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Abstract

We study the problem of fair cake-cutting where each agent receives a connected piece of the
cake. A division of the cake is deemed fair if it is equitable, whichmeans that all agents derive the
same value from their assigned piece. Prior work has established the existence of a connected
equitable division for agents with nonnegative valuations using various techniques. We provide
a simple proof of this result using Sperner’s lemma. Our proof extends known existence results
for connected equitable divisions to significantly more general classes of valuations, including
nonnegative valuations with externalities, as well as several interesting subclasses of general
(possibly negative) valuations.

1 Introduction

Cake-cutting is a fundamental problem at the intersection of economics, political science, and computer
science [6, 21, 19, 8]. The problem involves a divisible, heterogeneous resource, often called a “cake”,
that should be divided fairly among agents with differing preferences. Over the years, the cake-cutting
problem has generated significant theoretical interest, leading to intriguing connections with various
areas of mathematics [13, 1, 17]. Additionally, the problem has found practical applications in modeling
fair allocation of desirable resources like land estates [23] and time slots [16] as well as undesirable
resources such as rent [28].

In this work, we focus on a fairness notion called equitability [13], which requires that each agent
derives the same level of utility from the portion of the resource assigned to it. This notion captures
fairness from the perspective of a central planner aiming to minimize the disparity between the best-off
and worst-off agents. Numerous studies have explored the existential and computational aspects of
equitability and its connections with other fairness concepts [13, 1, 7, 10, 11, 2, 20]. Experiments with
human participants have shown that equitability is a more accurate predictor of perceived fairness in
resource allocation compared to other concepts such as envy-freeness [15].1 Equitability is also a key
feature of the well-known Adjusted Winner procedure [6].

Formally, a cake is represented by the interval [0, 1]. A cake division refers to a partition of the interval
[0, 1] among n agents; each agent’s assigned part is called its “piece”. Given any cake division, each
agent derives a value from its assigned piece, which is specified by its valuation function. A seminal
result by Dubins and Spanier [13] showed that an equitable cake division always exists for any given
additive valuation functions. However, in this case, an agent’s piece can be anymember of the σ-algebra
of subsets of [0, 1]. Such divisions can be impractical in certain situations, particularly when dividing
land or allocating time slots. As Stromquist [27] memorably described it: “A player who hopes only for
a modest interval of cake may be presented instead with a countable union of crumbs.”

Motivated by these considerations, our work aims to study the existence of a connected equitable cake
division. In this type of division, each agent receives a disjoint subinterval of [0, 1], and all agents derive
the same value from their respective pieces. Interestingly, there are several proofs demonstrating the
existence of a connected equitable cake division [2, 11, 12, 25]. However, these proofs either apply to a
restricted class of valuation functions or use sophisticated techniques and are, therefore, quite complex.

1A division is envy-free if each agent values the resource assigned to it at least as much as that assigned to any other
agent [14].
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Figure 1: Summary of our results in the form of a Venn diagram. Each rectangle denotes a class of instances (de-
fined in Section 2) and each dot-arrow pair denotes the domain on which the corresponding result applies.

Our Contributions. We make the following technical contributions (also see Figure 1):

• We define a new class of instances that we call some agent nonnegative (SANN) instances (see
Section 2.2). Essentially, in a SANN instance, any connected division results in some agent
receiving a piece of cake with nonzero size for which it has nonnegative value. This property
crucially depends on the ordering of the agents. However, this class allows valuations with
externalities (we call these global valuations) where the value derived by agent i under a given
connected division can depend on all pieces, not just the piece given to agent i. Our results also
extend directly to some agent nonpositive (SANP) instances where any connected division results
in some agent receiving a piece of cake with nonzero size for which it has nonpositive value.

• In Section 3, we present a simple proof of the existence of a connected equitable division for
SANN instances (Theorem 1). Our proof uses Sperner’s lemma [26], which is a combinatorial
counterpart of Brouwer’s fixed point theorem and has been used in various applications such
as in finding competitive equilibria in an exchange economy [22], envy-free cake-cutting, and
envy-free rent division [28]. To the best of our knowledge, this is the first application of Sperner’s
lemma in the context of equitability.

• We identify several interesting subclasses of SANN instances that demonstrate how our work
generalizes known results. Prior work has shown that under additive nonnegative valuations, any
given ordering of agents admits a connected equitable division. We generalize this result to all
nonnegative valuations (Corollary 1). We also explore possibly negative additive valuations. Here,
we show that commonly-studied settings such as identical valuations (and its generalization,
value-ordered instances) as well as single-peaked valuations (and its generalization, split-cake
instances) are included in the SANN class (see Section 4), and thus permit a connected equitable
cake division for a particular agent ordering.

Related Work

The existence of connected equitable divisions of a cake has been studied in a number of previous papers.
Aumann andDombb [2] showed that there is an equitable division thatmaximizes the egalitarianwelfare
among all connected divisions using the compactness of the space of all connected divisions. Their
proof relied on the valuations being nonnegative and continuous. By contrast, our proof of existence
of a connected equitable division applies to a broader class of global valuations, where an agent’s value
for a division can depend not only on the position of the cut points of the agent’s piece, but also on
the position of the cut points of other pieces. Furthermore, our proof applies to subclasses of possibly
negative valuations, a generalization not allowed by Aumann and Dombb’s proof.

In a separate study, Cechlárová et al. [11] presented an existence proof based on function inverses. This
proof crucially required the valuations to be defined as integrals of nonnegative density functions. The



proof also showed that if all density functions are strictly positive, then for any instance, there is a
unique connected equitable division.

A simpler proof of existence by Chèze [12] proceeds via another fixed-point result, the Borsuk-Ulam
theorem [17]. While this result is stated for valuations defined in terms of nonnegative density functions,
it extends to more general valuations that may depend on the pieces allocated to other agents as well.
The use of Borsuk-Ulam requires antipodal functions (i.e., functions f for which f(x) = −f(−x)), and
cannot directly handle valuations that may be negative. Specifically, when the valuations are allowed
to be negative, not every fixed point of the function used by Chèze corresponds to an equitable division.
On the other hand, our proof via Sperner’s lemma readily shows the existence for many classes of
possibly negative valuations as well.

For agents with identical valuation functions, Avvakumov and Karasev [3] showed the existence of a
connected equitable division via an involved topological argument. Their proof applies to valuations
defined on intervals that are continuous in the two interval end-points, and hence is quite general.
While our result is less general in comparison (since we obtain the existence for identical additive
valuations defined via density functions), our technique is significantly simpler.

Cechlárová and Pillárová [10] studied algorithms for computing connected equitable divisions that are
also proportional; that is, each agent’s value for its piece is at least 1/n fraction of its value for the entire
cake. They considered nonnegative valuations and show that even for three agents, there is no finite
algorithm for obtaining a proportional and equitable connected division. However, considering approx-
imate equitability allows for an efficient algorithm; specifically, their algorithm requiresO(n log(n/ε))
queries in the Robertson-Webb model.

Procaccia and Wang [20] studied the query complexity of computing an (approximately) equitable
cake division without the connectedness constraint in the Robertson-Webb query model [21]. They
showed that no finite algorithm exists for finding an equitable division, even without the connectedness
constraint. They also studied the query complexity of ε-equitability, where the absolute difference
between the highest and lowest utilities is at most ε. For this problem, they established upper and lower
bounds of O ((1/ε) ln(1/ε)) and Ω (ln(1/ε)/ ln ln(1/ε)), respectively. For the case of two agents,
Brânzei and Nisan [9] provided a lower bound of Ω (ln(1/ε)), which matches the upper bound of
O (ln(1/ε)) due to Cechlárová and Pillárová [10] for connected approximately equitable divisions.

Finally, we will touch on the literature related to envy-freeness, which requires that every agent prefers
its own piece to that of any other agent. It is known that a “perfect” division, in which each piece has the
same value for every agent, always exists when connectedness is not required [13, 30, 1]. Such a division
is both envy-free and equitable. However, under the connectedness constraint, it has been shown that
envy-freeness is not compatible with equitability, even with just three agents [7]. Notably, Su [28] used
Sperner’s lemma to demonstrate the existence of a connected envy-free division under a large class of
valuations that subsumes nonnegative global valuations (this proof is credited to Forest Simmons). Our
proof for the existence of a connected equitable division is inspired by Su’s construction. It is relevant
to note that Su’s construction works for triangulations that admit an ownership assignment, wherein
each vertex of the triangulation is assigned an index such that no elementary triangle gets a repeated
label. By contrast, our proof works with all triangulations of the simplex and not just ones that admit
an ownership assignment. Connected and envy-free cake cutting under possibly negative valuations
has also been studied in prior work [24, 18, 4].

2 Preliminaries

We denote {1, . . . , n} as [n]. We use ei for the unit vector with 1 in the ith coordinate and 0 in all other
coordinates.



2.1 Sperner’s Lemma

n-simplex. An n-simplex is the convex hull of n + 1 affine independent vectors. That is, for inde-
pendent vectors u1, u2, . . . , un+1, the corresponding n-simplex is given by the set of points

δ :=

{
n+1∑
i=1

αiui | αi ≥ 0 for all i and
∑
i

αi = 1

}
.

The extreme points of the simplex, namely u1, u2, . . . , un+1, are called the vertices of the simplex. The
standard n-simplex ∆n is given by the standard vectors ui = ei ∈ Rn+1. That is,

∆n =

{
x ∈ Rn+1 |

∑
i

xi = 1, xi ≥ 0

}
.

k-face. A k-face of an n-simplex δ is the k-simplex formed by the convex hull of any subset of k + 1
vertices. For any S ⊆ {1, 2, . . . , n+ 1}, the face spanned by S is given by

FS :=

{
n+1∑
i=1

αiui | αi ≥ 0 for all i, αi = 0 for all i /∈ S, and
∑
i

αi = 1

}
.

For example, the side opposite vertex ui of the simplex, F[n+1]\{i}, is an (n−1)-face. Such (n−1)-faces
for any vertex are called facets.

Triangulation. A triangulation T of the standard n-simplex ∆n is a finite collection of n-
(sub)simplices whose union is ∆n, with the property that any two of them intersect in a face common
to both, or not at all. Formally, a collection of n-simplices {δi}i∈I is a triangulation of∆n if ∪iδi = ∆n,
and for all i, j ∈ I , either δi ∩ δj = ∅, or there exists a face F of δi such that δi ∩ δj = F .

The smaller simplices are called elementary simplices, and the union of the vertices of all elementary
simplices are called vertices of the triangulation.

Labeling of a triangulation. Given a triangulation T of a standard n-simplex∆n, a labeling of T is
a function that gives each vertex of the triangulation a label from {1, 2, . . . n+ 1}. A labeling is called
a Sperner labeling if it satisfies the following two properties:

• Each vertex of the simplex ∆n has a different label.

• The facet opposite the vertex of ∆n labeled i has no vertex of the triangulation labeled i.

An elementary simplex is called fully labeled if all of its vertices have different labels.

Proposition 1 (Sperner’s lemma; 26). Any Sperner labeled triangulation of an n-simplex must contain
an odd number of fully labeled elementary n-simplices. In particular, there is at least one.

A proof of Sperner’s lemma can also be found in [28].

2.2 Cake-Cutting

Model. A cake C refers to a divisible resource, represented by the interval [0, 1]. A piece of cake refers
to a finite union of disjoint subintervals of [0, 1].2 A connected piece refers to a single subinterval of

2We allow disjoint subintervals to intersect in a set of measure zero.



[0, 1]. There is a set of agents N = {1, . . . , n} among whom the cake is to be divided, each of whom
must be given a connected piece of the cake. A connected division of the cake refers to a partition of
the cake into n disjoint connected pieces.

Allocation. We represent a connected division of the cake as a point x = (x1, x2, . . . , xn) in the
(n − 1)-simplex ∆n−1, and will denote x0 = 0. Then the leftmost piece is [x0, x1], the next piece is
[x1, x1 + x2], and so on. The ith piece is the subinterval [

∑
j<i xj , xi +

∑
j<i xj ]. Since

∑
i xi = 1,

the entire cake is divided among the agents. We will call such a point x ∈ ∆n−1 a cut-set of the
cake. Note that any connected division can be mapped to a unique cut-set. Thus, there is a bijection
between the space of connected cake divisions and∆n−1. We allocate the ith piece of the cake to agent
i. Formally, given a cut-set x, we denote by Ax = (Ax

i )i∈N the allocation where the ith subinterval
Ax

i := [
∑

j<i xj , xi +
∑

j<i xj ] is given to agent i.

Valuations. Each agent i ∈ N has a valuation function vi : ∆n−1 → R that is continuous and maps a
cut-set x to a value. We require that any agent receiving an empty piece has value 0. Thus, we enforce
that vi(x) = 0 whenever xi = 0. The valuation profile V = (v1, v2, . . . , vn) is an ordered collection of
valuation functions. A connected fair division instance is represented as I = (N, C,V).

Global valuations. Note that an agent’s valuation can depend on the entire cut-set. The three-
agent instance with valuation functions v1(x) = x1 · (x2 + x3), v2(x) = −x1 log(1 + x2), and
v3(x) = (1− ex3) · log(2 + x1) for a cut-set x = (x1, x2, x3) is an example of such valuations, which
we call global valuations.

Local valuations. As a special case of global valuations, one can consider a setting where each agent
i ∈ N is associated with a local valuation function vi : [0, 1]

2 → R that is continuous and satisfies
vi(A

x
i ) = 0 if Ax

i has measure zero. Thus, for local valuations, each agent’s value depends only on the
piece of cake they are allocated. Local valuations are clearly a subclass of global valuations.

Permuted instances. We say two instances I = (N, C,V) and I ′ = (N, C,V ′)with local valuations
V = (vi)i∈N and V ′ = (v′i)i∈N are permutations of each other if there is a permutation π : N → N
so that for all i ∈ N , vi = v′π(i), i.e., the agent valuations are permuted by π from I to I ′. We can
equivalently think of the agent valuations remaining unchanged and the allocation of the pieces in the
cut-set being permuted.

Additive valuations. A well-studied and straightforward special case of local valuations is additive
valuation functions. Intuitively, a valuation function vi is additive if there exists an integrable density
function fi : [0, 1] → R so that for any cut-set x, vi(Ax

i ) =
∫
Ax

i
fi(z) dz. Formally, a valuation function

vi is additive if it is a finite signed measure on [0, 1] with the Lebesgue σ-algebra. It follows that for
an additive valuation function vi and two intervals [a, b] and [b, c], vi([a, c]) = vi([a, b]) + vi([b, c]).
Since all local valuations have zero value for measure zero sets, any such vi is absolutely continuous
with respect to the Lebesgue measure. Thus the Radon-Nikodym theorem for signed measures gives
the existence of a function fi : [0, 1] → R such that vi(S) =

∫
S fi(z) dz where

∫
· dz is the Lebesgue

integral. The term additive comes from the countable additivity requirement for signed measures.
Additive valuations are a subclass of local valuations with vi([a, b]) =

∫ b
a fi(z)dz. Note that any

integrable density function fi : [0, 1] → R also gives rise to a natural additive valuation function
defined as vi(S) =

∫
S fi(z)dz.



Nonnegative valuations. A global/local/additive valuation function is nonnegative if it always has
nonnegative value for any cut-set. For an additive valuation function, this condition is equivalent to
the density function being nonnegative except for a set of measure zero.

Monotone valuations. Another commonly studied class of local valuations in cake-cutting is that
of monotone valuations, where for any subsets S, T ⊆ C such that S ⊆ T , we have that vi(S) ≤ vi(T )
for every agent i ∈ N . Observe that since the empty piece is valued at 0, monotone valuations are a
subclass of global nonnegative valuations.

Equitability. Given a connected fair division instance I = (N, C,V), a cut-set x is equitable if all
the agents have equal value for the cut-set, i.e.,

v1(x) = v2(x) = · · · = vn(x) .

For a local valuation instance, a cut-set x (and the resulting allocationAx) is equitable if all agents have
equal value for their allocation, i.e.,

v1(A
x
1) = v2(A

x
2) = · · · = vn(A

x
n) .

Happy, happier, and happiest agent(s). Given a connected fair division instance I = (N, C,V)
with global valuations and a cut-set x, denote by vmax(x) the largest value any agent has for their piece,
i.e., vmax(x) := maxi∈N vi(x).

• An agent i is a happy agent at x if vi(x) = vmax(x). Denote the set of all happy agents by
H(x) := {i ∈ N | vi(x) = vmax(x)}.

• Among the happy agents, the happier agents are the ones with the largest quantity of cake. Define
H+(x) := {k ∈ H(x) | xk = maxi∈H(x) xi} as the set of happier agents.

• Finally, the happiest agent at x is lexicographically the first agent in H+(x), namely, h+(x) :=
argmink∈H+(x) k. Given any cut-set x, there is a unique happiest agent h+(x).

A cut-set x is equitable if and only if all the agents are happy, i.e., H(x) = N . Example 1 illustrates
these notions.

Example 1 (Happy, happier, and happiest agent). Consider an example with three agents with additive
valuations with the following density functions:

f1(z) =

{
5/2 if z ∈ [0, 2/5]

0 otherwise
, f2(z) =

{
5/4 if z ∈ [1/5, 3/5]

5/6 otherwise
, f3(z) =

{
5/4 if z ∈ [3/5, 1]

5/6 otherwise
.

Consider the cut-set x = (1/5, 2/5, 2/5) and the corresponding allocation Ax. Thus, agent 1 gets
[0, 1/5], agent 2 gets [1/5, 3/5], and agent 3 gets [3/5, 1]. Then, each agent has a value vi(Ai) = 1/2
for their piece of the cake, and all agents are happy. Since agent 1 has a piece of length 1/5, while the
other two have pieces of length 2/5 each, agents 2 and 3 are the happier agents. Finally, since 2 comes
lexicographically before 3, agent 2 is the happiest agent.



SANN instances. A fair division instance (N, C,V)with global valuations is a some agent nonnegative
(SANN) instance if, for every cut-set x, there exists an agent i such that xi > 0 and vi(x) ≥ 0.

It is important to note that the ordering matters for an instance to be SANN. If the ordering of the
agents of a SANN instance is permuted, it may no longer remain SANN.
Remark 1. In a SANN instance, all agents have nonnegative value for the entire cake. This is because
at the vertex ei of the (n − 1)-simplex, agent i is the only agent with xi > 0, and thus has to satisfy
vi(ei) ≥ 0. Further, if the entire cake goes to a single agent, then that agent is the unique happiest and
happier agent.

Prior work [11, 2, 12] has shown that for nonnegative additive instances and any ordering of the agents,
there exists a connected equitable allocation. Example 2 shows that if we allow negative additive
valuations, the ordering of the agents is crucial in showing the existence of a connected equitable
division.

Example 2 (Agent ordering matters). Consider an additive instance with three agents where

f1(z) =

{
−1 if z ∈ [0, 1/2]

3 if z ∈ (1/2, 1]
, f2(z) = 1, and f3(z) =

{
3 if z ∈ [0, 1/2]

−1 if z ∈ (1/2, 1]
.

Here, vi([0, 1]) = 1 for all three agents. We will show the nonexistence of a connected equitable
allocation for this instance for the given agent ordering.

Consider any cut-set x, and let Ax denote the corresponding allocation. Suppose, for contradiction,
that Ax is equitable. If x1 = 0, then x2 must also be zero, else v2(A

x
2) > 0. But then x3 = 1, and

v3(A
x
3) = 1, which is not equitable. Similarly, if x3 = 0, then x2 must be zero, and x1 = 1, which again

is not equitable.

Thus, we must have x1 > 0 and x3 > 0. Note that agent 2 cannot obtain negative value for any subset
of the cake, hence v2(Ax

2) ≥ 0. If x1 ≤ 1/2, v1(Ax
1) < 0, and Ax cannot be equitable. But if x1 > 1/2,

then x3 < 1/2, and since x3 > 0 by assumption, v3(Ax
3) < 0, giving a contradiction. Thus, there is no

connected equitable allocation in which agents are ordered (1, 2, 3) from left to right.

The nonexistence of an equitable allocation in the above instance is due to agent 1 disliking a prefix
of the cake and agent 3 disliking a suffix. This issue can be remedied by switching the agent ordering.
That is, consider the permuted instance (N, C,V ′)with v′1 = v3, v′2 = v2, and v′3 = v1. Then the cut-set
x = (1/5, 3/5, 1/5) has value 3/5 for all agents, and is hence equitable. In fact, one can verify that the
permuted instance (N, C,V ′) is a SANN instance.

One might wonder whether a similar impossibility, as described above, holds for the case of two agents.
Prior work shows that for two agents with additive valuations, a connected equitable division always
exists [11, 20]. In the concluding remarks (Section 5), we extend this existence result to agents with
global valuations, as long as both agents have nonnegative value for the entire cake (but may have
negative value for subsets of the cake).

In the next section, we will establish our main result: For any SANN instance, there always exists a
connected equitable allocation of the cake. Note that one could also define some agent nonpositive
(SANP) instances as follows, and obtain similar results.

SANP instances. A fair division instance (N, C,V)with global valuations is a some agent nonpositive
(SANP) instance if, for every cut-set x, there exists an agent i such that xi > 0 and vi(xi) ≤ 0.

For any SANP instance, one can construct a corresponding SANN instance by considering the modified
valuations v′i = −vi for all agents. Any equitable division in this SANN instance is also an equitable
division in the original SANP instance, hence we focus on SANN instances in the following.



3 Existence of a Connected Equitable Allocation

We note that if some agents have positive value for the entire cake (vi(ei) > 0) while others have
negative value for the entire cake (vi(ei) < 0), there may not exist an equitable allocation — connected
or otherwise. Consider an additive instance with two agents, with density functions f1(z) = −1 and
f2(z) = 1. It is easy to see that if both agents get nontrivial pieces, then agent 1 gets a negative value
while agent 2 gets a positive value. If one of the agents gets a trivial allocation, then it gets a zero value
while the other gets a nonzero value.

Therefore, we restrict attention to instances where all agents have nonnegative value for the entire
cake, i.e., vi(ei) ≥ 0.3 Recall that this condition is satisfied by all SANN instances. The case where all
agents have nonpositive value is symmetric.

In this section, we will show that any SANN instance admits a connected equitable allocation. An easy
example of a SANN instance is one where all valuations are additive and nonnegative. In Section 4, we
will discuss examples of instances that may be negative-valued, yet still satisfy the SANN property and
therefore allow for a connected equitable allocation.

To show the existence of a connected equitable allocation, we will use Sperner’s lemma (Proposition 1).
We will begin by establishing that a triangulation that is labeled according to the index of the happiest
agent satisfies the conditions of Sperner labeling. In our proof, we only need the set of happier agents,
as the happiest agent only comes into play for breaking ties.

Lemma 1. Given any triangulation T of the (n − 1) simplex ∆n−1 and a SANN instance (N, C,V),
suppose each vertex x of the triangulation is labeled with the index h+(x) of the happiest agent under the
corresponding cut-set x. Then, the resulting labeling is a Sperner labeling.

Proof. Recall that ei ∈ Rn has 1 in coordinate i and 0 everywhere else. We need to show two properties:

1. Each vertex of the simplex ∆n−1 has a different label.

2. The facet opposite the vertex labelled i of ∆n−1 has no vertex of the triangulation labeled i.

To see why Property 1 holds, recall that at a vertex x = ei, by definition for SANN instances, agent i
has a nonnegative value, while every other agent has a trivial allocation and hence zero value. Thus,
the only happier agent is i. Each vertex is thus labeled with a unique index.

Let us now show that Property 2 holds. Since xi = 0 for any cut-set x in the facet opposite vertex ei,
by definition of SANN instances, there exists an agent j ̸= i with xj > 0 and vj(x) ≥ 0. Since xi = 0
and vi(x) = 0, agent i cannot be happier. Thus, any vertex on the facet opposite the vertex ei does not
contain the label i.

Sperner’s lemma implies that there exists a fully labeled elementary simplex. The vertices of this
elementary simplex correspond to n distinct cut-sets such that a different agent is happiest at each
cut-set. Using finer and finer triangulations, we demonstrate that these cut-sets can be arbitrarily close
to each other. This gives us a sequence of increasingly smaller fully labeled elementary simplices. In
each of these simplices, each agent is happiest at exactly one vertex. Because the space of connected
divisions is compact, there is a single vertex (and a corresponding cut-set) where all agents are happy,
which implies that all agents have the same value, and the cut-set is hence equitable. We formalize the
notion of “finer and finer” triangulations in the following definition.

3If an agent has value 0 for the entire cake, then assigning the entire cake to this agent is a connected equitable allocation.



Vanishing triangulations. A sequence of triangulations {T k}k∈N of∆n−1 is said to be vanishing if
for all ε > 0, there existsK ∈ N such that for all k′ ≥ K and for all δ ∈ T k′ , we have diameter(δ) < ε.
Here, diameter(δ) = maxx,y∈δ ∥x− y∥2.

Such a sequence can be obtained, for example, using barycentric subdivision [28, 24]. We then use the
following lemma to argue that, if we have a fully labeled elementary simplex for each triangulation,
then we can obtain a single cut-set that is equitable.

Lemma 2. Let {T k}k∈N be a sequence of vanishing triangulations of∆n−1. Let {δk}k∈N be a sequence
of simplices such that δk ∈ T k for all k ∈ N. There exist a subsequence {δt}t∈T and an x∗ ∈ ∆n−1 such
that for all sequences {xt}t∈T with xt ∈ δt, we have xt → x∗.

Proof. Let {yk}k∈N be any sequence of points such that yk ∈ δk for all k ∈ N. By the Bolzano-
Weierstrass theorem, there exists a subsequence {yt}t∈T such that yt → x∗ for some point x∗. We
show that the subsequence of simplices {δt}t∈T and the point x∗ satisfy the required properties. Fix
any sequence {xt}t∈T with xt ∈ δt, and any ε > 0. Since yt → x∗, there exists a τ such that for all
t ≥ τ , ∥yt − x∗∥2 ≤ ε/2. Since {T k} is a vanishing sequence of triangulations, there exists a K ∈ N
such that for all t ≥ K and for all xt, yt ∈ δt with δt ∈ T t, it holds that ∥xt − yt∥2 ≤ ε/2.

Thus, for all t ≥ τ +K , it holds that

∥xt − x∗∥2 ≤ ∥xt − yt∥2 + ∥yt − x∗∥2 ≤ ε

which proves the claim.

Theorem 1. Any SANN or SANP instance (N, C,V) admits a connected equitable allocation.

Proof. For SANP instances, we consider the corresponding SANN instance obtained with valuations
v′i = −vi in what follows. Consider a sequence of vanishing triangulations {T k}k∈N of the (n − 1)-
simplex ∆n−1. Let δk be the fully labeled elementary simplex of triangulation T k obtained from
Sperner’s lemma.

Applying Lemma 2 to the sequence of simplices {δk}k∈N, we obtain a subsequence of simplices {δt}t∈T
and a point x∗ ∈ ∆n−1. Fix any agent i ∈ N . Since δt is fully labeled, agent i is the happiest agent
of exactly one vertex of δt, say xi,t. In particular, i is a happy agent at this vertex xi,t, and thus
vi(x

i,t) ≥ vj(x
i,t) for all other agents j. Since the sequence {xi,t} satisfies xi,t ∈ δt, we have (by

Lemma 2) that xi,t → x∗. Since the valuation functions are continuous, we also have vi(x∗) ≥ vj(x
∗)

for all other agents j at this limit point x∗, and thus i is happy at x∗.

Since the choice of agent i was arbitrary, and since the point x∗ is independent of the choice of agent i,
the above argument shows that every agent is happy at x∗. Thus x∗ must be equitable.

The proof of Theorem 1 used the property that an agent who is happy at each cut-set in the sequence
continues to be happy in the limit cut-set. It is relevant to note that this property may not hold for
happier agents. In other words, an agent that is happier in a sequence of cut-sets may not be happier
at the limit cut-set. This is because the concept of happier agent is defined only with respect to the set
of happy agents. It is possible for agent i with a small piece of the cake to be happier in a sequence of
cut-sets by being the only happy agent in each of those cut-sets, but at the limit point, there could be
multiple happy agents with larger pieces of cake, making i no longer a happier agent. In essence, an
agent who is not happy in a sequence of cut-sets may become happy in the limit cut-set, which could
change the set of happier agents.

We obtain the existence of connected equitable divisions for the following valuation class immediately,
since they are easily seen to be SANN instances.



Corollary 1. Every instance where all agents have global valuation functions that are nonnegative admits
a connected equitable division.

In particular, since the above result holds for every such instance, it also holds for instances where
the valuations are permuted. Thus, in a nonnegative instance, for every ordering of the agents, there
exists a connected equitable division which allocates the cake in that order. Since nonnegative additive
valuations are a subclass of nonnegative valuations, we recover the following result from prior work.

Corollary 2. Every permutation of an instance with nonnegative additive valuation functions admits a
connected equitable division.

As an aside, SANN does not completely characterize the class of instances to which this proof technique
applies, since the weaker condition of admitting a Sperner labeling suffices for applying Sperner’s
Lemma.

4 Subclasses of Additive Valuations

In this section, we will identify several subclasses of additive valuations to which Theorem 1 can be
applied. For an additive valuation vi with density function fi, we define the cumulative distribution
function (or cdf) Fi(t) =

∫ t
z=0 fi(z) dz. We will show that the subclasses considered here satisfy the

SANN condition. We assume in what follows that vi(ei) ≥ 0 for all i, and the density (and thus the
valuation) is allowed to be negative in [0, 1].

Value-ordered instances. A fair division instance with additive valuations (N, C,V) is value-ordered
if for any t ∈ [0, 1] and i ∈ [n− 1], Fi(t) ≥ Fi+1(t) for i ∈ [n− 1]. That is, the agents are ordered so
that any initial piece of the cake has a greater value for an agent on the left.

We will now show that any value-ordered instance satisfies the SANN property.

Lemma 3. A value-ordered instance is a SANN instance when all agents have non-negative value for the
entire cake, i.e., vi(ei) ≥ 0 for all agents i.

Proof. Consider any allocationAx from the cut-set x = (x1, . . . , xn). We will show that for each i ∈ N ,
the total value obtained by agents {1, . . . , i} is at least Fi(x1 + x2 + · · ·+ xi). Note that by invoking
the claim for i = n, we get that the total value obtained by all the agents is at least Fn(1), which is
nonnegative by assumption. Hence, either every agent receives zero value for their piece, or some
agent must receive positive value, completing the proof of the lemma.

We will prove the above claim by induction. For the base case, we have i = 1. Then, the value obtained
by agent 1 is

∫ x1

0 f1(t)dt, which is exactly F1(x1). Assume the claim is true for some i. Then the total
value obtained by agents j ≤ i+ 1 is:∑

j≤i

(
Fj

(∑
k≤j

xk

)
− Fj

( ∑
k≤j−1

xk

))
+

(
Fi+1

( ∑
k≤i+1

xk

)
− Fi+1

(∑
k≤i

xk

))

≥ Fi

(∑
k≤i

xk

)
+

(
Fi+1

( ∑
k≤i+1

xk

)
− Fi+1

(∑
k≤i

xk

))
≥ Fi

(∑
k≤i

xk

)
+ Fi+1

( ∑
k≤i+1

xk

)
− Fi

(∑
k≤i

xk

)
= Fi+1

( ∑
k≤i+1

xk

)
,



where the first inequality is by the induction hypothesis, and the second inequality is by the property
of value-ordered instances. This completes the proof.

An additive instance is said to have identical valuations if all agents have the same density function.
That is, for every pair of agents i ̸= j, we have fi = fj . It is easy to see that identical valuations are
value-ordered and thus satisfy the SANN property.

Corollary 3. An additive instance with identical valuations is a SANN instance.

Split-cake instances. We say an agent i has a split-cake valuation if there exists an interval Ii =
[li, ri] ⊆ [0, 1] where the agent has nonnegative density, and has nonpositive density outside the
interval. That is, fi(z) ≤ 0 for z ∈ [0, li) ∪ (ri, 1] and fi(z) ≥ 0 for z ∈ [li, ri]. An instance with
split-cake agents is a split-cake instance. We will show that every split-cake instance admits an ordering
of the agents that is a SANN instance, which then admits a connected equitable division.

Lemma 4. A split-cake instance admits a SANN permutation when all agents have non-negative value
for the entire cake, i.e., vi(ei) ≥ 0 for all agents i.

Proof. The proof follows from three steps. First, we show that for every agent i with a split-cake
valuation, there exists a threshold θi such that the cumulative value Fi(z) ≤ 0 for z ≤ θi, andFi(z) ≥ 0
for z ≥ θi. Then, we order the agents by thresholds so that θ1 ≤ θ2 ≤ . . . ≤ θn. Lastly, we show
that for any allocation of the cake, there exists an agent i with a nontrivial allocation whose allocation
contains the point θi. The proof follows, since if agent i receives the piece [a, b] with b > a where
θi ∈ [a, b], then Fi(b) ≥ 0 ≥ Fi(a), and hence agent i gets a nontrivial piece with nonnegative value
Fi(b)− Fi(a).

Fix an agent i. To show the existence of a threshold θi, note that Fi(z) is nonincreasing in the interval
[0, li], nondecreasing in [li, ri], and nonincreasing thereafter. Thus, Fi(li) ≤ 0, and since we assume
Fi(1) ≥ 0 (i.e., every agent has nonnegative value for the entire cake), Fi(ri) ≥ 0. We set θi to be any
point in [li, ri] for which Fi(θi) = 0. Since Fi(z) is nondecreasing in [li, ri], we obtain Fi(z) ≤ 0 for
z ≤ θi, and Fi(z) ≥ 0 for z ≥ θi, as required. Note that if fi(0) > 0, then θi = 0.

We then order the agents so that θ1 ≤ θ2 ≤ . . . ≤ θn. Note that 0 ≤ θ1 ≤ θn ≤ 1. For any cut-set
x = (x1, . . . , xn), let S = {i1, . . . , ik} be the set of agents that receive nontrivial pieces, and assume
these are ordered by the threshold, i.e., θij ≤ θij+1 for j ∈ [k − 1]. Let ij∗ be the first agent so that
θij∗ ≤

∑
j≤j∗ xij . Such an agent always exists, since θij′ >

∑
j≤j′ xij cannot hold for all agents, as

the right hand term is 1 for agent ik. Then θij∗ falls in the piece allocated to agent ij∗ , and agent ij∗
gets a nontrivial piece with nonnegative value, as required.

A special case of split-cake instances is single-peaked instances. An additive valuation vi is single-peaked
if there exists a peak pi ∈ [0, 1] so that, for any t ≤ s ≤ pi, fi(t) ≤ fi(s), and for any pi ≤ s ≤ t,
fi(s) ≥ fi(t). Thus there is a single peak pi for the density function such that the function is increasing
before pi and decreasing after pi. An instance is a single-peaked instance if all agent valuations are
single-peaked. Single-peaked instances have been considered in cake-cutting literature before [29, 5].
However, these definitions require the density functions to be linear away from the peak, and are hence
a restricted case of our model.

Corollary 4. A single-peaked instance admits a SANN permutation when all agents have non-negative
value for the entire cake, i.e., vi(ei) ≥ 0 for all agents i.

An obvious question is if possibly all additive instances—even allowing for negative values—have at
least one SANN permutation. This would then imply that for these instances, there always exists a
connected equitable allocation for some permutation of the agents. We give an example to show that
this is not the case in Appendix A.



5 Conclusion

We presented a simple proof showing the existence of a connected equitable cake division. With
nonnegative additive valuations, our proof shows that for any ordering of agents, a connected equitable
allocation exists. However, when the density functions are allowed to be negative, re-ordering the
agents may preclude a connected equitable division, as demonstrated in Example 2. This example
involved three agents, prompting the question of whether a similar limitation applies to the case of two
agents. In Proposition 2, we prove that if both agents have global valuations with nonnegative value
for the entire cake, then for any ordering of the agents, there exists a connected equitable division.
We note that similar proofs for the two-agent case with additive valuations have been given earlier
as well [11, 20]; our proof extends this to agents with global valuations, as long as both agents have
nonnegative value if they are given the entire cake.

Proposition 2. Any fair division instance with two agents with global valuations such that vi(ei) ≥ 0
for i ∈ {1, 2} admits a connected equitable allocation.

Proof. Let t ∈ [0, 1] denote the position of the single cut. The valuation functions v1 and v2 can, then,
be equivalently represented as continuous functions of the single parameter t. Consider the function
h(t) = v1(t)−v2(t). For t = 0, this function is nonpositive (since v1(∅) = 0 and v2([0, 1]) ≥ 0) and for
t = 1, this function is nonnegative (since v1([0, 1]) ≥ 0 and v2(∅) = 0). It follows by the intermediate
value theorem that for some t ∈ [0, 1], v1(t) = v2(t), and this is a connected equitable division.

A natural question for future work is to explore the limits of SANN instances. We believe there may be
other natural classes of instances that satisfy this condition. We have seen there are additive instances
with three agentswith no SANNpermutation. However, do there still exist connected equitable divisions
for some permutation of the agents, possibly for all additive valuations? One could ask the same question
about global valuations. We do not know of any instance where all agents have nonnegative value for
the entire cake (and possibly negative value for subsets), and a connected equitable division does not
exist for any permutation of the agents.

The difficulty in extending our framework to instances where agents may have negative values for
subsets, and the importance of SANN permutations, is illustrated by the following. As before, we could
label each vertex by the index of the highest-valued agent (breaking ties lexicographically). However,
this does not give a Sperner labeling, since at a face, an agent with an empty piece could have the
highest value (this is precisely what the SANN property avoids). Another approach could be to label
each vertex by the index of the highest-valued agent from those that are assigned nonempty pieces
(again, breaking ties lexicographically). This is a Sperner labeling, so a fully-labeled simplex always
exists. However, the limit of a sequence of non-empty pieces corresponding to a fixed index i may be
an empty piece, and hence, a fully labeled point may not exist.

Finally, while our work focuses on existence results, computational questions are also meaningful. Can
one obtain a connected, approximately equitable allocation efficiently, for general additive valuations?
Priorwork showed that there is no finite algorithm for finding an exact connected equitable division that
is also proportional, even for nonnegative additive valuations [10]. Their work also gave an algorithm
with query complexityO(n log(n/ε)) for computing a proportional ε-approximate connected equitable
division. Since a permutation of a SANN instance could possibly not be a SANN instance, our work
introduces the additional computational question of finding a valid permutation of the agents that
satisfies SANN— all previous results on the existence of a connected equitable division held irrespective
of the permutation of the agents. Thus, beyond finding a single SANN permutation (or one that admits
an equitable allocation), an intriguing question is that of counting the number of permutations of a
given instance that is SANN (or admit equitable allocations).
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A Instance with no SANN permutation

Example 3 (Instance with no SANN permutation). Consider a three-agent instance with cdfs as shown
in Figure 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

1

2

x

F (x)

F1(x) F2(x) F3(x)

Figure 2: A three-agent instance with no SANN permutation. For every permutation of the agents, there is an
allocation where every agent with a nontrivial piece has negative value.

Thus the density functions in the instance are:

f1(x) =



−10 if x ∈ [0, 0.1]

+30 if x ∈ (0.1, 0.2]

−5 if x ∈ (0.2, 0.8]

+30 if x ∈ (0.8, 0.9]

−10 if x ∈ (0.9, 1]

, f2(x) =



−5 if x ∈ [0, 0.2]

+30 if x ∈ (0.2, 0.3]

−7.5 if x ∈ (0.3, 0.7]

+30 if x ∈ (0.7, 0.8]

−5 if x ∈ (0.8, 1]

,

f3(x) =


−2.5 if x ∈ [0, 0.4]

+10 if x ∈ (0.4, 0.7]

−10/3 if x ∈ (0.7, 1]

.

The following table shows that for every ordering of the agents, there exists an allocation where every
agent with a nontrivial piece has negative value.

Agent order Allocation Agent values
agent 1, agent 2, agent 3 (0.8, 0.2, 0) (−1,−1, 0)

agent 1, agent 3, agent 2 (0.8, 0, 0.2) (−1, 0,−1)

agent 2, agent 1, agent 3 (0.7, 0, 0.3) (−1, 0,−1)

agent 2, agent 3, agent 1 (0.7, 0.3, 0) (−1,−1, 0)

agent 3, agent 1, agent 2 (0, 0.8, 0.2) (0,−1,−1)

agent 3, agent 2, agent 1 (0.3, 0.7, 0) (−0.75,−1, 0)

The issue here is that, for any ordering of the agents, the coloring of the simplex as described in Section 3
using the notions of happy, happier, and happiest agents does not give us a Sperner coloring, since
in the face opposite a vertex ei, the agent i could be the happiest agent, despite obtaining a trivial
allocation. Hence, we do not obtain the existence of a fully-labeled elementary simplex.

For this particular instance, there is, however, an equitable allocation. Consider the cut-set x =
(48/230, 45/230, 137/230). It can be verified that for this allocation, each agent gets a value of 45/23
(which is almost 2, the maximum possible).
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