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Abstract

We study the fundamental problem of fairly dividing a set of indivisible items among agents with
(general) monotone valuations. The notion of envy-freeness up to any item (EFX) is considered
to be one of the most fascinating fairness concepts in this line of work. Unfortunately, despite
significant efforts, existence of EFX allocations is a major open problem in fair division, thereby
making the study of approximations and relaxations of EFX a natural line of research. Recently,
Caragiannis et al. [26] introduced a promising relaxation of EFX, called epistemic EFX (EEFX).
An allocation isEEFX, if for every agent, it is possible to shuffle the items in the remaining bundles
so that she becomes “EFX-satisfied”. Caragiannis et al. [26] prove existence and polynomial-time
computability of EEFX allocations for additive valuations. A natural question asks what happens
when we consider valuations more general than additive?
We address this important open question and answer it affirmatively by establishing the existence
of EEFX allocations for an arbitrary number of agents with general monotone valuations. To the
best of our knowledge, besides EF1, EEFX is the only known relaxation of EFX to have such
strong existential guarantees. Furthermore, we complement our existential result by proving
computational and information-theoretic lower bounds. We prove that even for an arbitrary
number of (more than one) agents with identical submodular valuations, it is PLS-hard to
compute EEFX allocations and it requires exponentially-many value queries to do so.

1 Introduction

The theory of fair division addresses the fundamental problem of dividing a set of resources in a fair
manner among individuals (often called agents) with varied preferences. This problem arises naturally
in many real-world settings, such as division of inheritance, dissolution of business partnerships, divorce
settlements, assigning computational resources in a cloud computing environment, course assignments,
allocation of radio and television spectrum, air traffic management, course assignments, to name a few
[33, 50, 63, 23, 53]. Although the roots of fair division can be found in antiquity, for instance, in ancient
Greek mythology and the Bible, its first mathematical exposition dates back to the seminal work of
Steinhaus, Banach, and Knaster [57]. Since then, the theory of fair division has received significant
attention and a flourishing flow of research from areas across economics, social science, mathematics,
and computer science; see [10, 19, 20, 55] for excellent expositions.

The development of fair division protocols plays a crucial role in ensuring equitable outcomes in the
design of many social institutions. With the advent of internet, the necessity of having division rules
that are both transparent and agreeable or, in other words, fair has become evident [51]. There are
many examples to see how the principles of fair division are being applied in various technological
platforms today.3 4

Some of the central solution concepts and axiomatic characterizations in the fair division literature stem
from the cake-cutting context [50] where the resource to be divided is considered to be a (divisible) cake
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[0, 1]. The quintessential notion of fairness—envy-freeness—was also mathematically formalized in this
setup [36, 62]. We say an allocation is envy-free if every agent prefers their share in the division at least
as much as any other agent’s share. Strong existential guarantees of envy-free cake division that also
establishes a connection with topology [58, 60], has made envy-freeness as the representative notion of
fairness in resource-allocation settings. Unfortunately, an envy-free allocation is not guaranteed to exist
when we need to fairly divide a set of indivisible items: consider two agents and a single valuable item.
Only one agent can get the item, and the other agent will be envious. Furthermore, it is NP-hard to
decide whether an envy-free allocation exists e.g., see [18]. Infeasibility along-with high computational
complexity of envy-free allocations has led to study of its various relaxations for the discrete setting.

In this paper, we consider the setting where the resource is a set of discrete or indivisible items,
each of which must be wholly allocated to a single agent. A fair division instance consists of a set
N = {1, 2 . . . , n} of n agents and a setM of items. Every agent i specifies her preferences via a
valuation function vi : 2

M → R. We study general monotone valuations that pertains adding a good to
a bundle cannot make it worse. The goal is to find a partition X = (X1, . . . , Xn) of the items where
every agent i ∈ N upon receiving bundle Xi considers X to be fair.

Envy-freeness up to any item (EFX): One of the most compelling notions of fairness for discrete
setting is envy-freeness up to any item (EFX). This notion was introduced by Caragiannis et al. [24].
An allocation is EFX if every agent prefers her own bundle to the bundle of any other agent, after
removing any item from the latter. EFX is considered to be the “closest analogue of envy-freeness” for
discrete setting [25]. Unfortunately, despite significant efforts over the past few years, existence of EFX
allocations remains as the biggest and the most challenging open problem in fair division, even for
instances with more than three agents with additive valuations [54, 28, 17, 4]. See Section 1.3 for a list
of related results about EFX.

Epistemic envy-freeness up to any item (EEFX): A recent work of Caragiannis et al. [26] introduced
a promising relaxation of EFX, called epistemic EFX (which adapts the concepts of epistemic envy-
freeness defined by Aziz et al. [12]). We call an allocationX EEFX if for every agent i ∈ [n], there exists
an allocation Y such that Yi = Xi and for every bundle Yj ∈ Y , we have vi(Xi) ≥ vi(Yj \ {g}) for
every g ∈ Yj . That is, an allocation is EEFX if, for every agent, it is possible to shuffle the items in the
remaining bundles so that she becomes “EFX-satisfied”. See Example 1.1 for a better intuition.

Example 1.1. Consider a fair division instance consisting of 7 items and 3 agents with additive
valuations as described in Table 1. Now consider the allocation X where X1 = {g1, g2, g4}, X2 =
{g3, g5, g6}, and X3 = {g7}. Note that X is envy-free, and hence, EFX and EEFX. Now assume that
agent 1 and 2 exchange the items g3 and g4. Formally, let Y = ({g1, g2, g3}, {g4, g5, g6}, {g7}). For
i ∈ {1, 2}, have vi(Yi) = 300 > 201 = vi(Xi), and v3(Y3) = v3(X3). Therefore, intuitively it seems
that Y is a better allocation compared to X since agents 1 and 2 are strictly better off and agent 3 is as
happy as before (i.e., Y Pareto dominates X). However, note that while allocation Y is still EEFX, it is
not EFX. Namely, for agent 3 we have: v3(Y1 \ {g1}) = 100 > 55 = v3(Y3).

Caragiannis et al. [26] establish existence and polynomial-time computability of EEFX allocations for
an arbitrary number of agents with a restricted class of additive valuations. Thus, the following question
naturally arises:

Do EEFX allocations always exist for an arbitrary number of agents with general monotone valua-
tions?
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Table 1: The additive valuation functions of 3 agents for 7 goods.

g1 g2 g3 g4 g5 g6 g7

v1 100 100 100 1 1 1 1
v2 1 1 1 100 100 100 1
v3 1 50 50 1 1 1 55

1.1 Our Results

We answer the above question affirmatively and establish computational hardness and information-
theoretic lower bounds for finding EEFX allocations:

1. EEFX allocations are guaranteed to exist for any fair division instance with an arbitrary number
of agents having general monotone valuations; see Theorem 3.5.

2. Exponentially (in the number of goods) many valuation queries is required by any deterministic
algorithm to compute an EEFX allocation for fair division instances with an arbitrary number of
agents with identical submodular valuations; see Theorem 4.7.

3. The problem of computing EEFX allocations for fair division instances with an arbitrary number
of agents having identical submodular valuations is PLS-hard; see Theorem 4.8.

It is relevant to note that, with the above results, the notion of epsitemic-EFX becomes the second
known relaxation of EFX (besides EF1), that admits such strong existential guarantees. Along-with its
hardness results, the notion of EEFX for discrete settings seems to enjoy results of similar flavor as
that of envy-freeness for cake division [58, 59, 31].

Similar computational hardness and information-theoretic lower bounds are known for computing an
EFX allocation between two agents with identical submodular valuations; see [52] and [39]. Observe
that, the set of EEFX and EFX allocations are identical in instances with two agents. Hence, the
computational hardness and information-theoretic lower bounds known for computing EFX allocations
between two agents carry forward to EEFX allocations as well, but only for two agents. At first sight, it
might seem trivial that finding an EEFX allocation can only get harder when the number of agents
grows. However, note that when the number of agents grows, more bundles become “EEFX-feasible” for
each agent, and hence, finding an EEFX allocation may be done faster. Nevertheless, in this work, we
prove similar lower bounds for EEFX by reducing the problem of computing an EEFX allocation among
an arbitrary number of agents with identical submodular valuations from the problem of computing an
EFX allocation among two agents with identical submodular valuations. See Section 4.1 for further
discussion on the PLS class [44].

Although similar computational hardness and information-theoretic bounds hold true for finding EFX
and EEFX allocations, our work has proved guaranteed existence of EEFX allocations for an arbitrary
number of agents with monotone valuations, whereas existence of EFX allocations for more than three
agents even with additive valuations remain a major open problem.

1.2 Our Techniques

Consider a fair division instance I = (N ,M,V) which consists of a set N of n agents, a setM of m
items and a set V consisting of agent-valuations overM. and a desirable property P of a bundleB ⊆M
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for an agent i ∈ N . In this work, we consider the fairness property of whether B is n-epistemic-EFX
for an agent i (see Definition 2.3). We say B is desirable to i when B satisfies the property P for agent
i. The goal is to find an allocation A = (A1, . . . , An) such that Ai is desirable to each agent i ∈ N ; we
call such an allocation desirable.

For any partitioning of the items into n bundlesX1, X2, . . . , Xn, let us consider a bipartite graphG(X)
with one side representing the n agents and the other side representing the n bundles. There exists an
edge (i, j) between (the node corresponding to) agent i and (the node corresponding to) bundle Xj , if
and only if, bundle Xj is desirable to agent i. For any subset of the nodes S ⊆ N , let us write N(S) to
denote the set of all neighbours of S in G(X).

Note that, if G(X) has a perfect matching, then this matching translates to a desirable allocation in I .
Therefore, let us assume thatG(X) does not admit a perfect matching and hence admits a Hall’s violator
set. That is, there exists a subset of agents {a1, . . . , at+1} for which |N({a1, . . . , at+1})| ≤ t. But
also, there exists a subset of bundles {Xj1 , . . . , Xjk+1

} for which |N({Xj1 , . . . , Xjk+1
})| ≤ k. Let us

assume that {Xj1 , . . . , Xjk+1
} is minimal. If k ≥ 1, this means that we can find a non-empty matching

of ((i1, Xj1), . . . , (ik, Xjk)) such that there exists no edge between agent i ∈ N \ {i1, . . . , ik} and
bundles Xj1 , . . . , Xjk+1

. In other words, for all ℓ ∈ [k], Xjℓ is desirable to iℓ and is not desirable to any
i /∈ {i1, . . . , ik}.

After finding such a matching, it is intuitive to allocate Xjℓ to iℓ for all ℓ ∈ [k] and then recursively
find a desired allocation of the remaining goods to the remaining agents. In order to do so, we need to
ensure two important conditions.

1. We can find a non-empty matching ((i1, Xj1), . . . , (ik, Xjk)) in each step.

2. After removing Xj1 ∪ . . . ∪Xjk fromM, we can still find desirable bundles (with respect to the
original instance) for the remaining agents.

Whether ensuring these conditions is possible or not, depends on the property P . In this work, we
prove this approach works when the property P is n-epistemic-EFX, and thereby proving the existence
of EEFX allocations for monotone valuations.

Although these two conditions might seem inconsequential, we prove that a stronger condition can
simultaneously imply both of them. Namely, we only need to prove that at each step with n′ remain-
ing agents, for any remaining agent i, we can partition the remaining items into n′ many bundles
X1, . . . , Xn′ such that Xj is desirable to i for all j ∈ [n′]. This way, at each step, we can ask one of the
remaining agents to partition the remaining goods into n′ many desirable bundles with respect to her
own valuation. Then, we either find a perfect matching, or we find a non-empty matching and reduce
the size of the instance.

This technique works when the desirable property is, for instance, proportionality (moving-knife
procedure [32]) or maximin share [57, 9, 45, 1, 42]. In this paper, we show that EEFX allocations under
monotone valuations are also compatible with the above technique. Recently, Bu et al. [21] proved
this technique also works for finding PROP1 allocations5 among agents with additive valuations in a
comparison-based model. In that model, two bundles are presented to an agent and she responds by
telling which bundle she prefers.

1.3 Further Related Work

Plaut and Roughgarden [52] proved the existence of EFX for two agents with monotone valuations.
5PROP1 requires each agent’s proportionality if one item is (hypothetically) added to that agent’s bundle.
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For three agents, a series of works proved the existence of EFX allocations when agents have additive
valuations [28], nice-cancelable valuations [17], and finally when two agents have monotone valuations
and one has an MMS-feasible valuation [4]. EFX allocations exist when agents have identical [52],
binary [41], or bi-valued [9] valuations. Several approximations [29, 8, 27, 34] and relaxations [9, 25, 17,
49, 43, 16, 3] of EFX have become an important line of research in discrete fair division.

Another relaxation of envy-freeness proposed in discrete fair division literature is that of envy-freeness
up to some item (EF1), introduced by Budish [22]. It requires that each agent prefers her own bundle to
the bundle of any other agent, after removing some item from the latter. EF1 allocations always exist
and can be computed efficiently [48].

Proportionality [32, 57] is another well-studied notion of fairness having its roots in cake division
literature. An allocation is proportional if each agent gets a bundle of items for which her value exceeds
her total value for all items divided by the number of agents. It is easy to see that proportional allocations
do not necessarily exist for the setting of discrete items.

Among the relaxations of proportionality, the one that has received the lion’s share of attention uses the
so-calledmaximin fair share (MMS), i.e., the maximum value an agent can attain in any allocation where
she is assigned her least preferred bundle, as threshold. Surprisingly, Kurokawa et al. [46] proved that
MMS allocations may not always exist. Since then, research has focused on computing allocations that
approximateMMS; e.g., see [7, 47, 38, 15, 37, 35, 5, 2] for additive, [15, 38, 61] for submodular, [38, 56, 6]
for XOS, and [38, 56] for subadditive valuations.

Proportionality up to one good (PROP1) [30] is another relaxation of proportionality which can be
guaranteed together with Pareto optimality [14]. Proportionality up to any good (PROPX) on the other
hand, is not a guaranteed to exist in the goods setting [13].

An excellent recent survey by [10] discusses the above fairness concepts and many more. Another
aspect of discrete fair division which has garnered an extensive research is when the items that needs
to be divided are chores. We refer the readers to the survey by [40] for a comprehensive discussion.

1.4 Organization:

We begin by discussing the preliminaries in Section 2. We prove our key result of guaranteed existence of
EEFX allocations for monotone valuations in Section 3. We conclude by proving information/theoretic
lower bounds for computing an EEFX allocation in Section 4. Towards the end, we discuss a list of
many interesting open problems motivated by this work in Section 5.

2 Definitions and Notation

For any positive integer k, we use [k] to denote the set {1, 2, . . . , k}. We denote a fair division instance
by I = (N ,M,V), whereN = [n] is a set of n agents,M is a set ofm items and V = (v1, v2, . . . , vn)
is a vector of valuation functions. For any agent i ∈ N , we write vi : 2M → R≥0 to denote her
valuation function over the set of items. For all i ∈ N , we assume vi is normalized; i.e., vi(∅) = 0, and
monotone; i.e., for all i ∈ N , g ∈M and S ⊂M, vi(S ∪ {g}) ≥ vi(S). For simplicity, we sometimes
use g instead of {g} to denote a set with a single item. We use “items” and “goods” interchangeably.

For a fair division instance I = (N ,M,V) with monotone valuations, we consider the valuations to be
accessed via an oracle. Note that, monotone valuations are the most general class of valuations when
the set of items consists of only goods or only chores. A valuation function v : 2M → R is submodular,
if and only if for all subsets of items S and T , v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).
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An allocation X = (X1, X2, . . . , Xn) of the items among agents is a partition of items into n bundles
such that bundle Xi is allocated to agent i. That is, we have Xi ∩ Xj = ∅ for all i, j ∈ N and
∪i∈[n]Xi =M.

Let us now define the concept of strong envy that characterizes one of the most compelling notions of
fairness in the literature - envy-freeness up to any item (EFX).

Definition 2.1 (Strong Envy). For a fair division instance, we say an agent i upon receiving a bundle
A ⊆M strongly envies a bundle B ⊆M, if there exists an item g ∈ B such that vi(A) < vi(B \ g).
Under an allocation X , we say agent i strongly envies agent j, if upon receiving Xi, agent i strongly
envies the bundle Xj .

Definition 2.2 (EFX). For a fair division instance, an allocation X = (X1, X2, . . . , Xn) is said to be
“envy-free up to any item” or “EFX”, if no agent strongly envies another agent. i.e., for all agents i and j,
vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj .

Recently, Caragiannis et al. [26] introduced a promising new notion of fairness — epistemic EFX – by
relaxing EFX, that we define next. They proved epistemic EFX allocations among an arbitrary number
of agents with additive valuations can be computed in polynomial time.

Definition 2.3. For any integer k, agent i ∈ [n] and subset of items S ⊆ M, we say that a bundle
A ⊆ S is “k-epistemic-EFX” for i with respect to S, if there exists a partitioning of S \ A into k − 1
bundles C1, C2, . . . , Ck−1, such that for all j ∈ [k − 1], upon receiving A, i would not strongly envy
Cj . We call C = {C1, C2, . . . , Ck−1} a “k-certificate” of A for i under S. Also we define

EEFXk
i (S) :={A ⊆ S | A is “k-epistemic-EFX”

for agent i with respect to S}.

Definition 2.4 (EEFX). For a fair division instance, an allocation X = (X1, X2, . . . , Xn) is said to be
epistemic EFX or EEFX if for all agents i, Xi ∈ EEFXn

i (M).

Note that the set of EFX and EEFX allocations coincide for the case of two agents. Next, we define a
notion of EEFX-graph that plays a crucial role in proving the existence of EEFX allocations.

Definition 2.5. For a fair division instance, consider a partition ofM into n bundles Y1, . . . , Yn. We
define the EEFX-graph as an undirected bipartite graph G = (V,E), where V has one part consisting
of n nodes corresponding to the agents and another part with n nodes corresponding to the bundles
Y1, . . . , Yn. There exists an edge (i, j) between (the node corresponding to) agent i and (the node
corresponding to) bundle Yj if and only if Yj ∈ EEFXn

i (M).

We abuse the notation and refer to the “nodes corresponding to agents” as “agents” and also refer to
the “nodes corresponding to bundles” as “bundles”. For any subsets V of nodes, N(V ) is the set of all
neighbors of the nodes in V . For a matchingM , V (M) is the set of vertices ofM .

3 Existence of Epistemic EFX Allocations

In this section, we prove our main result that establishes existence of EEFX allocations for any fair
division instancewithn agents havingmonotone valuations. We start by proving an important structural
property (in Lemma 3.1) that enables us to reduce an instance to one with lower number of agents.

Lemma 3.1. For any fair division instance, consider an agent i ∈ N and A ⊆ M such that A /∈
EEFXn

i (M). Then for all bundles B ∈ EEFXn−1
i (M\A), we must have B ∈ EEFXn

i (M).
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Algorithm 1 ALG = EEFX(I)
Input: A fair division instance I = (N ,M,V) where agent i ∈ N = [n] has monotone valuation vi
over the set of itemsM
Output: An allocation X = (X1, X2, . . . , Xn)

1: if N = ∅ then
2: return ∅;
3: n← |N|
4: (X1, . . . , Xn)← an EFX allocation ofM among n agents with valuation vn;
5: G← EEFX-graph of {X1, . . . , Xn};
6: Let M = {(k + 1, Xk+1), . . . , (n,Xn)} be a matching of size at least 1 such that

N({Xk+1, . . . , Xn}) = {k + 1, . . . , n};
7: N ′ ← [k];
8: M′ ←M\

⋃
ℓ∈[n]\[k]Xℓ;

9: V ′ ← (V1, . . . , Vk);
10: (X1, . . . , Xk)← EEFX(N ′,M′,V ′);
11: return (X1, X2, . . . , Xn);

Proof. For an agent i ∈ N , let us assume that bundle A ⊆ M is such that A /∈ EEFXn
i (M). Now,

consider any bundle B ∈ EEFXn−1
i (M\ A), i.e., there exists an (n− 1)-certificate of B for i under

M\A, we call it C = {C1, . . . , Cn−2}. By definition, we have that

vi(B) ≥ vi(Cj \ g) for all j ∈ [n− 2] and g ∈ Cj (1)

If vi(A) ≥ vi(B), then combining it with equation (1), we obtain {B,C1, . . . , Cn−2} is an n-certificate
of A for i underM and A ∈ EEFXn

i (M), leading to a contradiction. Hence, we must have

vi(B) ≥ vi(A) (2)

Finally, combining equations (1) and (2), we obtain {A,C1, . . . , Cn−2} is an n-certificate of B for i
underM and B ∈ EEFXn

i (M). This completes our proof.

Lemma 3.1 implies that if an agent i finds a bundle A to be n-epistemic-EFX while no other agent finds
A to be n-epistemic-EFX, we can safely allocate A to i, and remove i and A from the instance and find
an EEFX allocation ofM\ A to the remaining n − 1 agents. Note that we can repeat this process
iteratively and remove t ≥ 1 agents and t bundles. The formal description is given in Corollary 3.2.

Corollary 3.2 (of Lemma 3.1). For a fair division instance, consider a partial allocation
(Xk+1, Xk+2, . . . , Xn) to agents in the set [n] \ [k]. Let us assume that for all agents i ∈ [n] \ [k] and all
j ∈ [k], we have Xi ∈ EEFXn

i , Xi /∈ EEFXn
j . If (X1, . . . , Xk) is an EEFX allocation ofM\

⋃
ℓ∈[k]Xℓ

for agents in [k], then (X1, X2, . . . , Xn) is an EEFX allocation for agents in [n].

We will now give a high-level overview of our constructive proof for establishing the existence of EEFX
allocation among arbitrary number of agents with monotone valuations using ALG (see Algorithm
1). For a fair division instance I = (N ,M,V), our algorithm ALG, starts by considering an EFX
allocation (X1, . . . , Xn) ofM among n agents with valuation vn. We know such an allocation exists by
the work of Plaut and Roughgarden [52]. Next, we construct the EEFX-graph G between the bundles
X1, . . . , Xn and the agents. Lemma 3.3 proves that there will always exist a non-trivial matching6

6Without loss of generality, we can rename the bundles and agents in the matchingM
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Figure 1: If G(X) does not admit a perfect matching, then there exists a minimal subset S = {Xj1 , . . . , Xjk+1
}

of bundles such that |N(S)| < k+1. Then, for all agent i ∈ N(S) and all ℓ ∈ [k+1], no edge betweenXℓ and i
exists. In other words, no such red dashed edges can exist.

M = {(k+1, Xk+1), . . . , (n,Xn)} such thatN({Xk+1, . . . , Xn}) = {k+1, . . . , n}. That is, for every
j ∈ [n] \ [k], bundle Xj ∈ EEFXn

j (M).

Next, ALG reduces the instance by removing the agents {k + 1, k + 2, . . . , n} from N with their
bundles Xk+1, Xk+2, . . . , Xn safely. Note that, no agent i ∈ [k] has any edge in G to any bundle Xj

for j ∈ [n] \ [k]. Finally, this also implies that finding an EEFX allocation (X1, X2, . . . , Xk) in the
reduced instance and combining it with (Xk+1, Xk+2, . . . , Xn) leads to an overall EEFX allocation in
the original instance. That is, our technique enables us to reduce our instance, find an EEFX allocation
in the reduced instance, and combine it in such a way that we produce an EEFX allocation the the
original instance.

We begin by proving Lemma 3.3.

Lemma3.3. For any fair division instance, consider an agent i ∈ N , let (X1, . . . , Xn) be anEFX allocation
for an instance consisting of n agents with identical valuations vi. Let G be the EEFX-graph with n agents
and n bundles X1, . . . , Xn. Then there always exists a matching M = {(i1, Xj1), . . . , (ik, Xjk)} of size
at least 1, such that N({Xj1 , . . . , Xjk}) = {i1, . . . , ik}.

Proof. To begin with, if G has a perfect matching M = {(i1, Xj1), . . . , (in, Xjn)}, then the lemma
trivially holds true.

Therefore, let us assume that no perfect matching exists inG. This implies that the Hall’s condition is not
satisfied, i.e., there exists a subset S = {Xj1 , . . . , Xjk+1

} of bundles such that |N({Xj1 , . . . , Xjk+1
})| <

k + 1. See Figure 1 for a better intuition. We assume that the subset S = {Xj1 , . . . , Xjk+1
} is

minimal. That is, for all S′ ⊊ S, we have N(S′) ≥ |S′|. Now consider T = {Xj1 , . . . , Xjk} ⊊ S.
By minimality of S, we know that Hall’s condition holds for T , i.e., there exists a perfect matching,
say M = {(i1, Xj1), . . . , (ik, Xjk)} between the nodes in T and N(T ). Since |N(S)| < k + 1 and
{i1, . . . , ik} ⊆ N(T ) ⊆ N(S), it follows that N(S) = N(T ) = {i1, . . . , ik}.

Note that since (X1, . . . , Xn) is an EFX allocation for an instance with identical valuations vi, we know
that i ∈ N(S), thus k ≥ 1. Hence, M = {(i1, Xj1), . . . , (ik, Xjk)} is a matching of size k ≥ 1, such
that N({Xj1 , . . . , Xjk}) = {i1, . . . , ik}. The stated claim stands proven.

Theorem 3.4 ([52]). When agents have identical monotone valuations, there always exists an EFX
allocation.

We are now ready to discuss our main result that constructively establishes the existence of EEFX
allocation among arbitrary number of agents with monotone valuations using ALG.

Theorem 3.5. EEFX allocations exist for any fair division instance withmonotone valuations. In particular,
ALG returns an EEFX allocation.
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Proof. We begin by proving that Algorithm 1 terminates. By Lemma 3.3, a matching M =
{(i1, Xi1), . . . , (it, Xit)} of size at least 1 exists such that N({Xi1 , . . . , Xit}) = {i1, . . . , it}. Note
that we can rename the bundles and the agents and without loss of generality assume that the consid-
ered matching isM = {(k + 1, Xk+1), . . . , (n,Xn)}. Therefore, after removing {k + 1, . . . , n} from
N , the size of N decreases. Hence, the depth of the recursion is bounded by n (the initial number of
agents).

We prove the correctness of ALG by using induction on the number of the agents. If N = ∅, then ∅ is
an EEFX allocation. We assume that ALG returns an EEFX allocation for any fair division instance
with n′ < n agents with monotone valuations. Consider the matchingM described in ALG. We will
show the output allocation of ALG for n agents is EEFX as well. For any i ∈ [n] \ [k] and any j ∈ [k],
the matching M ensures that we have Xi ∈ EEFXn

i , and Xi /∈ EEFXn
j (see Figure 1). By induction

hypothesis (X1, . . . , Xk) is an EEFX allocation ofM\
⋃

ℓ∈[k]Xℓ for agents in [k]. Thus, by Corollary
3.2, (X1, X2, . . . , Xn) is an EEFX allocation for agents in [n].

Remark 3.6. All proofs of this section that we have for the setting when items are goods easily
extend to the setting when these items are ‘chores’. Formally, when agent valuations are monotonically
decreasing, then EEFX allocations are guaranteed to exist for an arbitrary number of agents.

4 Hardness Results

In this section, we complement our existential result of EEFX allocations for monotone valuations by
proving computational and information-theoretic lower bounds for finding an EEFX allocation. When
agents have submodular valuation functions, the way to compute the value v(S) for a subset S of the
items is through making value queries. Plaut and Roughgarden [52] proved that exponentially many
value queries are required to compute an EFX allocation even for two agents with identical submodular
valuations. Formally, they proved the following information-theoretic lower bounds.

Theorem 4.1 ([52]). The query complexity of finding an EFX allocation with |M| = 2k + 1 many items
is Ω( 1k

(
2k+1
k

)
), even for two agents with identical submodular valuations.

Moreover, Goldberg et al. [39] proved the following computational hardness for EFX allocations.

Theorem4.2 ([39]). The problem of computing anEFX allocation for two agents with identical submodular
valuations is PLS-complete.

See Section 7.2 in [11] for further discussion on the complexity class PLS. Let us now define the
computational problems corresponding to finding EFX and EEFX allocations.

Definition 4.3. (ID-EFX) Given a fair division instance I = ([2],M, (v, v)) with two agents having
identical submodular valuations v, find an EFX allocation.

Definition 4.4. (ID-EEFX) Given a fair division instance I = ([n],M, (v, . . . , v)) with n agents
having identical submodular valuations v, find an EEFX allocation.

We reduce the problem of finding an EFX allocation for two agents with identical submodular
valuations (ID-EFX) to finding an EEFX allocation for an arbitrary number of agents with identical
submodular valuations (ID-EEFX), thereby establishing similar hardness results for the latter.

Our Reduction: Consider an arbitrary instance I = ([2],M, (v, v)) of ID-EFXwith two agents having
identical submodular valuations v. Let I ′ = ([n],M′, (v′, . . . , v′)}) be an instance of ID-EEFX with n
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agents having identical valuations v′ over the set of itemsM′ =M∪ {h1, . . . , hn−2}. We define the
valuation v′ as follows.

• For all S ⊆M, v′(S) = v(S).

• For all j ∈ [n− 2], v′(hj) = 2v(M) + 1.

• For all j ∈ [n− 2] and S ⊆M′ \ {hj}, v′(S ∪ {hj}) = v(S) + v(hj).

We call items h1, . . . , hn−2 heavy items. Note that we can compute I ′ from I in polynomial time.

Lemma 4.5. If v is a submodular function, then v′ is a submodular function as well.

Proof. We need to prove that for all S, T ⊆M, v′(S) + v′(T ) ≥ v′(S ∪ T ) + v′(S ∩ T ). Let HS and
HT be the set of all heavy items in S and T respectively. We have

v′(S) + v′(T )

= v′(S \HS) + v′(HS) + v′(T \HT ) + v′(HT )

= (v(S \HS) + v(T \HT )) + v′(HS) + v′(HT ))

≥ v((S \HS) ∪ (T \HT )) + v((S \HS) ∩ (T \HT ))

+ v′(HS) + v′(HT ) (submodularity of v)
= v′((S ∪ T ) \ (HS ∪HT )) + v′((S ∩ T ) \ (HS ∩HT ))

+ v′(HS) + v′(HT )

= v′((S ∪ T ) \ (HS ∪HT )) + v′((S ∩ T ) \ (HS ∩HT ))

+ v′(HS ∪HT ) + v′(HS ∩HT ) (additivity of v′ on heavy items)
= v′(S ∪ T ) + v′(S ∩ T ).

Lemma 4.6. Given any EEFX allocation A in I ′, we can create an EFX allocation in I in polynomial
time, where I and I ′ are as defined above.

Proof. Let us assume that A = (A1, . . . , An) is an EEFX allocation in instance I ′. To begin with, note
that there are n − 2 heavy items in I ′, and hence, by pigeonhole principle, there exists at least two
agents, say i, j ∈ N ′ such that they receive no heavy item under A. Without loss of generality, let us
assume that i = 1 and j = 2, and hence we have A1, A2 ⊆M. This implies that we have

v′(A1) = v(A1), v
′(A2) = v(A2),

and, v(A1), v(A2) < 2v(M) + 1 (3)

Without loss of generality, let us assume v(A2) ≥ v(A1).

We will prove (A1,M\A1) forms an EFX allocation in I . Note that valuations v and v′ coincide for the
bundles A1 andM\A1. Since A is EEFX in I ′, let us denote the n-certificate for agent 1 with respect
to A1 by C = (C2, C3, . . . , Cn). First, we prove that no bundle Ck with a heavy item can have any
other item as well. Assume otherwise. Let {g, hj} ⊆ Ck for some k ∈ {2, . . . , n} and some j ∈ [n− 2]
and g ̸= hj . Then, we have

v′(Ck \ g) ≥ v′(hj) = 2v(M) + 1 > v′(A1)

10



where, the last inequality uses equation (3). This implies that agent 1 strongly envies bundleCk which is
a contradiction to our assumption that C forms an n-certificate for bundle A1 in instance I ′. Therefore,
the n − 1 bundles in the n-certificate must look like {C2, . . . , Cn} = {{h1}, . . . , {hn−2},M\ A1}.
First, note that, agent 1with bundleA1 must not strongly envy bundleM\A1 sinceC is an n-certificate.
And since, we already have v(A2) ≥ v(A1) and A2 ⊆M\A1, the allocation (A1,M\A1) forms an
EFX allocation in I .

Theorem 4.7. The query complexity of the EEFX allocation problem with |M| = 2k + n − 1 many
items is Ω( 1k

(
2k+1
k

)
), for arbitrary number of agents n with identical submodular valuations.

Proof. Consider any arbitrary instance I = ([2],M, (v, v)) with two agents having identical submodu-
lar valuations v and |M| = 2k + 1 items. Create the instance I ′ as described above. Using Lemma 4.5,
I ′ consists of n agents with identical submodular valuations. By Lemma 4.6, given any EEFX allocation
A, we can obtain an EFX allocation for I in polynomial time. Finally, using Theorem 4.1, we know that
the query complexity of finding an EFX allocation in I is Ω( 1k

(
2k+1
k

)
). Hence, the query complexity of

EEFX for n agents with identical submodular valuations admits the same lower bound. This establishes
the stated claim.

Finally, our next result follows using Lemma 4.6 and Theorem 4.2.

Theorem 4.8. The problem of computing an EEFX allocation for for any number n ≥ 2 of agents with
identical submodular valuations is PLS-hard.

Since our reduction works even for three agents, Theorems 4.7 and 4.8 hold true for the problem of
computing EEFX allocations even for three agents with identical submodular valuations. Note that
the set of EFX and EEFX allocations coincide for the case of two agents and hence it inherits the same
computational hardness guarantees as that of EFX here.

4.1 Description of Polynomial Local Search (PLS)

The following description of the complexity class PLS is taken from Section 7.2 in [11].

The class PLS (Polynomial Local Search) was defined by Johnson et al. [44] to capture the complexity
of finding local optima of optimization problems. Here, a generic instance I of an optimization problem
has a corresponding finite set of solutions S(I) and a potential c(s) associated with each solution
s ∈ S(I). The objective is to find a solution that maximizes (or minimizes) this potential. In the local
search version of the problem, each solution s ∈ S(I) additionally has a well-defined neighborhood
N(s) ∈ 2S(I) and the objective is to find a local optimum, i.e., a solution s ∈ S(I) such that no solution
in its neighborhood N(s) has a higher potential.

Definition 4.9 (PLS). Consider an optimization problem X , and for all input instances I of X let S(I)
denote the finite set of feasible solutions for this instance, N(s) be the neighborhood of a solution
s ∈ S(I), and c(s) be the potential of solution s. The desired output is a local optimum with respect to
the potential function.

Specifically, X is a polynomial local search problem (i.e., X ∈ PLS) if all solutions are bounded in the
size of the input I and there exists polynomial-time algorithms A1, A2, and A3 such that:

1. A1 tests whether the input I is a legitimate instance of X and if yes, outputs a solution sinitial ∈
S(I).
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2. A2 takes as input instance I and candidate solution s, tests if s ∈ S(I) and if yes, computes c(s).

3. A3 takes as input instance I and candidate solution s, tests if s is a local optimum and if not,
outputs s′ ∈ N(s) such that c(s′) > c(s) (the inequality is reversed for the minimization version).

Each PLS problem comes with an associated local search algorithm that is implicitly described by the
three algorithms mentioned above. The first algorithm is used to find an initial solution to the problem
and the third algorithm is iteratively used to find a potential-improving neighbor until a local optimum
is reached.

5 Conclusion and Open Problems

In this work, we establish the existence of EEFX allocations for an arbitrary number of agents with
general monotone valuations. Furthermore, we also prove that the problem of computing an EEFX
allocation for instances with an arbitrary number of agents with submodular valuations is PLS-hard and
requires an exponential number of valuations queries as well. Our existential result of EEFX allocations
for monotone valuations has opened a variety of major problems in discrete fair division. We list three
of them here, that we believe should be explored first.

The first interesting question is, for submodular or monotone valuations, explore the possibility of a
PTAS for computing an EEFX allocation, or otherwise prove its APX-hardness. An equally exciting
problem would be to explore the compatibility of EEFX and EF1 allocations. Even for instances with
additive valuations, does there always exist an allocation that is simultaneously both EEFX and EF1? If
yes, can we compute it? What about similar compatibility question of EEFX with Nash social welfare?
We know that a maximum Nash welfare (MNW) allocation is both EF1 and Pareto-optimal [24]. What
kind of a relation7 exist between EEFX and MNW allocations?
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