

wik+1

≥
vik(Xik+1

)

wik+1

− vik(Xik)

wik

=

costX(ik, ik+1).

Summing this inequality over all k ∈ [r − 1], the following relation is obtained:

pi
wi
− pir

wir

=
pi1
wi1

− pir
wir

≥ costX(Pi(X)) =
p∗i
wi
⇒ pi

wi
≥ p∗i

wi
+

pir
wir

≥ p∗i
wi

.

The final transition is valid due to the non-negativity of subsidies and weights, that is, pir
wir
≥ 0.

3. The computation of p∗ can be executed as follows: Initially, the Floyd-Marshall algorithm [37],
[38] is applied to the graph derived by negating all edge costs in GX,w (This has a linear time
solution since there are no cycles with positive costs in the graph). Hence, determining the
longest path cost between any two agents, accomplished in O(nm+ n3) time. Subsequently, the
longest path starting at each agent is identified in O(n2) time.

4. Assume, for the sake of contradiction, that p∗i > 0 for every agent i ∈ N . This implies that
ℓi(X) > 0, since wi > 0. Starting from an arbitrary agent i1, we trace the highest-cost path
starting at i1 and arrive at some agent i2; then we trace the highest-cost path starting at i2 and
arrive at some agent i3; and so on. Because the number of agents is finite, eventually we will
arrive at an agent we already visited. We will then have a cycle with positive cost in GX,w,
contradicting Theorem 3.3.
Therefore, there must be at least one agent whose subsidy under p∗ is 0.

Theorem3.6. For every weight vector and every givenWEF-able allocationX , letting pi := p∗i = wiℓi(X),

the total subsidy
∑
i∈N

pi is at most
(

W
wmin

− 1
)
mV . This bound is tight in the worst case.

20

Proof. The proofs extend those of [24]. By Theorem 3.5, to bound the subsidy required for i, we bound
the highest cost of a path starting at i. We prove that, for every WEF-able allocation X and agent i, the
highest cost of a path from i in GX,w is at most mV

wmin
.

For every path P in GX,w,

costX(P) =
∑

(i,j)∈P

costX(i, j) =
∑

(i,j)∈P

vi(Xj)

wj
− vi(Xi)

wi
≤

∑
(i,j)∈P

vi(Xj)

wmin
≤

∑
(i,j)∈P

V · |Xj |
wmin

≤ mV

wmin
.

Therefore, the cost of every path is at most mV
wmin

, so agent i needs a subsidy of at most wi
mV
wmin

. By
part (4) of Theorem 3.5, at least one agent has a subsidy of 0. This implies a total subsidy of at most
W−wmin
wmin

mV =
(

W
wmin

− 1
)
mV .

To establish tightness, let us assume all agent has an all-or-nothing valuation for M , such that such
that v1(M) = mV and vi(M) = mV − ε for i ̸= 1. Consider the allocation X , which assigns all
items to a single agent 1 (with the minimum entitlement wmin). It’s evident that: (1) X is WEF-able,
(2) satisfies non-zero social welfare property, (3) X is MSW (and hence, Pareto efficient) and (4) its
optimal subsidy vector p satisfies p1 = 0 and pi =

wi
wmin

(mV − ε) for i ̸= 1. Therefore, we require
W−wmin
wmin

(mV − ε) =
(

W
wmin

− 1
)
(mV − ε) in total. As ε can be arbitrarily small, we get a lower bound

of
(

W
wmin

− 1
)
mV .

Lemma 3.7. For an allocation X , if for all i, j ∈ N , vi(Xi) ≥ vj(Xi) holds, then X is WEF-able, and
the cost of any path from agent i to j is at most vj(Xj)

wj
− vi(Xi)

wi
.

Proof. 1. It is sufficient to show thatX satisfies reassignment-stability. Indeed, for any permutation
π, let π−1 be the inverse permutation. Then the condition in the lemma implies

∑
i∈N

vi(Xi)

wi
≥
∑
i∈N

vπ−1(i)(Xi)

wi
.

By re-ordering the summands in the right-hand side we get the reassignment-stability condition:

∑
i∈N

vi(Xi)

wi
≥
∑
i∈N

vi(Xπ(i))

wπ(i)
.

2. For any path P from i to j in the weighted envy-graph,

costX(P) =
∑

(h,k)∈P

costX(h, k) =
∑

(h,k)∈P

vh(Xk)

wk
− vh(Xh)

wh
≤

∑
(h,k)∈P

vk(Xk)

wk
− vh(Xh)

wh
.

The latter expression is a telescopic sum that simplifies to the difference of two elements:

vj(Xj)

wj
− vi(Xi)

wi
.

Theorem 3.8. For every instance with monotone valuations, there exists a WEF-able, non-zero-social-
welfare allocation with total subsidy at most

(
W

wmin
− 1
)
mV . This bound is tight in the worst case.

21

Proof. Let i∗ be an an agent for whom vi∗(M) is largest. Let X be the allocation in which all items
are allocated to i∗. It is clear that this allocation satisfies non-zero social welfare property. Also,
vi(Xi) ≥ vj(Xi) holds for any i, j ∈ N . Thus, by Lemma 3.7, the allocation is WEF-able. To eliminate
envy, agent i∗ should receive no subsidy, while any other agent i ̸= i∗ ∈ N should receive a subsidy
of wi

wi∗
vj(M) ≤ wi

wmin
vj(M). For any agent j, vj(M) ≤ mV by definition of V . Therefore, the total

subsidy is at most
(

W
wmin

− 1
)
mV .

To prove tightness, we use the same example as in the tightness proof of Theorem 3.6. Every non-zero-
social-welfare allocation must allocate all items to a single agent. Therefore, the situation is identical to
allocating a single item. The onlyWEF-able allocation is the one giving all items to agent assigning
the highest value toM , who is agent 1 (with the lowest entitlement). Therefore, the subsidy must be(

W
wmin

− 1
)
(mV − ϵ) for any ϵ > 0.

D Superadditive and Supermodular Valuations

A monotone valuation vi is called

• Superadditive — if for any X,Y ⊆M with X ∩ Y = ∅, vi(X) + vi(Y) ≤ vi(X ∪ Y).

• Supermodular — if for any X,Y ⊆M holds vi(X) + vi(Y) ≤ vi(X ∪ Y) + vi(X ∩ Y).

Every additive valuation is supermodular, and every supermodular valuation is superadditive.

The lower bound for monotone valuations (in the proof of Theorem 3.8) is attained by supermodular
valuations, so it applies to supermodular and superadditive valuations too.

In this section we prove that, for superadditive valuations (hence also for supermodular and additive
valuations), the same upper bound of Theorem 3.8 can be attained by an allocation that maximizes the
social welfare.

Theorem D.1. When valuations are superadditive, any MSW allocation is WEF-able.

Proof. We show that for an MSW allocation X , vi(Xi) ≥ vj(Xi) holds for any i, j ∈ N . For the sake
of contradiction, assume vi(Xi) < vj(Xi) holds. In this case, we can construct another allocation X ′,
where for all k ̸= i, j, X ′

k = Xk, X ′
i = ∅, X ′

j = Xj ∪Xi. In other words, we reassign Xi from i to j.
By the definition of superadditivity, we have vj(X ′

j) = vj(Xi ∪Xj) ≥ vj(Xi) + vj(Xj). Therefore,
the total social welfare under allocation X ′ is

SWN (X ′) = vj(X
′
j) +

∑
k ̸=i,j

vk(Xk) > vi(Xi) + vj(Xj) +
∑
k ̸=i,j

vk(Xk) = SWN (X).

However, this contradicts the fact that X is a MSW allocation. From Lemma 3.7, it follows that X is
WEF-able. Theorem 3.6 implies that a subsidy of

(
W

wmin
− 1
)
mV is sufficient.

Example 1.2 shows that the theorem does not hold without the superadditivity assumption.

A mechanism is a function from the profile of declared agents’ valuation functions to an outcome. We
say a mechanism is truthful if no agent can obtain a strictly better outcome by misreporting its valuation
function.

Definition D.2 (VCG mechanism [15, 23, 34]). The VCG mechanism chooses an allocation X which
maximizes SWN (X) among all allocations ofM to N .

Agent i, who is allocatedXi, pays a price equal to SWN\{i}(X ′)−SWN\{i}(X), whereX ′ maximizes
SWN\{i} among all allocations ofM to N \ {i}.

22

Theorem D.3. When valuations are superadditive, the VCG mechanism with a large up-front subsidy
(i.e.,we first distribute C · wi to agent i, and if agent i obtains a bundle, it pays the VCG payment from
C · wi) is WEF, Pareto efficient, and truthful.

Proof. Truthfulness and Pareto efficiency are clear. We show that it is WEF. We first show that in the
VCG, for each agent i who obtains Xi and pays qi, qi ≥ vj(Xi) holds for any j ̸= i. For the sake of
contradiction, assume qi = SWN\{i}(X ′) − SWN\{i}(X) < vj(Xi) holds. Then, SWN\{i}(X ′) <
vj(Xi)+SWN\{i}(X) holds. However, if we consider an allocation ofM to agents except for i, we can
first allocateM \Xi optimally among N \ {i}, then allocateXi additionally to agent j. Then, the total
valuation of this allocation is at least vj(Xi) + SWN\{i}(X) due to superadditivity. This contradicts
the fact that SWN\{i}(X ′) is the total valuation when allocatingM optimally among agents except for
i. Also, it is known that VCG is individually rational, which means that vi(Xi) ≥ qi holds for all i ∈ N .

Combining both inequalities leads to

vj(Xj) + C · wj − qj
wj

≥ C · wj

wj
= C =

C · wi

wi
≥ vj(Xi) + C · wi − qi

wi
,

which is the WEF condition.

A similar mechanism is presented in [20] for the unweighted case.

To guarantee that all subsidies are non-negative, C should be an upper bound on the payment of each
agent. As the payment of each agent is at most the social welfare in an allocation, which is at mostmV ,
we can simply take C := mV/wmin.

E Supplement for Section 4 (Additive Valuation)

Lemma 4.1. Suppose there are n agents, and only one item o.Then an allocation is WEF-able iff o is given
to an agent i with the highest vi(o).

Proof. By Theorem 3.3, it is sufficient to check the cycles in the weighted envy-graph. If o is given to i,
then i’s envy is −vi(o)

wi
, and the envy of every other agent j in i is vj(o)

wi
. All other envies are 0. The only

potential positive-weight cycles are cycles of length 2 involving agent i. The weight of such a cycle
is positive iff vj(o)

wi
− vi(o)

wi
> 0, which holds iff vj(o) > vi(o). Therefore, there are no positive-weight

cycles iff vi(o) is maximum.

Theorem 4.2. For every weights vector w and integer n ≥ 2, there exists an instance with n agents with
additive valuations, where the any WEF allocation requires a total subsidy of at least

(
W

wmin
− 1
)
V .

Proof. Consider an instance with n agents and one item owith valuations v1(o) = V and vi(o) = V − ϵ
for i ≥ 2.

By Lemma 4.1, the only WEF-able allocation is to give o to agent 1. In this case, the minimum subsidy
is p1 = 0 and pi = wi

vi(o)
wmin

= wi
(V−ϵ)
wmin

. Summing all subsidies leads to

∑
i≥2

wi
(V − ϵ)

wmin
=

W − wmin

wmin
(V − ϵ) =

(
W

wmin
− 1

)
(V − ϵ) .

As ϵ can be arbitrarily small, we get a lower bound of
(

W
wmin

− 1
)
V .

23

Proposition 4.3. For each round t in Algorithm 1, Xt is WEF-able.

Proof. We prove that, in every round t, the total cost added to any directed cycle in the weighted-envy
graph is non-positive. Combined with Theorem 3.3, this shows that Xt is WEF-able for every round
t ∈ T .

Let Xt the allocation computed by Algorithm 1 at iteration t. Note that Algorithm 1 is deterministic.
Let C be any directed cycle in GXt,w , and denote C = (i1, ..., ir). To simplify notation, we consider i1
as ir+1.

Given the allocationXt and the cycle C , we construct a random alternative allocationBt as follows: for
each agent ij ∈ C , we choose one item otij+1

uniformly from ij+1’s bundle and transfer it to ij ’s bundle
5. The expected value of vij (otij+1

), the value of the item removed from ij ’s bundle, can be computed as

the average value of all items in Xt
ij
:
∑

o∈Xt
ij

vij (o)

wij
=

vij (X
t
ij
)

wij
. Similarly, the expected value of vij (otij),

the value of the item added the ij ’s bundle, is
vij (X

t
ij+1

)

wij+1
. Thus, the expected change in value between

Bt and Xt is

E

[∑
i∈N

(
vi(B

t
i)− vi(X

t
i)
)]

=
∑
ij∈C

(
E
[
vij (o

t
ij+1

)
]
− E

[
vij (o

t
ij)
])

=
∑
ij∈C

vij (X
t
ij+1

)

wij+1

−
vij (X

t
ij
)

wij

.

This is exactly the total cost of cycle C . According to Algorithm 1,Xt maximizes the total value among
all allocations in which each agent i receives exactly wi items. Therefore, the left-hand side of the above
expression, which is the difference between the sum of values in Bt and the sum of values in Xt, must
be at most 0. But the right-hand side of the same expression is exactly the total cost of C . Therefore,

0 ≥ E

[∑
i∈N

(
vi(B

t
i)− vi(X

t
i)
)]

= costXt(C),

so the cost of every directed cycle is at most 0, as required.

Lemma 4.4. Let X be a WEF-able allocation. For any positive number z, if costX(i, k) ≥ −z for every
edge (i, k) in GX,w, then the maximum subsidy required is at most wiz per agent i ∈ N .

Proof. Assume Pi(X) = (i . . . j) is the highest-cost path from i in GX,w. Note that ℓi(X) =
costX(Pi(X)). Then it holds for the cycle C = (i . . . j) that costX(C) = ℓi(X) + costX(j, i). By
Theorem 3.3, costX(C) ≤ 0, thus, ℓi(X) ≤ −costX(j, i) ≤ z. Therefore, pi = wiℓi(X) ≤ wiz.

Theorem 4.5. For additive valuations and integer entitlements, Algorithm 1 computes in polynomial time
a WEF-able allocation where the subsidy to each agent is at most wiV and the total subsidy is at most
(W − wmin)V .

Proof. For the runtime analysis, the most computationally intensive step in Algorithm 1 is solving the
maximum integral flow of minimum cost in G′. The flow network G′ consists of at most n+m+ 2
nodes and at most n+m+mn arcs. By [21], this can be done in time polynomial in n,m:

O ((n+m+ 2) (n+m+mn) log (n+m+ 2)min{log ((n+m+ 2)V) , (n+m+mn) log (n+m+ 2)}) .

By Proposition 4.3, X is WEF-able under the original valuations. Combined with Proposition E.2 and
Proposition E.4 , X is also WEF-able under the modified valuations and requires a subsidy of at most
wiV for each agent i ∈ N .

5Recall that at each iteration, each agent ij receives exactly wij items.

24

Proposition E.3, implies that under the original valuations, the required subsidy for each agent i ∈ N is
at most wiV . By Theorem 3.5, there is at least one agent who requires no subsidy, so the required total
subsidy is at most (W − wmin)V .

Theorem 4.9. Let X be both WEF-able and WEF(x, y) for some x, y ∈ [0, 1]. Then there exists a subsidy
vector p, such that (X,p) is WEF, with total subsidy at most (x+ y)

(
W

wmin
− 1
)
(n− 1)V .

Proof. X is WEF(x, y), so for all i, j ∈ N , there exists B ⊆ Xj with |B| ≤ 1 where

vi(Xj)

wj
− vi(Xi)

wi
≤ yvi(B)

wi
+

xvi(B)

wj
≤ yvi(B)

wmin
+

xvi(B)

wmin
=

(x+ y)vi(B)

wmin
≤ (x+ y)

V

wmin
.

Any path contains at most n− 1 arcs, that is, pi = wiℓi ≤ (x+ y) wi
wmin

(n− 1)V .

By Theorem 3.5, there is at least one agent that requires no subsidy, so the required total subsidy is at
most (x+ y)W−wmin

wmin
(n− 1)V = (x+ y)

(
W

wmin
− 1
)
(n− 1)V .

Proposition 4.10. For any x, y ≥ 0 with x+ y < 2, there exists a weight vector and an instance with
additive valuations in which every WEF-able allocation fails to satisfy WEF(x, y) or WWEF1.

Proof. Consider an instance with two identical items and two agents with weights w1 < w2. Agent 1
values each item at 1 and agent 2 values each item at 2.

The only WEF-able allocation is the one giving both items to agent 2: X1 = ∅, X2 = {o1, o2}.
(If we allocate one item to each agent, the cost of the cycle between those agents would be(

1
w2
− 1

w1

)
(v2(o)− v1(o)), which is positive).

For this allocation to be WEF(x, y), it must satisfy

v1(X1) + yv1(o1)

w1
≥ v1(X2)− xv1(o1)

w2
⇐⇒ y

w1
≥ 2− x

w2
⇐⇒ x+

w2

w1
y ≥ 2.

Hence, if x+ y < 2 and w2
w1

is sufficiently close to 1, then X fails WEF(x, y).

Moreover, X does not satisfy WWEF1, as 0 = v1(X1)
w1

< v1(X2\{o})
w2

= 1 and 1
w1

= v1(X1∪{o})
w1

<
v1(X2)
w2

= 2
w2

, for any o ∈ X2, whenever w2 < 2w1.

Theorem 4.12. The outcome of the Biased Weighted Adjusted Winner Procedure is both WEF(1, 1) and
WEF-able.

Proof. We prove WEF(1, 1) for each agent, assuming od is not allocated to that agent.

To prove this for agent 1, we have to show the following for x = y = 1:

1

w1
(v1(L) + yv1(od)) ≥

1

w2
(v1(R) + v1(od)− xv1(od)).

When x = y = 1 we get

1

w1
v1(L ∪ {od}) ≥

1

w2
v1(R),

which follows immediately from the definition of od.

As for agent 2, the item ordering implies that

v1(L)

v2(L)
≥ v1(R ∪ {od})

v2(R ∪ {od})
⇐⇒ v2(R ∪ {od})

v2(L)
≥ v1(R ∪ {od})

v1(L)

25

By the definition of od, v1(L)
v1(R∪{od}) <

w1
w2

. Combining this with the above inequality implies

v2(R ∪ {od})
v2(L)

>
w2

w1
⇐⇒ 1

w2
v2(R ∪ {od}) >

1

w1
v2(L).

An analogous argument to that used for agent 1 shows that the WEF(1, 1) condition is satisfied for 2
too.

Next, we prove that the outcome is WEF-able.

Suppose od is given to agent 2, that is, v2(od) ≥ v1(od). By definition of od, there exists a fraction
r ∈ [0, 1] such that

1

w1
(v1(L) + r · v1(od)) =

1

w2
(v1(R) + (1− r)v1(od)) (2)

⇐⇒ 1

w1
(v1(L) + r · v1(od) +

w1

w2
rv1(od)) =

1

w2
(v1(R) + v1(od)).

Let the subsidy to agent 1 be p1 := r · v1(od) · (1 +w1/w2), and the subsidy to agent 2 be p2 := 0. The
resulting allocation is WEF for agent 1 by construction.

As for agent 2, the item ordering implies

v1(L) + rv1(od)

v2(L) + rv2(od)
≥ v1(R ∪ {od})

v2(R ∪ {od})
⇐⇒ v2(L) + rv2(od) ≤

v2(R ∪ {od})
v1(R ∪ {od})

(v1(L) + rv1(od))

=
w1

w2
v2(R ∪ {od}).

As v1(od) ≤ v2(od), agent 2 values agent 1’s bundle at

v2(L) + p1 = v2(L) + r · v1(od) ≤ v2(L) + r · v2(od),

which by the above inequality is at most w1
w2

v2(R ∪ {od}). Hence, the allocation is WEF for agent 2 too.

The case that od is allocated to agent 1 can be proved in a similar way.

E.1 Weighted Sequence Protocol For Additive Valuations and Integer weights

E.2 Omitted Details for Section 4

E.2.1 Modified Valuation Function For Algorithm 1

Let Xt be the output allocation from Algorithm 1, computed in iteration t. For each i ∈ N , we define
the modified valuation function as follow:

v̄i(X
t
j) =


vi(X

t
i)

wi
j = i

vi(X
T
j)

wj
j ̸= i, t = T

max
(
vi(X

t
j)

wj
,
vi(X

t+1
i)

wi

)
j ̸= i, t < T

Under the modified valuations, for any two agents i, j ∈ N , the modified-cost assigned to the edge
(i, j) in the envy graph (with unit weights) is defined as costX(i, j) = v̄i(Xi)− v̄i(Xj). Moreover, the
modified-cost of a path (i1, ..., ik) is costX(i1, ..., ik) =

∑k−1
j=1 costX(ij , ij+1).

Observation E.1. For agent i ∈ N and round t ∈ [T] it holds that:

26

ALGORITHM 1: Weighted Sequence Protocol For Additive Valuations and Integer weights
Input: Instance (N,M, v,w) with additive valuations.
Output: WEF-able allocation X with total required subsidy of at most (W − wmin)V .
Xi ← ∅, ∀i ∈ N ;
t← 1; O1 ←M ;
while Ot ̸= ∅ do

Construct the flow network G′ = (V ′, E′):
• define V ′ = N ∪Ot ∪ {s, t}.

• Add arcs with the following properties:

– From s to each agent i ∈ N with cost 0 and capacity wi.
– From each agent i ∈ N to each unallocated item o ∈ Ot, with cost −vi(o) and capacity 1.
– From each unallocated item o ∈ Ot to t with cost 0 and capacity 1.

Compute an integral maximum flow of minimum cost on G′, resulting in the one to many
matching {Xt

i}i∈N ;
Set Xi ← Xi ∪Xt

i , for all i ∈ N ;
Set Ot+1 ← Ot\ ∪i∈N Xt

i ;
t← t+ 1

end
return X

1. v̄i(Xt
i) =

vi(X
t
i)

wi
.

2. For agent j ̸= i ∈ N , v̄i(Xt
j) ≥

vi(X
t
j)

wj
; hence v̄i(Xt

j)− v̄i(X
t
i) ≥

vi(X
t
j)

wj
− vi(X

t
i)

wi
.

Proposition E.2. Assume X is WEF-able under the original valuations v. Then, X is EF-able (i.e.,
WEF-able with unit weights) under the modified valuations v̄.

Proof. By Theorem 3.3, it is sufficient to prove that all directed cycles in the envy graph (with the
modified valuations and unit weights) have non-positive total cost.

We prove a stronger claim: in every round t, the total modified-cost added to every directed cycle C is
non-positive.

Let Xt be the allocation computed by Algorithm 1 at iteration t. Suppose, contrary to our assumption,
that there exists a cycle C = (i1, ..., ir) and a round t in which the modified-cost added to C is positive.
To simplify notation, we consider i1 as ir+1. This implies that

r∑
j=1

v̄ij (X
t
ij+1

) >

r∑
j=1

v̄ij (X
t
ij). (3)

There are several cases to consider.

Case 1: All arcs ij → ij+1 in C have

v̄ij (X
t
ij+1

) =
vij (X

t
ij+1

)

wij+1

(in particular, this holds for t = T). In this case, inequality (3) implies

costXt(C) =

r∑
j=1

vij (X
t
ij
)

wij+1

−
vij (X

t
ij
)

wij

> 0.

27

Combined with Theorem 3.3, this contradicts Proposition 4.3, which states that Xt is WEF-able.

Case 2: All arcs ij → ij+1 in C have

v̄ij (X
t
ij+1

) =
vij (X

t+1
ij

)

wij

.

In this case, inequality (3) implies

r∑
j=1

vij (X
t+1
ij

)

wij

>

r∑
j=1

vij (X
t
ij
)

wij

.

Notice that all the items in Xt+1
j1

, ..., Xt+1
jr

are available at iteration t, which contradicts the optimality
of {Xt

i}i∈N .

Case 3: Some arcs ij → ij+1 in C satisfy Case 1 and the other arcs satisfy Case 2.

Let l ≥ 1 be the number of arcs in C that satisfy Case 2. We decompose C into a sequence of l
edge-disjoint paths, denoted P1, ..., Pl, such that the last node of each path is the first node of the next
path, and in each path, only the last edge satisfies Case 2.

Formally, suppose that some path contains k ≥ 1 agents, denoted as i1, ..., ik , and k − 1 arcs. Then for
each 1 ≤ j ≤ k − 2,

v̄ij

(
Xt

ij+1

)
=

vij

(
Xt

ij+1

)
wij+1

,

and

v̄ik−1

(
Xt

ik

)
=

vik−1

(
Xt+1

ik−1

)
wik−1

.

Since costXt(C) > 0, there exits a path P = (i1, ..., ik) where costXt(P) > 0, which implies that:

0 <
k−1∑
j=1

(
v̄ij (X

t
ij+1

)− v̄ij (X
t
ij)
)
=

k−2∑
j=1

(
vij (X

t
ij+1

)

wij+1

−
vij (X

t
ij
)

wij

)
+

vik−1
(Xt+1

ik−1
)

wik−1

−
vik−1

(Xt
ik−1

)

wik−1

.

The rest of the proof is similar to the proof of Proposition 4.3. We construct another allocation Bt

randomly as follows:

1. For each agent 1 ≤ j ≤ k − 1, we choose one item otij+1
uniformly from ij+1’s bundle and

transfer it to ij ’s bundle.

2. We choose one item oti1 uniformly from i1’s bundle to remove.

3. We choose one item ot+1
ik−1

uniformly from Xt+1
ik−1

and add it to ik−1’s bundle.

Thus, the expected change in value between Bt and Xt is

E

[∑
i∈N

(
vi(B

t
i)− vi(X

t
i)
)]

=
∑

1≤j≤k−2

(
E
[
vij (o

t
ij+1

)
]
− E

[
vij (o

t
ij)
])

+ E
[
vik−1

(ot+1
ik−1

)
]
− E

[
vik−1

(otik−1
)
]
=

∑
1≤j≤k−2

vij (X
t
ij+1

)

wij+1

−
vij (X

t
ij
)

wij

+
vik−1

(Xt+1
ik−1

)

wik−1

−
vik−1

(Xt
ik−1

)

wik−1

.

28

This is exactly the cost of P which by assumption is greater than 0. However, according to Algorithm 1,
Xt maximizes the value of an allocation where each agent i receives wi items among the set of Ot

items. Therefore,

0 ≤ E

[∑
i∈N

(
vi(B

t
i)− vi(X

t
i)
)]

= costXt(P)

leading to a contradiction.

To sum up, Xt is WEF-able under the original valuations v (with weights w), and under the modified
valuations v̄ (with unit weights).

Proposition E.3. For the allocation X computed by Algorithm 1, the subsidy required by an agent given
v (with weights w) is at most the subsidy required given v̄ (with unit weights).

Proof. Given Observation E.1, for each i, j ∈ N ,

v̄i(Xj)− v̄i(Xi) ≥
vi(Xj)

wj
− vi(Xi)

wi
.

Thus, the cost of any path in the envy graph under the modified function and unit weights is at least
the cost of the same path in the weighted envy-graph with the original valuations.

Proposition E.4. For the allocation X computed by Algorithm 1, the subsidy to each agent is at most
wiV for the modified valuation profile v̄.

Proof. By Proposition E.2, the allocationX isWEF-able under the valuations v̄. Togetherwith Lemma 4.4,
if for each i, j ∈ N it holds that v̄i(Xj) − v̄i(Xi) ≥ −V , the subsidy required for agent i ∈ N is at
most wiV for v̄.

v̄i(Xj)− v̄i(Xi) =
∑
t∈[T]

v̄i(X
t
j)−

∑
t∈[T]

v̄i(X
t
i) =

∑
t∈[T−1]

max
{vi(Xt

j)

wj
,
vi(X

t+1
i)

wi

}
+

vi(X
T
j)

wj
−
∑
t∈[T]

vi(X
t
i)

wi
≥

∑
t∈[T−1]

vi(X
t+1
i)

wi
+

vi(X
T
j)

wj
−
∑
t∈[T]

vi(X
t
i)

wi
=

vi(X
T
j)

wj
− vi(X

1
i)

wi
≥ −vi(X

1
i)

wi
.

Since X1
i contains exactly wi items, −vi(X1

i) ≥ −wiV . Hence, v̄i(Xj)− v̄i(Xi) ≥ −wiV
wi

= −V .

E.3 Subsidy Bound of Algorithm 1

As Theorem 4.5 implies, Algorithm 1 computes a WEF-able allocation with a total subsidy of at most
(W − wmin)V . However, this bound is not tight. To understand why, consider the case of 2 items, each
valued at V by agent i ∈ {1, . . . , n − 1}, who has an entitlement of wi ≥ 2, and V − ϵ by all other
agents. Our algorithm will allocate all the items to agent i, resulting in a subsidy of wj

wi
2(V − ϵ) by each

other agent j ̸= i ∈ N , leading to a total subsidy of (W − wi)
2(V−ϵ)

wi
, for arbitrarily small ϵ > 0.

In general, a WEF-able allocation can achieve a lower subsidy by allocating one item to another agent
with higher index j > i, i.e,wj ≥ wi. For instance, if one item is allocated to such agent j, agent i envies

29

agent j by V
wj
− V

wi
≤ 0, and agent j envies agent i by V−ϵ

wi
− V−ϵ

wj
< 2(V−ϵ)

wi
. If V−ϵ

wi
− V−ϵ

wj
≤ 0, then no

subsidy is required. Otherwise, the subsidy required by agent j is
(
V−ϵ
wi
− V−ϵ

wj

)
wj <

wj

wi
·2(V −ϵ). The

subsidy required by each other agent k ̸= i, j is significantly lower thanwk ·
wj

wj
· 2(V−ϵ)

wi
= wk

wi
·2(V −ϵ).

Therefore, the required total subsidy is significantly lower than (W − wi)
2(V−ϵ)

wi
.

In both cases, the resulting total subsidy bound is better than the bound obtained by allocating all items
to agent i.

E.4 Picking sequences

Even for 2 agents, theWeighted Picking Sequence Protocol [12], which outputs a WEF(1, 0) allocation
for any number of agents with additive valuations, is not WEF-able:
Example E.5. Suppose there is one item o and v1(o) = 1, v2(o) = 2, w1 = 1, and w2 = 4. Agent 2
gets the first turn and gets o. The envy of agent 1 toward agent 2 is 2/4, while the envy of agent 2
toward agent 1 is−1/4. Thus, the cycle between these agents has a positive cost: 2/4− 1/4 = 1/4 > 0.
By Theorem 3.3, the resulting allocation is not WEF-able.

F Supplement for Section 5 (Identical Additive Valuation)

Theorem 5.1. For any integer weights vector and any integer n ≥ 2, there exists an instance with n
agents with identical additive valuations where, in any WEF allocation, at least one agent requires subsidy
at least V , and the total subsidy required is at least (n− 1)V .

Proof. Consider n agents with integer weights w1 ≤ · · · ≤ wn andm = 1 +
∑

i∈N (wi − 1) items all
valued at V .

To avoid envy, each agent i should receive a total utility of wiV , so the sum of all agents’ utilities would
be WV .

As the sum of all values is (W − (n− 1))V , a total subsidy of at least (n− 1)V is required (to minimize
the subsidy per agent, each agent i ∈ N should receive wi − 1 items, except for the agent with the
highest entitlement (agent n), who should receive wn items.

The value per unit entitlement of each agent i < n is V (wi − 1)/wi, and for agent n it is V . Therefore,
to avoid envy, each agent i < n should receive a subsidy of wi

(
1− wi−1

wi

)
V = V and the total subsidy

required is (n− 1)V .

Theorem 5.2. For identical additive valuation, there exists a polynomial time algorithm to find aWEF-able
and non-wasteful allocation such that the subsidy per agent is at most V . Therefore, the total subsidy
required is at most (n− 1)V .

Proof. It is clear that Algorithm 2 runs in polynomial time.

Let X be the output of Algorithm 2. First notice that X is WEF-able and non-wasteful.

We start by observing that, with identical valuations, the cost of any path in the weighted envy graph is
determined only by the agents at the endpoints of that path.

Observation F.1. Given an instance with identical valuations, let X be any allocation, and denote by P
any path in the weighted envy-graph of X between agents i, j ∈ N .

costX(P) =
v(Xj)

wj
− v(Xi)

wi

30

This is because the path cost is
∑

(h,k)∈P costX(h, k) =
∑

(h,k)∈P
v(Xk)
wk
− v(Xh)

wh
, and the latter sum is a

telescopic sum that reduces to the difference of its last and first element.

Proposition F.4 implies that, to achieve weighted-envy-freeness under identical additive valuations for
the allocation computed by Algorithm 2, the required subsidy per agent i ∈ N is at most wi

V
wi

= V . In
combination with Theorem 3.5, the total required subsidy is at most (n− 1)V .

F.1 Weighted Sequence Protocol For Additive Identical Valuations

ALGORITHM 2: Weighted Sequence Protocol For Additive Identical Valuations
Input: Instance (N,M, v,w) with additive identical valuations.
Output: WEF-able allocation X with total required subsidy of at most (n− 1)V .
Xi ← ∅, ∀i ∈ N ;
for o : 1 to m do

U ← argmini∈N
v(Xi∪{o})

wi
;

u← maxi∈U (wi);
Add o to Xu

end
return X

F.2 Algorithm 1: Illustrative Example Under Binary Additive Valuations

Example F.2. Consider two agents, denoted as i1 and i2, with corresponding weights w1 = 1 and
w2 =

7
2 , and three items, namely o1, o2, o3, with valuations v(o1) = v(o2) = v(o3) = 1, Algorithm 2 is

executed as follows:

1. for the first iteration, the algorithm compares v(o1)
w1

= 1 and v(o1)
w2

= 2
7 . Consequently, the

algorithm allocates item o1 to agent i2, resulting in X1 = ∅ and X2 = {o1}.

2. for the second iteration, the algorithm compares v(o2)
w1

= 1 and v(X2∪{o2})
w2

= 2
7
2

= 4
7 . Subse-

quently, the algorithm allocates item o2 to agent i2, resulting in X1 = ∅ and X2 = {o1, o2}.

3. for the third iteration, the algorithm compares v(o3)
w1

= 1 and v(X2∪{o3})
w2

= 3
7
2

= 6
7 , Consequently,

item o3 is allocated to agent i2, resulting in X1 = ∅ and X2 = {o1, o2, o3}.

Now, agent i1 envies agent i2 by an amount of v(X2)
w2
− v(X1)

w1
= 3

7
2

= 6
7 , and conversely, agent i2 envies

agent i1 by v(X1)
w1
− v(X2)

w2
= −6

7 In order to mitigate envy, p1 = 6
7 and p2 = 0.

F.3 Omitted Details for Section 5

Example F.2 illustrates that the resulting allocation may not be WEF(1,0) — Algorithm 2 might allocate
all items to the agent with the highest entitlement. However, the outcome is always WEF(0, 1):

Proposition F.3. For additive identical valuations, Algorithm 2 computes a WEF(0, 1) allocation.

Proof. We prove by induction that at each iteration,X satisfies WEF(0, 1). The claim is straightforward
for the first iteration. Assume the claim holds for the (t − 1)-th iteration, and prove it for the t-th
iteration. Let o be the item assigned in this iteration and u be the agent receiving this item. Agent u

31

satisfies WEF(0, 1) due to the induction hypothesis. For i ̸= u, by the selection rule, v(Xu)
wu
≤ v(Xi∪{o})

wi
.

This is exactly the definition of WEF(0, 1).

Proposition F.4. With identical additive valuations, for every WEF(0, 1) allocation X , ℓi(X) ≤ V
wi
, for

all i ∈ N .

Proof. For each agent i ∈ N , denote the highest-cost path starting at i in that graph byPi(X) = (i, ..., j)

for some agent j ∈ N . Then by Observation F.1, ℓi(X) = costX(Pi(X)) =
v(Xj)
wj
− v(Xi)

wi
.

From the definition of WEF(0, 1), Proposition F.3 implies that this difference is at most v(o)
wi

for some
object o ∈ Xj . Therefore, the difference is at most V

wi
.

F.4 Subsidy Bound of Algorithm 2

Example F.5. Consider 2 agents with weights w1 = 1 and w2 = 2, and 2 items o1 and o2, where
v(o1) = V

2 and v(o2) = V . The allocation X output by Algorithm 2 is X = (∅, {o1, o2}) with
total subsidy 3

4V . On the other hand, total subsidy needed for allocation ({o1}, {o2}) is zero. Hence,
Algorithm 2 does not necessarily output an allocation with minimum total subsidy and the upper bound
on the total subsidy given in Theorem 5.2 is not always optimal.

G Supplement for Section 6 (Binary Additive Valuation)

Proposition 6.1. For every n ≥ 2 and weight vectorw, there is an instance with n agents with binary
valuations in which the total subsidy in any WEF allocation is at least W

w2
− 1.

Proof. There is one item. Agents 1 and 2 value the item at 1 and the others at 0. If agent i ∈ {1, 2}
gets the item, then the other agent j ̸= i ∈ {1, 2} must get subsidy wj

wi
. To ensure that other agents do

not envy j’s subsidy, every other agent k ̸∈ {1, 2} must get subsidy wk
wi

. The total subsidy is W
wi
− 1.

The subsidy is minimized by giving the item to agent 2, since w2 ≥ w1. This gives a lower bound of
W
w2
− 1.

Lemma 6.3. At the end of any iteration t of Algorithm 3, the allocation Xt is non-redundant.

Proof. We prove by induction that at the end of each iteration t, Xt remains non-redundant.

For the base case, X0 is an empty allocation and is therefore non-redundant. Now, assume that at the
end of iteration t− 1, Xt−1 is non-redundant.

If Xt = Xt−1, meaning no agent received a new item, the process is complete. Otherwise, let u be the
agent who receives new item. Agent u obtains an item via the transfer path P = (u = i1, . . . , ik). For
each 1 ≤ j < k, agent ij receives the item oj from the bundle of ij+1, given that vij (oj) = 1. Agent ik
receives a new item ok from the bundle of i0, with vik(ok) = 1.

Additionally, for each 1 < j ≤ k, item oj−1 is removed from agent ij ’s bundle where vij (oj−1) = 1,
since Xt−1 is non-redundant.

For agents not on the transfer path P , their bundles remain unchanged. Thus, for each agent i ∈ N , it
holds that vi(Xt

i) = vi(X
t−1
i) = |Xt−1

i | = |Xt
i |, confirming that Xt is non-redundant.

Theorem 6.4. For additive binary valuations, Algorithm 3 computes a WEF-able allocation where the
subsidy to each agent i ∈ N is at most wi

wmin
in polynomial-time. Moreover, the total subsidy is bounded by

W
wmin

− 1.

32

Proof. Together Proposition G.4 and Proposition G.8 establish that for every i ∈ N and t ∈ [T],
ℓi(X

t) ≤ 1
wmin

. Along with Lemma 6.3, Algorithm 3 computes a WEF-able allocation XT where the
required subsidy per agent i ∈ N is at most wi

wmin
. As there is at least one agent who requires no subsidy

(see Theorem 3.5), the total required subsidy is at most W−wmin
wmin

= W
wmin

− 1.

We complete the proof by demonstrating that Algorithm 3 runs in polynomial-time. We represent the
valuations using a binary matrix A where vi(oj) = 1⇐⇒ A(i, j) = 1. Hence, the allocation of items
to the bundle of i0 at line 1 can be accomplished in O(mn) time.

At each iteration t of the while loop, either Xi0 or R reduced by 1, ensuring that the loop runs at most
m+ n times.

Let Tv represent the complexity of computing the value of a bundle of items, and Tϕ denote the
complexity of computing the gain function. Both are polynomial inm.

According to Viswanathan et al. [36], finding a transfer path starting from agent i ∈ N (or determining
that no such path exists) takes O(Tv logm). Removing agents at the start of each iteration incurs a
complexity of O(nTv logm). Furthermore, as stated in Viswanathan et al. [36], identifying u requires
O(nTv). Updating the allocation based on the transfer path, according to the same source, takes O(m).

Thus, each iteration has a total complexity ofO(nTv logm+nTv+Tv logm+m) = O (nTv logm+m).

In conclusion, Algorithm 3 runs in O ((m+ n) (nTv logm+m)), which is polynomial in both m and
n.

Proposition 6.5. For additive binary valuations, Algorithm 3 computes aWEF (0, 1) allocation.

Proof. We prove by induction that at the end of each iteration t ∈ [T] Xt satisfies WEF (0, 1). This
means that for every i, j ∈ N , there exists a set of items B ⊆ Xt

j of size at most 1 such that
vi(X

t
i)+vi(B)
wi

≥ vi(X
t
j)

wj
.

The claim is straightforward for the first iteration. We assume the claim holds for the (t−1)-th iteration
and prove it for the t-th iteration. Note that vi(Xt−1

i) ≤ vi(X
t
i).

1. Xt
j = Xt−1

j and Xt
i = Xt−1

i : the claim holds due to the induction step.

2. vi(Xt
j) = vi(X

t−1
j): This is the case where j was not included in a transfer path, or was included

but was not the first agent in the path, and exchanged an item for a new one, both having
the same value for i. By the induction assumption, there exists some singleton Bt−1 ⊆ Xt−1

j

such that vi(X
t−1
i)+vi(B

t−1)
wi

≥ vi(X
t−1
j)

wj
=

vi(X
t
j)

wj
. There exists some singleton Bt ⊆ Xt

j , with

vi(B
t) = vi(B

t−1). Hence, vi(X
t
i)+vi(B

t)
wi

≥ vi(X
t−1
i)+vi(B

t−1)
wi

≥ vi(X
t−1
j)

wj
=

vi(X
t
j)

wj
.

3. vi(Xt
j) < vi(X

t−1
j): This is the casewhere j was included in a transfer path but exchanged an item

i values for an item i does not value. Then vi(X
t
i)+vi(B)
wi

≥ vi(X
t−1
i)+vi(B)

wi
≥ vi(X

t−1
j)

wj
>

vi(X
t
j)

wj

for a set B ⊆ Xt
j of size at most 1.

4. vi(Xt
j) > vi(X

t−1
j): there are two subcases:

(a) If j is the first agent in the transfer path and received a new item o such that vi(o) = 1,
then vi(X

t−1
i)+1
wi

≥ vj(X
t−1
j)+1

wj
due to the selection rule, and vj(X

t−1
j)+1

wj
≥ vi(X

t−1
j)+1

wj
due

to non-redundancy.

We can conclude that vi(X
t
i)+1

wi
≥ vi(X

t−1
i)+1
wi

≥ vi(X
t−1
j)+1

wj
=

vi(X
t
j)

wj
. The claim holds for

B = {o} ⊆ Xt
j .

33

(b) If j was not the first agent in the path, but exchanged an item that i does not value for an
item o that i values, vi(o) = 1. Let t′ < t represent the most recent iteration in which agent

j was selected and received a new item. Note that vi(X
t
i)+1

wi
≥ vi(X

t′−1
i)+1
wi

≥ vj(X
t′−1
j)+1

wj

due to the selection rule.
Assume to the contrary that vi(X

t
i)+1

wi
<

vi(X
t
j)

wj
. Then,

vi(X
t
i) + 1

wi
<

vi(X
t
j)

wj
≤

vj(X
t
j)

wj
=

vj(X
t′
j)

wj
=

vj(X
t′−1
j) + 1

wj
≤

vi(X
t′−1
i) + 1

wi
≤ vi(X

t
i) + 1

wi
,

a contradiction. Hence, vi(X
t
i)+1

wi
≥ vi(X

t
j)

wj
and the claim holds for B = {o} ⊆ Xt

j .

G.1 Algorithm 3: Illustrative Example

Example G.1. Consider two agents with weights w1 = 1 and w2 = 2, and five items. The valuation
functions are:  o1 o2 o3 o4 o5

i1 1 1 1 1 1
i2 1 1 1 1 0


The algorithm is executed as follows:

1. For t = 1, the algorithm compares 1
w1

= 1
1 ,

1
w2

= 1
2 . Consequently, the algorithm searches for a

transfer path starting at i2 and ending at i0, and finds the path (i2, i0). The algorithm transfers
the item o1 to agent i2 from i0’s bundle, resulting in X1

1 = ∅ and X1
2 = {o1}.

2. For t = 2, the algorithm compares 1
w1

= 1
1 and v2(X1

2)+1
w2

= 2
2 . Since those values are equal, the

algorithm arbitrarily selects agent i2 and searches for a transfer path starting at i2 and ending at
i0, and finds the path (i2, i0). The algorithm transfers the item o2 to agent i2, yielding X2

1 = ∅
and X2

2 = {o1, o2}.

3. For t = 3, the algorithm compares 1
w1

= 1 and v2(X2
2)+1

w2
= 3

2 . As a result, the algorithm searches
for a transfer path starting at i1 and ending at i0, and finds the path (i1, i0). The algorithm
transfers the item o3 to agent i1, producing X3

1 = {o3} and X3
2 = {o1, o2}.

4. For t = 4, the algorithm compares v1(X3
1)+1

w1
= 2 and v2(X3

2)+1
w2

= 3
2 . Thus, the algorithm searches

for a transfer path starting at i2 and ending at i0, and finds the path (i2, i0). The algorithm
transfers the item o4 to agent i2, leading X4

1 = {o3} and X4
2 = {o1, o2, o4}.

5. For t = 5, the algorithm compares v1(X4
1)+1

w1
= 2 and v2(X4

2)+1
w2

= 4
2 = 2. Since those values

are equal, the algorithm arbitrarily selects agent i2 and searches for a transfer path starting
at i2 and ending at i0, and finds the path (i2, i1, i0). The algorithm transfers the item o3 to
agent i2 from i1’s bundle and the item o5 to agent i1 from i0’s bundle, leading X5

1 = {o5} and
X5

2 = {o1, o2, o3, o4}.

6. Agent 1 envies agent 2 by 4
2 −

1
1 = 1, while agent 2 envies agent 1 by 0− 4

2 < 0.

7. In order to mitigate envy, p1 = 1 and p2 = 0.

34

ALGORITHM 3: Weighted Sequence Protocol For Additive Binary Valuations
Input: Instance (N,M, v,w) with additive binary valuations.
Output: WEF-able allocation X with total required subsidy of at most W

wmin
− 1.

Xi0 ←M , and X0
i ← ∅ for each i ∈ N /* All items initially are unassigned */

t← 1;
R← N ;
while R ̸= ∅ do

Remove from R all agents who do not have a transfer path starting from them ;
u← argmaxi∈R

(
wi

vi(X
t−1
i)+1

)
/* Choose the agent who maximizes the gain function */

Find a transfer path starting at u /* For example, one can use the BFS algorithm to find a

shortest path from u to i0. */
Transfer the items along the path and update the allocation Xt;
t← t+ 1

end
return Xt

G.2 Weighted Sequence Protocol For Additive Binary Valuations

G.3 Omitted Details for Section 6

Observation G.2. Let X be any non-redundant allocation. Let P = (i, . . . , j) be a path in GX,w. Then
costX(P) ≤ |Xj |

wj
− |Xi|

wi
.

LemmaG.3. For any agent j ∈ N , and any agent i ∈ R(t) remaining in the game at time t,
|Xt

j |
wj
− |Xt

i |
wi
≤

1
wi
.

Proof. If j has never been selected to receive an item, then |Xt
j | = 0 and the lemma is trivial.

Otherwise, let t′ ≤ t be the latest iteration in which j was selected. As agents can not be added to

R and by the selection rule, vj(X
t′−1
j)+1

wj
≤ vi(X

t′−1
i)+1
wi

. Then by non-redundancy, |Xt′
j |

wj
=

vj(X
t′
j)

wj
=

vj(X
t′−1
j)+1

wj
≤ vi(X

t′−1
i)+1
wi

=
vi(X

t′
i)

wi
+ 1

wi
=

|Xt′
i |

wi
+ 1

wi
. As |Xt

j | = |Xt′
j | and |Xt

i | ≥ |Xt′
i |, the lemma

follows.

From Lemma G.3, we can conclude the following:

Proposition G.4. If i ∈ R(t), then ℓi(X
t) ≤ 1

wi
.

Proof. Assume Pi = (i, . . . , j) is the path with the highest total cost starting at i in the GXt,w, i.e.,
costXt(Pi) = ℓi(X

t). Observation G.2 implies ℓi(Xt) ≤ |Xt
j |

wj
− |Xt

i |
wi

. As i ∈ R(t), Lemma G.3 implies
|Xt

j |
wj
− |Xt

i |
wi
≤ 1

wi
.

To prove the upper bound on ℓi(X) for each agent i /∈ R(t)—that is, agents who have been removed
from the game—we first establish several properties of such agents. Specifically, we show that a removed
agent does not desire any item held by an agent who remains in the game (see Proposition G.5). As a
consequence, these removed agents cannot appear in any transfer path (see Proposition G.6).

Next, we demonstrate that if the cost of a path originating from one of these removed agents at the end
of iteration t exceeds the cost at the end of iteration t′ ≤ t — the iteration when the agent was removed

35

— then there exists an edge in this path, (ij , ij+1), such that vi(Xt
j) = 0 (Proposition G.7). Based on

these claims, we prove that if at the end of iteration t, the cost of the maximum-cost path starting from
agent removed from the game at t′ < t exceeds its cost at t′, we can upper-bound it by 1

wmin
.

Proposition G.5. Let i be an agent removed from the game at the start of iteration t′. Then for all
j ∈ R(t′), vi(Xt′

j) = 0.

Moreover, for all t > t′ and all j ∈ R(t), vi(Xt
j) = 0.

Proof. Suppose that vi(Xt′
j) ̸= 0. This implies there exists some item o ∈ Xt′

j such that vi(o) = 1. We
consider two cases:

1. o ∈ Xt′−1
j . In this case, at the start of iteration t′, there exists a transfer path from i to j. Moreover,

there is a transfer path from j to i0 at the start of iteration t′ (otherwise, j would have been
removed from the game at t′ as well). Concatenating these paths gives a transfer path from i to
i0.

2. o ̸∈ Xt′−1
j , that is, j received item o during iteration t′, from some other agent j′ (where j′ = i0

is possible). At the start of iteration t′, there exists a transfer path from i to j′. Moreover, there is
a transfer path from j′ to i0, which is used to transfer the newly allocated item. Concatenating
these paths gives a transfer path from i to i0.

Both cases contradict the assumption that i was removed at t′.

To prove the claim for t > t′, we use induction over t.

We assume the claim holds for iteration t− 1 > t′ and prove it for iteration t. Assume, contrary to the
claim, that there exists an agent i who was removed at the start of iteration t′, and an agent j ∈ R(t),
such that vi(Xt

j) ̸= 0. By the induction hypothesis and the fact that an agent can not be added to R, we
have vi(Xt−1

j) = 0. Therefore, during iteration t, j must have received a new item oj that i values at 1.

If oj was part of i0’s bundle at the start of iteration t′, then the transfer path starting at i, (i, i0), must
have already existed at the start of iteration t′.

Alternatively, if oj was originally in another agent’s bundle at the start of iteration t′, say agent k ∈ N ,
then there must have been an iteration between t′ and t in which oj has been transferred from k to
another agent, while agent k is compensated by some other item ok, that agent k wants.

If ok was part of i0’s bundle at the start of iteration t′, then the transfer path starting at i, (i, k, i0), must
have existed at the start of iteration t′. Otherwise, ok was in another agent’s bundle at t′, and it, too,
would be transferred to a different bundle in a later iteration.

Since the number of items is finite, this process must eventually lead to an item that was inXt′
i0
, forming

a transfer path starting at i at the start of iteration t′ — a contradiction.

Proposition G.6. Let i be an agent removed from the game at the start of iteration t′. Then, for all t ≥ t′,
i will not be included in any transfer path.

Proof. First, note that vi(Xt
i0
) = 0; otherwise, i would not have been removed at the start of iteration

t′. Next, any agent j, who receives an item from i0’s bundle at iteration t, must be in R(t). By
Proposition G.5, vi(Xt

j) = 0, which means that i can not receive any item from j, who in R(t), as
compensation for another item from their own bundle. Thus, any transfer path in iteration t includes
only agents in R(t).

Proposition G.7. Consider an iteration t and an agent i /∈ R(t), who was removed from the game at the
start of iteration t′ < t. Let P = (i = i1, . . . , ik) be a path in the weighted envy graph starting at i. If

36

costXt(P) > costXt′−1(P), then there must exist j ∈ {1, . . . , k − 1} such that ij /∈ R at t, ij+1 ∈ R(t)
at t, and vij (X

t
ij+1

) = 0.

Proof. Let t > t′ be the earliest iteration in which costXt(P) > costXt′−1(P). This implies that there
is at least one agent, say 1 ≤ j′ ≤ k − 1, such that agent ij′+1 has received a new item that ij′ desires.
In other words, ij′+1 was part of a transfer path at the start of iteration t, and by Proposition G.6,
ij′+1 ∈ R(t) (in particular, j′ ≥ 2).

Since i1 /∈ R(t) and ij′+1 ∈ R(t), there must exist some 1 ≤ p < j′ + 1 such that ip /∈ R(t) at t and
ip+1 ∈ R(t). By Proposition G.5, vip(Xt

ip+1
) = 0.

Proposition G.8. Let i /∈ R(t), be an agent who was removed from the game at the start of iteration
t′ < t. Then, for Xt the resulting allocation from iteration t, ℓi(Xt) ≤ 1

wmin
.

Proof. Denote by P t′−1
i , P t

i the highest-cost paths starting from i at iterations t′ − 1 (before agent
i removed) and t, correspondingly. In particular, costXt′−1(P t

i) ≤ costXt′−1(P
t′−1
i) = ℓi(X

t′−1).

Moreover, by Observation G.2 we have costXt′−1(P
t′−1
i) ≤

|Xt′−1
ik

|
wik

− |Xt′−1
i |
wi

when ik is the last agent
in P t′−1

i . Combined with Lemma G.3, this gives ℓi(Xt′−1) ≤ 1
wi
. Therefore, if costXt(P t

i) = ℓi(X
t) ≤

ℓi(X
t′−1), then we are done.

Assume now that ℓi(Xt) > ℓi(X
t′−1). Denote the path P t

i by (i = i1, . . . , ik).

From Proposition G.7, there exists j ∈ {1, . . . , k−1} such that ij /∈ R(t), ij+1 ∈ R(t) and vij (Xt
ij+1

) =
0. Then, by Observation G.2:

ℓi(X
t) = costXt(i, ..., ij) + costXt(ij , ij+1) + costXt(ij+1, ..., ik) ≤

≤

(
|Xt

ij
|

wij

− |X
t
i |

wi

)
+

(
0−
|Xt

ij
|

wij

)
+ ℓij+1(X

t) ≤

ℓij+1(X
t). (4)

Since ij+1 ∈ R(t), it follows from (4) and Proposition G.4 that

ℓi(X
t) ≤ ℓij+1(X

t) ≤ 1

wij+1

≤ 1

wmin
.

G.4 Subsidy Bound of Algorithm 3

As Theorem 6.4 implies, Algorithm 3 computes a WEF-able allocation with a total subsidy of at most
W

wmin
− 1. However, with more careful analysis, we can prove a tighter bound.

There are two cases to consider:

1. Agent 1 with the minimum entitlement receives a positive subsidy. Together, Proposi-
tion G.4 and Proposition G.8 imply that pi ≤ wi

wmin
for each agent i ∈ N . Since agent 1 does

receive a positive subsidy, and by Theorem 3.5, there exists at least one agent who requires no
subsidy, the total required subsidy is bounded by W−w2

wmin
.

2. Agent 1 with the minimum entitlement receives no subsidy. We can modify Proposition G.8
in the following way: for each agent i /∈ R(t), where t ∈ [T], ℓi(Xt) ≤ 1

w2
. By the proof of

Proposition G.8, ℓi(Xt) ≤ ℓij+1(X
t). If ij+1 = i1, then ℓi(X

t) ≤ ℓij+1(X
t) ≤ 0 (because agent

37

1 requires no subsidy). Otherwise, ℓi(Xt) ≤ ℓij+1(X
t) ≤ 1

wij+1
≤ 1

w2
. Overall, the subsidy

required by each agent is bounded by wi
w2

, and by Theorem 3.5, there exists at least one agent who
requires no subsidy. Therefore, the total required subsidy is bounded by W−wmin

w2
.

To sum up, the total required subsidy is at mostmax
{

W−wmin
w2

, W−w2
wmin

}
.

G.5 Matroidal Valuation

Another valuation class, slightly more general than binary additive, is the class of matroidal valuations,
also called matroid rank valuations [7, 8]. In this section we prove that the subsidy bound provided
by Algorithm 3 for agents with binary additive valuations, which is W

wmin
− 1 (Theorem 6.4), is not

applicable for agents with matroidal valuations. Specifically, we show a lower bound of m
n

(
W

wmin
− n

)
,

which is linearly increasing withm.

A matroidal valuation is based on a matroid F over M .6 Then, the value of each subset A ⊆M equals
maxF∈F |A ∩ F |.

Note that a matroidal valuation is submodular, but not necessarily additive. A binary additive valuation
is a special case of a matroidal valuation, in which each agent i has Fi = {F | F ⊆ Bi}, where
Bi := {o | o ∈M,vi(o) = 1}.

We demonstrate that the total subsidy bound derived by Algorithm 3 for agents with binary additive
valuations might not hold for agents with matroidal valuations.

Theorem G.9. There exists an instance with matroidal valuations for which, in any WEF non-wasteful
allocation, the subsidy for some agent i ∈ N is at least m

n (
wi

wmin
− 1), and the total subsidy is at least

m
n

(
W

wmin
− n

)
.

Proof. Assume there are n agents with weights w1 ≤ . . . ≤ wn. There are m = nk items, and the
valuation of each agent i for bundle Xi is given by min(k, |Xi|), i,e., each agent values at most k items
(We can assume that the feasible bundles are defined as F = {F | F ⊆M, |F | ≤ k}).

In this setting, the only non-wasteful allocation is one in which each agent is allocated exactly k items.
An agent i ∈ N envies another agent j ̸= i ∈ N by amount given by k

wj
− k

wi
. Equivalently, the cost

of any path P = (i, . . . , j) for some j ̸= i ∈ N is k
(

1
wj
− 1

wi

)
. The maximum-cost path starting

from agent i ends at agent 1, and its cost is k
(

1
wmin

− 1
wi

)
. To eliminate envy, each agent i ∈ N must

receive a subsidy of k
(

wi
wmin

− 1
)
= m

n

(
wi

wmin
− 1
)
. The total subsidy required is

∑
1≤i≤n

m

n

(
wi

wmin
− 1

)
=
∑

1<i≤n

m

n

(
wi

wmin
− 1

)
=

m

n

(
W − wmin

wmin
− (n− 1)

)
=

m

n

(
W

wmin
− n

)
.

Importantly, whereas the upper bound for binary additive valuations W
wmin

− 1 is independent ofm, the
lower bound for matroidal valuations is increasing withm.

6Formally, F is a family of subsets ofM such that ∅ ∈ F , F ′ ⊆ F ∈ F implies F ′ ∈ F , and for any F, F ′ ∈ F where
|F | > |F ′|, there exists an item o ∈ F \ F ′ s.t. F ′ ∪ {o} ∈ F .

38

H Additive Valuations and Identical Items

With a slight abuse of notation, we denote by vi the value of agent i to a single item. Thus, for an
allocation X , if |Xi| = mi, then vi(Xi) = vimi. We denote an allocation by a tuple of integers
(m1,m2, . . . ,mn), representing the numbers of items allocated to the agents. Note that m = m1 +
· · ·+mn.

In this section, for simplicity, we order the agents in descending order of their value rather than their
weight, that is, we sort the agents so that (V ≥) v1 ≥ v2 ≥ . . . ≥ vn.

We show matching upper and lower bounds on the subsidy per agent and on the total subsidy.

The following lemma states that weighted envy-freeability can be characterized by the weighted
reassignment-stability condition for swapping only a pair of two agents.

Lemma H.1. For additive valuations with identical items, an allocation X = (m1,m2 . . . ,mn) is
WEF-able if and only if for each 1 ≤ i, j ≤ n with vi < vj we have mi

wi
≤ mj

wj
.

Proof. We first show the only-if part. Assume that (m1, . . . ,mn) is WEF-able. Then, by Theorem 3.3,
it is weighted reassignment-stable. For the permutation that only swaps i and j, inequality (1) in the
definition of weighted reassignment-stability implies that vi·mi

wi
+

vj ·mj

wj
≥ vi·mj

wj
+

vj ·mi

wi
. When vi < vj ,

this implies that mi
wi
≤ mj

wj
.

We now show the if part. WLOG, we can assume when i > j and vi = vj , mi/wi ≥ mj/wj holds
(otherwise we can rename agents’ identifiers). We will show that for any i > j we have

costX(i, j) ≤ costX(i, i− 1) + costX(i− 1, i− 2) + · · ·+ costX(j + 1, j) (5)

Once this is done, we can show that any cycle in the weighted envy-graph has a non-positive cost as
follows. Let C be a cycle in the weighted envy-graph. We partition the set of edges of C into the two
sets of “ascending” edges and “descending” edges:

E(C) = E+(C) ∪ E−(C),

where

E+(C) = {(i, j) ∈ E(C) | i > j} and E−(C) = {(j, i) ∈ E(C) | i > j}.

To show C has non-positive cost is to show∑
(i,j)∈E+(C)

costX(i, j) +
∑

(j,i)∈E−(C)

costX(j, i) ≤ 0

The inequality (5) implies∑
(i,j)∈E+(C)

costX(i, j) ≤
∑

(i,j)∈E+(C)

(costX(i, i− 1) + · · ·+ costX(j + 1, j)).

Let E′
+(C) be a multiset of edges of C defined as

E′
+(C) = ∪(i,j)∈E+(C){(i, i− 1), (i− 1, i− 2), . . . , (j + 1, j)}.

Then it suffices to show that∑
(i,j)∈E′

+(C)

costX(i, j) +
∑

(j,i)∈E−(C)

costX(j, i) ≤ 0.

39

Now, to each edge (j0, i0) ∈ E−(C), we assign the subset of edges {(i0, i0 − 1), . . . , (j0 + 1, j0)} from
E′

+(C); this assignment partitions E′
+(C) into disjoint subsets, since C is a cycle.

Then it suffices to show that the sum of costs of “ascending” edges assigned to (j0, i0) ∈ E−(C) plus the
cost of (j0, i0) itself (i.e., costX(i0, i0−1)+costX(i0−1, i0−2)+· · ·+costX(j0+1, j0)+costX(j0, i0))
is non-positive, since

∑
(i,j)∈E′

+(C) costX(i, j) +
∑

(j,i)∈E−(C) costX(j, i) is the sum of these values.

Indeed, we have

costX(i, i− 1) + · · ·+ costX(j + 1, j) + costX(j, i)

= vi

(
mi−1

wi−1
− mi

wi

)
+ · · ·+ vj+1

(
mj

wj
− mj+1

wj+1

)
+ vj

(
mi

wi
− mj

wj

)
≤ vj

(
mi−1

wi−1
− mi

wi

)
+ · · ·+ vj

(
mj

wj
− mj+1

wj+1

)
+ vj

(
mi

wi
− mj

wj

)
= vj

(
mj

wj
− mi

wi

)
+ vj

(
mi

wi
− mj

wj

)
= 0,

where we use the fact that vi . . . vj+1 ≤ vj and mk
wk
≥ mk+1

wk+1
for i ≤ k ≤ j − 1 in the inequality.

Therefore, any cycle in the weighted envy-graph has a non-positive cost, and the allocation is WEF-able
by Theorem 3.3.

It remains to prove the inequality (5). We show this by induction on j − i. If i − j = 1, then
costX(i, j) = costX(i, i− 1) holds trivially.

Assume i− j > 1. By the inductive hypothesis, we have

costX(i, j + 1) ≤ costX(i, i− 1) + costX(i− 1, i− 2) + · · ·+ costX(j + 2, j + 1).

Hence, it suffices to show that costX(i, j) ≤ costX(i, j + 1) + costX(j + 1, j). Indeed,

costX(i, j) = vi

(
mj

wj
− mi

wi

)
= vi

(
mj

wj
− mj+1

wj+1

)
+ vi

(
mj+1

wj+1
− mi

wi

)
≤ vj+1

(
mj

wj
− mj+1

wj+1

)
+ vi

(
mj+1

wj+1
− mi

wi

)
= costX(j + 1, j) + costX(i, j + 1),

where we use the fact that vi ≤ vj+1 and mj+1

wj+1
≤ mj

wj
in the inequality.

Using this Lemma H.1, we first prove a lower bound.

Theorem H.2. Even with additive valuations and identical items, it is impossible to guarantee that
the subsidy per agent is smaller than V wi

∑
1≤j<i

1
wj

, or that the total subsidy is smaller than

V
∑

2≤i≤n

(
wi
∑

1≤j<i
1
wj

)
.

Proof. We construct an instance in which vi = V + (n − i) · ϵ for some small ϵ > 0. Note that
v1 > · · · > vn. The weights are in the same order, that is, wmax = wn ≥ · · · ≥ w1 = wmin ≥ 2.

The smallest weight wmin is an integer. For any i ∈ {2, . . . , n}, wi = (ki − ϵ)wi−1, for some integer
ki ≥ 2 and some small ϵ > 0.

We aim to determine the number of items m =
∑

i∈N mi such that agent n receives exactly wn items,
and each agent i ∈ {2, . . . , n} envies agent i− 1.

By the WEF property, each agent imust achieve a total utility of approximately wivi ∼ wiV . Therefore,
the total subsidy required is given by:

(W −m)V =
∑
i∈N

(wi −mi)V,

40

The termmV accounts for the utility generated by allocatingm items to the agents.

Our goal is to find valuesm1, . . . ,mn such that agent i receives a subsidy of (wi −mi)V .

First, note that for each i ∈ {2, . . . , n}, we have ki = wi
wi−1

+ ϵ ∼ wi
wi−1

, where ϵ is small.

We proceed by allocating items to agents as follows:

1. Agent 1 receivesm1 = w1 items, as assumed, and receives no subsidy.

2. Agent 2 receivesm2 = k2 (m1 − 1) ∼ w2
w1

(m1 − 1) = w2− w2
w1

items. The subsidy for agent 2 is
w2v2

(
m1
w1
− m2

w2

)
∼ V w2

1
w1

.

3. Agent 3 receivesm3 = k3 (m2 − 1) ∼ w3
w2

(m2 − 1) = w3− w3
wn
− w3

w2
. The subsidy for agent 3 is

w3

(
v2

(
m1
w1
− m2

w2

)
+ v3

(
m2
w2
− m3

w3

))
∼ V w3

(
1
w2

+ 1
w1

)
.

4. In general, for any agent i ∈ {2, . . . , n}, the number of items they receive is: mi =

ki (mi−1 − 1) ∼ wi
wi−1

(mi−1 − 1) = wi −
(
wi
∑

1≤j<i
1
wj

)
. The subsidy for agent i is

∼ V wi
∑

1≤j<i
1
wj

.

By Lemma H.1, we can not remove any item from any agent i ∈ {1, . . . , n− 1} because:

mi+1

wi+1
=

ki+1 (mi − 1)

wi+1
>

wi+1

wi

mi − 1

wi−1
=

mi − 1

wi
.

This inequality ensures that reducing the number of items allocated to any agent would violate the
WEF condition.

Thus, this allocation satisfies WEF with the smallest possible subsidy, as required, and the total required
subsidy is

V
∑

2≤i≤n

wi

∑
1≤j<i

1

wj



Remark H.3. Theorem 4.2 shows a lower bound for general additive valuations, which is worse
than the lower bound of Theorem H.2 for identical additive valuations. This is because the bound of
Theorem 4.2 holds for any weight vector, whereas the bound of Theorem H.2 holds only for weight
vectors where weights are not integer multiples of adjacent weights (see the proof sketch).

We now establish a matching upper bound on the subsidy. First, the agents are sorted by their valuations
such that v1 ≥ v2 ≥ . . . ≥ vn. The number of items of each agent i is initialized tomi = 0. Then, while
there are unallocated items, the algorithm finds the agent i ∈ {2, . . . , n} with the maximum index such
that 1+mi

wi
≤ mi−1

wi−1
. If no such agent exists, the algorithm, selects agent 1. The chosen agent i ∈ N

receives a new item, i.e.,mi increases by 1.

Theorem H.4. Algorithm 4 outputs a WEF allocation with subsidy at most wiV
∑

1≤j≤i
1
wj

for each

agent, and total subsidy at most V
∑

2≤i≤n

(
wi
∑

1≤j≤i
1
wj

)
.

Proof. We first prove that the allocation output by Algorithm 4 is WEF-able by Lemma H.1. The
definition of N ′ ensures that, if agent u ≥ 2 receives an item, then after the update, mu

wu
≤ mu−1

wu−1
.

Therefore, this condition holds throughout the algorithm for all adjacent pairs of agents. By transitivity,
mu
wu
≤ mj

wj
for all u > j ≥ 1.

41

ALGORITHM 4: Weighted Sequence Protocol For Additive Valuations and identical items
Input: Instance (N,M, v,w) with additive valuations and identical items.
Output: WEF-able allocation (m1, . . . ,mn) with required subsidy of at most V wi

∑
1≤j≤i

1
wj

per

agent, and total subsidy at most V
∑

2≤i≤n

(
wi
∑

1≤j≤i
1
wj

)
.

mi ← 0 for each i ∈ N ;
Sort the agents such that v1 ≥ · · · ≥ vn.;
for o : 1 to m do

Let N ′ ← {i ∈ {2, . . . , n} | 1+mi
wi
≤ mi−1

wi−1
} ∪ {1} /* We always have 1 ∈ N ′ */

Let u← maxi∈N ′ i;
mu ← mu + 1;

end
return (m1, . . . ,mn)

We prove that while running the algorithm, the cost of the highest-cost path is always bounded by
V
∑

1≤j≤i
1
wj

.

From the proof of Lemma H.1, WLOG, we can assume the highest-cost path from each agent i is
Pi = (i, i− 1, . . . , 1), since costX(j, j − 1) is non-negative, costX(j, k) where j < k is non-positive,
and there exists no positive cycle. Also, costX(i, j) where j ≥ i + 2 is smaller than or equal to∑

i<k≤j costX(k, k − 1). In other words, ℓi(X) =
∑

1<j≤i costX(j, j − 1).

Now, we prove for each agent i ∈ N , ℓi(X) ≤ V
∑

1≤j≤i
1
wj

. The proof is by induction over the
iteration.

When there is no allocated item, this must be true. Now, suppose that the algorithm allocates an item
to agent u. We consider three cases.

Case 1: u > i. The cost of the highest-cost path starting at i is not affected by allocating the item to u in
this iteration, as ℓi(X) =

∑
1<j≤i costX(j, j−1). By the induction assumption, ℓi(X) ≤ V

∑
1<j≤i

1
wj

.

Case 2: 1 > i ≥ u. Then costX(u+1, u) increases by at most vu+1

wu
(or does not increase at all if u = i),

while costX(u, u − 1) decreases by v vu
wu

. The costs of all other edges remain unchanged. Thus, the
total path cost weakly decreases. By the induction assumption, ℓi(X) ≤ V

∑
1<j≤i

1
wj

.

Case 3: u = 1. Then, by the fact that the algorithm chose 1, before the allocation we must have
1+mi
wi

> mi−1

wi−1
for each i > 1. Otherwise, the algorithm would have chosen some agent i > 1 to allocate

the item.

Thus, for each i > 1, before the allocation,

costX(i, i− 1) =
vimi−1

wi−1
− vimi

wi
< vi

(
1 +mi

wi
− mi

wi

)
=

vi
wi
≤ V

wi
.

This implies that before allocating the item to agent 1: ℓi(X) =
∑

1<j≤i costX(j, j−1) <
∑

1<j≤i
1
wj

.

After allocating the item to agent 1, the path cost increases by at most V
w1

Therefore, ℓi(X) <

V
∑

1≤j≤i
1
wj

.

Now we can conclude that the cost of a highest-cost path is bounded by V
∑

1≤j≤i
1
wj

. Thus, the

subsidy for agent i is at most wi

(∑
1≤j≤i

1
wj

)
.

Note that agent 2 receives a subsidy of p2 = v2w2

(
m1
w1
− m2

w2

)
, which ensures that

v2m2 + p2
w2

=
v2m2

w2
+

v2m1

w1
− v2m2

w2
=

v2m1

w1
.

42

Thus, agent 1 must receive no subsidy, because otherwise, the subsidy p2 would not eliminate the envy
of agent 2 towards agent 1.

Therefore, the total subsidy is at most V
∑

2≤i≤n

(
wi
∑

1≤j≤i
1
wj

)
.

[10] proved that when the weights are equal, the total subsidy required for agents with additive
valuations is bounded by (n−1)V . The following proposition demonstrates that with different weights,
even when the weights are nearly equal, the total subsidy bound can be linear in n2.

Proposition H.5. Even when the weights are nearly equal, the total subsidy lower bound for agents with
additive valuations and identical items is linear in n2.

Proof. Assume that w1 = 2n and wi = wi+1 − ϵ for each i ∈ 2, . . . , n− 1, with ϵ > 0. Note that all
weights are positive, nearly equal, and w1 > w2 > . . . > wn.

Let m1 = w1 and mi = mi−1 − 1 for i ∈ {2, . . . , n}. Letm :=
∑

imi = n · (3n+ 1)/2.

By Lemma H.1, agent i ∈ 2, . . . , n can receive at most mi = mi−1 − 1 items. Thus, the subsidy
for agent i ∈ {2, . . . , n} is at least wiV

∑
1≤j<i

1
wj
∼ (i − 1)V . Hence, the total subsidy is at least

∼ V
∑

2≤i≤n i− 1 = V
∑

1≤i≤n−1 i =
(n−1)(n−2)

2 V = Ω(n2V).

H.1 Optimal Algorithm for a Special Case of Additive Valuations and Identical Items

In most settings studied in this paper, computing the optimal subsidy is NP-hard. However, in the
special case of identical items and additive valuations, we have a polynomial-time algorithm.

Here, for convenience, we assume that v1 < v2 < · · · < vn, contrary to the assumption in the previous
subsection. We propose an algorithm based on dynamic programming that computes an allocation with
the minimum total subsidy.

We say that an allocation (m1, . . . ,mn) is feasible if m1 + · · ·+mn = m.

For 1 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ mi ≤ m, let T (i, j,mi) be defined as the minimum total subsidy
when

• the agents are restricted to 1, 2, . . . , i,

• the number of items is j, and

• the number of items allocated to agent i ismi.

Then the minimum total subsidy we want to compute equalsmin1≤mi≤m T (n,m,mi).

Lemma H.6. The following recursive formula holds.

T (i, j,mi) =


0 i = 1 and j = mi = m

min
0≤mi−1≤min

(
j−mi,

wi−1
wi

mi

)
{
T (i− 1, j −mi,mi−1) +

(
i−1∑
i′=1

wi′

)
·
(
mi

wi
− mi−1

wi−1

)
vi−1

}
i ≥ 2 and wi∑i

i′=1 wi′
j ≤ mi ≤ j

∞ otherwise.

(6)

Proof. When i = 1, i.e., there is only one agent, an allocation is feasible if j = mi = m, and in this case
no subsidy is needed. Otherwise the allocation is infeasible, which we represent by∞ subsidy.

Assume that i ≥ 2. when agent i is added to the market with i − 1 agents, if mi (resp., mi−1)
items are allocated to i (resp., i − 1), then the cost of edge (i − 1, i) in the weighted-envy graph is

43

(
mi
wi
− mi−1

wi−1

)
vi−1. Since a highest-cost path from agent i′(< i) is (i′, i′ + 1, . . . , n) from the proof of

Theorem H.4, we need to add wi′ times the cost of this edge to the subsidy of agent i′, so the overall
required subsidy increases by

∑i−1
i′=1wi′ times the cost of edge (i− 1, i).

Moreover, since the cost of the edges before i does not affect any highest-cost path starting at i,
allocations for agents i′ ≤ i− 2 achieving T (i− 1, j −mi,mi−1) do not affect the subsidies for agents
i′′ ≥ i− 1. Hence, one can optimize the subsidies for agents i′ ≤ i− 2 in T (i− 1, j −mi,mi−1) and
Equation 6 is correct.

We note that by Lemma H.1, mi
wi
≥

∑i
i′=1 mi′∑i
i′=1 wi′

. Hence, if mi <
wi∑i

i′=1 wi′
j, then for an allocation to be

WEF-able,
∑i

i′=1mi′ should be less than j and thus there exists no WEF-able and feasible allocation.
Therefore, we require mi ≥ wi∑i

i′=1 wi′
j in the second case of Equation 6. Moreover, for an allocation to

be WEF-able, mi−1 should be less than or equal to wi−1

wi
mi and thus we require mi−1 ≤ wi−1

wi
mi in the

second case of Equation 6.

Theorem H.7. There exists a polynomial time algorithm to compute an allocation with the minimum
total subsidy for additive valuations and identical items if the valuations of each agent are all different.

Proof. The minimum subsidy equals min1≤k≤m T (n,m, k) from Lemma H.6. We can also compute an
allocation achieving the minimum by keeping the valuemi−1 attaining the minimum in Equation 6.
The size of the table T is O(nm2), and it takes O(m) time to fill each cell of the table. Therefore, the
total running time is O(nm3).

H.2 Subsidy Bound of Algorithm 4

The following example shows that Algorithm 4 does not necessarily output an allocation with minimum
total subsidy:

Example H.8. Consider 3 agents with weights w1 = w2 = w3 = 1 and 4 identical items, where
v1 > v2 > v3. The allocation X output by Algorithm 4 is X = (2, 1, 1) with total subsidy 2v2. On the
other hand, total subsidy needed for allocation (2, 2, 0) is 2v1, which is smaller than 2v2.

This raises an important question that remains open: with identical items and additive valuations, is it
possible to find a WEF allocation with minimum subsidy in polynomial time?

I Monetary Weighted Envy-Freeness

Last but not least, in this section we answer our third research questions. In practice, the available
subsidy may be smaller than what’s required for WEF. A natural question is what relaxation of fairness
can be achieved. One solution is to allocate the subsidy only to agents whom nobody envies, preventing
additional envy. This motivates the following concept:

Definition I.1. An outcome (X, p) is called monetarily weighted envy-free (MWEF) if pj = 0 for all
j ∈ N such that some agent i ∈ N has weighted envy towards j.

Note that the definition does not imply that the indivisible item allocation, or the resulting allocation
with subsidy, is envy-free. MWEF formalizes the idea that a limited subsidy is used effectively to
improve fairness, regardless of whether the allocationX is “good” or “bad”. Denote the total amount of
money available for subsidy by d. If d = 0, so there is no subsidy at all (pi = 0 for all i ∈ N), then the
allocation is vacuously MWEF. Also, every WEF allocation (with or without subsidy) is MWEF.

44

Our main result in this section is that MWEF can be achieved using any WEF-able allocation and any
total subsidy amount d. As far as we know, this algorithm is new even for the unweighted setting.

Theorem I.2. There is a polynomial-time algorithm that, for any instance with monotone valuations,
given any WEF-able allocation X and any amount of money d, finds a subsidy vector p with

∑
i pi = d,

such that (X, p) is MWEF.

Proof sketch. The algorithm distributes the money to agents who are, informally, “most envious”, that
is, agents i whose maximum-cost path length ℓi(X) is largest. We prove that this distribution maintains
the MWEF condition. As the money is distributed, the path cost of the recipients decreases gradually,
and more agents become “most envious”. If d is sufficiently large (d ≥

∑
iwiℓi(X)), then the outcome

eventually becomes WEF.

Proof. For any given outcome (X, p), the corresponding weighted envy-graph respecting the subsidy,
denoted GX,w,p, is a complete directed graph with vertex set N . For any pair of agents i, j ∈ N ,
costX(i, j) =

vi(Xj)+pj
wj

− vi(Xi)+pi
wi

, represents the envy agent i has for agent j under (X, p).

Let ℓi(X) be the maximum cost of any path in the weighted envy-graph GX,w that starts from i.

If the total money d is at exactly
∑

i∈N ℓi(X) ·wi, we can let each agent i’s subsidy be pi = ℓi(X) ·wi.
The outcome is WEF by Theorem 3.5, hence also MWEF.

If d >
∑

i∈N ℓi(X) · wi, we first allocate pi = ℓi(X) · wi, and then allocate the surplus amount in
proportion to the weights of the agents, which is WEF as well.

The challenging case is if d <
∑

i∈N ℓi(X) ·wi. In this case, we initialize pi = 0 for all i ∈ N , and then
gradually increase the subsidies of some agents as follows.

Let ℓi(X, p) be the maximum cost of any path in the weighted envy-graph GX,w,p that starts at i. We
identify the set of agents N∗ who have the highest ℓi(X, p).

Note that there is no agent j outside N∗ who has zero or positive edge to any agent in N∗ because if
this is the case, j would be in N∗. Therefore, any agent i ∈ N∗ can be given a tiny amount of money
without leading some agent outside N∗ to become envious. Moreover, no agent i ∈ N∗ has a strictly
positive edge to k ∈ N∗ or else k would not be a part of N∗.

When we allocate the money in proportion to the weights, all the ℓi(X, p) for i ∈ N∗ decrease at the
same rate (so they remain maximum), and ℓj(X, p) for j ̸∈ N∗ might increase.

As we do this, the set N∗ may increase. Eventually, all the money is allocated.

J Experiments

In this section, we compare the minimum subsidy required for weighted envy-free allocation and the
subsidy obtained by our proposed algorithms, along with their theoretical guarantees. We generate
synthetic data for our experiments. We consider n ∈ {5, 8, 10} agents and choose the number of
items m ∈ {n, 2n, 3n, 4n, 5n} and fix the weight vector w = (1, 2, . . . , n). For each agent-item pair
(i, o) ∈ N×M , the valuation vi(o) ∈ {Discrete Uniform(5, 6),Bernoulli(0.5)} is randomly generated.7
We assume the additive valuations.

For each realization of the random instance, we solved the following integer linear programming (ILP)
problem using the Gurobi Optimizer solver (version 11.0.3) to compute the minimum subsidy and also

7Discrete Uniform(5, 6) meaning we uniformly sampled from the set {5, 6} and Bernoulli(0.5) means values are sampled
from the set {0,1} each with probability 0.5.

45

we computed the total subsidy obtained by our Algorithms 1-4. We repeated the experiment 50 times
and reported the average total subsidy in Table 2 - 5.

min
∑
i∈N

pi

s.t.
∑
o∈M

vi(o)xi,o + pi
wi

≥
∑
o∈M

vi(o)xj,o + pj
wj

∀i, j ∈ N∑
i∈N

xi,o = 1 ∀o ∈M

xi,o ∈ {0, 1} ∀o ∈M

pi ≥ 0 ∀i ∈ N.

Table 2: The table shows the minimum subsidies obtained by solving the ILP problem, subsidies obtained by
Algorithm 1, and subsidies theoretically guaranteed by Algorithm 1 for n ∈ {5, 8, 10} respectively. The valuation
function is vi(o) ∼ Discrete Uniform(5, 6).

Number of Total subsidy
items Algorithm 1 Minimum Theoretical bound
5 62.5 10.3 84
10 35.02 7.615 84
15 7.84 2.085 84
20 55.06 3.42 84
25 29.2 5.555 84

Number of Total subsidy
items Algorithm 1 Minimum Theoretical bound
8 171.7800 15.78 210
16 128.24 7.9529 210
24 84.06 9.6214 210
32 40.08 4.5557 210
40 176.1 3.7569 210

Number of Total subsidy
items Algorithm 1 Minimum Theoretical bound
10 275 14.7583 324
20 220.24 14.3654 324
30 165.06 11.476 324
40 109.9 10.2745 324
50 55.06 3.5088 324

From Tables 2-5, we observe that our algorithm consistently provides a lower average subsidy than
theoretically obtained bound, while it is larger than the ILP computed minimum subsidy.

46

Table 3: The table shows the minimum subsidies obtained by solving the ILP problem, subsidies obtained by
Algorithm 2, and subsidies theoretically guaranteed by Algorithm 2 for n ∈ {5, 8, 10} respectively. The valuation
function is v(o) ∼ Discrete Uniform(1, 2).

Number of Total subsidy
items Algorithm 2 Minimum Theoretical bound
5 3.515 2.17 8
10 4.24 1.455 8
15 3.85 2.005 8
20 4.02 1.68 8
25 4.205 2.14 8

Number of Total subsidy
items Algorithm 2 Minimum Theoretical bound
8 6.5531 3.9654 14
16 6.9571 3.6863 14
24 7.7911 2.1414 14
32 6.0966 3.9274 14
40 6.6254 3.8506 14

Number of Total subsidy
items Algorithm 2 Minimum Theoretical bound
10 8.5921 4.4552 18
20 9.5916 4.5768 18
30 8.9475 5.843 18
40 9.1292 3.9327 18
50 8.8797 4.9171 18

Table 4: The table shows the minimum subsidies obtained by solving the ILP problem, subsidies obtained by
Algorithm 3, and subsidies theoretically guaranteed by Algorithm 3 for n ∈ {5, 8, 10} respectively. The valuation
function is vi(o) ∼ Bernoulli(0.5).

Number of Total subsidy
items Algorithm 3 Minimum Theoretical bound
5 1.69033 1.48699 14
10 0.98299 0.23533 14
15 0.370666 0 14
20 0.29333 0 14
25 0.422 0 14

Number of Total subsidy
items Algorithm 3 Minimum Theoretical bound
8 3.1364 2.4306 35
16 1.8120 0.5452 35
24 1.0444 0.0688 35
32 1.1500 0 35
40 0.2393 0 35

Number of Total subsidy
items Algorithm 3 Minimum Theoretical bound
10 3.5305 3.0417 44
20 3.9967 0.7505 44
30 1.9807 0.1652 44
40 0.9708 0 44
50 2.2950 0 44

47

Table 5: The table shows the minimum subsidies obtained by solving the ILP problem, subsidies obtained by
Algorithm 4, and subsidies theoretically guaranteed by Algorithm 4 for n ∈ {5, 8, 10} respectively. The valuation
function is vi(o) ∼ Discrete Uniform(5, 6). Here, an agent has valuation identical for all items.

Number of Total subsidy
items Algorithm 4 Minimum Theoretical bound
5 70.8417 26.1153 169.5
10 98.3267 23.2863 169.5
15 85.0533 0 169.5
20 98.8933 25.0247 169.5
25 102.16 22.494 169.5

Number of Total subsidy
items Algorithm 4 Minimum Theoretical bound
8 228.1196 51.0788 497.0574
16 265.4938 59.0252 497.0574
24 274.1384 50.6484 497.0574
32 324.5231 20 497.0574
40 344.4849 45.7897 497.0574

Number of Total subsidy
items Algorithm 4 Minimum Theoretical bound
10 374.8001 75.628 825.5598
20 413.9721 104.0536 825.5598
30 489.8345 93.5287 825.5598
40 496.2941 68.3228 825.5598
50 529.3542 25 825.5598

48

	Introduction
	Our Results
	Related Work

	Model
	Characterization for General Monotone Valuations
	Additive Valuation
	Combining WEF-able and Approximate-WEF

	Identical Additive Valuation
	Binary Additive Valuation
	Future Work
	Supplement for Section 1 (Introduction)
	Further Related Work

	Supplement for Section 2 (Model)
	Further Definitions

	Supplement for Section 3 (Characterization for General Monotone Valuations)
	Superadditive and Supermodular Valuations
	Supplement for Section 4 (Additive Valuation)
	Weighted Sequence Protocol For Additive Valuations and Integer weights
	Omitted Details for Section 4
	Modified Valuation Function For alg:general-additive

	Subsidy Bound of alg:general-additive
	Picking sequences

	Supplement for Section 5 (Identical Additive Valuation)
	Weighted Sequence Protocol For Additive Identical Valuations
	Algorithm 1: Illustrative Example Under Binary Additive Valuations
	Omitted Details for Section 5
	Subsidy Bound of Algorithm 2

	Supplement for Section 6 (Binary Additive Valuation)
	Algorithm 3: Illustrative Example
	Weighted Sequence Protocol For Additive Binary Valuations
	Omitted Details for Section 6
	Subsidy Bound of alg:binary-additive
	Matroidal Valuation

	Additive Valuations and Identical Items
	Optimal Algorithm for a Special Case of Additive Valuations and Identical Items
	Subsidy Bound of Algorithm 4

	Monetary Weighted Envy-Freeness
	Experiments

