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Abstract

We study the problems of computing envy-free Pareto-efficient allocations in the context of fair
allocation and hedonic games under dichotomous preferences. We establish Σ

p
2-completeness of

deciding the existence of envy-free Pareto-efficient allocations, refining earlier related results.
We also develop iterative SAT-based exact algorithms for computing envy-free Pareto-efficient
allocations, and extend the approach to computing minimum-envy Pareto-efficient allocations
under different combinations of aggregation functions. We provide open-source implementations
of the algorithms and show empirically that the approach scales to computing envy-free Pareto-
efficient allocations up to hundreds of agents.

This article is an abridged version of work published at the 24th International Conference on
Autonomous Agents and Multiagent Systems [33].

1 Introduction

Allocation problems concerning multiple agents occur naturally in various real-world settings, from
dividing computational resources in clusters [41] through assigning university courses to students [23]
to food distribution [1], to name a few examples. Various allocation problems have been studied within
computational social choice [26, 57, 3, 59]. We focus on two well-studied problem settings concerning
allocations: fair allocation of indivisible goods [19, 44, 2, 51], where the task is to divide discrete items
between agents based on the preferences of individual agents, and hedonic games [4, 39], where the task
is to form a partitioning of a set of agents into coalitions based on the individual agents’ preferences
regarding the coalition they are assigned to. In particular, we study these tasks under dichotomous
preferences [14, 15, 38, 7, 21], i.e., in a setting where agents express their preferences via propositional
formulas [43, 34, 17, 6, 52].

Envy-freeness is a central and desirable property of fair allocations [40, 58]; an allocation is envy-free if
no agent would prefer to be allocated a set of items allocated to another agent over the agent’s own
allocation. However, envy-freeness in itself admits non-satisfactory allocations, with not allocating any
items to any agents as one extreme example. Such non-satisfactory allocations can be ruled out by a
choice of a notion of efficiency; indeed, in the study of fair allocation it is typical to study combinations
of envy-freeness and efficiency notions [17, 35, 18, 5, 9, 25]. Requiring that allocations are complete, i.e.,
that each item is allocated to some agent, already makes deciding the existence of an envy-free allocation
NP-complete [46]. On the other hand, this also means that this decision problem can be polynomially
encoded in propositional logic and decided via a single call to a Boolean satisfiability (SAT) solver [10].
Propositional encodings of similar flavor have also been presented [6] for envy-free partitioning into
coalitions (or an envy-free allocation for short) in hedonic games. A more refined notion of efficiency in
fair allocation is Pareto-efficiency, targeting envy-free allocations in which, intuitively, it is not possible
to reallocate items in such a way that some agent would be better off without making some other agent
worse off. However, deciding the existence of an envy-free Pareto-efficient allocation is computationally
even harder, specifically Σ

p
2-complete [17, 35], which makes the development of efficient algorithms for

computing envy-free Pareto-efficient allocations even more challenging. This is the setting we focus on.

In more detail, we focus on the problems of computing envy-free Pareto-efficient allocations in the
contexts of fair allocation and hedonic games under dichotomous preferences. Our contributions
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are four-fold: (1) we present new Σ
p
2-completeness results for fair allocation and hedonic games;

(2) we develop exact SAT-based iterative algorithms for deciding the existence of envy-free Pareto-
efficient allocations; (3) we further extend our algorithms to computing minimum-envy Pareto-efficient
allocations under different notions of total envy; and (4) we provide open-source implementations of
our algorithms and empirically evaluate their scalability.

In terms of complexity results, strengthening earlier results for fair allocation [17], we establish Σ
p
2-

completeness for deciding the existence of envy-free Pareto-optimal allocations even when restricting
each agent’s preferences to a 3DNF formula with at most four terms and each item to occur in the
preferences of at most three agents. This also improves on other earlier results from the literature that
only indicated (exponential) bounds on the number of parallel NP oracle queries needed to solve the
problem [12]. For hedonic games, building on second-level completeness results in a different setting [53],
we establish Σ

p
2-completeness in the specific context of envy-free Pareto-optimal allocations under

dichotomous preferences even with similar restrictions as in the case of fair allocation. In terms of
algorithms, we build on the earlier-proposed direct SAT encoding of envy-free fair allocation [17] by
using the encoding as a base abstraction of our iterative SAT-based counterexample-guided abstraction
refinement (CEGAR) [29, 30] approach to theΣp

2-complete problem of deciding the existence of a Pareto-
efficient envy-free allocation under dichotomous preferences. The approach is motivated by earlier-
proposed CEGAR-style approaches to other problem settings in computational social choice [16, 22, 32,
31]. Conceptually, our SAT-based CEGAR iterates between computing envy-free allocations (using a
SAT solver) and checking for a counterexample for the claim that the latest found envy-free allocation is
Pareto-efficient. Furthermore, due to the fact that our SAT-based CEGAR approach allows for including
further constraints on the solutions of interest, our approach also directly captures hedonic games
under dichotomous preferences by simply enforcing transitivity over pairwise allocations of agents
into the same coalition through a propositional encoding [6]. Going beyond deciding the existence of
envy-free Pareto-efficient allocations, it should be noted that that a simple “no” answer can be considered
insufficient as a “solution” in cases where there are no envy-free Pareto-efficient allocations. To this
end, we show how our SAT-based approach can be extended to computing minimum-envy [46, 27, 24,
20, 50, 49, 28, 55] Pareto-efficient allocations, considering three combinations of aggregation functions
which yield meaningful objective functions for minimizing envy under dichotomous preferences.
Again, to the best of our understanding our approach to minimizing envy is the first to enable envy
minimization under Pareto-efficiency. In particular, earlier works proposing ways of minimizing envy
in fair allocation via, e.g., direct integer programming encodings [55] cannot be directly applied in
this setting by complexity-theoretic assumptions. We provide an open-source implementation of our
algorithms and show that our approach scales to hundreds of agents.

2 Preliminaries

We begin with an overview on fair allocation and hedonic games under dichotomous preferences [17, 6,
52].

Let I = {1, . . . , n} be a set of agents, O = {o1, . . . , op} a set of items, and R = {⪰1, . . . ,⪰n} a
preference profile where for each i ∈ I , ⪰i is a reflexive, transitive, and complete relation on 2O . For
subsets of items A,B ⊆ O, agent i prefers items A to items B if A ⪰i B; if A ⪰i B and B ̸⪰i A, agent
i strictly prefers A to B, denoted by A ≻i B. Preferences are monotonic if for any preference relation
⪰i∈ R and A ⊆ B ⊆ O we have B ⪰i A. A preference relation ⪰i is dichotomous if there exists a
collection of bundles of items Gi ⊆ 2O such that for all A,B ⊆ O, A ⪰i B if and only if A ∈ Gi

or B /∈ Gi. We consider dichotomous preference profiles, i.e., preference profiles consisting only of
dichotomous preference relations. An agent i is “happy” with a bundle A if A ∈ Gi, and “unhappy” if
A /∈ Gi.

An allocation π is a mapping π : O → I . As standard in literature, we also use π to refer to the inverse
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function, i.e., π(i) = {o ∈ O | π(o) = i}. An allocation is envy-free if, for each agent i ∈ I , π(i) ⪰i π(j)
for all agents j ̸= i. An allocation π′ dominates an allocation π if (i) for all agents i ∈ I , π′(i) ⪰i π(i)
and (ii) there is an agent j ∈ I such that π′(j) ≻j π(j). An allocation π is Pareto-efficient if there is no
π′ which dominates π.

Hedonic games model scenarios where agents form coalitions amongst themselves, with agents only
interested in the members of their own respective coalitions. The preference profile therefore contains
preference relations over other agents instead of a set of items. Formally,⪰i is a complete and transitive
relation over {S ⊆ I | i /∈ S}. Analogous to an allocation is a partition π of the agents into coalitions.
For convenience, we interchangeably use the term “allocation” to refer to such partitions in the context
of hedonic games scenarios. Let π(i) denote the members of the coalition to which agent i belongs (not
including i). A partition is envy-free if π(i) ⪰i π(j) for all pairs of agents i, j where i and j are not in
the same coalition, i.e., (π(i) ∪ {i}) ̸= (π(j) ∪ {j}).

Propositional Satisfiability The algorithms we develop are based on iteratively employing Boolean
satisfiability (SAT) solvers [10]; we briefly recall necessary background on SAT. For a Boolean variable
x there are two literals, x and ¬x. A clause C is a disjunction (∨) of literals. A conjunctive normal
form (CNF) formula F is a conjunction (∧) of clauses, while a disjunctive normal form (DNF) formula
is a disjunction of conjunctions of literals. For convenience we view clauses as sets of literals and
CNF formulas as sets of clauses. We denote by V (F ) and L(F ) the set of variables and literals of
F , respectively. A truth assignment τ : V (F ) → {0, 1} maps each variable to 0 (false) or 1 (true),
and is extended to literals via τ(¬x) = 1 − τ(x), to clauses via τ(C) = max{τ(l) | l ∈ C}, and to
formulas via τ(F ) = min{τ(C) | C ∈ F}. We interchangeably represent truth assignments τ as sets
of non-contradictory literals: {l ∈ L(F ) | τ(l) = 1}. The Boolean satisfiability problem (SAT) asks
if a given CNF formula F has an assignment τ with τ(F ) = 1; if so, F is satisfiable andotherwise
unsatisfiable.

Dichotomous Preference Profiles Any dichotomous preference relation ⪰i can be represented
as a propositional formula ϕi. Specifically, let K = O if ⪰i is a preference relation over bundles
of items (fair allocation), and K = I \ {i} if it is a preference relation over sets of agents (hedonic
games). Then, for a formula ϕi representing ⪰i, we have V (ϕi) ⊇ {pk | k ∈ K}, and τ(ϕi) = 1
if and only if {k ∈ K | τ(pk) = 1} ∈ Gi. In other words, the formula is satisfied exactly by truth
assignments corresponding to bundles (or coalitions) favored by agent i. In this work, we therefore
assume without loss of generality that dichotomous preference profiles are represented as a set of
(arbitrary) propositional formulas R = {ϕ1, . . . , ϕn}.

Computational Problems We focus on the computational problems of deciding the existence of
Pareto-efficient and envy-free allocations under dichotomous preferences in the settings of fair allocation
and hedonic games. Formally, the problem input consists of a set I of agents, a set O of items (only in
the setting of fair allocation), and a preference profile R = {⪰1, . . . ,⪰n} of dichotomous preferences
that are specified as formulas ϕ1, . . . , ϕn. The problem is to decide whether there exists an allocation π
that is both Pareto-efficient and envy-free (and to output one if it exists).

3 Complexity Results

In this section, we present in brief complexity results establishing that deciding the existence of Pareto-
efficient and envy-free allocations (under dichotomous preferences in logical form) is Σp

2-complete both
for fair allocation and for hedonic games. We show that hardness holds even for the restricted setting
where (i) each agent uses a constant-size DNF formula to express their preferences and (ii) each item
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(resp. agent) is only mentioned in the formula of a constant number of agents. For fair allocation, this
refines an earlier-established Σ

p
2-completeness result [17]. We present the proof of Theorem 1 in part,

and we omit the proof of Theorem 2. For full proofs, see the conference version of this work [33].

Theorem 1. The problem of determining whether there exists a Pareto-efficient and envy-free allocation
for a given allocation problem with monotonic, dichotomous preferences under logical form is Σp

2-hard,
even when: (i) each agent’s preferences are expressed by a (positive) 3DNF formula with at most 4 terms;
and (ii) each item occurs in at most 3 agents’ expressed preferences.

Proof. To show Σ
p
2-hardness, we give a reduction from ∃∀-QBF-SAT. Let χ = ∃X1∀X2ψ be a quantified

Boolean formula, where ψ = t1 ∨ · · · ∨ tm is a (quantifier-free) formula in 3DNF. Without loss of
generality we may assume that each variable in X1 ∪X2 appears at most twice positively and at most
twice negatively in ψ. Let X1 = {x1, . . . , xn1} and X2 = {xn1+1, . . . , xn2}.

Wewill construct an allocation problem as follows, that admits a Pareto-efficient and envy-free allocation
if and only if χ is true. As the set of agents, we take I = {(a, i), (b, i) | i = 1..n1} ∪ {(c, j), (f, j) | j =
1..m} ∪ {(d, i), (e, i) | i = 1..n2} ∪ {(g, 1), (g, 2)}. The set O of items will contain the following items.
For each agent of the form (k, i) ∈ I such that k ̸∈ {d, e, g}, we introduce an item wk

i . Moreover,
we have an item wg. The idea behind introducing these items—which will be worked out in more
detail below—is that these items are only desirable to the corresponding agent, so any Pareto-efficient
allocation will assign these items to them, avoiding envy between these agents.

Next, for each i = 1..n1, we have six items x0i , x1i , x2i and z0i , z1i , z2i . The items x1i , x2i and z1i , z2i
correspond to the (at most) two occurrences of xi and ¬xi, respectively. Additionally, for each j = 1..m,
we have an item uj representing the j-th term tj in ψ. We also have an item yi for each i = 1..n2,
whose use can be intuitively described as forcing a choice between allocating the items corresponding
to xi or the items corresponding to ¬xi to the agent (d, i).

The preferences of each agent (k, i) ∈ I will be described by a formula φ(k,i). Before we describe these
formulas, we briefly introduce some notation that we will use. For each term tj in ψ, the formula J¬tjK
is obtained from tj as follows. We start with ¬tj , and write it into negation normal form, i.e., as a clause.
We then replace each positive literal xi, corresponding to the ℓ-th occurrence of xi in ψ, by xℓi . We
replace each negative literal ¬xi, corresponding to the ℓ-th occurrence of xi in ψ, by zℓi .

φa,i = x0i ∧ wa
i , φb,i = z0i ∧ wb

i for i = 1..n1

φc,1 = (J¬tjK ∨ uj) ∧ wc
j , φf,j = (uj−1 ∨ uj) ∧ wf

j for j = 1..m

φd,i = (x0i ∧ x1i ∧ x2i ) ∨ (z0i ∧ z1i ∧ z2i ) ∨ yi, φe,i = yi for i = 1..n2

φg,1 = φg,2 = u0 ∧ wg

Next, we will show that this allocation problem admits a Pareto-efficient and envy-free allocation if and
only if χ is true, using eight claims (of which we only provide a proof sketch for two). An allocation π
is called regular if π assigns no agent k an item that is not mentioned in this agent’s formula φk.
Claim 1. Let π be an allocation, and let π′ be the regular allocation that assigns each agent k exactly
those items in π(k) that are mentioned in φk . Then π is Pareto-efficient if and only if π′ is. Moreover, if
one agent k1 does not envy another agent k2 under π then k1 also does not envy k2 under π′.
Claim 2. Under any regular allocation π, the following are the only pairs of agents that could possibly
envy each other: agents (d, i) and (e, i), for each i = 1..n2; and agents (g, 1) and (g, 2).
Claim 3. Let π be a regular allocation that is Pareto-efficient and envy-free. Then for each i = 1..n,
π satisfies both agents (d, i) and (e, i).
Claim 4. Let π be a regular allocation that is Pareto-efficient and that for each i = 1..n2 satisfies both
agents (d, i) and (e, i). Then for each i = 1..n1, π satisfies at most one of (a, i) and (b, i).
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Claim 5. Let π be a regular allocation that is Pareto-efficient and envy-free. Then for each i = 1..n1,
π satisfies at most one of (a, i) and (b, i).
Claim 6. Let π be an allocation that is envy-free. Then neither of the agents (g, 1) and (g, 2) is satisfied.
Claim 7. If there exists an allocation π that is Pareto-efficient and envy-free. Then the QBF χ is true.
Proof (sketch) of Claim 7. Take an allocation π that is Pareto-efficient and envy-free. By
Claim 1, we may assume without loss of generality that π is regular. We construct a (partial) truth
assignment α to the variables in X1 as follows. For each i = 1..n1, we let α(xi) = 1 if π satisfies
agent (b, i), we let α(xi) = 0 if π satisfies agent (a, i), and we let α(xi) be undefined otherwise.
By Claim 5 (which follows from Claims 3 and 4), we know that π satisfies at most one of (a, i)
and (b, i), which means that α is well defined. One can show—using Claim 6—that ψ[α] is a valid 3DNF
formula, i.e., that all truth assignments extending αmakeψ true. This witnesses that the QBF χ is true. ⊣

Claim 8. If the QBF χ is true. Then there exists an allocation π that is Pareto-efficient and envy-free.
Proof (sketch) of Claim 8. Suppose that χ is true. This means that there is a truth assignment α to
the variables in X1 such that ψ[α] is a valid 3DNF formula. We will construct an allocation π that is
Pareto-efficient and envy-free, as follows. To the agents (a, i) and (b, i), it assigns items as follows. Take
some i ∈ {1, . . . , n1. If α(xi) = 0, it assigns to agent (a, i) item wa

i only and it assigns to agent (b, i)
the items wb

i and z1i . Conversely, if α(xi) = 1, it assigns to agent (b, i) item wb
i only and it assigns to

agent (a, i) the items wa
i and x1i . To each agent (d, i), it assigns the items z0i , z1i , z2i if β(xi) = 1, and it

assigns the items x0i , x1i , x2i if β(xi) = 0. To each agent (e, i), it assigns the item yi. To each agent (f, i)
with i ≤ j0, it assigns the items ui−1, w

f
i. To each agent (f, i) with i > j0, it assigns the items ui, wf

i.
To agent (g, 1), it assigns the item wg, and to agent (g, 2), it assigns no items. Finally, we consider the
assignment to the agents (c, j). Take an arbitrary j ∈ {1, . . . ,m}. The allocation π′ assigns to (c, j) all
items mentioned in φc,j that have not yet been assigned to other agents. In addition, if j = j0, then it
assigns to agent (c, j) in addition the item uj0 , where j0 is an arbitrary fixed index such that β makes
the term tj0 true. One can show that π is envy-free and Pareto-efficient using Claims 1, 2 and 4.

Theorem 2. The problem of determining whether there exists a Pareto-efficient and envy-free partition for
a given Boolean hedonic game is Σp

2-hard, even when: (i) each agent’s preferences are expressed by a 3DNF
formula with at most 3 terms; and (ii) each agent occurs in at most 3 other agents’ expressed preferences.

4 Encoding Allocations as SAT

It is well-known that under dichotomous preferences, both in the context of fair allocation [17] and
hedonic games [6], envy-free allocations can be captured as satisfying truth assignments of a specific
propositional formula, i.e., a SAT encoding. This motivates the use of SAT as a declarative paradigm for
computing envy-free allocations in practice. We assume as input a set of agents I = {1, . . . , n}, a set
of items O (for fair allocation), and a dichotomous preference profile R = {ϕ1, . . . , ϕn}.

We begin by recalling the SAT encoding for envy-freeness in fair allocation [17]. We introduce variables
pi,o for all i ∈ I and o ∈ O with the interpretation that for a truth assignment τ , it holds that τ(pi,o) = 1
if and only if item o is assigned to the bundle of agent i. To encode a complete allocation, we ensure
that every item is allocated to exactly one agent via

completeness(I,O) =
∧
o∈O

(∑
i∈I

pi,o = 1

)
,

where
∑

i∈I pi,o = 1 is an exactly-one constraint. Such cardinality constraints are converted to clauses
by making use of readily-available CNF encodings [54].

Envy-freeness is then captured as follows [17]. We define for each i ∈ I the formula ϕ∗i = ϕi[po 7→
pi,o | o ∈ O] which evaluates to true if agent i is happy with the bundle of items allocated to them. For
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each pair i, j ∈ I, i ̸= j, we then let ϕ∗i [j] = ϕi[po 7→ pj,o | o ∈ O], i.e., ϕ∗i [j] evaluates to true iff agent
i would be happy with the bundle assigned to agent j. Then envy-freeness is encoded via

ef(R) =
∧
i,j∈I
i ̸=j

¬ (¬ϕ∗i ∧ ϕ∗i [j]) =
∧
i,j∈I
i ̸=j

(ϕ∗i [j]→ ϕ∗i ) .

In words, ef(R) declares for every pair of agents i, j ∈ I with i ̸= j that it is not the case that i envies
j, i.e., if agent i would be happy with the bundle received by agent j (encoded by ϕ∗i [j]), they are happy
with their respective bundle (encoded by ϕ∗i ).

In summary, for a fair allocation instance (I,O,R), any truth assignment τ satisfying
completeness(I,O)∧ ef(R) corresponds to an envy-free allocation via π(i) = {o ∈ O | τ(pi,o) = 1}.

Adjustment to Hedonic Games. The above encoding is adjusted to hedonic games [6] as follows.
We instead introduce variables pi,j for all i, j ∈ I , i ̸= j, with the interpretation that τ(pi,j) = 1 if and
only if agent j is a member of the coalition of agent i. Symmetry can be encoded by treating pi,j and
pj,i as the same variable (following [6]). Transitivity is encoded using the constraint

transitivity(I) =
∧

i,j,k∈I
i ̸=j ̸=k

((pi,j ∧ pj,k)→ pi,k),

ensuring that satisfying assignments correspond to partitions of the set of agents. For encoding envy-
freeness, we define for each i ∈ I the formula ϕ∗i = ϕi[pk 7→ pi,k | k ∈ I \ {i}], and for each pair
i, j ∈ I , i ̸= j,

ϕ∗i [j] = ϕi[pk 7→ pj,k | k ∈ I \ {i, j}][pj 7→ pi,j ]

which evaluates to true iff agent i would be happy by swapping partitions with agent j. Now for an
instance of hedonic games (I,R), truth assignments satisfying transitivity(I) ∧ ef(R) correspond
to envy-free partitions via π(i) = {j ∈ I \ {i} | τ(pi,j) = 1}.

5 Iterative SAT for Efficient Allocations

We develop iterative procedures for identifying Pareto-efficient (non-dominated) allocations, including
a SAT-based CEGAR algorithm for the Σp

2-complete task of finding allocations which are both Pareto-
efficient and envy-free. Each of the algorithms takes as input either a fair allocation instance with
agents I , items O, and preference profile R (consisting of agents’ preferences over the items), or a
hedonic game instance defined by agents I and preference profile R (consisting of agents’ preferences
over the remaining agents).

5.1 Maximizing Efficiency

Pareto-efficient allocations correspond to so-called maximally satisfiable subsets (MSSes) [45, 47] of
the formulas {ϕ∗i , . . . , ϕ∗n} under completeness(I,O) for fair allocation [17] or transitivity(I) for
hedonic games [6]. In practice, computing such an MSS can be done with a series of calls to a SAT
solver, making use of SAT calls under assumptions (i.e., partial assignments) in order to find an MSS
incrementally, i.e., without starting the SAT solver from scratch after computing a satisfiable subset.

First, we assign a fresh variable name to each of the input formulas via qi ↔ ϕ∗i for each i ∈ I , and, for
fair allocation, combine this with completeness to form the SAT instance F defined as

AbstractionA(I,O,R) = completeness(I,O) ∧
∧
i∈I

(qi ↔ ϕ∗i ).
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Algorithm 1 SAT-based CEGAR for finding EEF allocations. Input: Problem variant S ∈ {A,H},
agents I , items O (if S = A), and preference profile R.
1: if S = A then F ← AbstractionA(I,O,R)
2: else if S = H then F ← AbstractionH(I,R)
3: while true do
4: (result, τabs)← SAT(F ∧ ef(R))
5: if result = unsat then return false
6: πabs ← alloc(τabs)
7: while result = sat do
8: Fdom ← F ∧

∧
i∈happy(τabs) qi ∧

∨
i∈unhappy(τabs) qi

9: (result, τ)← SAT(Fdom ∧ ef(R))
10: if result = sat then τabs ← τ, πabs ← alloc(τ )
11: Fdom ← F ∧

∧
i∈happy(τabs) qi ∧

∨
i∈unhappy(τabs) qi

12: (result, τcex)← SAT(Fdom)
13: if result = unsat then return πabs
14: F ← F ∧

∨
i∈unhappy(τcex) qi

Analogously, for hedonic games we employ transitivity (instead of completeness) to form the SAT
instance F defined as

AbstractionH(I,R) = transitivity(I) ∧
∧
i∈I

(qi ↔ ϕ∗i ).

In both cases, for a satisfying assignment τ to F and for all i ∈ I , it holds that τ(qi) = 1 iff τ(ϕ∗i ) = 1.
We distinguish the happy and unhappy agents, respectively, via happy(τ) = {i ∈ I | τ(qi) = 1} and
unhappy(τ) = {i ∈ I | τ(qi) = 0}. To find a Pareto-efficient allocation (i.e., an MSS of {ϕ∗i , . . . , ϕ∗n})
we iteratively search for a satisfying assignment τ ′ to F ∧

∧
i∈happy(τ) qi ∧

∨
i∈unhappy(τ) qi, set τ = τ ′,

and continue until this formula is unsatisfiable. In this case τ corresponds to a Pareto-efficient allocation.

5.2 Combining Envy-freeness and Efficiency

For determining existence of allocations or partitions which are both envy-free and efficient, we
propose a SAT-based CEGAR algorithm presented as Algorithm 1. It returns a Pareto-efficient envy-free
allocation if one exists, and false otherwise.

Firstly, we initialize an abstraction F , that is, a SAT instance whose solutions bijectively correspond to
complete allocations of the items amongst the agents in the case of fair allocation (line 1), or partitions
of the agents into disjoint coalitions in the case of hedonic games (line 2). We then iteratively solve
this instance, further enforcing the constraint that the solution corresponds to an allocation which is
envy-free with respect to the preferences of the agents (line 4). If there is no solution, we return false, as
there is therefore no candidate allocation which is envy-free (line 5). Otherwise, we extract a candidate
allocation πabs from the obtained solution τabs (line 6). It remains to be checked, however, whether πabs
is efficient, that is, whether πabs is dominated by any other allocation(s).

We first conduct a series of SAT solver calls to obtain a candidate allocation which is not dominated by
any other envy-free allocation. This is accomplished by a similar procedure as outlined in Section 5.1 for
computing a Pareto-efficient allocation. We construct a formula Fdom the solutions of which correspond
to allocations which dominate πabs (line 8), enforcing that all agents who are happy with the bundle
allocated by τabs remain happy, while at least one of the unhappy agents becomes happy. Then, we
query a SAT solver for a solution to Fdom (line 9). If a solution exists, we replace πabs by the obtained
candidate, which dominates πabs (line 10). We repeat this process until Fdom is unsatisfiable, i.e., until
πabs is not dominated by any envy-free allocation.
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Algorithm 2 CEGAR for finding a minimum-envy Pareto-efficient allocation. Input: Problem variant
S ∈ {A,H}, agents I , items O (if S = A), preference profile R, global envy aggregator ⋆, and local
envy aggregator □.
1: π∗ ← ∅, e∗ ←∞
2: if S = A then F ← AbstractionA(I,O,R) ∧ E(I)
3: else if S = H then F ← AbstractionH(I,R) ∧ E(I)
4: while true do
5: (result, τabs)← SAT(F ∧ bound(⋆,□, e∗))
6: if result = unsat then return π∗

7: πabs ← alloc(τabs)
8: while result = sat do
9: Fdom ← F ∧

∧
i∈happy(τabs) qi ∧

∨
i∈unhappy(τabs) qi

10: (result, τ)← SAT(Fdom ∧ bound(⋆,□, e∗))
11: if result = sat then τabs ← τ, πabs ← alloc(τ )
12: Fdom ← F ∧

∧
i∈happy(τabs) qi ∧

∨
i∈unhappy(τabs) qi

13: (result, τcex)← SAT(Fdom)
14: if result = unsat then π∗ ← πabs, e

∗ ← envy(πabs)
15: else F ← F ∧

∨
i∈unhappy(τcex) qi

Finally, we check for a counterexample to the candidate allocation πabs. This is achieved by dropping the
envy-freeness constraint and querying the SAT solver for an allocation that dominates πabs (lines 11–12).
If no counterexample exists, πabs is non-dominated, so we return πabs as a Pareto-efficient envy-free
allocation (line 13). Otherwise, the obtained solution τcex corresponds to an allocation πcex which
dominates πabs (but is not envy-free). In this case we continue by refining the abstraction by conjoining
to F a clause enforcing that at least one agent who is unhappy with the counterexample allocation πcex
must be happy with allocations extracted from solutions to subsequent calls (line 14), excluding τcex as
a solution.

5.3 Minimizing Envy

Since an efficient envy-free allocation is not guaranteed to exist, we additionally consider the task of
minimizing envy [50, 28], outlining an algorithmwhich finds a Pareto-efficient allocation with minimum
envy, that is, envy at least as low as any other efficient allocation. The amount of envy in a given
allocation is quantified via a pair of aggregation functions [28]. A local aggregation function defines the
local degree of envy for a single agent i, i.e., envy(i) = □j ̸=iei,j , where □ is an aggregation function,
and ei,j is a Boolean variable assigned to 1 iff agent i envies agent j. Then, a global aggregation function
⋆ combines the envy of all of the agents together, that is, envy(π) = ⋆i∈Ienvy(i). We consider three
combinations of aggregators which correspond to reasonable optimization objectives in the context of
dichotomous preferences:

• local aggregator □ =
∨

and global aggregator ⋆ =
∑

correspond to envy(π) =∑
i∈I

(∨
j ̸=i ei,j

)
, that is, the number of envious agents;

• using □ = ⋆ =
∑

as both the local and global aggregator defines envy(π) =
∑

i∈I

(∑
j ̸=i ei,j

)
,

i.e., the total number of (i, j) pairs where agent i envies agent j (absolute envy);

• local aggregator □ =
∑

and global aggregator ⋆ = max correspond to envy(π) =

maxi∈I

(∑
j ̸=i ei,j

)
, that is, the maximum number of agents envied by any single agent (maxi-

mum envy).
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Towards a CEGAR algorithm, we define constraints

E(I) =
∧
i,j∈I
i ̸=j

(ei,j ↔ (¬ϕ∗i ∧ ϕ∗i [j])) .

In words, variable ei,j is true if and only if agent i envies agent j. Further, we denote by bound(⋆,□, k)
a cardinality constraint [54] which bounds the envy of a candidate allocation to less than k. For the
three combinations we consider,

bound(
∑
,
∨
, k) =

∑
i∈I

(∨
j ̸=i ei,j

)
≤ k − 1

enforces such a bound on the number of envious agents,

bound(
∑
,
∑
, k) =

∑
i∈I
∑

j ̸=i ei,j ≤ k − 1

similarly constrains absolute envy, and finally

bound(max,
∑
, k) =

∧
i∈I

(∑
j ̸=i ei,j ≤ k − 1

)
enforces a bound on maximum envy.

Our CEGAR algorithm for finding a minimum-envy Pareto-efficient allocation is detailed as Algorithm 2,
as an extension of Algorithm 1. We start by initializing the best known solution so far to ∅ and its
total envy to∞ (line 1). We initialize an abstraction which encodes complete or transitive allocations,
and adds constraints E(I) for pairs of envious agents (lines 2–3). We iteratively solve this instance
under the constraint that the total envy of the allocation is strictly less than the total envy of the best
known solution (line 5). If no solution is found, we return the current best allocation, as there is no
candidate allocation with less total envy (line 6). Otherwise the obtained solution corresponds to a
candidate allocation πabs (line 7) which is not known to be efficient. We obtain through a sequence of
SAT solver calls a candidate allocation which is not dominated by any other allocation with less envy
than the best known solution (lines 8–11). A counterexample to the candidate allocation πabs is another
allocation which dominates it. We drop the constraint which bounds the total envy and search for
such an allocation (lines 12–13). If there is no counterexample, πabs is efficient, so we set it as the best
known solution and update the total envy (line 14). Otherwise, the obtained solution corresponds to an
allocation dominating πabs, but which has more total envy. As in Algorithm 1, we refine the abstraction
via a clause which states that at least one agent who is unhappy with the counterexample allocation
must be happy in subsequent iterations (line 14).

6 Empirical Evaluation

We implemented the CEGAR approach and its extension to minimizing envy on top of PySAT [42],
using CaDiCaL [11] (version 1.9.5) incrementally as the underlying SAT solver. We use the sequential
counter encoding [56] for exactly-1 constraints and incremental totalizers [48] for at-most-k constraints,
offered by PySAT. The implementation, benchmark generators and experiment data are openly available
at https://bitbucket.org/coreo-group/satfair. The experiments were run on 2.40-GHz Intel
Xeon Gold 6148 CPUs and 381-GB memory using a per-instance 30-minute time and 16-GB memory
limit (the memory limit was exceeded only when minimizing absolute envy for 300 agents).

We generated benchmarks as follows. Agents express their instances in negation-free DNF. Each
conjunction in a DNF represents a bundle of items preferred by the agent, and the bundles may overlap.
We assigned each agent 5–10 preferred bundles with 3–4 items per bundle, selected for each agent
uniformly at random. These parameter values reflect the complexity results in Section 3. We generated
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Table 1: Envy-free Pareto-efficient fair allocation.

#a #i #solved avg. time (s) #yes #no
300 5 100 38.22 0 100
300 10 100 90.61 0 100
300 15 100 60.55 100 0
300 20 100 36.15 100 0
300 25 100 39.72 100 0
300 30 100 41.76 100 0
400 5 100 84.40 0 100
400 10 100 181.82 0 100
400 15 100 167.22 100 0
400 20 100 64.72 100 0
400 25 100 72.98 100 0
400 30 100 76.80 100 0
500 5 100 159.73 0 100
500 10 100 306.96 0 100
500 15 100 547.38 74 26
500 20 100 106.98 100 0
500 25 100 117.38 100 0
500 30 100 123.48 100 0
600 5 100 225.05 0 100
600 10 100 520.79 0 100
600 15 100 1047.41 10 90
600 20 100 168.11 100 0
600 25 100 188.34 100 0
600 30 100 203.11 100 0
700 5 100 313.09 0 100
700 10 100 860.89 0 100
700 15 99 1389.19 0 99
700 20 100 240.12 100 0
700 25 100 260.57 100 0
700 30 100 303.29 100 0

instances for n = 300, 400, . . . , 700 agents, and report for each n on a range of values for the total
number of items to ensure that we obtained challenging-enough, both “yes” instances (where an EEF
allocation exists) and “no” instances (where an EEF allocation does not exist). Intuitively, and as observed
in our experiments, if items are sufficiently abundant, one can expect there to be various EEF allocations.
In contrast, by considering relatively low numbers of items wrt agents, there can be expected to be few
EEF allocations or none at all.

An overview of the results for deciding EEF fair allocation are shown in Table 1 and Figure 1. Overall,
our CEGAR approach scales up to 700 agents (#a) for each number i of items (#i) and n of agents
considered. By varying i and n, we observe that there exists a sharp transition from all instances
being “no” to all instances being “yes” at specific thresholds i/n. The hardest-to-solve instances for our
CEGAR algorithm appear to be those “critical” instances which were generated near the threshold for
each n. In addition to average runtimes (y axis) individually for n = 500, 600, 700 agents for different
numbers of items (x axis), Figure 1 also shows curves fit to the data shown in Table 1 through polynomial
interpolation for the potential no-to-yes transition points for each n. Interestingly, a phase transition
phenomenon has been previously reported on in the context of envy-free fair allocation under additive
preferences [36]. The problem we consider here is naturally related but different (and also harder in
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Figure 1: Fair allocation: average runtimes over solved instances, % of ’yes’ instances.

terms of computational complexity). Nevertheless, the phase-transition-like behaviour we observe here
could warrant further investigation of independent interest.

To obtain benchmarks for minimum-envy Pareto-efficient fair allocation, we generated smaller in-
stances (reflecting the increased difficulty of the problem), using n = 100, 200, 300 and keeping other
parameters the same, and solved the instances with the CEGAR algorithm to the decision problem to
find 100 “no” instances for each n. An overview of the runtime performance of our CEGAR approach
extended to minimizing envy on the resulting benchmark instances is shown in Table 2. Here mea, mae,
and mme refer to the three objectives of minimizing the number of agents envious of some other agent,
minimizing absolute envy in terms of the number of times the agents are envious of other agents, and
minimizing the maximum number of envied agents over the individual agents, respectively. Overall, as
expected we observe that minimizing envy is indeed empirically harder than deciding the existence of
an envy-free Pareto-efficient allocation. Regardless we can solve instances at least up to 200 agents.
Minimizing maximum envy appears to be the easiest for our approach based on these benchmarks,
while minimizing absolute envy appears the hardest.

Finally, we consider hedonic games. We generated benchmarks for deciding the existence of EEF
coalitions as follows. As in the fair allocation instances, each agent’s preferences are expressed as a DNF
formula with 5–10 DNF terms and 3–4 agents per term, selected uniformly at random. As the grand
coalition is trivially a solution if the DNF contains only positive variables, we flip each literal in the DNFs
with probabilities 0.25 and 0.5, expressing that an agent prefers a coalition which another specific agent
is not in. We generated instances for n = 20, 30, . . . , 100 agents. An overview of the results is shown in
Table 3. Interestingly, the probability used for negating literals has a significant impact on the runtime
of our approach. With the lower probability 0.25, our approach performs somewhat modestly, with an
increasing number of timeouts beyond 60 agents. Using the higher probability 0.5 results in noticeably

Table 2: Minimum-envy Pareto-efficient fair allocation.

#solved (avg. time (s))
#a #i mea mae mme
100 5 100 (52.31) 100 (90.29) 100 (16.54)
100 10 100 (78.34) 100 (110.04) 100 (27.59)
200 5 100 (600.10) 100 (1158.43) 100 (163.98)
200 10 25 (1474.77) 4 (1515.76) 88 (411.60)
300 5 13 (1515.53) 0 (—) 100 (753.81)
300 10 0 (—) 0 (—) 16 (977.27)
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Table 3: Results on hedonic games.

neg. = 0.5 neg. = 0.25
#a #solved avg. time (s) #solved avg. time (s)
20 100 0.26 100 0.34
30 100 0.47 100 1.46
40 100 0.99 100 6.42
50 100 1.65 100 28.02
60 100 3.02 98 238.61
70 100 4.76 53 632.73
80 100 7.52 23 212.61
90 100 11.16 15 291.49
100 100 16.97 7 294.78

better scalability, with all instances solved up to 100 agents (and likely beyond). It should be noted
that while we were able to observe a yes-no transition for the fair allocation benchmark generation
model, for hedonic games the benchmark generation parameters we used here appear to yield mainly
“yes” instances, with very few “no” instances. These observations suggest a more involved study into
more fine-grained benchmark generation models for hedonic games as well as further investigating
how choices within the large parameter space for generated benchmark instances affect algorithmic
performance.

7 Conclusions

We presented new complexity results and SAT-based algorithms for the Σ
p
2-complete problems of

computing envy-free Pareto-efficient allocations in the context of fair allocation and hedonic games
under dichotomous preferences. Refining earlier related results, we establish Σ

p
2-completeness of

deciding the existence of envy-free Pareto-efficient allocations even when limiting the number of
preferences and preferences to restricted-size DNFs. The SAT-based CEGAR algorithms we developed
for deciding envy-free Pareto-efficient allocations constitute to the best of our knowledge the first
practical approaches proposed for these problems. Further, we extended the algorithmic approach to
computing minimum-envy Pareto-efficient allocations under reasonable measures of global envy, and,
providing an open-source implementation of the algorithms showed empirically that our approach
scales reasonably. An interesting direction for further work would be to extend the algorithmic approach
to handling additive preferences, and, in the case of hedonic games, to notions of stability such as
core and strict-core stable coalitions [8, 13, 37]. Furthermore, investigating the potentially underlying
phase-transition-like phenomenon in this problem setting further would be interesting; and additionally,
evaluating the algorithmic approach on real-world allocation instances would also be of significant
interest, especially as randomly generated benchmarks tend to typically be significantly be harder than
more structured instances for modern SAT solvers.
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