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Abstract

Envy-freeness is one of the most prominent fairness concepts in the allocation of indivisible
goods. Even though trivial envy-free allocations always exist, rich literature shows this is
not true when one additionally requires some efficiency concept (e.g., completeness, Pareto-
efficiency, or social welfare maximization). In fact, in such case even deciding the existence of
an efficient envy-free allocation is notoriously computationally hard. In this paper, we explore
the limits of efficient computability by relaxing standard efficiency concepts and analyzing how
this impacts the computational complexity of the respective problems. Specifically, we allow
partial allocations (where not all goods are allocated) and impose only very mild efficiency
constraints, such as ensuring each agent receives a bundle with positive utility. Surprisingly,
even such seemingly weak efficiency requirements lead to a diverse computational complexity
landscape. We identify several polynomial-time solvable or fixed-parameter tractable cases for
binary utilities, yet we also find NP-hardness in very restricted scenarios involving ternary
utilities.

1 Introduction

Computing fair allocations of indivisible resources is an important issue with many applications
in all kinds of disciplines [11, 12, 27]. Envy-freeness, which ensures that no agent strictly prefers
the resources allocated to a different agent over their own, is one of the most prominent fairness
concepts [12]. Unfortunately, non-trivial envy-free allocations do not always exist, and computing
them is often associated to computationally very difficult problems [11]. In consequence, researchers
have developed several ways to relax that fairness notion, such as envy-free up to one good (EF1) [14]
and envy-free up to any good (EFX) [16].

If one has a close look, however, then one quickly realizes that envy-freeness alone does not enforce
any computational or existence issues: allocating no resource to anyone is envy-free. When adding an
efficiency component, such as requiring each resource to be allocated to someone (completeness), the
picture changes. A folklore example is an instance with n agents (say employees) and n + 1 identical
resources (say laptops): in every possible complete allocation there is at least one agent a who gets
at most one resource and another agent a’ that gets at least two resources, so that (for reasonable
preferences) a envies a’. While there are certainly applications where this is indeed a problem, there
is likely a trivial solution in most applications: allocating only n of the n + 1 resources (one to each
agent). Such observations lead to the main question of our paper: which (weaker) efficiency concepts
can help to identify additional (in comparison to completeness) envy-free allocations and what is the
consequence on the computational complexity of finding such allocations?

We come up with two basic ideas: What if the goal is not to allocate all resources, but to either just
allocate some resources to the agents or just provide some utility for the agents? In each case, we can
focus on either the whole society or individual agents. More concretely, we ask for an envy-free (partial)
allocation that (i) allocates at least ¢ resources in total, or (ii) allocates at least ¢ resources to each agent,
or (iii) has utilitarian welfare of at least ¢, or (iv) has egalitarian welfare of at least ¢.

Note that even variants for ¢ = 1 have meaningful (potential) applications. They allow us to ask if
there is an envy-free allocation of (some of) the resources such that (i) at least one resource is allocated,



(ii) each agent gets at least one resource, (iii) at least one agent has a positive value for the allocated
resources, or (iv) each agent has a positive value for the allocated resources. The first two cases (i,ii)
model natural formal requirements while the other two cases (iii,iv) model basic (individual) quality
requirements.

The efficiency requirements are also relevant from the computational complexity perspective. To see
this, assume—as we do in our paper—that the resources are goods, that is, agents report non-negative
utilities for them. In this case, all our efficiency concepts for ¢ = 1 are significantly less demanding than
multiple other prominent efficiency concepts, such as completeness, as demonstrated by the earlier
folklore example. Hence, analyzing computational complexity of these very special cases allows us to
identify borders of efficient computability more accurately than before. On the other hand, if we find
efficient algorithms for these relaxed cases, their results can be practically interpreted as the minimum
efficiency levels that can be achieved. Indeed, given an instance of an allocation problem, by computing
the result with such an algorithm, one can argue that any fair allocation that is less efficient is unjustified.
Before we describe our findings, we briefly review the related literature to present the context helpful
to interpret our results.

1.1 Related Work

Computing fair and efficient allocations has recently emerged as a very prominent stream of research
in the area of fair allocation of indivisible resources. Allocations with maximum Nash welfare are
both Pareto optimal and EF1, but computing such allocations is NP-hard [16]. Likewise, computing an
allocation with the highest utilitarian social welfare among all EF1 allocations is NP-hard even for two
agents [4]. As discussed before, the main difference of our model is that we allow partial allocations,
and consequently we consider envy-freeness instead of its relaxation EF1.

Allowing partial allocations is an important approach to guarantee the existence of EFX allocations
(the existence of EFX complete allocations is still an open question). Caragiannis et al. [15] showed
that there always exists an EFX partial allocation with at least half of the maximum Nash welfare.
Chaudhury et al. [17] showed that donating at most n — 1 resources can guarantee the existence of
EFX allocation such that no agent prefers the donated resources to their own bundle, where n denotes
the number of agents. This bound was latter improved to n — 2 in general and to 1 for the case with
four agents [7]. Besides existence, Bu et al. [13] studied the problem of computing partial allocations
with the maximum utilitarian welfare among all EFX allocations. Our work differs from this stream of
research in that we focus on envy-freeness instead of EFX.

Aziz et al. [3] studied the problem of deleting (or adding) a minimum number of resources such that the
resulting instance admits an envy-free allocation; which is equivalent to finding an envy-free allocation
with the maximum size. However, they consider ordinal preferences whereas we consider cardinal
preferences. Moreover, Aziz et al. [3] considered the number of deleted resources, where the problem
is NP-hard even if no resource can be deleted. In contrast, we consider the dual parameter the lower
bound on the allocated resources to identify polynomial-time solvable cases.

Boehmer et al. [10] studied the problem of transforming a given unfair allocation into an EF or EF1
allocation by donating few resources. In addition to upper bounds on the number of donated resources
and the decrease on the utilitarian welfare, they also consider the lower bounds on the remaining
allocated resources and the remaining utilitarian welfare. Dorn et al. [18, Chap 5] studied the same
problem but focused on a different fairness notion. The most prominent difference to our work is that
in our model there is no given allocation.

Hosseini et al. [23] introduced a fairness notion where agents can hide some of the resources in their
own bundles such that no agent is envious assuming that the agents do not know the existence of the
hidden resources in other agents’ bundles. Then the goal is to find a complete allocation and a minimum
number of hidden resources such that no agent is envious. While the idea is similar to find an envy-free



Table 1: Summary of results. Columns denote different utility constraints and efficiency threshold ¢ values. Rows
represent different efficiency concepts €. The hardness results for ¢ = 1 apply to every positive ¢ as well. For
both FPT entries in the table, the parameterization is by ¢.

Identical Binary Ternary
t=1 t=1 t t=1
utilitarian social welfare (usw) P (Th. 4) NP-h, FPT (Th. 4)
egalitarian social welfare (esw) NP-h P (Th. 2) P (Th. 2) NP-h
#resources allocated (size) (Th. 1) P (Th. 5) NP-h, FPT (Th. 5) (Th.7)
min-cardinality (mcar) P (Th. 6) NP-h (Th. 6)

partial allocation with the maximum size, note that the hidden resources are not deleted; their owners
get utility from them just like normal resources.

A series of works [20, 8, 24] studied the computational complexity of finding an envy-free house
allocation when the number of houses is larger than the number of agents. This is equivalent to finding
an envy-free (partial) allocation that allocates exactly one resource to each agent. Our model does not
have this kind of upper bound on the number of resources allocated to each agent. Aigner-Horev and
Segal-Halevi [1] studied the problem of finding an envy-free matching of maximum cardinality in a
bipartite graph. Taking the bipartite graph as the representation of binary utilities of agents on one
side towards resources on the other side, the problem studied by Aigner-Horev and Segal-Halevi [1]
is equivalent to finding an envy-free (partial) allocation with the maximum size such that each agent
gets at most one resource liked by it. Our model differs from it in that we do not add an upper bound
for agents’ bundles and we allow agents to receive resources with utility 0. Nevertheless, many of our
algorithms for binary utilities use the structural properties of envy-free matchings by Aigner-Horev
and Segal-Halevi [1].

1.2 Contributions and Outline

We study the computational complexity of finding envy-free partial allocations with mild efficiency
requirements. To this end, we consider a lower bound ¢ on utilitarian welfare, egalitarian welfare, the
number of allocated resources, or the minimum bundle size among all agents. Formal definitions can
be found in Section 2. An overview of our results is provided in Table 1. In Section 3, we show that
finding such allocations is strongly NP-hard, even if all agents have identical preferences. In Section 4,
we focus on the case with binary utilities, where each agent values a resource as either 0 or 1. We
show that all the four variants are polynomial-time solvable when ¢ = 1, indicating that determining
the existence of envy-free allocations with minimal efficiency requirements can be done efficiently.
For arbitrary ¢, while most problem variants become strongly NP-hard, we show that the utilitarian
welfare variant and the number of allocated resources variant are both fixed-parameter tractable (FPT)?
with respect to t, implying that the problems can still be efficiently solved for small ¢. A surprising
exception is the egalitarian welfare variant (which is typically harder than the utilitarian welfare): We
show a polynomial-time algorithm that finds an envy-free partial allocation where each agent obtains a
bundle with value at least ¢ (for arbitrary ¢). In Section 5, we go beyond binary preferences and allow
for three different utility values. We show a reduction from the egalitarian welfare variant to the other
three variants for ternary utilities and ¢t = 1, which reveals an interesting connection between the four
efficiency requirements and might be of independent interest. Based on this reduction, we show that

'A problem is fixed-parameter tractable with respect to some parameter k if it can be solved in f(k)|I |O(1> time, where
|1| denotes the input size.



all variants become strongly NP-hard already when ¢ = 1 for any ternary utility values {0, v, u} with
0 < v < u. Furthermore, all the problems shown to be NP-hard in this paper are contained in NP,
since verifying that an allocation (guessed non-deterministically) is envy-free and meets the respective
efficiency criterion is possible in polynomial time.

2 Preliminaries

We fix a collection R of m resources and a set A of n agents. Each agent a € A reports their cardinal
utility from each resource via the utility function u, : R — Ny.> We assume additive utilities, hence,
with a slight abuse of notation, for some set B C R of resources, the utility u,(B) of agent a € A
from B is the sum of the agent’s utilities for each resource in B, i.e., uq(B) = >, .c g ta(r).

We use specific classes of cardinal utilities reported by agents. Identical utilities denote a family of
utilities in which every agent’s utility functions are the same. The utilities are binary if agents’ utilities
use only values 0 or 1 and ternary when there are three possible values of utility that agents can report.

An allocation 7 : A — 27 assigns each agent a € A their private bundle 7(a), i.e., w(a) N 7(a’) = 0
for each distinct a,a’ € A. If (i) = 0, it is an empty bundle. If 7 is a partition of R, we say that 7
is complete, otherwise we call it partial. We call the smallest number mcar(7) := minge 4 |7 (a)| of
resources allocated to some agent the min-cardinality of 7, whereas by size(w) = > . 1 |m(a)| we
denote the total number of resources allocated by .

Given an allocation m : A — 2% and some collection (u,)qc of utility functions, we say that
agent a € A is envious regarding (u,) under 7 if there is another agent a’ € A whose bundle 7 (a’)
is preferred by a over their own bundle 7 (a); formally u,(m(a")) > uq(7(a)). An allocation 7 is
envy-free regarding (u,) if no agent is envious under 7. The utilitarian social welfare usw(m) of
regarding (ug) is the sum of the utilities of agents for their bundles, i.e., usw(m) == Y . 4 uq(7(a)).
Analogously, egalitarian social welfare esw(7r) is the minimum of the agent’s utilities, i.e., esw(7) :=
minge 4 uq(m(a)). (We omit “regarding (u,)” and “under 7”, respectively, when the context is clear.)

Our problem of interest is a computational problem of deciding if, for a given input, one can find
allocations that are envy-free and efficient. Following the introduction, we define our problem generally,
using an efficiency measure placeholder £ to be substituted by any of the efficiency measures of our
interest: utilitarian and egalitarian social welfare, size, and min-cardinality.

E-ENVY-FREE PARTIAL ALLOCATION (£-EF-PA)

Input: A set R of resources, a set A of agents, a collection (ug)qec.4 of utility functions u,: R — Ny
and an efficiency threshold t.

Question: Is there an envy-free allocation 7 such that £(7) > ¢?

3 Identical valuations

The case in which all agents have identical preferences is potentially simpler to solve than the general
case when finding our desired allocations. However, we show even in this scenario, our problem is
NP-hard for each efficiency notion we consider.

We show hardness for all studied efficiency concepts with ¢ = 1 via a reduction from the 3-PARTITION
problem [21]. The main idea is to have one resource for each number of the 3-PARTITION instance as
well as some well-designed dummy resources and extra agents, ensuring that each agent receives either
one dummy resource or three non-dummy resources such that the utility for them adds up to the same
value as the agents have for a dummy resource.

®Np denotes the set of all non-negative integers.



Theorem 1. For each £ € {usw, esw, size, mcar} it holds that £-EF-PA is strongly NP-hard, even ift = 1
and each agent has the same utility function.

Proof. The hardness proof proceeds by a reduction from the 3-PARTITION problem [21]. Given a multiset
of positive numbers N = {ey, €2, ..., e3,}, in 3-PARTITION we ask whether IV can be partitioned into
n three-element parts such that each of them sums up to b :== ) ¢;/n. Given an instance Z = (N)
of 3-PARTITION, we build an instance Z' = (R, A, (u,),t) of E-EF-PA, with ¢ = 1 and with identical
utilities, as follows:

e We put 3n + 1 agents ag, a1, as, . . ., asg, in A;

e We construct 3n normal resources Ry = {ri,72,...,r3,} and a set Rg of special resources with
IRs| =2n+1,ie, R = Ry URs;

e We let each agent a € A have the same utility function u such that u(r;) = e; + b for each resource
r; € Ry and u(r*) = 4b for each special resource 7 € Rg.

First we describe a structural property of every solution 7 to (R, A, (u,)). Note that it is clear that 7
cannot be an empty allocation, as this would violate the threshold value ¢ = 1 for each of efficiency
concepts £ € {usw, esw, size, mcar}. Further, since there are 3n + 1 agents and only 3n normal
resources, one agent has to get some special resource 7* € R g consequently obtaining utility at least 4b.
Otherwise, this agent would be envious. Hence, due to identical utilities, each agent has to get utility at
least 4b from their bundles. Finally, since the sum of the values of all resources is exactly (3n + 1) - 4b,
it follows that 7 assigns to each agent a bundle of value exactly 4b. Given that, it is easy to see that
each agent that gets a special resource, does not have any other resource assigned by 7. Thus, in 7
there are exactly 2n + 1 agents that get one special resource. The remaining n agents get exactly three
normal resources out of 3n of them. In any other case, because e; < b for each e; € N, there would be
at least one agent getting a utility smaller than 4b from their bundle.

We now show that the original instance Z is a YES-instance if and only if the constructed one, 7', is a
YES-instance. Our argument is solely based on the above-analyzed structure of solutions to Z'. Since
the structure applies to each studied efficiency concept when ¢ = 1, the argument works for each choice
of the efficiency concept.

(=) Suppose 7 is a YES-instance of 3-PARTITION. Then, there are n disjoint subsets, each summing up
to b. We denote each subset Nj = {e,(;), €y(j); €x(;)} for j € [n]. We build allocation 7 which certifies
that 7’ is a YES-instance. First, 7 allocates the three resources Tz(5)s Ty(j)s T=(;) to each agent a;, j € [n)].
Then, it gives the remaining 2n + 1 special resources to the remaining 2n + 1 agents, one resource per
agent. It is easy to verify that each agents gets utility exactly 4b from their bundle, which shows that 7'
is indeed a YES-instance.

(<=) Let us assume that Z’ is a YES-instance. Due to the structure of solutions to Z’ discussed earlier, we
know that there is an allocation 7r letting each agent have utility exactly 4b. The structure also requires
that 7r assigns one special resource to 2n + 1 agents (one per agent) and that each of the remaining
n agents gets exactly three resources whose utility is 4b. Without loss of generality, we label the latter
agents ay, as, ..., a, and denote the resources of agent a;, j € [n], by T2(j)> Ty(j)» and ;) for j € [n].
It follows that we can split NV into n subsets constructing a subset N; of numbers {e,(;y, €,(j); €x(j)}
for each j € [n]. By our construction, the sum €x(j) T €y(j) + €=(;) of numbers in each such subset N;
is b, which proves that 7 is a YES-instance.

Clearly, the reduction is computable in polynomial time.



The presented result categorically sets the limits of our expectations, as the hardness holds for the
weakest variants of efficiency concepts, that is, when the threshold ¢ = 1. Hence, we focus on other
aspects to identify polynomial-time tractable cases.

In the remaining sections, we will focus on restrictions on the set of utilities (resp. the images of the
utility functions), since it seems essential that they are unrestricted in the above hardness reduction for
identical preferences. Specifically, we study binary and ternary utilities, which are commonly studied
utility restrictions in the literature [6, 22, 5, 19].

4 Binary utilities

Given that identifying exact utility values imposes a high cognitive burden for human agents, in practice
binary utilities, where agents express preferences by pointing out which resources they desire and
which not, are sometimes even preferred over more complicated variants. It is then easier to elicit
correct preference data and to avoid excessive fatigue of the agents.

The good news is that for binary preferences, our problem with ¢ = 1 is solvable in polynomial time for
all the four efficiency notions. On the negative side, for arbitrary ¢, except for esw-EF-PA, the other
three efficiency concepts yield NP-hardness. For some of these cases, however, we could find efficient
(FPT) algorithms for bounded values of the threshold ¢.

4.1 Egalitarian social welfare

Beginning with esw-EF-PA, we show that it is polynomial-time solvable by providing a reduction to
computing a maximum cardinality matching in bipartite graphs.

Theorem 2. For 0/1-utilities esw-EF-PA is solvable in O(m??®) time.

Proof. Ift > ™*, then no allocation can get esw(7) > ¢. So, in the following we assume ¢t < ™. Given
an envy-free allocation 7 with esw(7) > ¢, we construct a new allocation 7’ by keeping ¢ arbitrary
resources from each agent’s bundle that are liked by the agent and deleting the other resources. Note
that 7’ also satisfies envy-freeness and esw(7’) > t. Therefore, it suffices to check whether there exists
an allocation such that every agent gets exactly ¢ resources liked by it. To this end, we create a bipartite
graph where one side consists of ¢ copies of each agent and the other side consists of all resources, and
there is an edge between an agent and a resource if the agent likes the resource. Then there exists an
envy-free allocation with esw(7) > t if and only if a maximum cardinality matching of this bipartite
graph, which can be computed in O((tn)!*m) = O(m?") time [25], saturates the agent side. O

4.2 Utilizing envy-free matchings

For the other three efficiency measures, we create a bipartite graph G = (XUY, E), where X = A,
Y =R, and there is an edge between x; € X and y; € Y if u;(r;) = 1. We use the concept of envy-free
matchings (EFM) for bipartite graphs introduced by Aigner-Horev and Segal-Halevi [1]. A matching M
in a bipartite graph G = (XUY,, E) is envy-free with respect to X if no vertex in X \ X, is adjacent
to any vertex in Y}, where X/ (resp. Y)s) represents the set of vertices from X (resp. Y') saturated
by M. Note that each envy-free matching M in G = (XUY, E) induces an envy-free allocation "/,
where every agent gets at most one resource. Slightly abusing the notation, we sometimes use subsets

of X (resp. Y) to denote the corresponding subsets of agents (resp. resources).

Aigner-Horev and Segal-Halevi [1] show that finding an envy-free matching of maximum cardinality
is solvable in polynomial time. The idea is to first compute an arbitrary matching M of maximum



cardinality. Then, starting with each vertex from X that is not saturated by M, we find M -alternating
paths, which partition the vertex set into two parts according to whether they are covered by these
paths or not. It is shown that this partition is independent of the initial matching M and that all
envy-free matchings are contained in the part not covered by the above M-alternating paths. In
the following theorem, we summarize the findings of Aigner-Horev and Segal-Halevi [1] related to
envy-free matchings that are relevant to our results.

Theorem 3 ([1]). Every bipartite graph G = (XUY, E) admits a unique partition X = XsUX, and
Y = YUY, called the EFM partition of G, satisfying the following conditions:

An Xy -saturating matching in G[X ;Y] always exists, and every Xp-saturating matching in
G[X1; Y] is an envy-free matching in G;

Every envy-free matching in G is contained in G[X1;Y1];

There are no edges between Xg and Yr,;

Each vertex in Yy is connected to at least one vertex in Xg.

Moreover, the unique EFM partition and a maximum envy-free matching (X -saturating matching in

G[X1;Y1]) can be computed in O(|E|/min{| X|, |Y'|}) time.

Based on Thm. 3, we derive the following lemma, which will be useful for designing algorithms in the
remainder of this section.

Lemma 1. For any envy-free allocation, all agents in X g receive a bundle of utility O and all the allocated
resources are from Y7,.

Proof. Given any envy-free allocation 7r, denote by A, the set of agents receiving a bundle of utility 0
and by A, the set of remaining agents (receiving a bundle of utility larger than 0). We construct a
new allocation 7’ as follows. For each agent from A, delete all resources from their bundle. For each
agent from A, keep an arbitrary resource in their bundle with utility 1 for the agent and delete the
other resources. We show that 7’ is still envy-free. Since the original allocation 7r is envy-free and all
agents from A, receive a bundle of utility 0 under 7, it must be that every agent from A, values every
resource allocated under 7r as 0, and hence no agent from A, will envy other agents under 7w’. Moreover,
under 7/, every agent from .4, receives a bundle of utility 1 and every agent gets exactly one resource,
so no agent from A, will be envious. Therefore, 7’ is envy-free. Since each agent either gets nothing
or gets one resource liked by it under 7/, it induces an envy-free matching M in G = (XUY, E).
According to Thm. 3, we have A, C X Since A = XgU X = A, U Ay, we have Xg C A, which
means that all agents from X receive a bundle of utility 0. Since 7 is envy-free, it follows that all the
allocated resources under 7 have utility 0 for agents from Xg. According to Thm. 3, each resource
in Y is liked by at least one agent from Xg, so all the allocated resources are from Y7.. ]

Based on the properties of envy-free matchings, we prove in the following that both 0/1-utilities usw-
EF-PA and 0/1-utilities size-EF-PA admit FPT algorithms parameterized by ¢, and that 0/1-mcar-EF-PA
is in P regardless of the choice of £.

4.3 Social welfare and allocation size

Based on Lemma 1, we can design an FPT algorithm for usw-EF-PA. The idea is that according to
Lemma 1, it suffices to consider allocations restricted to X and Y. If | X1 | > ¢, there is a trivial
solution following from the envy-free matching. Otherwise, we can bound the size of the instance by a
function depending only on ¢.



Theorem 4. For 0/1-utilities usw-EF-PA is NP-hard and fixed-parameter tractable with respect to t. In
particular, ift = 1, then usw-EF-PA is solvable in O(n'>m) time for 0/1-utilities.

Proof. Hardness follows from the equivalence of usw-EF-PA for 0/1-utilities with ¢ setting as the
maximum utilitarian social welfare among all allocations and the NP-hard problem of deciding the
existence of a Pareto efficient and envy-free allocation [11], since Bliem et al. [9, Ob.1] shows that, in
case of 0/1-utilities, an allocation is Pareto-efficient if and only if it is complete and every resource is
allocated to an agent that assigns 1 to it.

Next, we show that usw-EF-PA for 0/1-utilities is fixed-parameter tractable with respect to t. According
to Lemma 1, it suffices to check allocations that only allocate resources from Y7. In addition, since in
any desired allocation agents from X g receive a bundle of utility 0, it suffices to check allocations that
only allocate resources from Y7, to agents from X . If X = (), then no such allocations exists. In the
following analysis we assume X, # (). According to Thm. 3, there exists an envy-free matching M
of cardinality | X | in G[X;Yz]. If | X| > t, then M induces an envy-free allocation with social
welfare at least ¢ and we are done. Otherwise, we have | X| < t. Since agents have binary utilities, we
can partition all resources from Y7, into at most 21¥2! < 2! groups according to the subset of agents
from X1 who like the resource. If there is a group with more than ¢? resources, then allocating each
agent from X7, a different set of ¢ resources from this group is an envy-free allocation with social welfare
t|X 1| > t and we are done. This is because resources with zero utility for all agents are irrelevant and
can be removed during preprocessing. Thus, every resource has a positive value for at least one agent.
Otherwise, we have | Y| < 2#? and then we can bound the number of all possible allocations restricted
to X, and Y7, by 0(2'52 t?%). Thus, the problem is fixed-parameter tractable for ¢.

When ¢t = 1, it suffices to compute the EFM partition of G and check whether | X7,| > 1, so the running
time is O(n!*m) according to Thm. 3. O

Next, we provide an FPT algorithm for size-EF-PA using similar ideas. Here we just need to consider
allocations restricted to Y7, and we will compare the size of X (instead of X ) and ¢.

Theorem 5. For 0/1-utilities size-EF-PA is NP-hard and is fixed-parameter tractable with respect tot. In
particular, ift = 1, then size-EF-PA is solvable in O(n'->m) time for 0/1-utilities.

Proof. Hardness follows from size-EF-PA for 0/1-utilities with ¢ = |R| being equivalent to the problem
of deciding the existence of a complete and envy-free allocation, which is NP-hard [23, 2].

Next we show that size-EF-PA for 0/1-utilities is fixed-parameter tractable with respect to ¢. By
Lemma 1, it suffices to check allocations that only allocate resources from Y7. If |Y7| < t, then there
is no such allocation with size at least ¢. In the following analysis we assume |Y7| > ¢. If | X| < ¢,
then similar to the case for usw, we can bound the number of all possible allocations restricted to Y7,
by O(2!°2), and hence the problem is fixed-parameter tractable with respect to ¢. If | X| > ¢, then we
can find an envy-free allocation with size at least ¢ as follows. According to Thm. 3, there exists an
envy-free matching M of cardinality | X | in G[Xy; Yz], which induces an envy-free allocation /.
We extend v by letting each agent from X select a different resource from Y7, \ Y3, until there is no
remaining resource or each agent from Xg gets one resource. Denote the resulting allocation by 7. We
have size(7) > min{|X|, |Yz|} > t. According to Thm. 3, no resource from Y7, is liked by any agent
from Xg, so 7 is still envy-free.

For t = 1, computing the EFM partition of G and checking whether |Y7,| > 1 suffices; so Thm. 3 yields
running time O(n!5m). O



4.4 Min-cardinality

Finally, we consider mcar-EF-PA. The following lemma reduces mcar-EF-PA with ¢ = 1 to comparing
the cardinality of X and Y7, in the EFM partition of G.

Lemma 2. The following three statements are equivalent:

1. There exists an envy-free allocation 7 where every agent gets a non-empty bundle, i.e., mcar(m) > 1;

2. There exists an envy-free allocation 7 where every agent gets exactly one resource, i.e., |mw(a)| = 1

foreacha € A;
31X <YLl

Proof. (1) < (2): If there exists an envy-free allocation 7r with |7 (a)| = 1 for each a € A, then clearly
mear(m) > 1.

(1) = (2): Given an envy-free allocation 7 with mcar(7) > 1, denote by A, the set of agents receiving
a bundle of utility 0 and by .A4,, the set of remaining agents (receiving a bundle of utility larger than 0).
For each agent from A, keep an arbitrary resource in their bundle and delete the other resources. For
each agent from A, keep an arbitrary resource in their bundle with utility 1 for the agent and delete
the other resources. Denote by 7’ the resulting allocation, where every agent gets exactly one resource.
It remains to show that 7’ is envy-free. Since the original allocation 7 satisfies envy-freeness and
all agents from A, have utility 0 under 7r, it must be that every agent from .4, values every resource
allocated under 7 as 0, and hence no agent from A, will envy other agents under 7/. Moreover, under
7', since every agent from A, has utility 1 and every agent gets exactly one resource, no agent from
A, will be envious. Thus, 7’ satisfies envy-freeness.

(2) < (3): Suppose that | X| < |Y7|. According to Thm. 3 we can find a X -saturating envy-free
matching M in G[Xr; Yz], which induces an envy-free allocation 7w, where every agent gets at most
one resource. To get an envy-free allocation where every agent gets exactly one resource, we let each
remaining agent corresponding to X select a different resource from Y7, \ Yj;. Since |Y7| > | X|, there
are enough remaining resources from Y7, \ Y. Denote the resulting allocation by 7r, where every agent
now gets exactly one resource. Since there are no edges between Xg and Y7, all agents corresponding
to Xg are non-envious. For agents corresponding to X7, since they all have utility 1 and every agent
gets exactly one resource, all of them are non-envious. Therefore, 7 is envy-free.

(2) = (3): Let 7 be an envy-free allocation where every agent gets exactly one resource. According to
Lemma 1, all the allocated resources are from Y. Thus, | X| < |Y7|. O

It immediately follows that mcar-EF-PA with ¢ = 1 is solvable in polynomial time. We subsequently
prove the NP-hardness for the general case with arbitrary ¢. However, whether the problem is fixed-
parameter tractable with respect to ¢ remains open.

Theorem 6. For 0/1-utilities mcar-EF-PA is NP-hard. Ift = 1 then it is solvable in O(n'->m) time.

Proof. We show the NP-hardness of mcar-EF-PA by providing a simple many-one reduction from
size-EF-PA with ¢t = |R|, which is shown to be NP-hard in Thm. 5. Given an instance (A, R,t = |R|)
of size-EF-PA, we create an instance (A, R’, t') of mcar-EF-PA, where R’ contains all resources in R
and also t(].A| — 1) dummy resources that are not liked by any agent, and ' = ¢. It is easy to verify
that there exists an envy-free and complete allocation for the former instance if and only if there exists
an envy-free allocation such that every agent gets exactly ¢ resources for the latter instance.

When t = 1, according to Lemma 2 and Thm. 3, it suffices to compute the EFM partition for G and
check whether | X| < |Y7|, so the running time is O(n!->m). O




Table 2: Agent’s utility functions in the proof of Lemma 3.
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5 Ternary Valuations

We have seen that our problems are tractable for binary preferences and ¢ = 1, which already has
quite clear practical relevance as discussed in the introduction. A very natural question is whether
these positive results transfer to three different utility values. In this section we answer this question
negatively by showing strong NP-hardness for all the four goals under any three different utility values
{0,v,u} with 0 < v < w.

We start by providing a very general reduction from esw to the other three problems for any ternary
utilities which include utility zero and ¢t = 1.

Lemma 3. Let v and u be two positive integers with 0 < v < u. Let R be a set of resources, A be a
set of agents, and (ug)qe be a collection of utility functions with u, : R — {0, v, u}. Then, there exist
extended sets of resources R* = R U Rpadow and agents A* = AU Agpadow, and a collection of extended
utility functions (u})aec A+ (with w) (1) = uq(r) for each a € A and eachr € R) such that:

Regarding (u,) there exists an envy-free allocation 7% : A — 2R with esw(7V) > 1, if and only
if regarding (u®) there exists an envy-free allocation 7 : A* — 2% with £(7*) > 1 for each £ €
{mcar, usw, size}*. Moreover, (R*, A*, (u})ac.a+) can be computed in linear time.

Proof. Given (R, A, (ug)aeca), we construct (R* = R U Rgnadows A" = A U Ashadow, (U] )aca+) as
follows. For each resource, we create two corresponding shadow agents and two corresponding shadow
resources. That is, Aspadow := {al,a | ¥ € R} and Rgnadow := {r',7” | 7 € R}. We distinguish
between original agents A and shadow agents Agshadow, as well as between original resources R and
shadow resources Rshadow- The idea is to define utilities functions (u)ac 4+ such that whenever any
agent gets a resource, each shadow agent will also require a shadow resource, which in turn ensures

that every agent gets a resource of positive value. Formally, (u}),c4+ is defined as follows (see also
Table 2).

e For each original agent a and each original resource r, u* is identical to u, i.e., u} (r) = uq(r).
e Each original agent is interested in all the shadow resources and values each of them as v.
e Each shadow agent is interested in all the shadow resources and values each of them as u.

e Each shadow agent a;. or a] € A%, is also interested in their unique corresponding original

resource © € R, ie., u}, (r) = u’,(r) = v, and values all other original resources as 0.
T T

Next, we show that for (R*, A*, (u}),c4+) and any &, &’ € {mcar, usw, size} it holds that for every
envy-free allocation 7 with £(m) > 1 we also have £'(7) > 1. By definition, it is obvious that an
envy-free allocation 7 with mcar(7) > 1 orusw(m) > 1 must in both cases have size(7) > 1. Let us con-
versely assume that there exists some envy-free allocation 7 with size(7) > 1 for (R*, A*, (u})aca*)-
We want to show that mcar(7) > 1 and usw(m) > 1 also hold for (R*, A*, (u})4ca+). Since

size(m) > 1, at least one resource r is allocated. If r is not a shadow resource, then at least one

*Note that given any 7° for £ € {esw, mcar, usw, size}, we can compute each of the respective other allocations in
polynomial time. Here, the condition £(7*) > 1 corresponds to the setting ¢ = 1 in E-EF-PA.



of the two corresponding shadow agents a,. or a!’ gets a shadow resource. Thus, at least one shadow
resource is allocated under 7. Considering that each shadow agent can only gain a maximum value
of v from the original resources, and u > v, the fact that at least one shadow resource is allocated
under 7 makes every shadow agent require at least one shadow resource with value at least u. Since
| Ashadow| = |Rshadow| = , each shadow agent should receive exactly one shadow resource. Since
each original agent values each shadow resource as v, this enforces that each original agent gets a
bundle with value at least v. Therefore, we have mcar(7) > 1 and usw(mr) > 1.

To prove the lemma, it remains to show that there exists an envy-free allocation 7%V with esw(m
for (R, A, (tq)aca) if and only if there exists an envy-free allocation 75%® with £(7%1%¢) >

(R*7 A*, (UZ)aE.A* )

(=) Assume there exists an envy-free allocation 7%V with esw(7*") > 1 for (R, A, (ug)aca)-
We construct a desired allocation %€ for (R*, A*, (u})sc.+) as follows. Analogously to 7%V, we
let T8¢ = 7%V for each original agent a € A. Aside from that, each shadow agent is assigned an
arbitrary shadow resource. Clearly, original agents will not envy each other, and each of them receives
a bundle with positive value of at least v. Consequently, original agents will not envy shadow agents
either, since they perceive the value of each shadow agent’s bundle to be exactly v. Meanwhile, shadow
agents will not envy original agents because, in their views, the value of each shadow agent’s bundle
is u, whereas the value of any original agent’s bundle does not exceed v.

) >1
> 1 for

(<=) Assume there exists some envy-free allocation 75%® with size(7%%®) > 1 for (R*, A*, (u})aca*).
Recall that in 75%¢, each shadow agent must get exactly one shadow resource, and each original agent
must get a bundle with a positive value. Thus, we have esw(75%®) > 1. We create an allocation 7%
for (R, A, (tuq)ac.a) in a straight-forward way by setting 7% := 75%® for each original agent a € A.
Note that this is indeed a well-defined allocation for (R, A, (u4)sc4) since 75%¢ allocates shadow
resources only to shadow agents. Since the original agents do not envy each another in 75¢ for
(R*, A*, (u})aeca~ ), and the utility functions of the original agents for original resources are identical
for (R*, A%, (u})aca+) and (R, A, (uq)aca), it follows that 7%V is envy-free for (R, A, (uq)aca). O

According to Lemma 3, if we show that esw-EF-PA is strongly NP-hard for ternary utility values 0 < v <
u, then we automatically also get the strong NP-hardness of £-EF-PA for each £ € {mcar, usw, size}.
Our main result in this section is that all the four goals are strongly NP-hard for ternary utility values
0 < v <wuevenift =1, stated as follows.

Theorem 7. Let £ € {esw, mcar, usw, size} and let v, u € N be fixed with0 < v < u. Then, £-EF-PA
is strongly NP-hard, even if each agent assigns only values from {0, v, u} to the resources andt = 1.

By Lemma 3, it suffices to show the strong NP-hardness for esw-EF-PA. To this end, the proof serves as
a case distinction over the values of © and v. Each lemma shows a different reduction from the NP-hard
Exact COVER BY 3-SETs (X3C) problem [21]. Given a multiset X = {x1, 2, ..., z3,} and a collection
C ={51,59,...,Sn} of 3-element subsets of X, X3C asks whether there is some C’ C C where every
element of X occurs in exactly one member of C’. The detailed proof of Theorem 7 is given in the
appendix.

6 Conclusions

We studied how to allocate indivisible resources to agents in an envy-free manner by relaxing the com-
mon requirement that all resources must be allocated. We considered envy-free partial allocations that
provide at least some utility or allocate some resources from both systematic or individual perspectives,
and we obtained comprehensive results under various classes of utilities. While most of the problems
we considered are generally NP-hard, we identified several tractable results for binary utilities by estab-
lishing interesting connections to matching problems on bipartite graphs. Notably, our tractable results



imply that, at least for binary utilities, if the goal is to allocate some resources or provide some utility
to agents, then the problem of finding envy-free partial allocations (or confirming their non-existence)
can be efficiently solved. Complementing the well-known NP-hardness of finding envy-free complete
allocations, our results provide a more fine-grained understanding of the computational complexity of
finding efficient envy-free allocations.

Our work can be extended in several directions. First, we show a stark contrast: some cases are tractable
under binary utilities but all scenarios become NP-hard under ternary utilities. It is worth further
exploring this frontier, in particular, bivalued utilities other than the combination of 0 and 1, that lie
between binary and ternary utilities. In the appendix, we provide some initial results for 1/2 utilities.
When ¢ = 1 all the four efficiency measures are equivalent, and we can reduce the problem to the
case where each agent can get at most two resources. Second, we assumed all resources are goods. A
natural extension is to study chores or mixed resources. For chores, the case of a planner who wants to
distribute as many tasks to agents as possible well justifies our measures size and mcar. Here a relevant
result is that for chores and binary values (or even binary marginals), there always exists an envy-free
allocation with at most n — 1 unallocated resources [26]. Finally, applying our setting for alternative
fairness notions, such as equitability, instead of envy-freeness offers another research direction. We
note that for identical utilities, these two fairness notions are equivalent.
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Appendix
7 Additional Material for Section 5

7.1 Proof of Thm. 7

By Lemma 3, it suffices to show the strong NP-hardness for esw-EF-PA. To this end, the following
Lemma 3 to 6 serve as a case distinction over the values of u and v. Each lemma shows a different
reduction from the NP-hard Exact CoveRr BY 3-SETs (X3C) problem [21]. Given a multiset X =
{x1,x9,...,x3,} and a collection C' = {51, S, ..., Sy} of 3-element subsets of X, X3C asks whether
there is some C’ C C where every element of X occurs in exactly one member of C’. We assume
without loss of generality that m > 3n, as we can always add dummy 3-sets to guarantee this.

Lemma 4. esw-EF-PA with ternary utility values {0,v,u}, w = kv > 0, k > 3, andt = 1 is strongly
NP-hard.

Proof. The hardness proof proceeds by a reduction from X3C. Given an instance (X, C') of the X3C, we
construct an instance Z = (R, A, (uq)aea,t = 1) of the esw-EF-PA problem as follows.

e There are m cover agents Ac = {a1,as, ..., ay} and a special agent a*,ie., A= Ac U {a*}.
e There are 3n normal resources Ry = {ri,r2,...,r3n}, (k — 3)n small resources Rg =
{51,825 8(k—3)n}> (M — n) dummy resources Rp = {di,...,dm—n}, and a special resource

s, ie, R=RNURsURpU {S*}

e For each cover agent a; and each normal resource 7;, the utility function is defined such that
uj(r;) = vif x; € S, and u;j(r;) = 0 otherwise. Besides, each cover agent values each small
resource as v. Each cover agent values each dummy resource and the special resource s* as kv.
Finally, the special agent a* values the special resource s* as kv and values all other resources as 0.

We show that (X, C') is a YES-instance if and only if Z is a YES-instance.

(=) Assume that (X, C') is a YES-instance, then there is a subset C’ C C with |C’| = n such that
each e € X occurs in exactly one member of C’. For each S ;€ C,if 55 € C'’, then we allocate the 3
corresponding normal resources to a; resulting in value that a; gets being exactly 3 for now. Then, a;
will also get k& — 3 small resources, finally getting the value u (= kv). If S; ¢ C’, then we allocate 1
dummy resource to a;, which also results in value u. In addition, the special agent will get the special
resource which is valued at exactly . It is easy to check that every agent gets utility v = kv and values
other agents’ bundle by at most u = kv. Thus, Z is also a YES-instance.

(<=) Assume that there is a solution for the constructed instance Z of esw-EF-PA. Since in this solution
each agent has to get a bundle with a positive value, the special agent will get the special resource s*.
Then, each of the cover agents will require a bundle of value at least u = kv. Since the total value that
all the m cover agents can receive is at most 3nv + (k — 3)nv + (m — n)kv = mkuv, the value that each
cover agent receives should be exactly kv. Notice that m —n dummy resources can be allocated to m —n
cover agents, so the remaining n agents get all the normal and small resources. Since each remaining
agent can receive at most value 3v from the normal resources, we conclude that each of them gets 3
normal resources they like and k — 3 small resources. Let I; = {i;q,;p,%jc} be the normal resources
received by each remaining agent a;. Then we can find n corresponding sets S; = {4, 1, Tjc} from
C, which are pairwise disjoint. This induces a feasible solution C"’ for (X, C). Ul

Next we consider the case with v = 2v. The distinctive feature of the following proof, lies in our
creation of standard agents and special resources as benchmarks, ensuring that the value of the bundle



Table 3: Agent’s utility functions in the proof of Lemma 5.

b c d
r] 2v 2v
5 0 v 0
3 2v 2v 2v
T3 0 v 0

desired by each agent exceeds a certain constant value. Additionally, we introduce a large number
of special “observer” agents and corresponding blank resources to monitor potential combinations of
resources that may interfere with the reduction.

Lemma 5. esw-EF-PA with ternary utility values {0,v,u}, u = 2v > 0, and t = 1 is strongly NP-hard.

Proof. The hardness proof also proceeds by a reduction from X3C. Given an instance (X, C) of the
X3C, we construct an instance of Z = (R, A, (tg)aca,t = 1) of the esw-EF-PA problem as follows.

e There are m cover agents Ac = {a1,aq,...,an}, 3 standard agents b, ¢, d, and a set WV of observers
(of finite size to be specified later), i.e., A = Ac U {b,c,d} UW.

e There 3n normal resources Ry = {r1,72,...,73n}, n small resources Rg = {s1,82,...,8,},2(m—
n) dummy resources Rp = {di, ..., d2(m_n)} and a finite number of blank resources R g (where
|RB| = 2|W|) and 4 special resources 5,735,175, 75, 1.e, R = RNURgURpURpU{r},r3,r3, 75}

e For each cover agent a; and each normal resource 7;, the utility function is defined such that
uj(r;) = vifx; € S; and uj(r;) = 0 otherwise. Besides, each cover agent values each small
resource as v. In addition, each cover agent values each dummy resource and each special resource
as 2v. The cover agents are not interested in blank resources.

e For each standard agent and each special resource, the utility function is defined in Table 3 and the
standard agents are not interested in any of the other resources:

e FEach observer assigns value 2 to each blank resource and each special resource. In particular, there
are three different kinds of observers. Listing only resources for which the observers have a non-zero
value, we define them as follows: (1) Each observer wj ;.;. of type 1 values the two normal resources
ri,7j, and one dummy resource dj, at 2v, respectively. (2) Each observer wg; ik of type 2 values the
normal resource 7; and the dummy resource d; and the small resource s, at 2v, respectively. (3) An
observer w* values every small resource and every dummy resource at 2v.

Overall, we create (32n) -m +3m -n - 2(m — n) + 1 observers. Thus, there are O(m?n) numbers of
observers and blank resources. Assuming that there is a solution for the constructed instance Z of
esw-EF-PA, we have the following observations.

Ob. 1. We first consider the standard agents. Since each agent has to get a positive value, standard agent
d will get r3. Then, standard agent b will get ] and standard agent c will get 75 and 7. Since ¢
gets r5 and 7, each of the cover agents and the observers will require a value of at least 4v.

Ob. 2. The normal resources, dummy resources and small resources can only be allocated to the m cover
agents. This is because the cover agents are not interested in the blank resources and the sum of
the value that these three kinds of resources can provide is at most 4muw.

Ob. 3. Each cover agent gets utility exactly 4v. Thus, if a cover agent gets 2 dummy resources, they
cannot get any other resources.



Ob. 4. Since the observers can only get blank resources, each observer will get exactly two blank
resources.

Ob. 5. From the previous Observations 1-4, we can claim that each resource is allocated to one agent in
this allocation.

Ob. 6. No cover agent can get three different kinds of resources. Otherwise, some observer w, ik of
type 2 will envy.

Ob. 7. No cover agent can get one dummy resource and one small resource. Otherwise, this agent needs
another resource to ensure the bundle is of value at least 4v. However, this resource cannot be a
normal resource according to Observation 6, and it cannot be a small or dummy resource since
otherwise observer w* would envy this agent.

Ob. 8. No cover agent receives one dummy resource and one normal resource. Otherwise, the agent
needs another resource. Yet, neither can it be a dummy nor a normal resource because of,
respectively, the type 2 and 1 observers.

Ob. 9. It follows from Observations 3 and 6-8 above, that if some cover agent gets a dummy resource
then they will get exactly two dummy resources and nothing else. Thus, there are m — n cover
agents who get 2(m — n) two dummy resources.

Ob. 10. The remaining n cover agents get some normal resources and small resources and each of them
gets exactly 1 small resource. This is because the value that each of them can get from the normal
resources is at most 3v. According to the pigeonhole principle, there is and can only be one small
resource for each cover agent.

We show that (X, C') is a YES-instance if and only if Z is a YES-instance.

(=) Since (X, C) is a YES-instance, there is a subset C' C C' with |C’| = n such that every element
of X occurs in exactly one member of C". If S; € C’, we allocate the 3 corresponding normal resources
to each a; such that the value that a; can get is exactly 3v for now. In addition, each a; will also get 1
small resource and finally get the value 4v. If S; ¢ C’, we allocate 2 dummy resources and the value is
also 4v. Further, each observer gets 2 blank resources and the value is also 4v. Finally, b gets r], c gets
r5 and r}, d gets 3. In this case, no agent is envious. Thus, 7 is also a YES-instance.

(<=) Since Z is a YES-instance, combining the observations above, note that there are n agents a;
who only get three normal resources I; = {i;q,;p,%;c} and one small resource such that we can find
n corresponding sets S; = {Zjq, 1, . }. We can find exactly n such disjoint sets, which induces a
feasible solution C”. Thus, (X, C) is a YES-instance. O

Finally, we consider the case when u is not divisible by v. The following proof, while similar to the
previous one, involves additional considerations. These arise primarily because u may be significantly
greater than v. For some agents, in order to achieve a value exceeding u or even 2u solely through
resources valued at v, they would need to acquire a multiple of these resources.

Lemma 6. With ternary utility values {0,v,u = kv + ¢} forv > ¢ > 0,k > 0 esw-EF-PA is strongly
NP-hard andt = 1.

Proof. This final case builds up on ideas from Case 2, but has some more technicalities and uses more
involved auxiliary agents and resources. The hardness proof is again realized via a reduction from X3C.
Given an instance (X, C') of the X3C problem, we construct an instance Z = (R, A, (ug)qeca,t = 1) of
the esw-EF-PA problem as follows.

We have the following resources.



e A set of element resources Rx = {ri,r2,...,73,} as well as a set of dummy resources Rp =

{d1> s 7d3(m—n)}'

o Three sets of special resources: namely booster resources R g as well as guard resources Rrrd and R4,
whose cardinalities are specified later.

o Altogether, R = Rx URp URP URE U R,
We have the following agents.

e A set of m cover agents Ac = {a1,a9,...,am}.
e A set of three (utility) booster agents Ap = {b1, ba, b3 }.
e Asetof (3271) -3(m — n) rrd-guards A% = {g™4(r,7",d) | r,7’ € Rx,d € Rp,r #1'}.

o Asetof (*";™) - 3n rdd-guards A = {g™(r,d,d') | r € Rx,d,d' € Rp,d # d'}.
Before we go into the formal proof, we provide some intuition:

e The cover agents together with the element and dummy resources are meant to encode the X3C
solution: A cover agent corresponding to a set selected in the X3C solution gets a bundle of three
element resources and a cover agent corresponding to a set that is not selected gets a bundle of three
dummy resources.

e Booster agents are used to boost the minimum utility value of the other agents’ bundle: They need
to obtain predetermined bundles of booster resources and the other agents also have some value for
some of these resources. To avoid envy towards the booster agents, the bundles of the other agents
need to have a specific value for them.

e Guard agents ensure that cover agents can only get bundles that either contain three element or
three dummy resources. Each guard “forbids” a specific combination mixed bundles.

Next, we fully specify the special resources. To do so, we define that k; =k + 1 and ko = min{k’ €

N | K xv > 2u} Now, Rp = Rbl URbQ URb3 Witth1 = {s"}, Rb = {51 ,52 b bz} and
d __ d d d
= {31 732 S s,@} Moreover, the guards resources are Rg = {s7, s5¢, ..., sy, Arrd|} and
erd {stdd grdd zdd‘Ardﬂ} Note that v < kv < u < kv < 2u < kov < 3u.

We now define the utility functions of the agents by specifying non-zero utility values (that is, in all
combinations not specified here, the agent assigns utility zero to the resource).

e For each cover agent a; and each element resource r;, we have U, (ri) = wifz; € S5 (and
g, (i) = 0 otherwise). Moreover, cover agents assign utility u to each dummy resource and to 81{3
bs bs
55°, and s3

e The booster agent b; assigns utility u to s”* only.
e The booster agent by assigns utility u to s and utility v to each resource from 7?,%2.
e The booster agent b3 assigns utility u to 51{2 and 832, and utility v to each resource from R%g.

e The rrd-guard g™?(r, 7/, d) assigns utility u to the element resources 7 and 7’ and to the dummy
resource d and utility v to each of the resources from Rréd. They also assigns utility u to sl{?’ and 333



e The rdd-guard g™4(r, d, d') assigns utility u to the element resource 7 and to the dummy resources d
and d’ and utility v to each of the resources from Rrgd. They also assigns utility u to 51{3 and 533.

Finally, there are overall m + 3 + (3271) -3(m —n) + (3(m2_n)) - 3n agents and 3n + 3(m —n) + 1 +

k1 + ko + ko - (3;) -3(m —n)+ ko - (S(m;n)) - 3n resources. The the construction can definitely be
performed in polynomial time.

Assuming that there is a solution for the constructed instance Z, we have the following observations.

Ob. 1. The agent by will get 51, otherwise the value of their bundle will be 0.

Ob. 2. The agent by will get all resources from ng. Otherwise, they will envy by who gets value of u
in their eyes.

Ob. 3. The agent b3 will get all resources of R%”. Otherwise, they will envy by who gets value of 2u
in their eyes.

Ob. 4. Each of the cover agents will get exactly three resources from R x U Rp and get value of 3u.
Otherwise, some of them will envy booster agent b3 who gets value of 3u in their eyes. By the
pigeonhole principle, this implies that other agents (who are not cover agents) cannot get any
element or dummy resource.

Ob.5. Each rrd-guard gets ko arbitrary resources from Rréd and each rdd-guard gets ks arbitrary

resources from Rréid. If any of the guard agent gets fewer than k2 of the corresponding resources,
then the value of their bundle would be smaller than 2u and they would envy booster agent bs.
By pigeonhole principle, no guard agent can get more than k2 of the corresponding resources.

Ob. 6. It is not possible for any cover agent to get a bundle with resources from both Rx and Rp.
Assume that such agent o’ exists and gets {r,7’,d} with r # 1’ € Rx and d € Rp. Then,
the rrd-guard g(r, 7', d) would require at least ko + 1 resources from Rréd (to not envy d’); a
contradiction to the previous observation. Analogously (replacing rrd-guards by rdd-guards),
no cover agent can get {r,d,d’'} withr € Ry andd # d' € Rp.

We show that (X, C) is a YES-instance if and only if 7 is a YES-instance.

(=) Assume that (X, C') is a YES-instance, then there exists a subset C' C C with |C’| = n such that
every element of X occurs in exactly one member of C’. We construct a solution for Z as follows. Booster
agents will get resources as discussed in Observations 1 to 3 and guard-agents will get get resources as
discussed in Observation 5. For each S; € C,if S; € C !, we allocate the three corresponding element
resources to a;. If S; ¢ C’, we allocate three arbitrary dummy resources to a;. Since there are no
combinations of element resources and dummy resources (observation 6), no guard-agent will envy
(observation 4). Therefore, no agent will envy in this case. Thus, Z is also a YES-instance.

(<=) Assume that 7 is a YES-instance. According to the above observations, there is a set A* of n cover
agents who each get a bundle of three element resources. Let A* = {a;,,a;,,...,a;, }. Now, observe
that C* = {5;,,5j,,...,5;,} clearly form a feasible solution for (X, C'): Each element is covered
exactly once since each element resource is assigned to exactly one of these cover agents. Moreover,
the bundles of A* correspond exactly to the item subsets from C*. Thus, (X, C) is a YES-instance. []

The claim of Thm. 7 follows from Lemmas 3 to 6.

8 Bivalued valuations

When u;(a;) € {1,2} for any agent a; € A and any resource r; € R, the four efficiency measures are
equivalent.



Lemma 7. Whent = 1, forany &1, &y € {usw, esw, size, mcar}, & -EF-PA and E3-EF-PA are equivalent.

Proof. Since u;(a;) € {1,2}, if an envy-free allocation 7 satisfies that usw(7) > 1, then it follows
that size(7) > 1. By envy-freeness, size(w) > 1 implies that mcar(7) > 1. By positive value of every
resource, mcar(7r) > 1 implies that esw(7r) > 1, which implies that usw(7) > 1. O

We show that we can reduce the problem to the case where each agent gets at most two resources.

Lemma 8. Whent = 1, for £-EF-PA with any £ € {usw, esw, size, mcar}, there exists a desired envy-free
allocation if and only if

1. there exists a desired envy-free allocation where each agent gets exactly one resource, or

2. there exists a desired envy-free allocation where some agents get one resource they like and the
remaining agents get two resources.

Proof. According to Lemma 7, it suffices to consider one efficiency measure, say esw. The “if” direction
is trivial and we show the “only if” direction. We define a new utility function v’ for each agent such
that u}(r;) = u;(rj) — 1 for any resource r; € R. Since the value of each resource is decreased by 1,
it is easy to see that there exists an envy-free allocation where each agent gets exactly one resource
under the original utility function u if and only if there exists such an allocation under u'. Notice that
v’ is a binary valuation, and according to Lemma 2, there exists such an allocation under ' if and
only if | X| < |YL|. Suppose | X| > |YL|, which means case (1) does not happen, we show that case
(2) must happen. Since case (1) does not happen, for any envy-free allocation, at least one agent gets
more than one resource. Moreover, since | Xg| > |Ys|, we have |Y| < 2|X]|. Since u;(r;) € {1, 2}, if
one agent gets more than two resources, than all the other agents should get at least 2 resources to be
envy-free, which overall needs more than 2| X| > |Y'| = | R| resources and is impossible. Therefore, in
any envy-free allocation, every agent gets either one resource or two resources. Moreover, every agent
who gets one resource must get one resource they like, as otherwise they will envy agents who get two
resources. g

Open Question: For any £ € {usw, esw, size, mcar}, is £-EF-PA with bivalued valuations (1 and 2) and
t = 1 NP-hard?



	Introduction
	Related Work
	Contributions and Outline

	Preliminaries
	Identical valuations
	Binary utilities
	Egalitarian social welfare
	Utilizing envy-free matchings
	Social welfare and allocation size
	Min-cardinality

	Ternary Valuations
	Conclusions
	Additional Material for Section 5
	Proof of thm:ter

	Bivalued valuations

