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Abstract

Envy-freeness is one of the most prominent fairness concepts in the allocation of indivisible

goods. Even though trivial envy-free allocations always exist, rich literature shows this is

not true when one additionally requires some efficiency concept (e.g., completeness, Pareto-

efficiency, or social welfare maximization). In fact, in such case even deciding the existence of

an efficient envy-free allocation is notoriously computationally hard. In this paper, we explore

the limits of efficient computability by relaxing standard efficiency concepts and analyzing how

this impacts the computational complexity of the respective problems. Specifically, we allow

partial allocations (where not all goods are allocated) and impose only very mild efficiency

constraints, such as ensuring each agent receives a bundle with positive utility. Surprisingly,

even such seemingly weak efficiency requirements lead to a diverse computational complexity

landscape. We identify several polynomial-time solvable or fixed-parameter tractable cases for

binary utilities, yet we also find NP-hardness in very restricted scenarios involving ternary

utilities.

1 Introduction

Computing fair allocations of indivisible resources is an important issue with many applications

in all kinds of disciplines [11, 12, 27]. Envy-freeness, which ensures that no agent strictly prefers

the resources allocated to a different agent over their own, is one of the most prominent fairness

concepts [12]. Unfortunately, non-trivial envy-free allocations do not always exist, and computing

them is often associated to computationally very difficult problems [11]. In consequence, researchers

have developed several ways to relax that fairness notion, such as envy-free up to one good (EF1) [14]

and envy-free up to any good (EFX) [16].

If one has a close look, however, then one quickly realizes that envy-freeness alone does not enforce

any computational or existence issues: allocating no resource to anyone is envy-free. When adding an

efficiency component, such as requiring each resource to be allocated to someone (completeness), the

picture changes. A folklore example is an instance with n agents (say employees) and n+ 1 identical
resources (say laptops): in every possible complete allocation there is at least one agent a who gets

at most one resource and another agent a′ that gets at least two resources, so that (for reasonable

preferences) a envies a′. While there are certainly applications where this is indeed a problem, there

is likely a trivial solution in most applications: allocating only n of the n+ 1 resources (one to each

agent). Such observations lead to the main question of our paper: which (weaker) efficiency concepts

can help to identify additional (in comparison to completeness) envy-free allocations and what is the

consequence on the computational complexity of finding such allocations?

We come up with two basic ideas: What if the goal is not to allocate all resources, but to either just

allocate some resources to the agents or just provide some utility for the agents? In each case, we can

focus on either the whole society or individual agents. More concretely, we ask for an envy-free (partial)

allocation that (i) allocates at least t resources in total, or (ii) allocates at least t resources to each agent,

or (iii) has utilitarian welfare of at least t, or (iv) has egalitarian welfare of at least t.

Note that even variants for t = 1 have meaningful (potential) applications. They allow us to ask if

there is an envy-free allocation of (some of) the resources such that (i) at least one resource is allocated,



(ii) each agent gets at least one resource, (iii) at least one agent has a positive value for the allocated

resources, or (iv) each agent has a positive value for the allocated resources. The first two cases (i,ii)

model natural formal requirements while the other two cases (iii,iv) model basic (individual) quality

requirements.

The efficiency requirements are also relevant from the computational complexity perspective. To see

this, assume—as we do in our paper—that the resources are goods, that is, agents report non-negative

utilities for them. In this case, all our efficiency concepts for t = 1 are significantly less demanding than

multiple other prominent efficiency concepts, such as completeness, as demonstrated by the earlier

folklore example. Hence, analyzing computational complexity of these very special cases allows us to

identify borders of efficient computability more accurately than before. On the other hand, if we find

efficient algorithms for these relaxed cases, their results can be practically interpreted as the minimum

efficiency levels that can be achieved. Indeed, given an instance of an allocation problem, by computing

the result with such an algorithm, one can argue that any fair allocation that is less efficient is unjustified.

Before we describe our findings, we briefly review the related literature to present the context helpful

to interpret our results.

1.1 Related Work

Computing fair and efficient allocations has recently emerged as a very prominent stream of research

in the area of fair allocation of indivisible resources. Allocations with maximum Nash welfare are

both Pareto optimal and EF1, but computing such allocations is NP-hard [16]. Likewise, computing an

allocation with the highest utilitarian social welfare among all EF1 allocations is NP-hard even for two

agents [4]. As discussed before, the main difference of our model is that we allow partial allocations,

and consequently we consider envy-freeness instead of its relaxation EF1.

Allowing partial allocations is an important approach to guarantee the existence of EFX allocations

(the existence of EFX complete allocations is still an open question). Caragiannis et al. [15] showed

that there always exists an EFX partial allocation with at least half of the maximum Nash welfare.

Chaudhury et al. [17] showed that donating at most n − 1 resources can guarantee the existence of

EFX allocation such that no agent prefers the donated resources to their own bundle, where n denotes

the number of agents. This bound was latter improved to n− 2 in general and to 1 for the case with
four agents [7]. Besides existence, Bu et al. [13] studied the problem of computing partial allocations

with the maximum utilitarian welfare among all EFX allocations. Our work differs from this stream of

research in that we focus on envy-freeness instead of EFX.

Aziz et al. [3] studied the problem of deleting (or adding) a minimum number of resources such that the

resulting instance admits an envy-free allocation; which is equivalent to finding an envy-free allocation

with the maximum size. However, they consider ordinal preferences whereas we consider cardinal

preferences. Moreover, Aziz et al. [3] considered the number of deleted resources, where the problem

is NP-hard even if no resource can be deleted. In contrast, we consider the dual parameter the lower

bound on the allocated resources to identify polynomial-time solvable cases.

Boehmer et al. [10] studied the problem of transforming a given unfair allocation into an EF or EF1

allocation by donating few resources. In addition to upper bounds on the number of donated resources

and the decrease on the utilitarian welfare, they also consider the lower bounds on the remaining

allocated resources and the remaining utilitarian welfare. Dorn et al. [18, Chap 5] studied the same

problem but focused on a different fairness notion. The most prominent difference to our work is that

in our model there is no given allocation.

Hosseini et al. [23] introduced a fairness notion where agents can hide some of the resources in their

own bundles such that no agent is envious assuming that the agents do not know the existence of the

hidden resources in other agents’ bundles. Then the goal is to find a complete allocation and a minimum

number of hidden resources such that no agent is envious. While the idea is similar to find an envy-free



Table 1: Summary of results. Columns denote different utility constraints and efficiency threshold t values. Rows
represent different efficiency concepts E . The hardness results for t = 1 apply to every positive t as well. For
both FPT entries in the table, the parameterization is by t.

Identical Binary Ternary

t = 1 t = 1 t t = 1

utilitarian social welfare (usw)

NP-h

(Th. 1)

P (Th. 4) NP-h, FPT (Th. 4)

NP-h

(Th. 7)

egalitarian social welfare (esw) P (Th. 2) P (Th. 2)

#resources allocated (size) P (Th. 5) NP-h, FPT (Th. 5)

min-cardinality (mcar) P (Th. 6) NP-h (Th. 6)

partial allocation with the maximum size, note that the hidden resources are not deleted; their owners

get utility from them just like normal resources.

A series of works [20, 8, 24] studied the computational complexity of finding an envy-free house

allocation when the number of houses is larger than the number of agents. This is equivalent to finding

an envy-free (partial) allocation that allocates exactly one resource to each agent. Our model does not

have this kind of upper bound on the number of resources allocated to each agent. Aigner-Horev and

Segal-Halevi [1] studied the problem of finding an envy-free matching of maximum cardinality in a

bipartite graph. Taking the bipartite graph as the representation of binary utilities of agents on one

side towards resources on the other side, the problem studied by Aigner-Horev and Segal-Halevi [1]

is equivalent to finding an envy-free (partial) allocation with the maximum size such that each agent

gets at most one resource liked by it. Our model differs from it in that we do not add an upper bound

for agents’ bundles and we allow agents to receive resources with utility 0. Nevertheless, many of our

algorithms for binary utilities use the structural properties of envy-free matchings by Aigner-Horev

and Segal-Halevi [1].

1.2 Contributions and Outline

We study the computational complexity of finding envy-free partial allocations with mild efficiency

requirements. To this end, we consider a lower bound t on utilitarian welfare, egalitarian welfare, the

number of allocated resources, or the minimum bundle size among all agents. Formal definitions can

be found in Section 2. An overview of our results is provided in Table 1. In Section 3, we show that

finding such allocations is strongly NP-hard, even if all agents have identical preferences. In Section 4,

we focus on the case with binary utilities, where each agent values a resource as either 0 or 1. We

show that all the four variants are polynomial-time solvable when t = 1, indicating that determining

the existence of envy-free allocations with minimal efficiency requirements can be done efficiently.

For arbitrary t, while most problem variants become strongly NP-hard, we show that the utilitarian

welfare variant and the number of allocated resources variant are both fixed-parameter tractable (FPT)
1

with respect to t, implying that the problems can still be efficiently solved for small t. A surprising

exception is the egalitarian welfare variant (which is typically harder than the utilitarian welfare): We

show a polynomial-time algorithm that finds an envy-free partial allocation where each agent obtains a

bundle with value at least t (for arbitrary t). In Section 5, we go beyond binary preferences and allow

for three different utility values. We show a reduction from the egalitarian welfare variant to the other

three variants for ternary utilities and t = 1, which reveals an interesting connection between the four

efficiency requirements and might be of independent interest. Based on this reduction, we show that

1

A problem is fixed-parameter tractable with respect to some parameter k if it can be solved in f(k)|I|O(1)
time, where

|I| denotes the input size.



all variants become strongly NP-hard already when t = 1 for any ternary utility values {0, v, u} with

0 < v < u. Furthermore, all the problems shown to be NP-hard in this paper are contained in NP,

since verifying that an allocation (guessed non-deterministically) is envy-free and meets the respective

efficiency criterion is possible in polynomial time.

2 Preliminaries

We fix a collectionR ofm resources and a set A of n agents. Each agent a ∈ A reports their cardinal

utility from each resource via the utility function ua : R → N0.
2
We assume additive utilities, hence,

with a slight abuse of notation, for some set B ⊆ R of resources, the utility ua(B) of agent a ∈ A
from B is the sum of the agent’s utilities for each resource in B, i.e., ua(B) :=

∑
r∈B ua(r).

We use specific classes of cardinal utilities reported by agents. Identical utilities denote a family of

utilities in which every agent’s utility functions are the same. The utilities are binary if agents’ utilities

use only values 0 or 1 and ternary when there are three possible values of utility that agents can report.

An allocation π : A → 2R assigns each agent a ∈ A their private bundle π(a), i.e., π(a) ∩ π(a′) = ∅
for each distinct a, a′ ∈ A. If π(i) = ∅, it is an empty bundle. If π is a partition of R, we say that π
is complete, otherwise we call it partial. We call the smallest number mcar(π) := mina∈A |π(a)| of
resources allocated to some agent the min-cardinality of π, whereas by size(π) :=

∑
a∈A |π(a)| we

denote the total number of resources allocated by π.

Given an allocation π : A → 2R and some collection (ua)a∈A of utility functions, we say that

agent a ∈ A is envious regarding (ua) under π if there is another agent a′ ∈ A whose bundle π(a′)
is preferred by a over their own bundle π(a); formally ua(π(a

′)) > ua(π(a)). An allocation π is

envy-free regarding (ua) if no agent is envious under π. The utilitarian social welfare usw(π) of π
regarding (ua) is the sum of the utilities of agents for their bundles, i.e., usw(π) :=

∑
a∈A ua(π(a)).

Analogously, egalitarian social welfare esw(π) is the minimum of the agent’s utilities, i.e., esw(π) :=
mina∈A ua(π(a)). (We omit “regarding (ua)” and “under π”, respectively, when the context is clear.)

Our problem of interest is a computational problem of deciding if, for a given input, one can find

allocations that are envy-free and efficient. Following the introduction, we define our problem generally,

using an efficiency measure placeholder E to be substituted by any of the efficiency measures of our

interest: utilitarian and egalitarian social welfare, size, and min-cardinality.

E-Envy-Free Partial Allocation (E-EF-PA)
Input: A setR of resources, a set A of agents, a collection (ua)a∈A of utility functions ua : R → N0

and an efficiency threshold t.
Question: Is there an envy-free allocation π such that E(π) ≥ t?

3 Identical valuations

The case in which all agents have identical preferences is potentially simpler to solve than the general

case when finding our desired allocations. However, we show even in this scenario, our problem is

NP-hard for each efficiency notion we consider.

We show hardness for all studied efficiency concepts with t = 1 via a reduction from the 3-partition

problem [21]. The main idea is to have one resource for each number of the 3-partition instance as

well as some well-designed dummy resources and extra agents, ensuring that each agent receives either

one dummy resource or three non-dummy resources such that the utility for them adds up to the same

value as the agents have for a dummy resource.

2N0 denotes the set of all non-negative integers.



Theorem 1. For each E ∈ {usw, esw, size,mcar} it holds that E-EF-PA is strongly NP-hard, even if t = 1
and each agent has the same utility function.

Proof. The hardness proof proceeds by a reduction from the 3-partition problem [21]. Given a multiset

of positive numbers N = {e1, e2, . . . , e3n}, in 3-partition we ask whether N can be partitioned into

n three-element parts such that each of them sums up to b :=
∑

ei∈N ei/n. Given an instance I = (N)
of 3-partition, we build an instance I ′ = (R,A, (ua), t) of E-EF-PA, with t = 1 and with identical

utilities, as follows:

• We put 3n+ 1 agents a0, a1, a2, . . ., a3n in A;

• We construct 3n normal resources RN = {r1, r2, . . . , r3n} and a set RS of special resources with
|RS | = 2n+ 1, i.e.,R = RN ∪RS ;

• We let each agent a ∈ A have the same utility function u such that u(ri) = ei + b for each resource

ri ∈ RN and u(r∗) = 4b for each special resource r∗ ∈ RS .

First we describe a structural property of every solution π to (R,A, (ua)). Note that it is clear that π
cannot be an empty allocation, as this would violate the threshold value t = 1 for each of efficiency

concepts E ∈ {usw, esw, size,mcar}. Further, since there are 3n + 1 agents and only 3n normal

resources, one agent has to get some special resource r∗ ∈ RS consequently obtaining utility at least 4b.
Otherwise, this agent would be envious. Hence, due to identical utilities, each agent has to get utility at

least 4b from their bundles. Finally, since the sum of the values of all resources is exactly (3n+ 1) · 4b,
it follows that π assigns to each agent a bundle of value exactly 4b. Given that, it is easy to see that

each agent that gets a special resource, does not have any other resource assigned by π. Thus, in π
there are exactly 2n+ 1 agents that get one special resource. The remaining n agents get exactly three

normal resources out of 3n of them. In any other case, because ei < b for each ei ∈ N , there would be

at least one agent getting a utility smaller than 4b from their bundle.

We now show that the original instance I is a YES-instance if and only if the constructed one, I ′
, is a

YES-instance. Our argument is solely based on the above-analyzed structure of solutions to I ′
. Since

the structure applies to each studied efficiency concept when t = 1, the argument works for each choice

of the efficiency concept.

(=⇒) Suppose I is a YES-instance of 3-partition. Then, there are n disjoint subsets, each summing up

to b. We denote each subset Nj = {ex(j), ey(j), ez(j)} for j ∈ [n]. We build allocation π which certifies

that I ′
is a YES-instance. First, π allocates the three resources rx(j), ry(j), rz(j) to each agent aj , j ∈ [n].

Then, it gives the remaining 2n+ 1 special resources to the remaining 2n+ 1 agents, one resource per

agent. It is easy to verify that each agents gets utility exactly 4b from their bundle, which shows that I ′

is indeed a YES-instance.

(⇐=) Let us assume that I ′
is a YES-instance. Due to the structure of solutions to I ′

discussed earlier, we

know that there is an allocation π letting each agent have utility exactly 4b. The structure also requires

that π assigns one special resource to 2n+ 1 agents (one per agent) and that each of the remaining

n agents gets exactly three resources whose utility is 4b. Without loss of generality, we label the latter

agents a1, a2, . . . , an and denote the resources of agent aj , j ∈ [n], by rx(j), ry(j), and rz(j) for j ∈ [n].
It follows that we can split N into n subsets constructing a subset Nj of numbers {ex(j), ey(j), ez(j)}
for each j ∈ [n]. By our construction, the sum ex(j) + ey(j) + ez(j) of numbers in each such subset Nj

is b, which proves that I is a YES-instance.

Clearly, the reduction is computable in polynomial time.



The presented result categorically sets the limits of our expectations, as the hardness holds for the

weakest variants of efficiency concepts, that is, when the threshold t = 1. Hence, we focus on other

aspects to identify polynomial-time tractable cases.

In the remaining sections, we will focus on restrictions on the set of utilities (resp. the images of the

utility functions), since it seems essential that they are unrestricted in the above hardness reduction for

identical preferences. Specifically, we study binary and ternary utilities, which are commonly studied

utility restrictions in the literature [6, 22, 5, 19].

4 Binary utilities

Given that identifying exact utility values imposes a high cognitive burden for human agents, in practice

binary utilities, where agents express preferences by pointing out which resources they desire and

which not, are sometimes even preferred over more complicated variants. It is then easier to elicit

correct preference data and to avoid excessive fatigue of the agents.

The good news is that for binary preferences, our problem with t = 1 is solvable in polynomial time for

all the four efficiency notions. On the negative side, for arbitrary t, except for esw-EF-PA, the other
three efficiency concepts yield NP-hardness. For some of these cases, however, we could find efficient

(FPT) algorithms for bounded values of the threshold t.

4.1 Egalitarian social welfare

Beginning with esw-EF-PA, we show that it is polynomial-time solvable by providing a reduction to

computing a maximum cardinality matching in bipartite graphs.

Theorem 2. For 0/1-utilities esw-EF-PA is solvable in O(m2.5) time.

Proof. If t > m
n , then no allocation can get esw(π) ≥ t. So, in the following we assume t ≤ m

n . Given

an envy-free allocation π with esw(π) ≥ t, we construct a new allocation π′
by keeping t arbitrary

resources from each agent’s bundle that are liked by the agent and deleting the other resources. Note

that π′
also satisfies envy-freeness and esw(π′) ≥ t. Therefore, it suffices to check whether there exists

an allocation such that every agent gets exactly t resources liked by it. To this end, we create a bipartite

graph where one side consists of t copies of each agent and the other side consists of all resources, and

there is an edge between an agent and a resource if the agent likes the resource. Then there exists an

envy-free allocation with esw(π) ≥ t if and only if a maximum cardinality matching of this bipartite

graph, which can be computed in O((tn)1.5m) = O(m2.5) time [25], saturates the agent side.

4.2 Utilizing envy-free matchings

For the other three efficiency measures, we create a bipartite graph G = (X∪̇Y,E), where X = A,

Y = R, and there is an edge between xi ∈ X and yj ∈ Y if ui(rj) = 1. We use the concept of envy-free
matchings (EFM) for bipartite graphs introduced by Aigner-Horev and Segal-Halevi [1]. A matching M
in a bipartite graph G = (X∪̇Y,E) is envy-free with respect to X if no vertex in X \XM is adjacent

to any vertex in YM , where XM (resp. YM ) represents the set of vertices from X (resp. Y ) saturated

byM . Note that each envy-free matchingM in G = (X∪̇Y,E) induces an envy-free allocation πM
,

where every agent gets at most one resource. Slightly abusing the notation, we sometimes use subsets

of X (resp. Y ) to denote the corresponding subsets of agents (resp. resources).

Aigner-Horev and Segal-Halevi [1] show that finding an envy-free matching of maximum cardinality

is solvable in polynomial time. The idea is to first compute an arbitrary matching M of maximum



cardinality. Then, starting with each vertex from X that is not saturated by M , we find M -alternating

paths, which partition the vertex set into two parts according to whether they are covered by these

paths or not. It is shown that this partition is independent of the initial matching M and that all

envy-free matchings are contained in the part not covered by the above M -alternating paths. In

the following theorem, we summarize the findings of Aigner-Horev and Segal-Halevi [1] related to

envy-free matchings that are relevant to our results.

Theorem 3 ([1]). Every bipartite graph G = (X∪̇Y,E) admits a unique partition X = XS∪̇XL and
Y = YS∪̇YL, called the EFM partition of G, satisfying the following conditions:

• An XL-saturating matching in G[XL;YL] always exists, and every XL-saturating matching in
G[XL;YL] is an envy-free matching in G;

• Every envy-free matching in G is contained in G[XL;YL];

• There are no edges between XS and YL;

• Each vertex in YS is connected to at least one vertex in XS .

Moreover, the unique EFM partition and a maximum envy-free matching (XL-saturating matching in
G[XL;YL]) can be computed in O(|E|

√
min{|X|, |Y |}) time.

Based on Thm. 3, we derive the following lemma, which will be useful for designing algorithms in the

remainder of this section.

Lemma 1. For any envy-free allocation, all agents inXS receive a bundle of utility 0 and all the allocated
resources are from YL.

Proof. Given any envy-free allocation π, denote by Az the set of agents receiving a bundle of utility 0
and by Ap the set of remaining agents (receiving a bundle of utility larger than 0). We construct a

new allocation π′
as follows. For each agent from Az , delete all resources from their bundle. For each

agent from Ap keep an arbitrary resource in their bundle with utility 1 for the agent and delete the

other resources. We show that π′
is still envy-free. Since the original allocation π is envy-free and all

agents from Az receive a bundle of utility 0 under π, it must be that every agent from Az values every

resource allocated under π as 0, and hence no agent fromAz will envy other agents under π
′
. Moreover,

under π′
, every agent from Ap receives a bundle of utility 1 and every agent gets exactly one resource,

so no agent from Ap will be envious. Therefore, π
′
is envy-free. Since each agent either gets nothing

or gets one resource liked by it under π′
, it induces an envy-free matching M in G = (X∪̇Y,E).

According to Thm. 3, we have Ap ⊆ XL. Since A = XS ∪XL = Az ∪ Ap, we have XS ⊆ Az , which

means that all agents from XS receive a bundle of utility 0. Since π is envy-free, it follows that all the

allocated resources under π have utility 0 for agents from XS . According to Thm. 3, each resource

in YS is liked by at least one agent from XS , so all the allocated resources are from YL.

Based on the properties of envy-free matchings, we prove in the following that both 0/1-utilities usw-
EF-PA and 0/1-utilities size-EF-PA admit FPT algorithms parameterized by t, and that 0/1-mcar-EF-PA
is in P regardless of the choice of t.

4.3 Social welfare and allocation size

Based on Lemma 1, we can design an FPT algorithm for usw-EF-PA. The idea is that according to

Lemma 1, it suffices to consider allocations restricted to XL and YL. If |XL| ≥ t, there is a trivial

solution following from the envy-free matching. Otherwise, we can bound the size of the instance by a

function depending only on t.



Theorem 4. For 0/1-utilities usw-EF-PA is NP-hard and fixed-parameter tractable with respect to t. In
particular, if t = 1, then usw-EF-PA is solvable in O(n1.5m) time for 0/1-utilities.

Proof. Hardness follows from the equivalence of usw-EF-PA for 0/1-utilities with t setting as the

maximum utilitarian social welfare among all allocations and the NP-hard problem of deciding the

existence of a Pareto efficient and envy-free allocation [11], since Bliem et al. [9, Ob.1] shows that, in

case of 0/1-utilities, an allocation is Pareto-efficient if and only if it is complete and every resource is

allocated to an agent that assigns 1 to it.

Next, we show that usw-EF-PA for 0/1-utilities is fixed-parameter tractable with respect to t. According
to Lemma 1, it suffices to check allocations that only allocate resources from YL. In addition, since in

any desired allocation agents from XS receive a bundle of utility 0, it suffices to check allocations that

only allocate resources from YL to agents from XL. If XL = ∅, then no such allocations exists. In the

following analysis we assume XL ̸= ∅. According to Thm. 3, there exists an envy-free matching M
of cardinality |XL| in G[XL;YL]. If |XL| ≥ t, then M induces an envy-free allocation with social

welfare at least t and we are done. Otherwise, we have |XL| < t. Since agents have binary utilities, we

can partition all resources from YL into at most 2|XL| < 2t groups according to the subset of agents

from XL who like the resource. If there is a group with more than t2 resources, then allocating each

agent fromXL a different set of t resources from this group is an envy-free allocation with social welfare

t|XL| ≥ t and we are done. This is because resources with zero utility for all agents are irrelevant and

can be removed during preprocessing. Thus, every resource has a positive value for at least one agent.

Otherwise, we have |YL| < 2tt2 and then we can bound the number of all possible allocations restricted

to XL and YL by O(2t
2
t2t). Thus, the problem is fixed-parameter tractable for t.

When t = 1, it suffices to compute the EFM partition of G and check whether |XL| ≥ 1, so the running
time is O(n1.5m) according to Thm. 3.

Next, we provide an FPT algorithm for size-EF-PA using similar ideas. Here we just need to consider

allocations restricted to YL and we will compare the size of X (instead of XL) and t.

Theorem 5. For 0/1-utilities size-EF-PA is NP-hard and is fixed-parameter tractable with respect to t. In
particular, if t = 1, then size-EF-PA is solvable in O(n1.5m) time for 0/1-utilities.

Proof. Hardness follows from size-EF-PA for 0/1-utilities with t = |R| being equivalent to the problem
of deciding the existence of a complete and envy-free allocation, which is NP-hard [23, 2].

Next we show that size-EF-PA for 0/1-utilities is fixed-parameter tractable with respect to t. By

Lemma 1, it suffices to check allocations that only allocate resources from YL. If |YL| < t, then there

is no such allocation with size at least t. In the following analysis we assume |YL| > t. If |X| ≤ t,
then similar to the case for usw, we can bound the number of all possible allocations restricted to YL
by O(2t

2
t2t), and hence the problem is fixed-parameter tractable with respect to t. If |X| > t, then we

can find an envy-free allocation with size at least t as follows. According to Thm. 3, there exists an

envy-free matchingM of cardinality |XL| in G[XL;YL], which induces an envy-free allocation πM
.

We extend πM
by letting each agent fromXS select a different resource from YL \ YM until there is no

remaining resource or each agent from XS gets one resource. Denote the resulting allocation by π. We

have size(π) ≥ min{|X|, |YL|} ≥ t. According to Thm. 3, no resource from YL is liked by any agent

from XS , so π is still envy-free.

For t = 1, computing the EFM partition of G and checking whether |YL| ≥ 1 suffices; so Thm. 3 yields

running time O(n1.5m).



4.4 Min-cardinality

Finally, we considermcar-EF-PA. The following lemma reducesmcar-EF-PA with t = 1 to comparing

the cardinality of X and YL in the EFM partition of G.

Lemma 2. The following three statements are equivalent:

1. There exists an envy-free allocation π where every agent gets a non-empty bundle, i.e.,mcar(π) ≥ 1;

2. There exists an envy-free allocation π where every agent gets exactly one resource, i.e., |π(a)| = 1
for each a ∈ A;

3. |X| ≤ |YL|.

Proof. (1) ⇐ (2): If there exists an envy-free allocation π with |π(a)| = 1 for each a ∈ A, then clearly

mcar(π) ≥ 1.

(1) ⇒ (2): Given an envy-free allocation π withmcar(π) ≥ 1, denote byAz the set of agents receiving

a bundle of utility 0 and by Ap the set of remaining agents (receiving a bundle of utility larger than 0).
For each agent from Az , keep an arbitrary resource in their bundle and delete the other resources. For

each agent from Ap, keep an arbitrary resource in their bundle with utility 1 for the agent and delete

the other resources. Denote by π′
the resulting allocation, where every agent gets exactly one resource.

It remains to show that π′
is envy-free. Since the original allocation π satisfies envy-freeness and

all agents from Az have utility 0 under π, it must be that every agent from Az values every resource

allocated under π as 0, and hence no agent from Az will envy other agents under π′
. Moreover, under

π′
, since every agent from Ap has utility 1 and every agent gets exactly one resource, no agent from

Ap will be envious. Thus, π
′
satisfies envy-freeness.

(2) ⇐ (3): Suppose that |X| ≤ |YL|. According to Thm. 3 we can find a XL-saturating envy-free

matching M in G[XL;YL], which induces an envy-free allocation πM
, where every agent gets at most

one resource. To get an envy-free allocation where every agent gets exactly one resource, we let each

remaining agent corresponding toXS select a different resource from YL \YM . Since |YL| ≥ |X|, there
are enough remaining resources from YL \YM . Denote the resulting allocation by π, where every agent
now gets exactly one resource. Since there are no edges between XS and YL, all agents corresponding
to XS are non-envious. For agents corresponding to XL, since they all have utility 1 and every agent

gets exactly one resource, all of them are non-envious. Therefore, π is envy-free.

(2) ⇒ (3): Let π be an envy-free allocation where every agent gets exactly one resource. According to

Lemma 1, all the allocated resources are from YL. Thus, |X| ≤ |YL|.

It immediately follows thatmcar-EF-PA with t = 1 is solvable in polynomial time. We subsequently

prove the NP-hardness for the general case with arbitrary t. However, whether the problem is fixed-

parameter tractable with respect to t remains open.

Theorem 6. For 0/1-utilities mcar-EF-PA is NP-hard. If t = 1 then it is solvable in O(n1.5m) time.

Proof. We show the NP-hardness of mcar-EF-PA by providing a simple many-one reduction from

size-EF-PA with t = |R|, which is shown to be NP-hard in Thm. 5. Given an instance (A,R, t = |R|)
of size-EF-PA, we create an instance (A,R′, t′) of mcar-EF-PA, whereR′

contains all resources inR
and also t(|A| − 1) dummy resources that are not liked by any agent, and t′ = t. It is easy to verify

that there exists an envy-free and complete allocation for the former instance if and only if there exists

an envy-free allocation such that every agent gets exactly t resources for the latter instance.

When t = 1, according to Lemma 2 and Thm. 3, it suffices to compute the EFM partition for G and

check whether |X| ≤ |YL|, so the running time is O(n1.5m).



Table 2: Agent’s utility functions in the proof of Lemma 3.

r̄ ∈ R \ {r} r ∈ R r∗ ∈ Rshadow

a ∈ A ua(r̄) ua(r) v

a′r, a
′′
r ∈ Ashadow 0 v u

5 Ternary Valuations

We have seen that our problems are tractable for binary preferences and t = 1, which already has

quite clear practical relevance as discussed in the introduction. A very natural question is whether

these positive results transfer to three different utility values. In this section we answer this question

negatively by showing strong NP-hardness for all the four goals under any three different utility values

{0, v, u} with 0 < v < u.

We start by providing a very general reduction from esw to the other three problems for any ternary

utilities which include utility zero and t = 1.

Lemma 3. Let v and u be two positive integers with 0 < v < u. Let R be a set of resources, A be a
set of agents, and (ua)a∈A be a collection of utility functions with ua : R → {0, v, u}. Then, there exist
extended sets of resources R∗ = R∪Rshadow and agents A∗ = A ∪Ashadow, and a collection of extended
utility functions (u∗a)a∈A∗ (with u∗a(r) = ua(r) for each a ∈ A and each r ∈ R) such that:

Regarding (ua) there exists an envy-free allocation πesw : A → 2R with esw(πesw) ≥ 1, if and only
if regarding (u∗a) there exists an envy-free allocation π∗ : A∗ → 2R

∗
with E(π∗) ≥ 1 for each E ∈

{mcar, usw, size}3. Moreover, (R∗,A∗, (u∗a)a∈A∗) can be computed in linear time.

Proof. Given (R,A, (ua)a∈A), we construct (R∗ = R ∪ Rshadow,A∗ = A ∪ Ashadow, (u
∗
a)a∈A∗) as

follows. For each resource, we create two corresponding shadow agents and two corresponding shadow

resources. That is, Ashadow := {a′r, a′′r | r ∈ R} and Rshadow := {r′, r′′ | r ∈ R}. We distinguish

between original agents A and shadow agents Ashadow, as well as between original resources R and

shadow resources Rshadow. The idea is to define utilities functions (u∗a)a∈A∗ such that whenever any

agent gets a resource, each shadow agent will also require a shadow resource, which in turn ensures

that every agent gets a resource of positive value. Formally, (u∗a)a∈A∗ is defined as follows (see also

Table 2).

• For each original agent a and each original resource r, u∗ is identical to u, i.e., u∗a(r) = ua(r).

• Each original agent is interested in all the shadow resources and values each of them as v.

• Each shadow agent is interested in all the shadow resources and values each of them as u.

• Each shadow agent a′r or a
′′
r ∈ A∗

shadow
is also interested in their unique corresponding original

resource r ∈ R, i.e., u∗a′r(r) = u∗a′′r (r) = v, and values all other original resources as 0.

Next, we show that for (R∗,A∗, (u∗a)a∈A∗) and any E , E ′ ∈ {mcar,usw, size} it holds that for every
envy-free allocation π with E(π) ≥ 1 we also have E ′(π) ≥ 1. By definition, it is obvious that an

envy-free allocationπwithmcar(π) ≥ 1 or usw(π) ≥ 1must in both cases have size(π) ≥ 1. Let us con-
versely assume that there exists some envy-free allocation π with size(π) ≥ 1 for (R∗,A∗, (u∗a)a∈A∗).
We want to show that mcar(π) ≥ 1 and usw(π) ≥ 1 also hold for (R∗,A∗, (u∗a)a∈A∗). Since

size(π) ≥ 1, at least one resource r is allocated. If r is not a shadow resource, then at least one

3

Note that given any πE
for E ∈ {esw,mcar, usw, size}, we can compute each of the respective other allocations in

polynomial time. Here, the condition E(π∗) ≥ 1 corresponds to the setting t = 1 in E-EF-PA.



of the two corresponding shadow agents a′r or a
′′
r gets a shadow resource. Thus, at least one shadow

resource is allocated under π. Considering that each shadow agent can only gain a maximum value

of v from the original resources, and u > v, the fact that at least one shadow resource is allocated

under π makes every shadow agent require at least one shadow resource with value at least u. Since
|Ashadow| = |Rshadow| = 2|R|, each shadow agent should receive exactly one shadow resource. Since

each original agent values each shadow resource as v, this enforces that each original agent gets a

bundle with value at least v. Therefore, we havemcar(π) ≥ 1 and usw(π) ≥ 1.

To prove the lemma, it remains to show that there exists an envy-free allocation πesw
with esw(π) ≥ 1

for (R,A, (ua)a∈A) if and only if there exists an envy-free allocation πsize
with E(πsize) ≥ 1 for

(R∗,A∗, (u∗a)a∈A∗).

(=⇒) Assume there exists an envy-free allocation πesw
with esw(πesw) ≥ 1 for (R,A, (ua)a∈A).

We construct a desired allocation πsize
for (R∗,A∗, (u∗a)a∈A∗) as follows. Analogously to πesw

, we

let πsize
a = πesw

a for each original agent a ∈ A. Aside from that, each shadow agent is assigned an

arbitrary shadow resource. Clearly, original agents will not envy each other, and each of them receives

a bundle with positive value of at least v. Consequently, original agents will not envy shadow agents

either, since they perceive the value of each shadow agent’s bundle to be exactly v. Meanwhile, shadow

agents will not envy original agents because, in their views, the value of each shadow agent’s bundle

is u, whereas the value of any original agent’s bundle does not exceed v.

(⇐=) Assume there exists some envy-free allocation πsize
with size(πsize) ≥ 1 for (R∗,A∗, (u∗a)a∈A∗).

Recall that in πsize
, each shadow agent must get exactly one shadow resource, and each original agent

must get a bundle with a positive value. Thus, we have esw(πsize) ≥ 1. We create an allocation πesw

for (R,A, (ua)a∈A) in a straight-forward way by setting πesw
a := πsize

a for each original agent a ∈ A.
Note that this is indeed a well-defined allocation for (R,A, (ua)a∈A) since πsize

allocates shadow

resources only to shadow agents. Since the original agents do not envy each another in πsize
for

(R∗,A∗, (u∗a)a∈A∗), and the utility functions of the original agents for original resources are identical

for (R∗,A∗, (u∗a)a∈A∗) and (R,A, (ua)a∈A), it follows that π
esw

is envy-free for (R,A, (ua)a∈A).

According to Lemma 3, if we show that esw-EF-PA is strongly NP-hard for ternary utility values 0 < v <
u, then we automatically also get the strong NP-hardness of E-EF-PA for each E ∈ {mcar,usw, size}.
Our main result in this section is that all the four goals are strongly NP-hard for ternary utility values

0 < v < u even if t = 1, stated as follows.

Theorem 7. Let E ∈ {esw,mcar,usw, size} and let v, u ∈ N be fixed with 0 < v < u. Then, E-EF-PA
is strongly NP-hard, even if each agent assigns only values from {0, v, u} to the resources and t = 1.

By Lemma 3, it suffices to show the strong NP-hardness for esw-EF-PA. To this end, the proof serves as

a case distinction over the values of u and v. Each lemma shows a different reduction from the NP-hard

Exact Cover by 3-Sets (X3C) problem [21]. Given a multiset X = {x1, x2, . . . , x3n} and a collection

C = {S1, S2, . . . , Sm} of 3-element subsets ofX , X3C asks whether there is some C ′ ⊆ C where every

element of X occurs in exactly one member of C ′
. The detailed proof of Theorem 7 is given in the

appendix.

6 Conclusions

We studied how to allocate indivisible resources to agents in an envy-free manner by relaxing the com-

mon requirement that all resources must be allocated. We considered envy-free partial allocations that

provide at least some utility or allocate some resources from both systematic or individual perspectives,

and we obtained comprehensive results under various classes of utilities. While most of the problems

we considered are generally NP-hard, we identified several tractable results for binary utilities by estab-

lishing interesting connections to matching problems on bipartite graphs. Notably, our tractable results



imply that, at least for binary utilities, if the goal is to allocate some resources or provide some utility

to agents, then the problem of finding envy-free partial allocations (or confirming their non-existence)

can be efficiently solved. Complementing the well-known NP-hardness of finding envy-free complete

allocations, our results provide a more fine-grained understanding of the computational complexity of

finding efficient envy-free allocations.

Our work can be extended in several directions. First, we show a stark contrast: some cases are tractable

under binary utilities but all scenarios become NP-hard under ternary utilities. It is worth further

exploring this frontier, in particular, bivalued utilities other than the combination of 0 and 1, that lie
between binary and ternary utilities. In the appendix, we provide some initial results for 1/2 utilities.
When t = 1 all the four efficiency measures are equivalent, and we can reduce the problem to the

case where each agent can get at most two resources. Second, we assumed all resources are goods. A

natural extension is to study chores or mixed resources. For chores, the case of a planner who wants to

distribute as many tasks to agents as possible well justifies our measures size andmcar. Here a relevant
result is that for chores and binary values (or even binary marginals), there always exists an envy-free

allocation with at most n− 1 unallocated resources [26]. Finally, applying our setting for alternative

fairness notions, such as equitability, instead of envy-freeness offers another research direction. We

note that for identical utilities, these two fairness notions are equivalent.
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Appendix

7 Additional Material for Section 5

7.1 Proof of Thm. 7

By Lemma 3, it suffices to show the strong NP-hardness for esw-EF-PA. To this end, the following

Lemma 3 to 6 serve as a case distinction over the values of u and v. Each lemma shows a different

reduction from the NP-hard Exact Cover by 3-Sets (X3C) problem [21]. Given a multiset X =
{x1, x2, . . . , x3n} and a collection C = {S1, S2, . . . , Sm} of 3-element subsets ofX , X3C asks whether

there is some C ′ ⊆ C where every element of X occurs in exactly one member of C ′
. We assume

without loss of generality thatm > 3n, as we can always add dummy 3-sets to guarantee this.

Lemma 4. esw-EF-PA with ternary utility values {0, v, u}, u = kv > 0, k ≥ 3, and t = 1 is strongly
NP-hard.

Proof. The hardness proof proceeds by a reduction from X3C. Given an instance (X,C) of the X3C, we
construct an instance I = (R,A, (ua)a∈A, t = 1) of the esw-EF-PA problem as follows.

• There arem cover agents AC = {a1, a2, . . . , am} and a special agent a∗, i.e., A = AC ∪ {a∗}.

• There are 3n normal resources RN = {r1, r2, . . . , r3n}, (k − 3)n small resources RS =
{s1, s2, . . . , s(k−3)n}, (m − n) dummy resources RD = {d1, . . . , dm−n}, and a special resource
s∗, i.e.,R = RN ∪RS ∪RD ∪ {s∗}.

• For each cover agent aj and each normal resource ri, the utility function is defined such that

uj(ri) = v if xi ∈ Sj , and uj(ri) = 0 otherwise. Besides, each cover agent values each small

resource as v. Each cover agent values each dummy resource and the special resource s∗ as kv.
Finally, the special agent a∗ values the special resource s∗ as kv and values all other resources as 0.

We show that (X,C) is a YES-instance if and only if I is a YES-instance.

(=⇒) Assume that (X,C) is a YES-instance, then there is a subset C ′ ⊆ C with |C ′| = n such that

each e ∈ X occurs in exactly one member of C ′
. For each Sj ∈ C , if Sj ∈ C ′

, then we allocate the 3

corresponding normal resources to aj resulting in value that aj gets being exactly 3 for now. Then, aj
will also get k − 3 small resources, finally getting the value u (= kv). If Sj /∈ C ′

, then we allocate 1

dummy resource to aj , which also results in value u. In addition, the special agent will get the special

resource which is valued at exactly u. It is easy to check that every agent gets utility u = kv and values

other agents’ bundle by at most u = kv. Thus, I is also a YES-instance.

(⇐=) Assume that there is a solution for the constructed instance I of esw-EF-PA. Since in this solution

each agent has to get a bundle with a positive value, the special agent will get the special resource s∗.
Then, each of the cover agents will require a bundle of value at least u = kv. Since the total value that
all them cover agents can receive is at most 3nv+(k− 3)nv+(m−n)kv = mkv, the value that each
cover agent receives should be exactly kv. Notice thatm−n dummy resources can be allocated tom−n
cover agents, so the remaining n agents get all the normal and small resources. Since each remaining

agent can receive at most value 3v from the normal resources, we conclude that each of them gets 3
normal resources they like and k − 3 small resources. Let Ij = {ija, ijb, ijc} be the normal resources

received by each remaining agent aj . Then we can find n corresponding sets Sj = {xja, xjb, xjc} from

C , which are pairwise disjoint. This induces a feasible solution C ′
for (X,C).

Next we consider the case with u = 2v. The distinctive feature of the following proof, lies in our

creation of standard agents and special resources as benchmarks, ensuring that the value of the bundle



Table 3: Agent’s utility functions in the proof of Lemma 5.

b c d

r∗1 2v 2v 0

r∗2 0 v 0

r∗3 2v 2v 2v

r∗4 0 v 0

desired by each agent exceeds a certain constant value. Additionally, we introduce a large number

of special “observer” agents and corresponding blank resources to monitor potential combinations of

resources that may interfere with the reduction.

Lemma 5. esw-EF-PA with ternary utility values {0, v, u}, u = 2v > 0, and t = 1 is strongly NP-hard.

Proof. The hardness proof also proceeds by a reduction from X3C. Given an instance (X,C) of the
X3C, we construct an instance of I = (R,A, (ua)a∈A, t = 1) of the esw-EF-PA problem as follows.

• There are m cover agents AC = {a1, a2, . . . , am}, 3 standard agents b, c, d, and a set W of observers
(of finite size to be specified later), i.e., A = AC ∪ {b, c, d} ∪W .

• There 3n normal resourcesRN = {r1, r2, . . . , r3n}, n small resourcesRS = {s1, s2, . . . , sn} , 2(m−
n) dummy resources RD = {d1, . . . , d2(m−n)} and a finite number of blank resources RB (where

|RB| = 2|W|) and 4 special resources r∗1, r∗2, r∗3, r∗4 , i.e.,R = RN ∪RS ∪RD ∪RB ∪{r∗1, r∗2, r∗3, r∗4}.

• For each cover agent aj and each normal resource ri, the utility function is defined such that

uj(ri) = v if xi ∈ Sj and uj(ri) = 0 otherwise. Besides, each cover agent values each small

resource as v. In addition, each cover agent values each dummy resource and each special resource

as 2v. The cover agents are not interested in blank resources.

• For each standard agent and each special resource, the utility function is defined in Table 3 and the

standard agents are not interested in any of the other resources:

• Each observer assigns value 2 to each blank resource and each special resource. In particular, there

are three different kinds of observers. Listing only resources for which the observers have a non-zero

value, we define them as follows: (1) Each observer wi,j;k of type 1 values the two normal resources

ri, rj , and one dummy resource dk at 2v, respectively. (2) Each observer w′
i;j;k of type 2 values the

normal resource ri and the dummy resource dj and the small resource sk at 2v, respectively. (3) An
observer w∗

values every small resource and every dummy resource at 2v.

Overall, we create

(
3n
2

)
·m+ 3m · n · 2(m− n) + 1 observers. Thus, there are O(m2n) numbers of

observers and blank resources. Assuming that there is a solution for the constructed instance I of

esw-EF-PA, we have the following observations.

Ob. 1. We first consider the standard agents. Since each agent has to get a positive value, standard agent

d will get r∗3 . Then, standard agent b will get r∗1 and standard agent c will get r∗2 and r∗4 . Since c
gets r∗2 and r∗4 , each of the cover agents and the observers will require a value of at least 4v.

Ob. 2. The normal resources, dummy resources and small resources can only be allocated to them cover

agents. This is because the cover agents are not interested in the blank resources and the sum of

the value that these three kinds of resources can provide is at most 4mv.

Ob. 3. Each cover agent gets utility exactly 4v. Thus, if a cover agent gets 2 dummy resources, they

cannot get any other resources.



Ob. 4. Since the observers can only get blank resources, each observer will get exactly two blank

resources.

Ob. 5. From the previous Observations 1–4, we can claim that each resource is allocated to one agent in

this allocation.

Ob. 6. No cover agent can get three different kinds of resources. Otherwise, some observer w′
i;j;k of

type 2 will envy.

Ob. 7. No cover agent can get one dummy resource and one small resource. Otherwise, this agent needs

another resource to ensure the bundle is of value at least 4v. However, this resource cannot be a
normal resource according to Observation 6, and it cannot be a small or dummy resource since

otherwise observer w∗
would envy this agent.

Ob. 8. No cover agent receives one dummy resource and one normal resource. Otherwise, the agent

needs another resource. Yet, neither can it be a dummy nor a normal resource because of,

respectively, the type 2 and 1 observers.

Ob. 9. It follows from Observations 3 and 6–8 above, that if some cover agent gets a dummy resource

then they will get exactly two dummy resources and nothing else. Thus, there arem− n cover

agents who get 2(m− n) two dummy resources.

Ob. 10. The remaining n cover agents get some normal resources and small resources and each of them

gets exactly 1 small resource. This is because the value that each of them can get from the normal

resources is at most 3v. According to the pigeonhole principle, there is and can only be one small

resource for each cover agent.

We show that (X,C) is a YES-instance if and only if I is a YES-instance.

(=⇒) Since (X,C) is a YES-instance, there is a subset C ′ ⊆ C with |C ′| = n such that every element

ofX occurs in exactly one member of C ′
. If Sj ∈ C ′

, we allocate the 3 corresponding normal resources

to each aj such that the value that aj can get is exactly 3v for now. In addition, each aj will also get 1

small resource and finally get the value 4v. If Sj /∈ C ′
, we allocate 2 dummy resources and the value is

also 4v. Further, each observer gets 2 blank resources and the value is also 4v. Finally, b gets r∗1 , c gets
r∗2 and r∗4 , d gets r∗3 . In this case, no agent is envious. Thus, I is also a YES-instance.

(⇐=) Since I is a YES-instance, combining the observations above, note that there are n agents aj
who only get three normal resources Ij = {ija, ijb, ijc} and one small resource such that we can find

n corresponding sets Sj = {xja, xjb, xjc}. We can find exactly n such disjoint sets, which induces a

feasible solution C ′
. Thus, (X,C) is a YES-instance.

Finally, we consider the case when u is not divisible by v. The following proof, while similar to the

previous one, involves additional considerations. These arise primarily because u may be significantly

greater than v. For some agents, in order to achieve a value exceeding u or even 2u solely through

resources valued at v, they would need to acquire a multiple of these resources.

Lemma 6. With ternary utility values {0, v, u = kv + c} for v > c > 0, k > 0 esw-EF-PA is strongly
NP-hard and t = 1.

Proof. This final case builds up on ideas from Case 2, but has some more technicalities and uses more

involved auxiliary agents and resources. The hardness proof is again realized via a reduction from X3C.

Given an instance (X,C) of the X3C problem, we construct an instance I = (R,A, (ua)a∈A, t = 1) of
the esw-EF-PA problem as follows.

We have the following resources.



• A set of element resources RX = {r1, r2, . . . , r3n} as well as a set of dummy resources RD =
{d1, . . . , d3(m−n)}.

• Three sets of special resources: namely booster resources RB as well as guard resources Rrrd

G andRrdd

G ,

whose cardinalities are specified later.

• Altogether, R = RX ∪RD ∪RB ∪Rrrd

G ∪Rrdd

G .

We have the following agents.

• A set of m cover agents AC = {a1, a2, . . . , am}.

• A set of three (utility) booster agents AB = {b1, b2, b3}.

• A set of

(
3n
2

)
· 3(m− n) rrd-guards Arrd

G = {grrd(r, r′, d) | r, r′ ∈ RX , d ∈ RD, r ̸= r′}.

• A set of

(
3(m−n)

2

)
· 3n rdd-guards Ardd

G = {grrd(r, d, d′) | r ∈ RX , d, d′ ∈ RD, d ̸= d′}.

Before we go into the formal proof, we provide some intuition:

• The cover agents together with the element and dummy resources are meant to encode the X3C

solution: A cover agent corresponding to a set selected in the X3C solution gets a bundle of three

element resources and a cover agent corresponding to a set that is not selected gets a bundle of three

dummy resources.

• Booster agents are used to boost the minimum utility value of the other agents’ bundle: They need

to obtain predetermined bundles of booster resources and the other agents also have some value for

some of these resources. To avoid envy towards the booster agents, the bundles of the other agents

need to have a specific value for them.

• Guard agents ensure that cover agents can only get bundles that either contain three element or

three dummy resources. Each guard “forbids” a specific combination mixed bundles.

Next, we fully specify the special resources. To do so, we define that k1 = k + 1 and k2 = min{k′ ∈
N | k′ ∗ v > 2u}. Now, RB = Rb1

B ∪ Rb2
B ∪ Rb3

B with Rb1
B = {sb1}, Rb2

B = {sb21 , sb22 , . . . , sb2k1}, and
Rb3

B = {sb31 , sb32 , . . . , sb3k2}. Moreover, the guards resources are Rrrd

G = {srrd1 , srrd2 , . . . , srrd
k2·|Arrd

G |} and

Rrdd

G = {srdd1 , srdd2 , . . . , srdd
k2·|Ardd

G |}. Note that v ≤ kv < u < k1v < 2u < k2v < 3u.

We now define the utility functions of the agents by specifying non-zero utility values (that is, in all

combinations not specified here, the agent assigns utility zero to the resource).

• For each cover agent aj and each element resource ri, we have uaj (ri) = u if xi ∈ Sj (and

uaj (ri) = 0 otherwise). Moreover, cover agents assign utility u to each dummy resource and to sb31 ,

sb32 , and sb33 .

• The booster agent b1 assigns utility u to sb1 only.

• The booster agent b2 assigns utility u to sb1 and utility v to each resource fromRb2
B .

• The booster agent b3 assigns utility u to sb21 and sb22 , and utility v to each resource fromRb3
B .

• The rrd-guard grrd(r, r′, d) assigns utility u to the element resources r and r′ and to the dummy

resource d and utility v to each of the resources fromRrrd

G . They also assigns utility u to sb31 and sb32 .



• The rdd-guard grrd(r, d, d′) assigns utility u to the element resource r and to the dummy resources d
and d′ and utility v to each of the resources fromRrdd

G . They also assigns utility u to sb31 and sb32 .

Finally, there are overall m+ 3 +
(
3n
2

)
· 3(m− n) +

(
3(m−n)

2

)
· 3n agents and 3n+ 3(m− n) + 1 +

k1 + k2 + k2 ·
(
3n
2

)
· 3(m− n) + k2 ·

(
3(m−n)

2

)
· 3n resources. The the construction can definitely be

performed in polynomial time.

Assuming that there is a solution for the constructed instance I , we have the following observations.

Ob. 1. The agent b1 will get s
b1
, otherwise the value of their bundle will be 0.

Ob. 2. The agent b2 will get all resources from Rb2
B . Otherwise, they will envy b1 who gets value of u

in their eyes.

Ob. 3. The agent b3 will get all resources ofRb3
B . Otherwise, they will envy b2 who gets value of 2u

in their eyes.

Ob. 4. Each of the cover agents will get exactly three resources fromRX ∪RD and get value of 3u.
Otherwise, some of them will envy booster agent b3 who gets value of 3u in their eyes. By the

pigeonhole principle, this implies that other agents (who are not cover agents) cannot get any

element or dummy resource.

Ob. 5. Each rrd-guard gets k2 arbitrary resources from Rrrd

G and each rdd-guard gets k2 arbitrary

resources fromRrdd

G . If any of the guard agent gets fewer than k2 of the corresponding resources,
then the value of their bundle would be smaller than 2u and they would envy booster agent b3.
By pigeonhole principle, no guard agent can get more than k2 of the corresponding resources.

Ob. 6. It is not possible for any cover agent to get a bundle with resources from both RX and RD.

Assume that such agent a′ exists and gets {r, r′, d} with r ̸= r′ ∈ RX and d ∈ RD. Then,

the rrd-guard g(r, r′, d) would require at least k2 + 1 resources fromRrrd

G (to not envy a′); a
contradiction to the previous observation. Analogously (replacing rrd-guards by rdd-guards),

no cover agent can get {r, d, d′} with r ∈ RX and d ̸= d′ ∈ RD .

We show that (X,C) is a YES-instance if and only if I is a YES-instance.

(=⇒) Assume that (X,C) is a YES-instance, then there exists a subset C ′ ⊆ C with |C ′| = n such that

every element ofX occurs in exactly onemember ofC ′
. We construct a solution for I as follows. Booster

agents will get resources as discussed in Observations 1 to 3 and guard-agents will get get resources as

discussed in Observation 5. For each Sj ∈ C , if Sj ∈ C ′
, we allocate the three corresponding element

resources to aj . If Sj /∈ C ′
, we allocate three arbitrary dummy resources to aj . Since there are no

combinations of element resources and dummy resources (observation 6), no guard-agent will envy

(observation 4). Therefore, no agent will envy in this case. Thus, I is also a YES-instance.

(⇐=) Assume that I is a YES-instance. According to the above observations, there is a setA∗
of n cover

agents who each get a bundle of three element resources. Let A∗ = {aj1 , aj2 , . . . , ajn}. Now, observe
that C∗ = {Sj1 , Sj2 , . . . , Sjn} clearly form a feasible solution for (X,C): Each element is covered

exactly once since each element resource is assigned to exactly one of these cover agents. Moreover,

the bundles of A∗
correspond exactly to the item subsets from C∗

. Thus, (X,C) is a YES-instance.

The claim of Thm. 7 follows from Lemmas 3 to 6.

8 Bivalued valuations

When ui(aj) ∈ {1, 2} for any agent ai ∈ A and any resource rj ∈ R, the four efficiency measures are

equivalent.



Lemma 7. When t = 1, for any E1, E2 ∈ {usw, esw, size,mcar}, E1-EF-PA and E2-EF-PA are equivalent.

Proof. Since ui(aj) ∈ {1, 2}, if an envy-free allocation π satisfies that usw(π) ≥ 1, then it follows

that size(π) ≥ 1. By envy-freeness, size(π) ≥ 1 implies that mcar(π) ≥ 1. By positive value of every

resource,mcar(π) ≥ 1 implies that esw(π) ≥ 1, which implies that usw(π) ≥ 1.

We show that we can reduce the problem to the case where each agent gets at most two resources.

Lemma 8. When t = 1, for E-EF-PA with any E ∈ {usw, esw, size,mcar}, there exists a desired envy-free
allocation if and only if

1. there exists a desired envy-free allocation where each agent gets exactly one resource, or

2. there exists a desired envy-free allocation where some agents get one resource they like and the
remaining agents get two resources.

Proof. According to Lemma 7, it suffices to consider one efficiency measure, say esw. The “if” direction
is trivial and we show the “only if” direction. We define a new utility function u′ for each agent such

that u′i(rj) = ui(rj)− 1 for any resource rj ∈ R. Since the value of each resource is decreased by 1,

it is easy to see that there exists an envy-free allocation where each agent gets exactly one resource

under the original utility function u if and only if there exists such an allocation under u′. Notice that
u′ is a binary valuation, and according to Lemma 2, there exists such an allocation under u′ if and
only if |X| ≤ |YL|. Suppose |X| > |YL|, which means case (1) does not happen, we show that case

(2) must happen. Since case (1) does not happen, for any envy-free allocation, at least one agent gets

more than one resource. Moreover, since |XS | > |YS |, we have |Y | < 2|X|. Since ui(rj) ∈ {1, 2}, if
one agent gets more than two resources, than all the other agents should get at least 2 resources to be

envy-free, which overall needs more than 2|X| > |Y | = |R| resources and is impossible. Therefore, in

any envy-free allocation, every agent gets either one resource or two resources. Moreover, every agent

who gets one resource must get one resource they like, as otherwise they will envy agents who get two

resources.

Open Question: For any E ∈ {usw, esw, size,mcar}, is E-EF-PA with bivalued valuations (1 and 2) and

t = 1 NP-hard?
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