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Abstract

Kidney exchange programs—connecting hospitals in the U.S. or countries in Europe—aim to
improve efficiency by pooling donors and patients on a centralized platform. Core-stable alloca-
tions are essential for sustaining cooperation and preventing defections. However, when the
core is empty, incentive problems emerge as hospitals or countries may withhold easily matched
pairs for internal use, reducing the overall efficiency and scope of the exchange. We propose a
solution to restore core stability by supplementing the platform with additional altruistic donors.
Although the worst-case requirement for the number of such donors may be large, we show
that in realistic settings, only a few are sufficient. We analyze two models of the compatibility
graph: one based on random graphs, and the other on compatibility types. When only pairwise
exchanges are allowed, the number of required altruists is bounded by the maximum number
of independent odd cycles—disjoint odd cycles with no edges between them. This parameter
grows logarithmically with market size in the random graph model, and is at most one-third the
number of compatibility types in the type-based model. When small exchange cycles are allowed,
it suffices for each participating organization to receive a number of altruists proportional to the
number of compatibility types. Finally, simulations show that far fewer altruists are needed in
practice than theory suggests.

1 Introduction

The kidney exchange market in the U.S. facilitates hundreds of transplants annually for patients with
a willing but incompatible live donor. However, the market is fragmented and operates inefficiently
(Agarwal et al. [1]). A key reason is that exchange platforms use inferior mechanisms and hospitals
have little incentive to submit patients and donors with a high likelihood of compatible exchange. A
similar challenge exists in Europe, where kidney exchange programs are often smaller in scale and face
coordination difficulties across national borders. The fragmentation of exchange pools and the varying
institutional incentives further limit the efficiency of matches (Bir6 et al. [10]).

What makes an exchange platform effective? Economic theory provides a clear benchmark: The
allocation offered by the platform should be in the core, which means that no group of hospitals or
countries can achieve better outcomes by breaking away from the centralized solution and conducting
their own exchange. When the deviating group consists of a single hospital or country, this condition
ensures that it does not conduct internal exchanges while submitting only its hard-to-match patient-
donor pairs to the platform, a current common practice in both U.S and European programs, that
undermines the overall efficiency of the exchange (Agarwal et al. [1], Bir6 et al. [10]).

However, a fundamental question remains: under what conditions does a core allocation exist? And
when it does not, what alternative solutions can prevent the exchange platform from unraveling? This
paper investigates these questions within a well-studied graph-theoretic model of kidney exchange,
establishing both impossibility results and potential remedies.

We show that in general compatibility graphs, a weak core solution may fail to exist under both pairwise
and longer cycle exchanges. To address this issue, we introduce the concept of a supplemented core. The
key idea is to use altruistic donors—individuals willing to donate an organ without receiving one in
return—to help stabilize the market. A supplemented core consists of exchanges among the original
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patient-donor pairs together with a few additional altruistic donors provided by the centralized platform,
such that no coalition of organizations can benefit by forming an alternative exchange on their own.

In theory, with a sufficient number of altruistic donors, a centralized platform can match all patients
and achieve a core outcome. However, the number of altruistic donors required for this is unrealistically
large. We show that while general compatibility graphs may require a large number of additional
donors, the number needed is significantly smaller for graphs that reflect realistic settings. To model
such graphs, we consider two frameworks: one based on a random graph process, as studied in the
literature (Ashlagi and Roth [5], Delorme et al. [13]), and another based on type presentation (Dickerson
et al. [14]). We present three main results.

First, without any assumptions on the compatibility graph with |V'| donor-patient pairs, obtaining a
core solution requires at least O(|V|) additional donors for either pairwise or cyclic exchange.

Second, for pairwise exchange, the required altruistic donor is at most the maximum number of
independent odd cycles in the mutual compatibility graph, where a set of odd cycles is considered
independent if no donor-patient vertex in one cycle has mutual compatibility with any donor-patient
vertex in another cycle. This result has two implications.

« When the compatibility graph is generated using a standard random graph model, the maximum
number of independent odd cycles is O(log |V]). In the class of compatibility graphs based on
type presentation, we show that this number is at most one-third of the number of types. Thus,
in these graphs, only a small number of additional donors are needed to stabilize the exchange.

« In the special case where the underlying compatibility graph is bipartite, our result implies that
a weak-core allocation always exists. Moreover, we show that bipartite graphs capture a broad
class of utility functions in one-sided exchange economies, which we term binary assignment
valuations. This framework generalizes the results of Echenique et al. [17].

Third, we show that for small cyclic exchanges, the required number of additional altruistic donors
is at most the number of types in the type-representation multiplied by the cycle length bound per
participating organization. Thus, when the number of compatibility types are fixed, regardless of the
overall market size, in the worst case, it suffices to have at most a constant number of altruistic donors
per organization and a constant number of donors for the whole instance, if the number of organizations
is also a constant - for example in Europe, most programs consist of at most 3 or 4 countries.

We complement our theoretical findings with empirical analysis using data and simulations. We find
that the number of additional altruistic donors required in practice is significantly smaller than the
theoretical worst-case bounds. In all simulated cases, consisting of 100-150 donor-recipient pairs, at
most one altruistic donor was always sufficient to guarantee a supplemented core solution. Furthermore,
we show that even a much stronger notion of core stability, which we refer to as the transferable utility
(TU) core, can be achieved with a similarly small number of altruistic donors.

Our results highlight the crucial role of altruistic donors—not only in increasing match rates and enabling
long exchange chains, but also in promoting market stability. In the United States, approximately 300-
400 altruistic donors participate annually, compared to about 6,000 patient-donor pairs in the UNOS
database, and 164 altruistic donors versus 1,265 patient-donor pairs in the NKR dataset (Agarwal et al.
[1]). Despite their significantly smaller numbers, our findings show that altruistic donors can have
a disproportionately large impact on the efficiency and robustness of the exchange. These insights
highlight the need to more efficiently recognize and incorporate altruistic donors in the design of kidney
exchange platforms.

The paper is organized as follows. After discussing related work, we introduce the model, the main
solution concept and provide preliminaries on the methodology used to establish our general results.
Section 3 studies pairwise exchange in general graphs. Section 4 focuses on an application to one-sided



markets. Section 5 analyzes cyclic exchange. Section 6 presents simulation results. Section 7 concludes.
Many proofs are given in Appendix due to space constraints.

Related Literature

The success of kidney exchange has inspired a rich literature on market design challenges, beginning with
Roth et al. [25]. Research spans various exchange structures—such as pairwise and cyclic exchanges—and
participant models, from individual agents to coordinating organizations. While individual-level
incentives are relatively well understood (Roth et al. [25], Sonmez and Unver [29]), multi-hospital
and international exchanges present growing challenges (Ashlagi and Roth [4, 5]). Hospitals, as key
decision-makers, face more complex choices than individual donor-patient pairs, and their control over
multiple pairs introduces strategic considerations that can significantly affect efficiency (Agarwal et al.

[1]).

The key distinction between our work and the growing literature on kidney exchange among organiza-
tions lies in our positive result for core-stable solutions. In contrast, existing studies either emphasize
negative results regarding core stability or adopt weaker solution concepts, such as individual rationality.
For example, Ashlagi and Roth [5] focuse on individual rationality rather than addressing core stability.
Similarly, Ashlagi et al. [6] analyze incentive issues and provide multiplicative efficiency bounds, but
their framework does not incorporate core stability constraints.

Our model builds on the frameworks developed in Cséji et al. [11] and Kern et al. [18]. However, these
studies primarily focus on negative results regarding core stability. To the best of our knowledge, no
existing work has established a positive result on the existence of (near-feasible) core-stable outcomes
in the kidney exchange setting. Even in the restricted case of bipartite graphs, our result on the non-
emptiness of the weak core is novel and constitutes a strict generalization of Echenique et al. [17]. Our
approach differs from this literature in its emphasis on core stability and in its use of an additive error
to measure near feasibility. Our key insight is that even a few directed donors, deployed strategically by
a centralized platform, can stabilize the market.

There is also a large literature on the dynamic aspects of kidney exchange, including Anderson et al.
[3], Dickerson and Sandholm [15], Akbarpour et al. [2], which primarily focuses on trade-offs between
efficiency, waiting time, and fairness, while largely overlooking more complex issues such as core-
stability—the focus of our paper. Related to dynamic settings, Klimentova et al. [19] and Kern et al.
[18] proposed a credit system for international kidney exchange programs (IKEPs) in Europe, using
cooperative game theory to assign fair transplant targets each round and carrying deviations as credits
to promote long-term fairness. We instead propose round-by-round core allocations to ensure fairness
and incentive compatibility without relying on future adjustments.

From a practical operational perspective, the literature has explored various computational methods for
finding good solutions to kidney exchange programs (e.g., Mincu et al. [21], Ashlagi et al. [7], Druzsin
et al. [16]). However, these approaches are primarily based on simulations and generally lack theoretical
guarantees. To obtain theoretical results, we adopt the Relax-and-Round method of Nguyen and Vohra
[23], Nguyen et al. [22], which uses Scarf’s lemma to relax stability while preserving feasibility. Our
approach differs in two key ways: we incorporate endowments and introduce a new rounding procedure.
Unlike prior work that limits bundle sizes, we consider hospitals endowed with multiple pairs, enabling
large-scale exchanges. Our rounding must therefore respect the structure of the compatibility graph
and constraints on allowable exchanges.



2 Model and Preliminaries

In this Section we describe our mathematical model for Kidney Exchange, motivated by the works of
Csaji et al. [11] and Kern et al. [18]. Unlike Roth et al. [25], which models each agent as a donor-patient
pair, we consider agents as organizations, such as hospitals in the U.S. exchange system or countries in
the international exchange system. We consider an exchange involving a set of n countries (our results
naturally extends to other kidney exchange settings), denoted by N = {1,...,n}. Each country i € N
is endowed with a set V* consisting of donor-recipient pairs, unpaired patients, and altruistic donors.
The sets V* are disjoint across countries. Within each Vi let U* C V' denote the set of non-altruistic
donor-patient pairs and unpaired patients. The remaining elements, V* \ U?, are altruistic donors, who
are willing to donate without requiring a kidney in return.

Compatibility graphs. Compatibility is modeled via a directed graph, denoted by G = (V, E'), where
V = V%1U..UV", and the set of edges, E, captures the compatibility of exchange. Specifically,

« For two non-altruistic donors—patient-donor pairs u, v, a directed edge (u,v) € F indicates that
the donor in pair u is compatible with the patient in pair v, meaning a transplant from u to v is
feasible.

« To simplify notation and the description of feasible exchanges, we can model altruistic donors as
special donor—patient pairs by introducing a dummy patient who is compatible with any donor.
This allows us to define directed edges following the same rules as before.

+ Similarly, we can model unpaired patients by adding a dummy donor who is only compatible
with the dummy patient associated with the altruistic donors.

The bounds we derive on the number of altruistic donors required depend on two key parameter of
the compatibility graph: the maximum size of independent odd cycles and the number of types in an
optimal type-based representation. As discussed in the introduction, both parameters are typically
small in practice, especially in kidney exchange applications. To formalize this, we examine two stylized
models of compatibility graphs.

Random graphs: Random graphs is a common framework for modeling compatibility of kidney ex-
change. Mathematically, donor-recipient pairs are partitioned into a finite set of groups @, based on
characteristics such as blood type and the sensitization levels of both the donor and the patient. For any
two groups ¢, j € ® (not necessarily distinct), let p;; denote the probability that a donor from group
i is compatible with a patient from group j. If p;; = 0, then compatibility is ruled out—for instance,
due to incompatible blood types. Otherwise, p;; may depend on additional clinical factors, such as
the patient’s calculated Panel Reactive Antibody (cPRA) level. A random graph is then generated by
assigning donor-recipient pairs to groups according to a distribution calibrated to match empirical data.
For any two donor-recipient pairs u from group ¢ and v from group j, a directed compatibility edge
from u to v is added independently with probability p;;.

Type-representation of graphs: Another related but conceptually distinct approach is the deterministic
type-based model. In contrast to the probabilistic model, compatibility here is deterministic: whether
one pair is compatible with another is fully determined by their assigned types. However, unlike in
the random graph model above where types reflect observable donor and patient characteristics (e.g.,
blood type, cPRA), the “type” in this setting is an abstract construct introduced solely to parametrize
the compatibility graph. It does not necessarily correspond to any specific medical or demographic
attributes. Specifically, we say that a (di)graph G = (V, E) can be represented by a set of types T,
if it holds that there exists a labeling f : V' — T, such that for any two types t1,to € T, either
{(u,v) |u € f~Ht1),v € f~Ht2)} € Eor {(u,v) | u € f~1(t1),v € f~1(ta)} N E = (. That is,



the existence of a (directed) edge only depends on the types of the endpoints. Dickerson et al. [14]
conducted simulations showing that kidney exchange graphs can usually be represented by only a
few types. We may assume that for any type t;, there is no edge (u,v) with f(u) = f(v) = t;, as
donor-recipient pairs are deleted, if they are compatible with each other.

Exchanges. We consider two models of kidney exchange: pairwise exchange and cyclic exchange.
In pairwise exchange, only mutually compatible donor-patient pairs can trade kidneys. Cyclic exchange
allows longer cycles, where each donor gives to the next patient and receives a kidney from the previous
donor. We assume a maximum cycle length of A, with A = 2 corresponding to pairwise exchange. In
practice, A = 3 is typical, while values above 5 are rare due to the logistical and medical challenges of
coordinating multiple simultaneous surgeries.”

Let Ca denote the cycles of length at most A. Given a subset of vertices W C V, denote the induced
compatibility graph on W as G[IWW]. We call £ an exchange among W if £ is an union of disjoint cycles
of length at most A in the induced compatibility graph G[WW]. We say that y* € [0, 1]°2 is a fractional
exchange if it holds that for any vertex v € V, >~ > <1.
ceCalvece
Given an exchange £ = (Vg, E¢), the utility of a country 7 is given by the number of their patients
receiving a kidney, that is
ui(€) == Ve nUY.

Overall, we refer to the economy as a partition exchange economy, represented by the tuple

(g’ A, {Viv UZ ?:1)'

DEFINITION 2.1. Given a partition exchange economy, an exchange £ among V', and a coalition P C
N ={1,..,n}, we say that P is a (strong) blocking coalition to &, if there exists an exchange &' in the
graph G[U;cpV;] such that u;(E") > u;(E) for alli € P. We say that & is in the (weak) core, if there is no
blocking coalition to £.

Note that in the definition above, some papers in the literature refer to such a block as a strong block
and the corresponding concept as the weak core. However, since our paper does not consider the
stronger notion of the core—namely, the strong core, for reasons outlined below—we will, without loss
of clarity, omit the qualifiers strong and weak from our terminology.

As we will show in this paper, the core can be empty in both pairwise and cyclic exchanges. To obtain a
positive result, we either impose a restriction on the compatibility graph—discussed in Section 4—or
relax the notion of the core by introducing what we call the supplemented core, defined as follows.
To this end, we introduce a special agent, indexed by 0, representing the centralized designer, with
VY denoting the designer’s endowment of altruistic donors. Let G +V* be the extended compatibility
graph that incorporates the additional donors in V. The designer is not allowed to participate in any
coalition. Their sole role is to stabilize the exchange by providing additional resources when necessary.

DEFINITION 2.2. Given additional altruistic donors VO, an exchange £* in the extended graph GV’ isa
VO-supplemented core if it is not blocked by any coalition P C N = {1, ..,n}. If|[V°| < d, we also refer
to E* as a d-supplemented core exchange.

DEFINITION 2.3. Given an additional altruistic donor V°, an exchange £* in the extended compatibility

0 . : : . 0 .
graph GtV is Pareto optimal if there does not exist another exchange &' in GtV such that all countries
are weakly better off and at least one country is strictly better off.

?Even in the case of altruistic donors, cycles become chains, and operational difficulties with chains are less severe. Longer
chains are also rare in practice Agarwal et al. [1]. Moreover, chains of size 10-20 typically result from the accumulation of
exchanges over an extended period. For example, the National Kidney Registry reported a 25-transplant chain that was built
up over several months. Our model aims to capture the clearing mechanism over a relatively shorter period, during which
longer chains can be broken into smaller segments. The donor at the end of a chain in one period can then be viewed as an
altruistic donor initiating a new chain in the next period.



REMARK 2.1. An alternative solution concept is the strong core, which rules out weakly blocking coali-
tions—that is, coalitions where all members are weakly better off and at least one member is strictly better
off. However, it is well known that in exchange economies with satiated utilities, the strong core is an
unreasonably demanding solution concept. Consider the following example: Country A has k altruistic
donors who are compatible with any patient. There are k + 1 other countries, By, ..., By41 with k donor-
recipient pairs, each of which could fully utilize all k donors of A to meet their own needs. Moreover, no
exchange is possible among the countries By, ..., Biy1 without the help of additional donors. No matter
how country A distributes the donors among the other countries, there will always be a weakly blocking
coalition between A and one of the B; countries that has none of its patients matched. To achieve a strong
core allocation, we would need to guarantee that all B; countries match all their donors, otherwise, B; and
A would still weakly block. Hence, we need at least k? altruistic donors, which is roughly the number of
donor-recipient pairs in the original instance (which is k? + 2k).

The requirement in Remark 2.1 is clearly unrealistic. Therefore, we focus on the weak core and Pareto
optimality, rather than the strong core. Remark 2.1 also shows that to have a strong core solution, we
may need to add |V*| many additional donors for some of the countries i — note that adding |V*| many
additional donors for ¢ ensures that ¢ cannot strictly improve anymore.

2.1 Scarf’s Lemma, Rounding

The tool that we use to establish our result is Scarf lemma and rounding (Nguyen and Vohra [23]).

LEmMMA 2.1 (Scarf [27]). Let Q be ann x m nonnegative matrix, such that every column of () has a nonzero
element and let ¢ € RY. Suppose that every row i has a strict ordering =; on those columns j for which
Qij > 0. Then there is an extreme point of {Qx < q, x > 0}, that dominates every column in some
row, where we say that x > 0 dominates column j in row i, if Q;; > 0, Q;x = ¢; and k =; j for all
i€ {1,...,m}, such that Q;xx) > 0. Also, this extreme point can be found algorithmically.

Let 7% = |U® N ¢| for a cycle c and country 4. Recall that Ca denotes the cycles of length at most A. The
following key Lemma — building on Scarf’s Lemma — provides an existential guarantee for a special
fractional solution: one that we can round off to find a V°-supplemented core.

LEMMA 2.2 (Rounding Lemma). Given a partition exchange economy with cycles of size at most /A, there

exists a fractional exchange y* in G such that: for any set V° of altruistic donors and any (deterministic)
0

exchange £* in GTV", the exchange £* belongs to the V°-supplemented core if

ui (%) > LZ viy*| foralli € N.

ceCa

3 Pair-wise Exchange

In the case of pairwise exchange, we can discard all compatibility arcs (u,v) such that (v, u) is not a
compatibility arc, and only consider the undirected graph G of the mutual compatibilities. Hence, in
this case, we replace the set E' of the edges of G by the possible pairwise exchanges Cy. Therefore, the
feasible exchanges are now assumed to be the matchings of the graph G.

We show in a simple example how an additional altruistic donor can guarantee the existence of a core
exchange.

ExampLE 3.1. Consider the partition economy illustrated in Figure 1, featuring three countries represented
by red, green, and blue vertices, respectively. This instance, from Csaji et al. [11], demonstrates an empty
core. However, adding a single altruistic donor (the black vertex) makes the bold matching £ a core outcome.
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Figure 1: A partition exchange economy with pairwise exchanges without a core, but with a 1-supplemented
core. The red, green and blue vertices denote the countries, while the black vertex is V°. The bold matching
shows a V-supplemented core.

To see this, observe that any country alone can cover all but 3 of its vertices, any two countries can cover all
but 2 of their vertices and the three countries together can cover all but 5 of their vertices. Since in the bold
VY-supplemented exchange £, one country has 2 vertices unmatched, and the others only one, no single
country, nor the 3 countries together block €. Furthermore, no 2 countries block either, as then they could
leave at most (2 — 1) + (1 — 1) = 1 of their vertices unmatched, which is impossible.

We extend this example to show that a constant fraction of all patients may need an additional altruistic
donor for the core in the worst case.

V]

THEOREM 3.1. A partition exchange economy with pairwise exchanges may not have a (g — 3)-
supplemented core for arbitrarily large values of |V'|, even if the number of countries isn = 3.

Our main result on the existence of the supplemented core relies on the following concept of independent
odd cycles.

DEFINITION 3.1. Given an undirected graph G = (V, E), a set of odd-length cyclesC = {c1,...,c} is
called independent, if c; N ¢; = () fori # j and there exists now € ¢;,v € ¢;, j # 4 such that (u,v) € E.
Let v(G) denote the maximum number of independent odd cycles of G.

THEOREM 3.2. In a partition exchange economy with pairwise exchanges, the v(G)-supplemented core is
always nonempty and contains a Pareto-optimal solution. As a special case, if G is bipartite, then the core
is nonempty and contains a Pareto-optimal solution.

REMARK 3.1. The v(G)-supplemented core exchange in Theorem 3.2 can be chosen in a way, such that each

7
country ¢ requires at most % additional donors.

Next, we show that in a random compatibility graph, the expected maximum number of independent
odd cycles grows logarithmically with the size of the graph. This shows that in a typical random
compatibility graph, compared with the market size, only a small number of altruistic donors are needed
to stabilize the exchange.

LEmMMA 3.1. Assuming a constant number g of groups, for any distribution of the vertices to the groups, in
a random kidney exchange graph G, the expected value E[v(G)] = O(log |V'|) and as the size of graph
increases, the probability that v(G) = O(log |V'|) approaches 1.

On the other hand, if the compatibility graph can be represented using types, we show that the maximum
number of independent odd cycles is at most one-third the number of types.

LEMMA 3.2. If a graph G can be represented with t types, then v(G) < &.

Proof. We show that there exists an independent set of odd cycles of size v(G) that contains each type
at most once. As odd cycles have at least 3 vertices, the statement will follow.



Take any maximum size set of independent odd cycles C. Suppose for the contrary that ¢; appears in
cycles ¢, , ¢j,. Then the neighbors of the type ¢; vertex in c;, are connected to the type t; vertex in
cj, too with an edge, which contradicts the independence of the cycles. Similarly, if a type ¢; appears
twice in the same odd cycle ¢;, then there exists an edge between two non-adjacent (as a type is never
compatible with itself) vertices in the cycle. Hence, we can obtain a smaller odd cycle c;» and replace c;
with c;- in C. This still gives an independent set of odd cycles, and after a finite number of steps, no
type will appear twice within an odd cycle either. O

Thus, we obtain the following corollary establishing the existence of the supplemented core under both
models of compatibility.

COROLLARY 3.1. In a partition exchange economy with a random compatibility graph, the O(log |V|)-
supplemented core is nonempty with probability approaching 1 as the market becomes large. In a partition
exchange economy representable byt types, the %—supplemented core is always nonempty.

4 Applications to One-Sided Exchange Economy

In this section, we apply Theorem 3.2 in the special case where G is a bipartite graph, to a one-sided
market setting. In this setting, our result extends the main result of Echenique et al. [17].

There is a set of m goods, denoted by M = M; U --- U M, where M; represents the set of goods
originally owned by agent i. Agents have preferences over bundles of goods, and we denote by v;(X)
the utility that agent ¢ derives from consuming bundle X C M.

DEFINITION 4.1. A partition M = M{ U ---U M, is in the weak core if there is no strong blocking
coalition. A strong block is a subset of agents S C N and a partition of Uje s M; into U;csM] such that all
agents in S are strictly better off, i.e., foralli € S, v;(M]) > v;(M}).

Echenique et al. [17] provide conditions on the economy and utility functions under which the weak
core exists. Specifically, they assume that goods are partitioned into categories, that is, M = le Ok,
where each O represents a set of goods that belong to the same category.

Each agent i has a set of acceptable objects G;, for which they obtain a utility of 1, while objects outside
G have a utility of 0. The utility of agent ¢ for a bundle X is defined as

K
vi(X) =) max{|X NO* NG, 1}.
k=1

That is, each agent can consume at most one good from each category and derive a utility of 1 from any
acceptable good. This class of utility functions is called additively separable and dichotomous preferences.

THEOREM 4.1 (Echenique et al. [17]). A categorical economy with additively separable and dichotomous
preferences has a nonempty weak core.

We next show that Theorem 3.2 implies a more general result compared to Theorem 4.1. In particular,
when the utilities of the agents are in the class of binary assignment valuation, defined below, the core
is nonempty.

DEFINITION 4.2 (Binary Assignment Valuation). A valuation function v(.) over a set M of objects is binary
assignment valuation if there exists a set of positions J and a {0, 1} matrix o of dimension |M| x |.J| such
that for any set X C M, v(X) =max. ) .y ZjeJ @i zij, where z varies over all possible assignments
of elements in X to elements in J.



The key difference between binary assignment valuation and the assignment valuation in Milgrom [20]
is that «;; is restricted to binary values (0 or 1). This class is strictly more general than the assumption
in Echenique et al. [17]. Specifically, the following construction corresponds to a categorical economy
with additively separable and dichotomous preferences.

Fix an agent 7, and let .J’ be a set of K positions, where each position corresponds to a good category.
The matrix « is defined as follows: for j € J and g € M, agj = 1 if and only if good g belongs to
category j and is acceptable to the agent. It is straightforward to see that this construction precisely
characterizes a categorical economy with additively separable and dichotomous preferences.

The following example shows that binary assignment valuation is strictly more general than additively
separable and dichotomous preferences of a categorical economy. Consider three goods: a, b, and c.
The valuation function is given by:

v(a,b,c) =v(a,b) =v(b,c) =v(a,c) =2, wv(a)=v(b)=uv(c)=1.

This valuation does not correspond to any additively separable and dichotomous preferences of a
categorical economy. However, it corresponds to two positions, J = {1, 2}, with the matrix o having
entries equal to 1 for all pairs of positions and goods.

THEOREM 4.2. If valuations of the agents are binary assignment valuation, then the weak core is nonempty.

Proof. This is a corollary of Theorem 3.2. We need to construct a compatible graph for kidney exchange
that corresponds to the one-sided market with binary assignment valuation.

Let J° be the set of positions that describe the valuation of agent 4, and let o’ be the 0-1 matrix of
dimension |M| x |J?| representing that valuation description. The construction of the corresponding
kidney exchange instance is as follows.

The goods M correspond to altruistic donors, where M is endowed by agent 4. The set .J? corresponds
to the set of patient-donor pairs endowed by agent i. The compatible graph is a bipartite graph between
M and U J*. There is an edge between j € J* and g € M if and only if af]j =1.

Because all the goods in M correspond to altruistic donors, each agent’s valuation only depends on how
many positions can be matched. This is exactly the valuation of the agent under the binary assignment
valuation assumption. O

5 Cyeclic Exchange

We will consider a general case where exchanges involve cycles of size at most A. Recall that in this
exchange model, each exchange corresponds to a subgraph &, which is a union of directed cycles of
size at most A.

We first show that the core may be empty, and show that in the worst case, a linear number of additional
donors is required to achieve a weak core.

ExaMPLE 5.1. The following is a simple example to show that the core can be empty for cycles of length 3.
(For pairwise exchanges, a no-instance was given by Csdji et al. [11]). We have 5 countries 1,2, 3,4, 5 with
Vi=U! = {v;} fori € {1,..,5} along a cycle of pairwise exchanges of length 5, in this order. Then, we
subdivide the arcs (v;, vi+1) (i + 1 taken modulo 5) with a new vertex v; ;11 that belongs to the country
1+ 1. It is easy to see that any feasible exchange after this subdivision corresponds to one or two pairwise
exchanges before it. So, there will always be a country ¢ such that v; is unmatched. Then, i and i + 1 block,
as there is a 3-cycle (v;, v j+1, Vit1), where i + 1 has 2 vertices covered and i has 1, instead of 1 and 0
respectively.
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Figure 2: llustration for Theorem 5.2 with k = 2. Different colored vertices denote the different countries.

Using disjoint copies of Example 5.1, we get the following result.

THEOREM 5.1. In a partition exchange economy with A = 3, the (m — 1)-supplemented core can be

10
empty for arbitrarily large instances.

In fact, a similar result holds even if there exists no bound on the exchange cycles at all.
THEOREM 5.2. In a partition exchange economy with unbounded exchanges, the (% — 2)-supplemented
core can be empty for arbitrarily large instances, even withn = 5 countries.

Proof. We construct a partition exchange economy similar to Example 5.1. We have 5 countries
1,2,3,4,5. Each of them has 3k vertices. The exchanges are not bounded in the instance, i.e., A = oc.

The instance is again obtained by subdividing edges of a cycle of length 5 of pairwise exchanges with

For Country 1 we add 2k — 1 more vertices on the edge (v2,v1) and k — 1 on the edge (vs, v1). For
country 2, we add 2k — 1 more vertices on the edge (v3, v2) and k — 1 on the edge (ve, v1). For country
3, we add 2k — 1 more vertices on the edge (vs,v4) and k — 1 on the edge (v2, v3). For country 4, we
add 2k — 1 on the edge (v4, v5) and k — 1 on the edge (v4, v3). Finally, for country 5 we add 2k — 1 on
the edge (vs,v1) and k — 1 on the edge (v4,v5). See Figure 2 for an illustration.

If neither of the two large cycles is chosen as the exchange, then there will be a country that has no
vertices covered. By the construction, the country that is before him in the cycle would block with him
and both would improve by at least k. If the vy, va, v3, v4, v5 oriented large cycle is chosen, then in the
small cycle between 1 and 2, both 1 and 2 improve by at least k — 1. If the vs, v4, v3, V2, v1 oriented
large cycle is chosen, then the small cycle between 4 and 5 blocks in a way such that both countries
improve by at least £ — 1.

Therefore, for any exchange &, there is a blocking coalition, where all participants can improve by at
least k — 1, so even if we add k — 2 additional donors, there will still be a blocking coalition. Hence,

there is no (k — 2)-supplemented core here. As k = % in this example, the statement follows. O

Theorems 3.1 and 5.2 show that even the trivial solution that assigns a distinct additional altruistic
donor for each patient v € U;e yU? is optimal up to a constant factor both for pairwise and cyclic
exchanges. However, as we show next, if the number of types ¢ is also some constant, then a good
upper bound exists on the required number of additional donors.

Our main result on the Supplemented Core for cyclic exchange is as follows.

THEOREM 5.3. Given an partitioned exchange economy with a compatibility graph that can be represented
byt types and a bound of A on the exchange cycle lengths, the (A — 1)n(t + 1)-supplemented core is
always nonempty. Furthermore, it also contains a Pareto-optimal solution.
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We provide the proof in the appendix. The idea behind the proof follows from our description in
Section 2.1. We begin by choosing an optimal type representation for G and finding a fractional
domination solution obtained from Scarf’s lemma and then we round it to an integral solution. Due
to the complex combinatorics involved in cyclic exchanges, the rounding procedure may violate the
capacity constraints on the number of donors of each type for each country. Nevertheless, our result
guarantees that, for each country, the number of additional donors needed depends only on the number
of types.

6 Simulations

In this section, we present our simulation results. We also examine a strengthened version of the core,
described below.

DEFINITION 6.1. Given an exchange &, and a coalition P C N = {1, ..,n}, we say that P is a TU blocking
coalition to £, if there exists an exchange ' in the graph G[U;c pV;] such thaty ;. pui(E') > 3. p ui(E).
We say that £ is in the TU core, if there is no TU blocking coalition to &.

Intuitively, £ is in the TU core, if all coalitions P C N receive at least as many transplants in the
solution combined, as they could achieve alone.

Notice that strong core implies TU core, but not reversely. While in a weakly blocking coalition, the
exchange £ must be a weak improvement for everyone, in a TU blocking coalition, some countries
may be worse, only the total number of transplants of the countries must increase.

Next, we define the supplemented TU-core.

DEFINITION 6.2. Given additional altruistic donors V°, an exchange £* in the extended graph GV’ isa
VO-supplemented TU core if it is not TU blocked by any coalition P C N = {1,...,n}. If|V% < d, we
also refer to £* as a d-supplemented TU core.

While we have seen that theoretically not much can be guaranteed in terms of even the strong core,
our simulations showed that in practice, even this strongest version of the core is often nonempty and
never needs many altruistic donors for existence.

Setup. We generated 20 instances of partition exchange economies using a state-of-the-art gener-
ator [13, 24] (which is a refinement over the widely used Saidman-generator by Saidman et al. [26]),
similarly to previous works [8, 9, 16]. Each instance contains 100-130 donor-recipient pairs, which is in
line with most European kidney exchange programs, randomly assigned to between 4 and 9 countries.
We experimented with both pairwise exchanges and exchanges involving cycles of length up to 3.

All simulations were run on an AMD Ryzen 7735HS processor with 16GB RAM. For each configuration
(number of countries, cycle length), we ran simulations over 20 independent instances and tracked:

+ the number of altruistic donors needed to obtain a core or TU core exchange,
« the number of steps taken by our heuristic algorithm to find a (supplemented) core exchange,

« the number of core and individual rationality (IR) violations in the initial maximum matching
found in the first step of the heuristic.

The details of the computation are described in Appendix B.1. For computing solutions in the TU
core and the supplemented TU core, we used an integer program IP: TU core. For finding a core, or
supplemented core exchange, we used a heuristic that starts by finding an arbitrary maximum solution,
and then if there exists a blocking coalition, it slightly increases the weight on the edges that go to the
countries in the blocking coalition, and iterates with the new weighted objective. After 100 steps, if a
core exchange was not found, it adds an additional altruistic donor.
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Discussion of results. The results of our simulations are depicted on Tables 1, 2 and Tables 3-5
in Appendix B.2. Our simulations indicate that, in practical settings, the core of a partition exchange
economy is predominantly nonempty, whereas the TU core may be empty in approximately 25% — 50%
of cases. Notably, in over 90% of instances, the initial maximum solution identified by our heuristic
algorithm resided within the core. In scenarios where this was not the case, the heuristic successfully
located a core solution within two or three iterations (after an additional donor was added when
necessary). Interestingly, these instances often exhibited violations of individual rationality constraints,
highlighting potential challenges in ensuring even the most basic form of incentive compatibility.

A particularly encouraging finding is that, across all instances of size 100-130, a single additional
altruistic donor was always sufficient to achieve a core exchange. For the stronger notion of TU core
stability, at most two additional donors were required. Thus, despite theoretical worst-case bounds
suggesting the need for many supplementary donors, our experiments show that, in practice, the
resource requirement is minimal. This demonstrates that our d-supplemented core concept is both
practical and highly implementable, enabling strong incentive guarantees with negligible additional
cost.

Finally, we observed that as the number of countries increased, the likelihood of an empty TU core also
rose, and the heuristic more often required supplementary altruistic donors, likely because the core
was indeed empty. This suggests a trade-off between market size and stability, and further motivates
the use of supplemented cores in larger, decentralized kidney exchange settings.

Table 1: 6 countries, same size

A=2 A=3
TU Core Core TU Core Core

% of instances with no core found 5% 0% 35% 5%
Average number of donors needed 0.05 0.00 0.35 0.05
Max number of donors needed 1 0 1 1
Average number of steps in heuristic - 1.00 - 6.15
Max number of steps in heuristic - 1 - 102
Avg number of core violations in 1st step (IR, core) - (0.00,0.05) - (0.00,0.30)
Max number of core violations in 1st step (IR, core) - (0,1) - (0,4)

Table 2: 9 countries: 7 small, 2 large

A=2 A=3

TU Core  Core TU Core Core
% of instances with no core found 45% 10% 25% 0%
Average number of donors needed 0.50 0.10 0.25 0.00
Max number of donors needed 2 1 1 0
Average number of steps in heuristic - 11.00 - 1.00
Max number of steps in heuristic - 101 - 1
Avg number of core violations in 1st step (IR, core) - (0.1,0.1) - (0.00,0.00)
Max number of core violations in 1st step (IR, core) - (1,1) - (0,0)

7 Conclusions

This paper introduces the concept of the supplemented core in kidney exchange. Our main result
shows that a small number of altruistic donors can stabilize the exchange market. This highlights a
potentially new, yet important, role for altruistic donors in exchange systems. The applications extend
beyond kidney exchange to other organ exchanges where organizational incentives play a critical role.
Future work includes more empirical studies, exploration of computational challenges, and practical
implementations.
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A Omitted Proofs

A.1 Proof of Lemma 2.2

Proof. Let us create an instance of Scarf’s Lemma as follows. For the matrix (), we create a row for each
vertex v € V. Furthermore, for each coalition P C N and each utility vector (uq, ... U p‘) which is
attainable by a feasible exchange £ C E[P] (that is u;(£) = u; for i € P), we create a column (P, &)
by choosing an arbitrary such exchange £. The entry in the intersection of a row v and a column (P, £)
is 1, if v is covered by & (also implying that v € V' for some i € P by & C E[P]) and 0 otherwise. The
bounding vector q is chosen to be 1 for all rows. Both are nonnegative, hence they satisfy the conditions
of Scarf’s Lemma.

Then, we create the strict ranking required for the rows over their nonzero elements. For a vertex
v € V', this is created in a way such that (P, &) =; (P’,£’), whenever it holds that u;(€) > u;(£'). If
u; () = u;(E’), then we break the ties in a way such that (P, &) =; (P’,&’), whenever |P| < |P'|.

By Scarf’s Lemma, there exists an extreme point of this system that dominates every column in some
row. Choose this solution z* in a way such that |z*|; = ) #}, ¢ is maximal.
£
Define y¥ = > zp ¢ for all cycles ¢ € Ca. Then, Sy= > > The = > The =
PE|ce€ clvee clvee P,E|ceE P,E|E covers v
Qyz* <1, s0 y* is indeed a fractional exchange.

Let £* be an exchange using some d > 0 altruistic donors, such that u;(*) > | Y. ~ly’| foralli € N.
ceCa

Suppose there is a blocking coalition PP with an exchange £p, where all ¢ € P improve. By construction,

there is an exchange £}, such that P, £}, has a column in @ and u;(Ep) = u;(E}) for all i € P. Hence,

as z* was a dominated solution, it dominated P, £}, in some row v. Let j be the country for which

v € V7. For this j € N, we have that > pr g1 Qupr g = 1 and that for any P', £’ with j € P’ and

Tpr g > 0 it holds that u;(€') > u;(Ep).

Hence, by the construction of y*, we must have > Y2y: = >° 3 %ewpig = > uj(E)rp o >
ceCa PrE el PrE
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’U,j((c;/)l'};/’g/ > le'* . minp/’g/{uj(g') ’ QM(P/’g/)%};/’g/ > O} > UJ(E,P)

P’ .EE! covers v

Therefore, we get that u;(E*) > | Y ~yr] > u;(€p) = u;(Ep), contradicting that j € P improves
ceCa

in gp. ]

A.2 Proof of Theorem 3.1

Proof. We create an instance of a partition exchange economy with pairwise exchanges as follows. Let
K be the clique on [ vertices - i.e. the graph where any two vertices are connected. The graph G of the
partition exchange economy consists of 3a vertex-disjoint K3 graphs (i.e. triangles) K1, K3, ..., K3®
and 9a vertex-disjoint K5 graphs K %, K 52, .., K ga’ where a € N is a parameter. We have that
|V | = 9a + 45a = 54a, and the size of each country is 18a.

There are three countries 1, 2, 3. Each triangle K J contains one vertex from each country. Furthermore,
gle A3 y
Kéj_l)&l“, ceey Ké]_l)'3a+3a contains 2 vertices from countries j and j 4+ 1 and 1 vertex from j + 2

for j € [3], where addition is taken modulo 3 (i.e. 2+ 1 =3,but 2+ 2 = 1).

It is easy to see that for any pairwise exchange (matching), at least 12a vertices must remain unmatched,
at least one for each disjoint clique in the graph.

Furthermore, if two countries join, then we claim that together they can create a matching where at
most 6a of their vertices remain unmatched. Indeed, they can match all their vertices in the triangles
as there is always an edge between them. Among K32, ..., K%, there are 6a cliques, where one of
them has an odd number of vertices. In such cliques, they must leave one of their vertices unmatched,
but this can be an arbitrary one of their vertices, as any two vertex within a K7 are connected. In the
cliques K; g, where both of them have an even number of vertices, all can be matched.

Finally, a single country can also create a matching, leaving only 6a of its vertices unmatched. This
holds because among the 9a cliques K %, oK 9a it has an even number of vertices in 6a of them, so
all of them can be matched there. Hence, only 3a vertices in the K7s and 3a in the triangles will be
unmatched.

Let d := a. Suppose for the contrary that there exists a 3(d — 1)-supplemented core solution £. By
our above observations, the two worst-off countries together have at least 2 - (12a — (3d — 3)) =
8a—2d+2 = 6a+2 unmatched vertices. Say one of them has ¢ > 0 and the other at least 8a —2d+2—c.
As each country can create a matching with at most 6a unmatched vertices, we must have that ¢ < 6a
and 8a — 2d + 2 — ¢ < 6a, so 2a — 2d + 2 < ¢. Hence, 2 < ¢ < 6a = 8a — 2d + 2 — 2 and so both
countries must have at least 2 vertices unmatched. Hence, both of these two countries can improve
their situation in a matching among themselves, where only 6a < 6a + 2 vertices are unmatched,
contradicting the fact that M is in the 3(d — 1)-supplemented core.

As we have that d = ¢ and hence d = ‘5%‘, the statement follows. O

A.3 Proof of Theorem 3.2

Proof. Take a labeling f of G with set of types T" and let |T'| = ¢t. We refer to f(v) as the type of v.

By Lemma 2.2, there exists a fractional exchange y*, such that if u;(£*) > [>_.cc, Viyk] =
|>ecpViyt] foralli € N for some exchange £* using d additional donors, then £* is in the d-
supplemented core. Let y*(E(U")) := 3" .c p Vv

We create a Polyhedron P = {Az < a, Bz > b,z > 0} as follows. The variables z correspond to the
edges of G. Furthermore, the matrix A is just the incidence matrix of G with ¢ = 1. In the matrix B,
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we have a row for each country, such that B; . = 7. = |e N U?|. It is easy to see that the row B; of a
country i is the sum of the rows A, for v € U’. Every entry of B is from {0, 1,2}. The vector b is set
such that b; = [y*(E(UY))].

The polyhedron P is clearly nonempty, as y* € P.

Let 2* be an extreme point of P that maximizes Y (Y. ~%)zZ. If there is an integer coordinate z* in
ecl ieN
z*, then we delete that column from A and B andseta :=a — 2} - A.cand b :=b — 2} - B. ., where

Q. ; denotes columns j for a matrix (). Also, if a row becomes all zero, then we delete it. Furthermore,
if a,, becomes 0, then we can set all variables with a nonzero entry in the row A, to 0 and delete them.
Hence, we can assume that a is always 1 for every coordinate. If some row or column got deleted, then

we update z* to an extreme point of the new polyhedron P that maximizes AT
p p poly Ye)Ze
ecE ieN

If at some point, all variables become integral, then it gives an exchange £ in the core by Lemma 2.2.
Otherwise, suppose that all variables of the extreme point z* are fractional.
Hence, we can use Lemma A.1 for the polyhedron P to show some properties that are satisfied by z*.

Credit each variable 2} of 2* with 1 token. Then, we redistribute the tokens as follows. If u € Vi \U i
for some i € N, or A,z* = 1, then we give % token to A,,. Else, u € U?, for some i, A,z* < 1 and we
give % token to B;. Similarly, if v € V7 \ U’ for some j € N, or A,2* = 1, then we give % token to
A,. Otherwise, v € U7 for some J, Ayz* < 1 and we give % token to Bj;. It is easy to see that each z;
component distributes at most 1 token.

It is easy to see that each tight row A, gets at least one token, since each coordinate is {0, 1} in A4, and
all coordinates are fractional, so there are at least two edges e, eg that give % token to A,.

Take a tight row B;, such that not all A, rows withv € U i are tight. Otherwise, the row B; would be
generated by the tight rows A, for v € U".

Then, take a vertex v € U’ with A,2* < 1. By the tightness of B;, we have that there are at least two
v € U' with Ayz* < 1, since b; = B;z* = ) ;i Ayz™ and b; is integer. Therefore, B; gets at least
one token too.

By Lemma A.1 we get that this is only possible, if each tight row that got at least one token got exactly
one token, and if a row got less than one token, then it got 0.

From this, we conclude that there are at most two fractional edges of z* incident to any vertex v with
A,z* = 1. We claim that this is also true for a vertex v with A,2z* < 1. Indeed, if v € U" for a country
i such that B; is tight, then all fractional edges incident to v give a % token to B;’s row, so there are
at most two. Finally, if v ¢ U’ for any i € N, then % of z}’s token would have been given to A, for
any fractional edge e with v € e, hence as only tight rows received tokens, there can be no fractional
edges incident to v. Hence, the fractional edges of z* correspond to a disjoint set of cycles and paths
in the graph G[U;enU']. Also, no paths can be odd-length, as otherwise it contradicts the fact that
z* maximizes Y (Y 7¢)z’. Furthermore, there can be no even length cycle or path c either, since
ecE ieN

otherwise z* is not extreme: z* = %(zl + z2), where 21 = z* —ex¢, +EXe, and 22 = 2* + X, — EXey
for some sufficiently small enough € > 0 and ¢ = ¢; U ¢ is chosen such that the edges of c alternate
between ¢ and c¢s.

Hence, we conclude that the fractional edges of z* gives a vertex disjoint set of odd cycles C. If G
is bipartite, then this is a contradiction, which shows that the core is nonempty in this case, and z*
corresponds to a Pareto-optimal exchange in the core.

Suppose that G is not bipartite.

We can suppose that C is an independent set of odd cycles. Otherwise, if there exists an edge (u, v)
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with u € ¢;,,vpj,, j1 7# jo2, then all vertices in ¢;, U ¢j, can be covered with a matching. Hence, we
may choose such a matching, and iterate this procedure until no such case exists.

From this, it follows that we can round z* to a matching £ that satisfies that at most min{v(G), %}
vertices are unmatched from these cycles. Hence, with % additional donors — at most one from each type -
we can guarantee that u;(€) > [y*(E(U"))], so by Lemma 2.2 it gives a solution in the -supplemented
core.

If £ is not Pareto-optimal, then take an exchange £’ in g+V° that Pareto-dominates it and maximizes

>ien wi(E'). Then, & is clearly Pareto-optimal. Also, u;(€') > u;(€) > | > Aly}] foralli € N, so
ceCa
by Lemma 2.2 is in the the (A — 1)n(¢ + 1)-supplemented core too. O

A.4 Proof of Remark 3.1

Proof. In the proof of Theorem 3.2, we chose an arbitrary matching that leaves only one vertex from
each odd cycle c € C.

We will show that if we choose this matching properly, then it satisfies the claimed additional constraint.

Create a graph # as follows. The set of vertices of / is N and there is an arc 77, if there exists an odd
cycle ¢ € C, where i has a covered vertex and j has an uncovered vertex. Let A be the set of those
countries such that they have strictly less than [|U? N C|/3] vertices uncovered and B be the set of
those countries such that they have strictly more than [|U? N C|/3] vertices uncovered. If B is empty,
we are done. If B is nonempty, then by the maximality of the chosen matching, A is also nonempty.

We claim that there is a path from A to B in H. Suppose otherwise. Then, the set of vertices B not
reachable from A all satisfy that they have strictly more than [ .5 U*NC|/3] uncovered vertices.

Furthermore, as there is no incoming edge to B in H, it follows that any odd cycle that contains an
uncovered vertex of a country from B satisfies that all other vertices also belongs to someone from B.
As every odd cycle has at least 3 vertices and each odd cycle satisfies ¢ C G[U;e yU'| as we observed in
the proof of Theorem 3.2, we get that if we sum the number of uncovered vertices of each country in B,
then it is at most one-third of the total number of vertices of these countries in C, contradicting the
above observation about B.

Hence, in this case we can find an A — B path in ‘H along which we can create a new matching,
where someone from A has one less vertex covered and someone from B has one more vertex covered.
Iterating this, we arrive at a point, where B will be empty.

Hence, for each country, % additional donors suffice. O

A.5 Proof of Lemma 3.1

Proof. Let the number of groups be a constant g. Let p be the smallest strictly positive probability
between groups. We will not assume anything on the distribution of the vertices to the groups in ®.

We will prove a slightly stronger result, that is, we will show that the expected number of independent
edges (i.e. vertex vertex-disjoint edges with no other edges between them) is also O(log |V'|). This
statement is stronger, as any independent set of odd cycles also contains an independent set of edges of
the same size. Let 1/ (G) denote the maximum number of independent edges and let X be the random
variable s.t. for a graph G, X (G) = V/(G).

For some fix distinct vertices U = {v1, ..., v9}, let Xy be an indicator random variable that is equal
to 1, if G[U] contains £ = % independent edges, and 0 otherwise.

E[X] =X\ kP(X = k) = S0 P(X > k).
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In the following, we bound P(X > k). Clearly, X > k can only happenif > — Xy >1.
UCV||U|=2k

Take a fix U C V with |U| = 2k. For any set of k independent edges, there must be at least 2k/g? such
that their starting vertices are in the same group and their ending vertices are also in the same group.
We can assume that no edge exists between the same group. Hence, k/g? independent edges among
these vertices is only possible, if for each vertex in group 1, it is connected to exactly one vertex in group
2. This can be happen in (k/g?)! < k* many subgraphs. The probability that a fix subgraph happens is
bounded by (1 — p)k2/94_k/92, because each edge from group 1 to group 2 have probability at least p
(since there can be edges between them), and k/g?(k/g? — 1) of these edges cannot be included.

Hence, using g > 1, we have that P(Xy > 1) < 2((2]3;221)“(1 — ]9)’162/944{“‘/92 < 2(22K3(1 —
p)k/g4_1/g2)k.

Then, P(X > k) < S OPXy > 1) < 2|VAK3(1 — p)Re Yk < 24lVA(L —
UCV||U|=2k
p)k/9*=1/g*\k,

For any constant § > 0, this is bounded by ﬁ for k > Dlog|V| for a constant D = D(p, g,0),as g

is a constant and 1 — p < 1 is also a constant. Hence, P(X > Dlog|V|) < vE T 0. Therefore,

S PX > k) < SUEVIP(X > k) + 1< Dlog V. O

A.6 Proof of Theorem 5.3

Proof. Take a labeling f of G with set of types T" and let | T'| = t. We refer to f(v) as the type of v.

By Lemma 2.2, we have that there exists a fractional exchange y*, such that if u;(£*) > |y*(E(V?))]
for all © € N for an exchange £* using d additional donors, then £* is in the d-supplemented core.

We create a polyhedron P = {Az < a, Bz > b,z > 0} as follows. The variables z correspond to the
cycles of G with length bounded by A.

In the matrix A, we have a row (t,7) for each type t € T" and country i € N. The entry in row (¢, 1),
column ¢ (corresponding the the cycle ¢) is 82" = |[{v € ¢ NV’ | v has type t}| and the bound is
at; = |{v € V' | v has type t}|. That is, we have inequalities of the form

t,
E B ze < agy.

ceCa

In the matrix B, we have a row for each country i € N. The entry in row i, column ¢ is 7% = |c N U?|
and the lower bound is b; = | Y ~Ly’|. That is, we have inequalities of the form

ceCa
> vz > 1Y vl

ceCa ceCa

It is clear that y* satisfies these constraints, so y* € P.

Consider the following rounding procedure. Initially, let z* be an extreme point that maximizes

(X0 ez

ceCa iEN

While 2* is not integral, we do the following

(1) For each integral component c of 2*, we delete the variable c and update the bounds accordingly -
that is, if 2} = 1 for some ¢ € Ca, then we decrease b; by 72 and a;; by BE’Z fort € T.
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(2) If there are rows in A or B such that 4;;1 < a;; + A — 1 or B;z* < A — 1, then we eliminate
them from P (here 1 is the all 1 vector).

(3) Update 2* to be an extreme point that maximizes > (Y. 7)z* of the updated polyhedron P.
ceCa 1EN

First of all, suppose that this procedure terminates in an integer valued z*. Then, z* corresponds to
an exchange £* using cycles of length at most A that violates each constraint by at most A — 1. This
holds because A; ;z* must remain below A;;[2*| < Ay ;1 < a;; + A — 1, if we eliminated row Ay ;
and B;z* must remain above 0 > b; — A + 1 if we eliminated row B;.

For each country, we add (b; — B;z*) " + 3, cp(Ariz* — ari)™ < (A —1)(t 4 1) additional donors,
in total at most (A — 1)n(¢ 4 1) for all countries. With the help of these additional donors, we can

create an exchange & that assigns at least Y |7.z*| transplants for each country - as vertices with
ceCa
the same type ¢ in the same country ¢ are interchangable by the assumption that compatibility only

depends on the type.
By Lemma 2.2, £ is in the (A — 1)n(t + 1)-supplemented core.

If £ is not Pareto-optimal, then take an exchange £’ in g+V° that Pareto-dominates it and maximizes

>ien Ui(E). Then, £ is clearly Pareto-optimal. Also, u;(E') > w;(€) > | Y- ~lyk] foralli € N, so
ceCa
by Lemma 2.2 is in the the (A — 1)n(¢ + 1)-supplemented core too.

Therefore, to prove the Theorem, it only remains to show that the procedure must terminate. That is, if
there are no more rows that can be eliminated, then z* must be integral.

We use the following well-known lemma from operations research (Schrijver [28]).

LEMMA A.1. Let z* be an everywhere strictly positive extreme point of {Qz < q,z > 0}. Then the number
of variables equals the maximum number of linearly independent tight rows of Q).

Suppose for the contrary that z* is not integral, but there are now rows that can be eliminated. As we
eliminate integral variables in the procedure, all variables of z* can be assumed to be strictly positive
and fractional. Hence, we can use Lemma A.1.

We give one token to each fractional component 2. Then, we redistribute these tokens to the rows as
follows. We give ’yé% from z.’s token to the row B; and ﬁé’z% to the row A; ; fori € N,¢ € T Then,
til—zX

the total number of tokens that 27} distributesis ) ;. 'y};% D ien drer B TRae S+l -2 <,
since |c| < A.

Take a tight row B;. Then, A — 1 < B;z* = b; € Z, as the row cannot be eliminated, so B;z* =
> cecn Veze = A. This implies that any such row must obtain at least % Y cecn Veze = 1 tokens.

Next, take a tight row A; ;. Then, A;;2* = a;; and A;;1 > a;; + A, as A;;1is integer and the row

cannot be eliminated. Putting these two together, we get that A; ;(1 — 2*) = EcecA éz(l —z¥) > A.

Therefore, any such row must obtain at least x > ceCa L1(1 — 2¥) > 1 tokens.

Hence, we must have that every row with a nonzero entry must be tight and must receive exactly one
token and they must be linearly independent, otherwise the number of linearly independent tight rows
could not be equal to the number of variables as Lemma A.1 requires. Furthermore, any row that should
receive some positive fraction of a token from any z; cannot have been eliminated by the same reasons.
So if B" > 0, then Ay is not eliminated yet and if 4. > 0 then B; is not eliminated yet. Finally, each
component z} must distribute exactly one token, hence Y,y 7t = Aand Y,y Doy Bl = A for
any such cycle c.

Therefore, if we sum the vectors A; ; for all tight rows, we must get a vector a’ such that a, = A Ve
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using that ZteT D ieN B = A. Similarly, if we sum all tight B; rows, we must get the same vector
a’,as ), n Y. = A too. This contradicts the fact that these tight rows are linearly independent.

O]

B Additional material for simulations

B.1 Computation details

Computation of coalition values. To compute the maximum number of transplants v(P) that
a coalition P C N can achieve on its own, we solved the following integer program (IP: (P,A)) on
the subgraph G [U;cpV*]. Here, p(v) and 6(v) denote the incoming and outgoing arcs of a vertex v,
respectively.

maximize Z Te
€:(u7w)€g[Ui€‘PVq
weU;epU”
subject to Z Te = Z Te YvEV
e€p(v) e€d(v)
(IP: (P,A))
Z Te <1 YveV
e€p(v)
dre<A-1 Vpathp C E, |P| = A
eEcp
ze €{0,1} Vee E

Finding core and supplemented core exchanges. To find a core or a d-supplemented core exchange,
we applied the following heuristic procedure. First, we checked whether the TU core was nonempty by
solving the integer program (IP: TU core), which we obtain by adding to (IP: (P,A)) (with P = N) the
following equations.

(IP: TU core)

e=(w,w)
wEG[UiepUZ]

If a TU core exchange was found, it was also a core exchange. Otherwise, we proceeded as follows: We
solved (IP: (P,A)) for P = N to find a maximum exchange. If the resulting exchange was not in the
core, we searched for a blocking coalition P and slightly increased the weights of arcs with endpoints
in U;c pU" to favor this coalition. If a core exchange could not be found within 100 iterations, we added
a new altruistic donor to V°.

For the supplemented TU core, we used IP: TU core, and added donors one by one, until the integer
program had a solution.

Core stability verification. To verify whether an exchange £ belongs to the core, we iterated over
all coalitions P C N and checked whether P could block £ by solving the integer program we get by
adding to (IP: (P,A)) the equations:

Y wezu(E)+1 VieP

e=(u,w)
wel?

(IP:core-check)

20



Our codes for the simulations are available in our GitHub repository Csaji [12].

B.2 Omitted tables

In this section we list the additional results from the simulations that were omitted from the main body
of the paper. In particular, we provide the simulation results for 4,5 and 8 countries. With few countries,
the weak core was always nonempty, and even the TU core was much less often empty, than for many
countries. Also, with few countries, the arbitrary maximum solutions found in the first step of our
heuristic always turned out to be in the weak core already, without additional optimization.

Table 3: 4 countries, same size

A=2 A=3

TU Core Core TU Core Core
% of instances with no core found 5% 0% 20% 0%
Average number of donors needed 0.05 0.00 0.20 0.00
Max number of donors needed 1 0 1 0
Average number of steps in heuristic - 1.00 - 1.00
Max number of steps in heuristic - 1.00 - 1.00
Avg number of core violations in 1st step (IR, core) - (0.00,0.00) - (0.00,0.00)
Max number of core violations in 1st step (IR, core) - (0,0) - (0,0)

Table 4: 5 countries, same size

A=2 A=3

TU Core Core TU Core Core
% of instances with no core found 15% 0% 20% 0%
Average number of donors needed 0.15 0.00 0.20 0.00
Max number of donors needed 1 0 1 0
Average number of steps in heuristic - 1.00 - 1.00
Max number of steps in heuristic - 1.00 - 1.00
Avg number of core violations in 1st step (IR, core) - (0.00,0.00) - (0.00,0.00)
Max number of core violations in 1st step (IR, core) - (0,0) - (0,0)

Table 5: 8 countries: 5 small, 3 large

A: 2 A: 3

TU Core Core TU Core Core
% of instances with no core found 45% 5% 50% 0%
Average number of donors needed 0.45 0.05 0.50 0.00
Max number of donors needed 1 1 1 0
Average number of steps in heuristic - 6.00 - 1
Max number of steps in heuristic - 101 - 1
Avg number of core violations in 1st step (IR, core) - (0.05,0.05) - (0.00,0.00)
Max number of core violations in 1st step (IR, core) - (1,1) - (0,0)
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