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Abstract

Previous studies have shown that Instant-Runoff Voting (IRV) is highly resistant to coalitional
manipulation (CM), though the theoretical reasons for this remain unclear. To address this gap,
we analyze the susceptibility to CM of three major voting rules—Plurality, Two-Round System,
and IRV—within the Perturbed Culture model. Our findings reveal that each rule undergoes
a phase transition at a critical value θc of the concentration of preferences: the probability
of CM for large electorates converges exponentially fast to 1 below θc and to 0 above θc. We
introduce the Super Condorcet Winner (SCW), showing that its presence is a key factor of IRV’s
resistance to coalitional manipulation, both theoretically and empirically. Notably, we use this
notion to prove that for IRV, θc = 0, making it resistant to CM with even minimal preference
concentration.

1 Introduction

1.1 Motivation

The Gibbard-Satterthwaite Theorem [16, 31] shows that all non-trivial voting rules are vulnerable to
manipulation (strategic voting), even by a single voter. This vulnerability can only worsen when any
number of voters with aligned interests can form a coalition to alter the election outcome, a phenomenon
called coalitional manipulation (CM). Unlike individual manipulation [30, 32], CM remains significant
in large-scale elections and raises several concerns, notably creating moral dilemmas [8, Introduction]
and power imbalances between strategic and naive voters, thus undermining the "one person, one vote"
principle [9, 13].

However, not all voting rules are equally vulnerable: the CM rate, i.e., the probability that a voting profile
is manipulable by a coalition under a given probabilistic model, can vary significantly between rules.
In previous studies, Instant-Runoff Voting (IRV) and some of its variants [9] consistently outperform
other classical single-winner voting rules in resisting coalitional manipulation, whether the analysis
is based on randomly generated profiles [18, 19] [8, Chapters 7–8] or experimental datasets [3, 19] [8,
Chapter 9]. This has been confirmed by theoretical calculations in the case of three candidates [25, 27].
This is especially intriguing, as IRV has several theoretical features typically deemed undesirable and
seemingly prone to manipulation: most notably, IRV is neither Condorcet-consistent nor monotonic [2,
Definitions 2.8 and 2.10] [11].

In an effort to shed theoretical light on this phenomenon, we will compare IRV to the two other most
widely used voting rules in large-scale single-winner political elections: Plurality and the Two-Round
System. We will adopt the Perturbed Culture model of random voting profiles, first introduced by
Williamson and Sargent [34] and later named by Gehrlein [15, Section 4.3.2]. We will focus on the
asymptotic behavior as the number of voters tends to infinity, as it offers more mathematical tractability
and is relevant for large-scale elections. We will also examine convergence rates to assess how well this
limit approximates scenarios with finite electorates. Our approach is similar to the use of the Ising model
in physics, which, despite being unrealistic in its microscopic details, has been remarkably effective in
explaining the complex macroscopic phenomenon of phase transitions in ferromagnetism [21].
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1.2 Contributions

We prove that each of the three voting rules undergoes a phase transition, with an abrupt change in
behavior based on whether the concentration parameter θ in the Perturbed Culture model exceeds a
critical threshold θc. Below θc, the CM rate tends to 1 for large electorates, while above θc, it tends to 0.
We compute the critical threshold θc for each voting rule as a function of the number of candidates.

We show through simulations how the CM rate curve as a function of θ, which is continuous for a finite
number of voters n, converges to a discontinuous curve as n tends to infinity, thereby explaining the
phase transition. Additionally, we investigate the critical regime θ = θc, leading to the conjecture that
in this case, the CM rate tends to a limit strictly between 0 and 1.

We introduce the concept of a Super Condorcet Winner (SCW), which largely explains IRV’s resilience
to CM. This leads to one of our most striking results: for IRV, the critical value θc is 0, regardless of the
number of candidates. This means that IRV is asymptotically resistant to CM as soon as the Perturbed
Culture model shows even the slightest preference concentration. Furthermore, using experimental
datasets, we show that SCWs are frequent in practice and account for most of IRV’s resistance to CM.

Finally, we demonstrate that in non-critical regime, i.e., for θ ̸= θc, the convergence of the CM rate
toward 0 or 1 is exponentially fast. This implies that our results for n → ∞ quickly become relevant
even for finite n. We also study how this speed varies with θ.

This manuscript is a slightly shortened version of our AAMAS paper [10].

1.3 Related Work

In addition to the literature already mentioned, the works most closely related to ours are those studying
the CM rate using theoretical tools. Most of them focus on three-candidate elections within models like
Impartial Culture [26], Impartial Anonymous Culture [25, 14], or Pólya-Eggenberger Urns [27]. Although
they consistently show that IRV is more robust than other rules, they are limited to a specific number
of candidates and offer little intuition for IRV’s superior performance. Kim and Roush [22] provide
key results for large electorates under Impartial Culture for Plurality and some other rules (positional
scoring rules in general, Maximin, and Coombs) but do not address the Two-Round System or IRV.

Concerning phase transitions, research on this subject is abundant in physics (see Kadanoff [21] for
an overview) and in mathematics and computer science[5, 1, 7]. In voting theory, Mossel et al. [28]
and Xia [35] also examine phase transitions in coalitional manipulability, focusing on varying numbers
of manipulators. In contrast, our study considers the impact of the concentration parameter in the
probabilistic distribution of preferences.

1.4 Limitations

The limitations of this work stem from its main assumptions. First, while the Perturbed Culture model
is useful, it does not capture the full complexity of real-world preferences. Second, our analysis is
limited to three voting rules, and extending this to other systems would be valuable. Finally, the concept
of coalitional manipulation may face criticism due to coordination challenges or the lack of binding
agreements among coalition members (see Durand [8, Introduction] for a response to these critiques).

1.5 Roadmap

The rest of the paper is organized as follows. Section 2 introduces key definitions and notations. Sections
3, 4, and 5 respectively analyze Plurality, Two-Round System, and IRV. Section 6 explores convergence
speed. Section 7 concludes with future work.
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2 Definitions and Notations

2.1 Discrete and Continuous Profiles

A discrete profile P consists of three elements: a finite, non-empty set of candidates C(P )with cardinality
m(P ); a finite, non-empty set of voters V(P ) with cardinality n(P ); and for each voter v ∈ V(P ), a
preference ranking Pv over the candidates in C(P ).

For any preference ranking p, let w(p, P ) denote the weight of p in P , i.e., the number of voters in
P with ranking p. The total weight of a discrete profile is simply the number of voters: w(P ) =∑

pw(p, P ) = n(P ).

A continuous profile is similarly defined by three components: a finite, non-empty set of candidates
C(P ) with cardinalitym(P ); a total weight w(P ) ∈ (0,∞); and for each ranking p over the candidates,
a weight w(p, P ) ∈ R, such that

∑
pw(p, P ) = w(P ).

For any profile P , whether discrete or continuous, we define the associated normalized profile P̄ as the
continuous profile where the weight of each ranking p is given by w(p, P̄ ) = w(p,P )

w(P ) . Viewing a profile
as a vector of weights, we can naturally define its neighborhood in the usual topological sense.

For any subset K ⊆ C(P ), let PK be the restriction of P to the candidates in K . For two distinct
candidates c and d, let P c≻d be the restriction to voters who prefer c over d. Similarly, for a candidate c
and a position k ∈ {1, . . . ,m(P )}, let P r(c)=k be the restriction to voters ranking c in the k-th position.
These notations can be combined to restrict the profile both by candidates and voters.

2.2 Voting Rules

A voting rule f maps any profile, discrete or continuous, to a candidate from that profile. In this paper,
we focus on homogeneous voting rules, meaning that f(P ) = f(P̄ ) for any profile P . In other words,
the outcome depends only on the relative proportions of preference rankings, not the total weight. Each
particular voting rule is formally defined at the beginning of its respective section.

2.3 Coalitional Manipulability

When P is a discrete profile, we say that a voting rule f is coalitionally manipulable (also abbreviated
as CM) in P , or that profile P is CM in rule f , if there exists a target profile Q with the same candidates
and voters such that f(Q) ̸= f(P ), and for every voter v ∈ V(P ), if Qv ̸= Pv , then v prefers f(Q)
to f(P ) based on Pv . In other words, only voters who benefit from the new outcome may alter their
ballots, though some may keep their original votes.

An immediate consequence is as follows. If for a ranking p, we have w(p,Q) < w(p, P ), then at least
one voter with ranking p in P must have changed their ballot in Q, i.e., Qv ̸= Pv . By the definition,
this implies that f(Q) is preferred to f(P ) according to Pv = p. This observation will now serve as the
basis for defining CM in the continuous case.

For a continuous profile P , we say that a voting rule f is CM in P (or that P is CM in f ) if there exists
a target profile Q with the same candidates and total weight such that f(Q) ̸= f(P ) and, for every
ranking p, if w(p,Q) < w(p, P ), then f(Q) is preferred to f(P ) according to p. In other words, only
voters (in a continuous sense) who prefer the new outcome can have changed their ballots.

The relationship between the two notions is clarified by:

Lemma 1. If a homogeneous rule f is CM in a discrete profile P , then f is also CM in the corresponding
normalized profile P̄ . However, the converse is not true.
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The direct implication follows from the definitions, so we will focus on providing a counterexample to
show that the converse does not hold. Consider the positional scoring rule f with weights (7, 6, 0, . . . , 0),
where each candidate’s score is given by s(c) = 7w(P r(c)=1) + 6w(P r(c)=2), and the candidate with
the highest score wins (using a tie-breaking rule if needed). Now, consider a discrete profile P with 8
voters and 3 candidates:

• 3 voters have the ranking 1 ≻ 3 ≻ 2,

• 5 voters have the ranking 2 ≻ 1 ≻ 3.

It is straightforward to verify that candidate 1 wins under f , and that the rule is CM in the normalized
profile P̄ , but not in the original discrete profile P . The issue is that the 5 manipulators supporting
candidate 2 must carefully distribute their points between candidates 1 and 3, which is impossible in
the discrete case because each manipulator must assign their entire vote to one ranking rather than
splitting it fractionally.

2.4 Perturbed Culture

Given two positive integersm and n, and a concentration parameter θ ∈ (0, 1], the Perturbed Culture
model is defined as follows. A discrete profile P is randomly generated with C(P ) = {1, . . . ,m} and
V(P ) = {1, . . . , n}. Each voter is independently assigned the ranking (1 ≻ . . . ≻ m)with probability θ,
and a uniformly random ranking with probability 1− θ.

As θ → 0, this model converges to the classical Impartial Culture model, while for θ = 1, it becomes a
deterministic culture where all voters share the ranking (1 ≻ . . . ≻ m).1

Since a profile can be represented as a vector giving the weight of each ranking, we can define the
expected normalized profile (or simply the expected profile) under Perturbed Culture. To simplify notation,
we denote it by P̂ , leaving its dependency onm and θ implicit. In this profile, the ranking (1 ≻ . . . ≻ m)
has a weight of θ + 1−θ

m! , while each of the other rankings has a weight of 1−θ
m! .

2.5 CM Rate

We denote by ρ(f,m, n, θ) the CM rate, i.e., the probability that a voting rule f is CM in a profile drawn
from the Perturbed Culture model withm candidates, n voters and concentration θ.

3 Plurality

We will begin our study with the Plurality voting rule, which assigns each candidate c in a profile P a
score equal to the total weight of voters ranking c first: sPlu(c, P ) = w(P r(c)=1). The winner is the
candidate with the highest score (using a tie-breaking rule if needed): Plu(P ) = argmax sPlu(c, P ).
The specific tie-breaking method will not affect our findings.

3.1 Theoretical Results for Plurality

The intuition behind our theoretical results is as follows. First, we analyze Plurality’s behavior in the
expected normalized profile P̂ as a function of θ. For small θ, Plurality is CM in this profile, but for

1We exclude the case θ = 0 from our theoretical analysis to simplify the proofs: as n → ∞, assuming θ > 0 guarantees
that candidate 1 wins under sincere voting for all three voting rules considered. Nevertheless, our results hold even in the
case θ = 0, and we will also include it in our figures.
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large enough θ, it is not. Using the weak law of large numbers, we then show that as n → ∞, the
normalized random profile P̄ will, with high probability (i.e., with a probability that tends to 1 when
n → ∞), be close enough to P̂ , ensuring that Plurality behaves similarly. Throughout this subsection,
we assume m ≥ 2.

We begin by analyzing the expected profile P̂ . In this profile, the plurality score for candidate 1 is
sPlu(1, P̂ ) = θ + 1−θ

m , while the number of voters inclined to manipulate for any candidate c ̸= 1 is
w(P̂ c≻1) = 1−θ

2 . If all manipulators vote optimally for c, they succeed if w(P̂ c≻1) > sPlu(1, P̂ ), which
simplifies to θ < m−2

3m−2 . Defining the critical value θc(Plu,m) = m−2
3m−2 , we conclude that Plurality is CM

for θ < θc(Plu,m) and not CM for θ > θc(Plu,m) (the equality case is not needed for our forthcoming
analysis).

We now apply the weak law of large numbers to show that as n → ∞, these results hold with high
probability. We start by examining the supercritical regime θ > θc(Plu,m), relying on the following
lemma.

Lemma 2. Assume there exists a neighborhood of the expected normalized profile P̂ where the homogeneous
rule f is not CM. Then limn→∞ ρ(f,m, n, θ) = 0.

Proof. Applying the weak law of large numbers, the following statements hold with high probability:
denoting P the random profile, its normalized version P̄ lies in the desired neighborhood of P̂ , hence
(by assumption) f is not CM in P̄ , hence (by Lemma 1) f is also not CM in the random discrete
profile P .

This lemma applies easily to Plurality. For θ > θc(Plu,m), we have shown that for every candidate
c ̸= 1, w(P̂ c≻1) < sPlu(1, P̂ ). As this is a strict inequality, it holds in a neighborhood of the profile,
allowing us to apply Lemma 2. Hence, limn→∞ ρ(Plu,m, n, θ) = 0.

We now turn to the subcritical regime θ < θc(Plu,m). Unfortunately, we cannot directly apply the
same reasoning: even if the normalized profile P̄ is CM near P̂ , it does not necessarily follow that the
discrete profile P is also CM, as Lemma 1 does not hold in the reverse direction.

However, for Plurality, manipulators can always employ a common strategy. Formally, a voting rule f is
unison-manipulable (UM) in profile P (or P , in f ) if manipulation can succeed even when all interested
voters cast the same ballot [33, 9].2 Clearly, UM implies CM. Unlike CM, UM holds equivalently for
both a discrete profile P and its normalized profile P̄ , which leads to the following lemma.

Lemma 3. Assume there exists a neighborhood of the expected normalized profile P̂ where the homogeneous
rule f is UM. Then limn→∞ ρ(f,m, n, θ) = 1.

The proof is similar to Lemma 2: by the weak law of large numbers, with high probability, the normalized
random profile P̄ is in the desired neighborhood, making it UM, hence the random discrete profile P is
also UM, and thus CM. Applied to Plurality, Lemma 3 directly leads to limn→∞ ρ(f,m, n, θ) = 1 for
θ < θc(Plu,m).

The following theorem summarizes our results so far.

Theorem 1. Let θc(Plu,m) = m−2
3m−2 withm ≥ 2.

• If θ < θc(Plu,m), then limn→∞ ρ(Plu,m, n, θ) = 1.

• If θ > θc(Plu,m), then limn→∞ ρ(Plu,m, n, θ) = 0.
2The term unison was introduced by Walsh [33] but we follow the slightly different definition proposed by Durand [9].
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Form = 2, the theorem indicates θc(Plu, 2) = 0, which is expected, as Plurality cannot be manipulated
with only two candidates. Similarly, for m = 1, we would reach the same conclusion by conventionally
setting θc(Plu, 1) = 0. The theorem becomes more interesting form ≥ 3, where it describes a phase
transition around θc(Plu,m), meaning a sudden change in behavior as the parameter crosses this
threshold. This raises key questions: What causes this discontinuity, and how do we approach it as n
increases? What happens when θ is equal to or near the critical value?

3.2 Simulations for Plurality
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Figure 1: CM rate of Plurality as a function of θ for
different values of n with m = 4. Curves for finite n
are based on Monte Carlo simulations with 1,000,000
profiles per point. The limiting curve as n → ∞ fol-
lows from Theorem 1.
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Figure 2: CM rate of Plurality as a function of n for
different values of m with θ = θc(Plu,m). Monte
Carlo simulations with 1,000,000 profiles per point.

To understand the origin of the discontinuity, Figure 1 shows the CM rate of Plurality as a function of θ
for various n withm = 4. Curves for finite n are based on Monte Carlo simulations,3 with 1,000,000
profiles per point, leading to error margins of 1√

1000000
= 0.1%. The limiting curve for n → ∞ is

derived from Theorem 1. For finite n, the curve is continuous. As n increases, it becomes sigmoid-shaped
and steepens, ultimately converging to a step function as n → ∞.

The observed behavior mirrors what occurs in physics: since a finite combination of continuous
functions remains continuous, non-analyticity can only arise in an infinite system [21, Section 11.6]. As
in physics, a phase transition occurs beyond a certain level of disorder: while a ferromagnetic metal
loses its magnetization above the Curie temperature [4], Plurality loses its resistance to coalitional
manipulation below the critical value of the concentration parameter θ.

Theorem 1 describes the behavior in the subcritical and supercritical regimes, but what happens in the
critical regime, i.e., when θ = θc(Plu,m)? Figure 2 shows the CM rate in that case as a function of the
number of voters n, for different values of m. This leads to several conjectures:

• The critical CM rate ρ(Plu,m, n, θc(Plu,m)) converges to a limit as n → ∞.

• This limit is strictly less than 1.

• This limit increases withm.

It is beyond the scope of this paper to theoretically prove these results. In the study of phase transitions,
analyzing the critical behavior is often challenging [29, 6, 24, 23]. With that, we conclude our study of
Plurality and proceed to the Two-Round System.

3The code is available at https://github.com/francois-durand/irv-cm-aamas-2025.
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4 Two Round System

The Two-Round System (TR) is as follows. In the first round, each candidate c receives a score s1TR(c, P ) =
sPlu(c, P ), and the setK of the two candidates with the highest scores advances to the second round.
These two candidates then receive scores s2TR(c, P ) = sPlu(c, PK), and the candidate with the highest
score wins. A tie-breaking rule is applied if necessary.4

4.1 Theoretical Results for the Two-Round System

For n = 2, the Two-Round System is equivalent to Plurality, so we focus on the casem ≥ 3.

As with Plurality, we begin by examining the expected normalized profile P̂ . Candidate 1 clearly wins
the election, with the second-round opponent determined by the tie-breaking rule. For a manipulation
to succeed in favor of a candidate c ̸= 1, candidate c must reach the second round. However, if
candidate 1 also advances, the manipulation will fail. Therefore, the second round must involve a
candidate d /∈ {1, c}, which is possible since we assumed m ≥ 3. Now, consider the portion of the
first-round scores for candidates 1, c, and d coming from sincere voters:

s1TR(1, P̂
1>c) = θ + 1−θ

m ,

s1TR(c, P̂
1>c) = 0,

s1TR(d, P̂
1>c) = 1−θ

2m ,

where, for example, s1TR(d, P̂ 1>c) denotes the first-round score, in the two-round system, of candidate d
in the restriction of the expected normalized profile P̂ to the voters who prefer candidate 1 to candidate c
(i.e., “sincere” voters).

For both candidates c and d to surpass candidate 1’s score, at least θ + 1−θ
m manipulators must vote

for c, while θ + 1−θ
m − 1−θ

2m must vote for d. Therefore, the total number of manipulators, given by
w(P̂ c≻1) = 1−θ

2 , must be at least the sum of these two quantities. Simplifying, the necessary condition
becomes θ ≤ m−3

5m−3 . In other words, coalitional manipulation is impossible for θ > m−3
5m−3 . In our

original paper [10], we easily show that, conversely, when θ < m−3
5m−3 , manipulation is possible in the

expected profile P̂ .

To extend this result to a random profile P with high probability, we follow the same general strategy
as for Plurality, but with a technical glitch: unison manipulation is generally insufficient under the
Two-Round System. To overcome this, we introduce a notion of stability in the manipulation outcome
around a given profile (see [10] for more details). This leads to the following theorem.

Theorem 2. Let θc(TR,m) = m−3
5m−3 withm ≥ 3.

• If θ < θc(TR,m), then limn→∞ ρ(TR,m, n, θ) = 1.

• If θ > θc(TR,m), then limn→∞ ρ(TR,m, n, θ) = 0.

Recall that for m = 2, the same conclusions hold by setting θc(TR, 2) = 0, since Two-Round is
equivalent to Plurality in this case. For m = 3, the theorem also gives θc(TR, 3) = 0, which is
remarkable: according to the Gibbard-Satterthwaite theorem, manipulability becomes an issue from
m = 3, yet Two-Round avoids this with high probability in Perturbed Culture as soon as θ > 0.

Since Theorems 1 and 2 share similar structures, a natural question arises: does every voting rule f
have a critical parameter θc(f,m) with similar properties? The answer is no. Consider a rule f that

4For simplicity, we consider an “instant” version of TR, where voters cast their ballots once. In most actual implementations,
voters participate in two rounds. While this is equivalent for sincere voting, the instant version restricts some manipulation
strategies [8, Table 1.1]. However, our results apply to both variants.
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Figure 3: CM rate of the Two-Round System as a function of n for different values of m with θ = θc(TR,m).
Monte Carlo simulations with 1,000,000 profiles per point.

uses Plurality when n is even and Two-Round when n is odd.5 From Theorems 1 and 2, it follows
that for θ < m−3

5m−3 , the CM rate converges to 1, while for θ > m−2
3m−2 , it converges to 0. However, for

θ ∈
(

m−3
5m−3 ,

m−2
3m−2

)
, the CM rate tends to 1 for even n and to 0 for odd n: overall, it does not converge.

It is still possible to define a lower critical value θl(f,m) and an upper critical value θu(f,m) as,
respectively, the largest and smallest values in [0, 1] such that:

• If θ < θl(f,m), then limn→∞ ρ(f,m, n, θ) = 1,

• If θ > θu(f,m), then limn→∞ ρ(f,m, n, θ) = 0.

We can then define θc(f,m) as their common value when it exists. With this convention, Theorems 1
and 2 are summarized as:

θc(Plu,m) =
m− 2

3m− 2
, θc(TR,m) =

m− 3

5m− 3
.

4.2 Simulations for the Two-Round System

The Two-Round equivalent of Figure 1 is similar, so we proceed directly to the counterpart of Figure 2:
Figure 3, showing the critical CM rate as a function of n for different m. We use SVVAMP 0.12.0 [12], a
Python package for studying the manipulability of voting rules. As for Plurality, the critical CM rate
appears to converge to a limit in (0, 1) that increases withm.

5 IRV (Instant-Runoff Voting)

Let us now proceed to Instant-Runoff Voting (IRV), where the winner is determined through multiple
rounds. In each round, the candidate with the lowest Plurality score is eliminated, until only one
remains. Formally, let K(r, P ) be the set of remaining candidates at the start of round r and ℓ(r, P ) be
the candidate losing at round r. We have:

K(1, P ) = C(P ),

ℓ(r, P ) = argmin sPlu(c, PK(r,P )),

K(r + 1, P ) = K(r, P ) \ {ℓ(r, P )},
5For simplicity, this counter-example involves a non-homogeneous rule.
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using a tie-breaking rule for elimination when necessary. The winner IRV(P ) is the last remaining
candidate inK(m(P ), P ).

5.1 Theoretical Results for IRV

As usual, we start by examining the expected normalized profile P̂ . Since θ > 0, candidate 1 clearly
wins. Now suppose that IRV is CM in P̂ to a target profile Q, where candidate c ̸= 1 wins. Candidate 1
must be eliminated in some round r. For conciseness, denote K = K(r,Q) and k = |K|. Obviously c
must belong toK . The sincere voters’ contribution to candidate 1’s score at this round is:

sPlu(1, P̂
1≻c
K ) = sPlu(1, P̂K) = θ +

1− θ

k
.

Thus, sPlu(1, QK) ≥ θ + 1−θ
k , and since k ≥ 2, this is strictly greater than 1

k . Therefore, the score of
candidate 1 exceeds the average score at this round, hence it cannot be minimal. This contradiction
proves that IRV is not CM in P̂ .

In this reasoning, IRV’s resistance to coalitional manipulation stems from the fact that in any subset
of candidatesK containing candidate 1, this candidate has a Plurality score that exceeds the average
score. This motivates the following definition:

Definition 1. A candidate c is a Super Condorcet Winner (SCW) in a profile P if, for every subset of
candidatesK containing c, the following holds:

sPlu(c, PK) >
w(P )

|K|
.

This concept strengthens the classical notion of a Condorcet Winner, which only requires the condition
to hold for subsetsK of size 2. We summarize its relevance to IRV as follows:

Lemma 4. If c is an SCW in profile P , then IRV(P ) = c and IRV is not CM in P .

The same result easily extends to several IRV variants, such as Exhaustive Ballot [9], Condorcet-IRV
[19, 11], Benham rule, Tideman rule, Smith-IRV, and Woodall rule [17]. However, the converse is not
true: there exists profiles without an SCW where IRV is still not CM (see Durand [8, Table 1.1] for an
example).

Now, consider the neighborhood of the expected profile P̂ . Since the SCW condition involves a finite
number of strict inequalities that depend continuously on the profile’s coefficients, candidate 1 is an
SCW not only in P̂ but also in its neighborhood. From here, we can follow two proof strategies that
only differ in the order of their steps.

One approach is to first apply Lemma 4 to deduce that IRV is not CM in this neighborhood. Using
Lemma 2 (based on the weak law of large numbers), we then deduce limn→∞ ρ(IRV,m, n, θ) = 0.
Alternatively, we could first use the weak law of large numbers to show that candidate 1 is an SCW
with high probability, then apply Lemma 4 to show limn→∞ ρ(IRV,m, n, θ) = 0.

Since this holds for any θ > 0, we obtain a remarkable result:

Theorem 3. For IRV, the critical value of the concentration parameter in Perturbed Culture is

θc(IRV,m) = 0.

In summary, within the Perturbed Culture model, IRV has the smallest possible critical value. Even
a slight concentration of preferences favoring candidate 1 is enough for IRV to become resistant to
coalitional manipulation with high probability. And for the same reasons, this also holds for the IRV
variants mentioned earlier.
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5.2 Simulations for IRV
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Figure 4: CM rate of IRV as a function of θ for different
values of n withm = 4. Curves for finite n are based
on Monte Carlo simulations with 1,000,000 profiles per
point. The limiting curve as n → ∞ follows from
Theorem 3.
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Figure 5: CM rate of IRV as a function of n for differ-
ent values of m with θ = θc(IRV,m) = 0 (Impartial
Culture). Monte Carlo simulations with 1,000,000 pro-
files per point.

For IRV, as for Two-Round, our simulations for finite n are carried out using SVVAMP. Similar to
Figure 1 for Plurality, Figure 4 shows the CM rate as a function of θ for different n. For large n, the
curve takes on a sigmoidal shape that converges to the theoretical curve from Theorem 3. The behavior
near θ = 0 suggests that in the Impartial Culture model, the CM rate converges to a limit within (0, 1),
as proven for m = 3 by Lepelley and Valognes [26], conjectured in the general case by Durand [8,
Conjecture 7.8], and further supported by Figure 5. This second figure also indicates that, as with
Plurality and Two-Round, the limit CM rate in the critical regime appears to increase with the number
of candidates m.

5.3 Empirical Results for IRV

In the Perturbed Culture model, the presence of an SCW explains IRV’s resistance to coalitional
manipulation. However, as noted earlier, this is not a necessary condition: IRV can be non-manipulable
in profiles without an SCW. This raises the question of whether the presence of an SCW often accounts
for IRV’s non-manipulability in realistic scenarios.

Netflix dataset FairVote dataset

Profiles 11,215 10,044
— with a CW 99.30% 99.98%
— where IRV is not CM (a) 95.87% 96.30%
— with an SCW (b) 94.05% 96.20%
Ratio (b) / (a) 98% > 99%∗

∗ We omit the next digit of the raw result (99.9%), not significant given the sample size.

Table 1: Empirical study of Super Condorcet Winners (SCW) and IRV in two datasets, with the presence of a
Condorcet Winner (CW) included as a reference.

To investigate this, Table 1 analyzes the Netflix and FairVote datasets [9], which respectively contain
11,215 profiles derived from slight perturbations of 2,243 empirical profiles and 10,044 profiles based
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on 162 empirical profiles. It provides two key insights. First, an SCW is very common in real-world
datasets, here appearing in 94% or 96% of profiles. Second, in most cases where IRV resists CM, this
can be explained by the presence of an SCW—98% in the Netflix dataset and over 99% in the FairVote
dataset. This confirms that SCWs are a crucial factor in IRV’s resilience to manipulation.

The frequent appearance of SCWs may seem surprising, but it becomes intuitive when revisiting the
definition. For a candidate c and a subset K of candidates that includes c, if preferences were perfectly
balanced, we would expect sPlu(c, PK) = w(P )

|K| . The condition for being an SCW is simply to exceed
this average. Therefore, even a slight bias in favor of c makes it likely for c to be an SCW.

6 Convergence Speed

We will now study the convergence speed, to assess how fast the results found for n → ∞ become
relevant for finite values of n.

6.1 Theoretical Bound

We will first show that in the non-critical regime, the CM rate converges exponentially fast as n → ∞.
Next, we will bound this speed of convergence depending on the parameter θ.

As an example, consider Lemma 2, where we assume the existence of a neighborhood where the rule f is
not CM. By definition, there exists ϵ > 0 such that this neighborhood contains an open ball of diameter
ϵ for the infinity norm. Our approach is to apply Hoeffding’s inequality [20] to bound the probability
that the normalized random profile P̄ falls outside this ball. Since Hoeffding’s inequality applies to
scalar random variables, we use the union bound to extend it to the weight vector representing a voting
profile. Formally, denoting by P the probability:

ρ(f,m, n, θ) ≤ P(d(P̄ , P̂ ) ≥ ϵ),

≤
∑

p P(|w(p, P̄ )− w(p, P̂ )| ≥ ϵ) (union bound),

≤ 2m!e−2ϵ2n (Hoeffding’s inequality). (1)

Thus, the convergence is exponentially fast in n, and we can quantify the rate if the size of the
neighborhood is known. By the same reasoning, similar results hold for Lemma 3 and Theorems 1,
2, and 3. In the literature on phase transitions, this is known as sharp transitions, meaning that the
limiting curve quickly approximates the behavior even for finite n.

Let us now bound the speed of convergence more precisely. For example, consider Plurality in the
supercritical regime. If a profileP lies within an open ball of radius ϵ centered at P̂ , the score of candidate
1 is bounded from below: sPlu(1, P ) > θ + 1−θ

m −m!ϵ, and the number of manipulators is bounded
from above: w(P 2≻1) < 1−θ

2 + m!ϵ. To ensure sPlu(1, P ) > w(P 2≻1), we set ϵ = (3m−2)θ−(m−2)
2m! ,

which can be rewritten as ϵ =
(
θ − θc(Plu,m)

)
3m−2
2m! . Using our bound (1), there exists a coefficient

A+(Plu,m)—which we could explicitly compute—such that:

ρ(Plu,m, n, θ) = O
(
e−A+(Plu,m)(θ−θc(Plu,m))2

)
.

This reasoning for Plurality in the supercritical regime generalizes to the subcritical regime, with a
coefficient A−(Plu,m), and to the other voting rules in this paper: since all relevant quantities (scores,
numbers of manipulators) are linear in the profile weights, we can take a value of ϵ that depends linearly
on θ − θc, leading to a term in (θ − θc)

2 via Hoeffding’s inequality. Thus, we obtain:

• Supercritical regime: ρ = O
(
e−A+(f,m)(θ−θc)2n

)
,
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• Subcritical regime: ρ = 1−O
(
e−A−(f,m)(θc−θ)2n

)
,

where ρ = ρ(f,m, n, θ) and θc = θc(f,m).

6.2 Simulation Study of the Convergence Speed
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Figure 6: CM rate of Plurality as a function of n for
different supercritical values of θ withm = 4. Monte
Carlo simulations with 1,000,000 profiles per point.
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Figure 6 shows the CM rate of Plurality as a function of n for various values of θ (whereas Figure
1 does the reverse). Each curve has an oblique asymptote on a semi-log scale, indicating not only
that it is bounded by a decreasing exponential (as predicted by theory), but that it follows the form
ρ ∼n→∞ B(m, θ)e−C(m,θ)n, with m = 4 here. This figure also allows us to measure the slopes of the
asymptotes, providing the values of C(4, θ) for each θ.

To analyze how convergence speed varies with θ, Figure 7 plots the measured asymptotic slopes against
θ − θc in log-log scale (the values of θ were specifically chosen to be evenly spaced in that figure).
When θ is far from θc, the dependency is in (θ − θc)

2, in line with the upper bound found previously.
However, close to θc, the dependency seems to involve a smaller exponent (estimated at 1.265). In the
terminology of phase transition, this is called the critical exponent of the convergence speed.

We repeated this for m ∈ {5, 6, 7}, the subcritical regime, and the other voting rules, with similar
results but various critical exponents. This suggests a long-range dependency in |θ − θc|2 but smaller
critical exponents near the critical regime. This intriguing behavior will deserve further theoretical
investigation.

7 Future Work

A natural direction for future work is to compute the critical parameter θc for other voting systems.
Another key area of research would be a deeper analysis of the critical regime, including the calculation
of the limiting CM rate at θ = θc and the asymptotic behavior of the slope of the sigmoid ρ(θ) at θ = θc,
which is linked to a finer analysis of the convergence speed in the non-critical regime. Expanding
the study to other models, such as Mallows, is also promising. Preliminary analysis shows that the
qualitative results observed in this paper, particularly the key finding that IRV’s limit CM rate drops to
zero with even slight concentration of preferences, also hold true under the Mallows model.

6The computation of the error margins is detailed in the code repository https://github.com/francois-durand/

irv-cm-aamas-2025.
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