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Abstract
We address the problem of selecting k representative nodes from a network, aiming to achieve
two objectives: identifying the most influential nodes and ensuring the selection proportionally
reflects the network’s diversity. We propose two approaches to accomplish this, analyze them
theoretically, and demonstrate their effectiveness through a series of experiments.

1 Introduction

Consider the problem of selecting a fixed number of k nodes from a network. Our goal is twofold: to
identify the most influential nodes, and to ensure that the selection proportionally represents the diversity
within the network. For instance, consider a network composed of three groups of densely connected
nodes. Assume the groups contain 50%, 30%, and 20% of all nodes, respectively, and connections
between groups are relatively sparse. If the objective is to select k = 10 nodes, a proportional approach
would involve selecting five most influential nodes from the first group, three from the second, and two
from the third group. In this paper we design selection methods that capture this intuition, yet apply to
networks with more complex structures.

Our model has broad applicability across various real-world scenarios. For instance, imagine a network
where nodes represent political blogs or news websites, and the links indicate references between them.
In this context, proportional selection would ensure a balanced representation of predominant opinions,
such as left-wing and right-wing political views, within the chosen set of websites. As another example
consider the case of a strike group described by Michael [29]: After acquiring a forest products facility,
new management revised workers’ compensation, prompting a strike. When negotiations stalled, external
consultants analyzed the workers’ communication network, revealing three distinct groups: young Spanish
speakers, young English speakers, and older English speakers. Consultants identified Bob and Norm
as key communicators and, by engaging them, quickly resolved the strike. Interestingly, for k = 2, our
methods identify the same individuals. When k = 3, our best-performing method also selects Alejandro,
ensuring representation from each of the predominant groups.

Finally, our model generalizes elections. As discussed in Section 4, for bipartite graphs, it reduces
to a well-studied election framework where proportionality is extensively explored [25, 17]. From
what follows our work contributes to the social choice literature by enabling elections where the set of
candidates is not predetermined. Instead, citizens can cast their votes for individuals they know personally.
This concept has been previously explored in the context of vote delegation, or liquid democracy [21, 10].
However, liquid democracy often faces criticism because delegated votes tend to concentrate in the hands
of a single influential individual. In contrast, our approach focuses on selecting a group of representatives
based on votes cast through personal connections and trust. Thus, our approach combines the benefits of
indirect democracy with a more personalized voting process, fostering a stronger connection between
voters and their representatives.

Numerous measures of node importance has been proposed, and they are commonly known as centralities.
In this paper, we propose two approaches that define selection rules for representative nodes based
on given centrality measures. While our approaches are general and compatible with most prominent
centrality measures as well as machine learning models, we focus here on two particular examples:
PageRank [30] and Katz centrality [24]. Our first approach constructs elections from the underlying
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graphs and applies contemporary methods from social choice theory. In the second approach, we evaluate
subsets of nodes by modifying the original graph; specifically we prevent selected nodes from propagating
their accumulated influence, hence limiting the extent to which a well-represented part of the network
influences the assesment of remaining nodes. We analyze our methods axiomatically and characterize
their behavior on special graph classes, where proportional selection is intuitively demonstrated. Our
extensive experiments prove the potential for applying our methods in real scenarios.

Our work relates to research on group centrality measures [16, 3] and the strategic aspects of nodes
selection in networks [2, 22, 5], yet, to the best of our knowledge, the notion of proportional representation
has not been explored in either context. It also aligns with studies on proportional clustering [7, 13, 28],
which focus on distance-based division of the nodes into groups rather than on selecting nodes based on
their influence.

2 Preliminaries

We consider unweighted simple directed graphs. We will interpret nodes as voters and outgoing edges as
their support for other nodes, or simply their votes. A graph (or a network) is a pair, G = (V, E), where V
is a set of n nodes and E ⊆ V × V is a set of m edges; the edges are ordered pairs of nodes. An edge (u, v)
is an outgoing edge for node u and an incoming edge for v. The set of outgoing edges of u is denoted by
E+(u). For a set of nodes S ⊆ V , we let E+(S ) =

⋃
u∈S E+(u). The number of outgoing (resp. incoming)

edges of u is called out-degree (resp. in-degree) of u and denoted by deg+(u) (resp. deg−(u)).

A walk is a sequence of nodes (v1, . . . , vk) such that every two consecutive nodes are connected by an
edge: (vi, vi+1) ∈ E for every i ∈ {1, . . . , k − 1}. The length of such a walk is equal to k − 1, i.e., the
number of edges in the walk. Note that a single node is a walk of length 0. If in a walk all nodes are
distinct, we call it a path. A node u is called a predecessor of w if there exists a walk (v1, . . . , vk) such
that u = v1 and w = vk. A node u is a successor of w if w is a predecessor of u. The set of predecessors of
node u is denoted by Pred(u) and its set of successors is denoted by Succ(u). For a set of nodes S ⊆ V
we define Succ(S ) =

⋃
u∈S Succ(u). The set of all walks in G is denoted by Ω(G).

For a set of nodes S ⊆ V , we denote by G[S ] the graph (S , {(u, v) ∈ E : u, v ∈ S }), i.e., the subgraph of
G containing S and the edges between nodes from S. For a set of edges M ⊆ E, we denote by G − M
the graph (V, E \ M), i.e., the subgraph of G that remains after the deletion of edges in M. A component
of G (also known as weakly connected component) is a maximal subset of nodes S ⊆ V such that every
two nodes are connected by a walk in the underlying undirected graph inferred by G. A (sub)graph G is
strongly connected if for every two nodes u, v of G there exists a walk from u to v. A clique is a graph in
which every two nodes u, v are connected by an edge.

A graph G = (V, E) is called (directed) bipartite if all walks in Ω(G) are of length of at most 1, in other
words, if its set of nodes V can be divided into two disjoint sets V = V1 ∪ V2 such that every edge in E is
an outgoing for a node in V1 and an incoming for a node in V2. A graph G = (V, E) is called functional if
deg+(u) ≤ 1, for all nodes u ∈ V . The nomenclature arises from the observation that the set of edges can
be interpreted as a function that assigns to each node (at most) one other.

Given a network G(V, E) and an integer k < n our goal is to select k nodes from V. A method that performs
this selection is referred to as a group selection rule for networks, in short, a rule, and denoted by R. We
will also refer to the outcome of such a rule simply as R(G, k). In our pursuit to find a rule that elects
most influential nodes in a proportional manner, we will use the measures of nodes’ importance from
network science as well as the concepts from social choice theory.
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2.1 Centrality Measures

A centrality measure F is a function that for each graph G = (V, E) and node v ∈ V assigns a real value,
denoted by FG(v). The higher the value, the more central the node is considered. Our methods can be
combined with any centrality measure; yet, we will focus on centrality measures based on walks. At what
follows, for notational simplicity, when it is clear from the context, we omit G and α from scripts.

PageRank [30]: For a given decay factor α ∈ (0, 1), PageRank of a node v in graph G is defined as:

PRαG(v) =
∑

(u1,...,uk ,v)∈Ω(G)

αk∏k
i=1 deg+(ui)

. (1)

At a high level, PageRank of v is proportional to the expected number of times that v is visited by a
random walk that starts from a random node and in each step follows an outgoing edge chosen uniformly
at random or ends the walk with probability 1 − α. Hence, PageRank of a node mostly depends on the
number and the importance of its predecessors. We note that many variants of PageRank appear in the
literature (see, e.g., the work of Wąs and Skibski [39]).

Katz centrality [24]: For a given decay factor α ∈ (0, 1/λ), where λ is the largest eigenvalue of the
adjacency matrix of G, Katz centrality of a node v in G is defined as:

KαG(v) =
∑

(u1,...,uk ,v)∈Ω(G)

αk. (2)

Katz centrality can be seen as a parallel version of PageRank, where instead of counting the vistits in a
random walk we take the number of all walks that pass through a node (discounted by their lenght).

2.2 Election Rules

An (committee) election profile is a triple (V,C, µ), where µ is a function that denotes the preferences
expressed by the voters of V over the candidates of C. A voting rule is a function that for each profile
(V,C, µ) and natural k, elects a committee consisting of k candidates of C according to the preferences of
V as expressed by µ. Preferences can be expressed in various ways, e.g., using approval ballots where
µi(c) = 1 if voter i approves candidate c and µi(c) = 0, otherwise, or using general utility functions
in which µi(c) is an arbitrary non-negative value indicating the satisfaction of i from electing c. We
particularly focus on scenarios where V ≡ C, i.e., voters aim to select a committee from among themselves
by expressing preferences over one another.

Two of the simplest election rules are Approval Voting (AV) and Satisfaction Approval Voting (SAV).
Under these rules, each candidate c is getting a score from each voter vi, which equals µi(c) for AV and
µi(c)/

∑
c′∈C µi(c′) for SAV. In both rules, the k candidates having the maximum total score form the

winning committee. An alternative voting rule that aims to select sets of candidates in a proportional way
has been recently proposed under the name Method of Equal Shares [33].

Method of Equal Shares (MES): Let bi be a (virtual) budget of voter i, initially set to k/n. The rule
operates in rounds. We say that a not yet elected candidate c is ρ-affordable for ρ ∈ R+, if its supporters
can cover its (unit) cost in such a way that each of them pays ρ per unit of utility or all of their remaining
funds. Hence, we calculate the minimum value of ρ that satisfies the expression

∑
i∈V min (bi, µi(c) · ρ) ≥ 1.

In a given round the method selects the candidate that is ρ-affordable for the lowest possible value of ρ
and updates the voters’ budgets accordingly: bi := bi −min (bi, µi(c) · ρ) before proceeding to the next
round. The procedure stops if there is no ρ-affordable candidate for any finite value of ρ.

This procedure may end with less than k candidates selected. To this end, in our experiments we will use
the method with Add1U completion method [18]. Additionally, the recently proposed Method of Equal
Shares with Bounded Overspending (BOS) [31], a robust variant of MES that balances proportionality
and efficiency, will also be explored in our simulations.
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3 Group Selection Rules for Networks

A natural approach to selecting influential nodes in a network is to choose the nodes of highest centrality.
In the context of liquid democracy, Boldi et al. [8] proposed selecting the k nodes with the highest
PageRank, a method we refer to as TopRank. This accounts for the diminishing trust along delegation
paths. By TopKatz, we denote the analogous rule for Katz centrality. As we will show, these rules may
severely fail to represent the network proportionally. In response, we propose two general approaches,
which constitute our main conceptual contribution.

3.1 Election-Based Group Selection

The first approach leverages proportional committee election rules. At a high level, it transforms the
input graph into an election scenario based on nodes’ importance and applies a voting rule to select
representatives. Specifically, for any two distinct nodes u and v, it defines a utility for node u derived from
including node v in the selected set. Such an assessment can be derived from most centrality measures in
a natural way, but can also be the result of a link prediction, similarity measures, or a machine learning
model. For PageRank, with a decay factor α, we define µαG(u, v) as the expected number of visits at v of
the random walk that starts at node u, based on Equation (1):

µαG(u, v) :=
∑

(u1,u2,...,uk ,v)∈Ω(G):u=u1

αk∏k
i=1 deg+(ui)

. (3)

According to this function, the utility is high if node v can be reached with high probability from u. If we
interpret edges as votes’ delegation, the node to which a vote can be delegated more directly is preferred.
Note that PRαG(v) =

∑
u∈V µ

α
G(u, v), so TopRank is equivalent to AV rule applied to election (V,V, µαG).

Instead, we use the Method of Equal Shares due to its well-known proportionality guarantees, resulting in
a rule we refer to as MesRank:

MesRankα(G, k) = MES((V,V, µαG), k).

For Katz centrality the definition of a utility function is analogous, but based on Equation (2), and this
gives rise to a rule that we will call MesKatz. PageRank and, in particular, the utility function from
Equation (3), can be computed in polynomial time [26]. The same applies to the Method of Equal Shares.
Hence, the outcome of MesRank can be computed in polynomial time; the same holds for MesKatz.

3.2 Absorbing Rules

The second approach we propose is directly inspired by a scenario where voters delegate their votes to
others and we need to select a group, S ⊆ V , to represent the whole electorate. Clearly, the selected
voters do not need to delegate their votes further (as they represent themselves), so we can say that they
“absorb” the chain of delegations. Thus, for an arbitrary centrality measure F, where FG(i) indicates the
centrality of node i in G, the importance of each of the selected nodes i ∈ S can be defined as FG−E+(S )(i),
where the graph G − E+(S ) is obtained by removing outgoing edges of all nodes from S. Now, we assess
the group of selected nodes S ⊆ V by the least important node: FG(S ) = mini∈S FG−E+(S )(i). The idea
is that every node in the selected group should have sufficiently large support from nodes not already
represented by other nodes. The group selection rule chooses the group that maximizes this score. This
approach combined with PageRank gives a rule, that we will call AbsorbRank:

AbsorbRank(G, k) = arg max
S⊆V,|S |=k

PRα→1
G (S ).

We maximize the decay factor by setting α→ 1. In this way, we obtain an idealized version of PageRank
that does not take the length of a walk into account.
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Figure 1: Selecting k nodes from a bipartite graph. TopRank (red double lines) and AbsorbRank (green shading)
select k nodes from the first group of V2. MesRank (blue pattern) selects 0.4k of nodes from the first group and
0.3k from each other group of V2.

AbsorbKatz can be defined analogously, with the difference that we take α→ 1/λ. We note that PageRank
with α→ 1 and Katz centrality with α→ 1/λ are closely related to other centrality measures called Seeley
index [37] and eigenvector centrality [9], respectively; see [38] for a detailed discussion.

We prove that the outcomes of AbsorbRank and AbsorbKatz, unlike that of MesRank and MesKatz,
cannot be computed in polynomial time (unless P=NP). This aligns with prior work identifying NP-
hardness results for group centrality measures [40, 12, 4], making it of independent interest.

Theorem 1. Given an input (G, k) it is NP-hard to compute AbsorbRank(G, k) and AbsorbKatz(G, k).

We note that the proof of Theorem 1 does not rely on the fact that α → 1 and extends to all variants
of AbsorbRank regardless of the choice of α ∈ (0, 1). In turn, given the intractability result, for our
experiments, we will use heuristic approximations that take an arbitrary α and proceed sequentially.
Specifically, SeqAbsorbRankα works in k iterations, in each selecting node i that maximizes PRαG(S ∪{i}),
where S contains all nodes selected so far.

4 Case Studies

In this section, we illustrate our methods using two specific classes of graphs: bipartite and functional,
as defined in Section 2. In these graph families proportionality can be intuitively captured, and hence
they can be seen as a first way of examining proportionality achieved by the proposed methods and how
they differentiate among them. Bipartite graphs mimic the scenario of representative democracy, where
the set of candidates is separate from the set of voters. Functional graphs can be viewed as elections
with 1-approval ballots (where each voter supports at most one candidate) and they serve as a widely
studied case in the liquid democracy literature. They were also the exclusive focus of Boldi et al. [8].
Importantly, the outcome of all the examined rules can be computed in polynomial time in both of these
graph families.

Theorem 2. AbsorbRank(G, k) and AbsorbKatz(G, k) can be computed in polynomial time when G is a
functional or a bipartite graph.

4.1 Bipartite Graphs

We begin with directed bipartite graphs that are particularly able to highlight the differences between
measures based on PageRank and Katz centrality, as well as the characteristic behavior of proportional
election rules combined with network centrality measures. We assume that more than k nodes have
incoming edges; otherwise, the examined problem becomes trivial. Since there are only walks of length
0 and 1, the Katz centrality and PageRank of each node v can be easily determined. Specifically, if v
belongs to V1, its centrality is minimal, i.e., PRαG(v) = KαG(v) = 1. Conversely, if v belongs to V2, then:

PRαG(v) = 1 +
∑

(u,v)∈E

α

deg+(u)
, KαG(v) = 1 + α · deg−G(v).

5



. . . . . . . . . . . . . . .

n/k n/k n/k

k

Figure 2: Selecting k nodes from the n-path (n divisible by k). Top-Rank (red double lines) and MesRank (blue
pattern) choose the last k nodes. AbsorbRank (green shading) selects nodes evenly splitting the path.

In words, nodes in V2 get α per incoming edge under Katz centrality, and α divided by the number of
outgoing edges of each supporting voter under PageRank. As a result, TopKatz simplifies to Approval
Voting in this election instance, and TopRank simplifies to Satisfaction Approval Voting. We highlight
that since "candidate" nodes in V2 have no outgoing edges, AbsorbKatz and AbsorbRank yield the same
results as TopKatz and TopRank, respectively.

The approach based on the Method of Equal Shares works differently. The utility that node u gets from
selecting node v is µαG(u, v) = α/ deg+(u) for PageRank and µαG(u, v) = α for Katz centrality. Consequently,
MesKatz corresponds to the result of running MES when all non-zero utilities are equal to α, while
MesRank splits α among all approved by u candidates. For a visualization, consider the bipartite graph
depicted in Figure 1. Methods that select nodes based on the highest PageRank or Katz centrality will
choose all k nodes from the first group of V2, ignoring the votes of the remaining 60% of voters. On the
other hand, MesRank and MesKatz will select 0.4k nodes from the first group and 0.3k nodes from each
other group of V2 (up to rounding). This follows from the EJR property [33] saying that any large enough
group approving the same set of candidates should get a proportional representation.

4.2 Functional Graphs

We now consider graphs in which every node has out-degree of at most one. PageRank and Katz
centralities are identical on such graphs, hence, for ease of exposition, our analysis will center on rules
based on PageRank. For simplicity, we assume that the decay factor approaches 1 for all considered rules:
α → 1. In this case, if a node does not lie on any cycle, the PageRank of a node is nearly equal to its
number of predecessors. More precisely, if |Pred(u)| > |Pred(v)|, then PRα→1

G (u) > PRα→1
G (v).

We begin with an analysis of paths. Consider one of length n (say divisible by k). MesRank views this
instance as an election in which every node receives a utility of approximately 1 from each predecessor.
Hence it selects the last k nodes of the path, as they have the maximum number of predecessors, clearly
dominating the other nodes. The same holds for TopRank. However, AbsorbRank behaves differently.
The sink of the path will be again selected, but then, if the second-to-last node is selected, the sink will
have no incoming edges in G − E+(S ), and its PageRank will be minimized. Therefore, the rule avoids
such a selection. Instead, it aims to select nodes in such a way that they have equal support in the graph
without their outgoing edges: it selects nodes n/k, 2 · n/k, . . . , n. For an illustration see Figure 2.

Consider an arbitrary (connected) functional graph. Such a graph consists of at most one cycle and
in-trees attached to nodes from the cycle. Nodes from the cycle clearly have the maximal PageRank and
have non-zero (close to 1) utility for all the nodes. Thus, if the cycle contains at least k nodes, then both
TopRank and MesRank would select only nodes from the cycle. If not, both methods select all nodes
from the cycle and then some nodes from the attached in-trees. This is where both methods begin to
differ; see Figure 3 for an example. TopRank will select nodes with the highest number of predecessors.
All such nodes may come from the same in-tree. However, from each in-tree MesRank will select a
number of nodes proportional to its size. We switch our attention to AbsorbRank. If the graph has a
cycle, then AbsorbRank would select one node from there, say v. The graph G − E+(v) is a tree. Hence,
roughly speaking, AbsorbRank splits this tree into parts of equal size, selecting the root from each.
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Figure 3: Selecting k = 5 nodes from a (directed
in-)tree with two unbalanced branches of equal size.
TopRank (red double lines) selects mostly from the
right-hand side. MesRank (blue pattern) selects two
nodes from each side. AbsorbRank (green shading)
splits the tree in subtrees of size 3.

Method
Entitlement

Clique- Component- Subgraph-

TopKatz/TopRank ✗ ✗ ✗

AbsorbKatz ✗ ✗ ✗

AbsorbRank ✓ ✗ ✗

MesKatz/MesRank ✓ ✓ ✓

Table 1: Summary of the axiomatic properties.

5 Axioms of Proportionality

We now introduce axioms to formalize the intuition that a sufficiently large and cohesive group of nodes
deserves a proportional number of representatives. Our results (depicted in Table 1) shed further light
on the differences among the examined rules. Specifically, our axioms are inspired by the literature on
multiwinner election rules. Following the approach from works in this area (e.g., [6]), the idea is that each
node should have a significant influence over k/n of the committee. Consequently, a cohesive group S is
entitled to ⌊k · |S |/n⌋ representatives. The key question, then, is: in the context of our study, which groups
of nodes can be considered cohesive, and which nodes qualify as proper representatives of these groups?

We view a group of nodes as cohesive if all nodes mutually approve each other, either directly or indirectly.
The most cohesive groups of nodes possible are the ones that form a component that is a clique. Our first
axiom states that each such a component is entitled to a representation proportional to its size.

Clique-Entitlement: For every graph G = (V, E), if there exists a component S ⊆ V such that G[S ] is a
clique, then |S ∩ R(G, k)| ≥ ⌊k · |S |/n⌋.

TopRank and TopKatz do not satisfy this axiom, as they may overlook nodes from a clique component
that should receive a representation when a larger and more diverse component exists. In contrast, we
will later show that AbsorbRank, MesRank, and MesKatz satisfy this axiom.

Proposition 3. TopRank and TopKatz do not satisfy Clique-Entitlement.

Next, we generalize Clique-Entitlement and require only that the component is strongly connected. It
turns out that AbsorbRank doesn’t satisfy this stronger axiom, in contrast to MesRank and MesKatz.

Component-Entitlement: For every graph G = (V, E), if there exists a component S ⊆ V that is strongly
connected, then |S ∩ R(G, k)| ≥ ⌊k · |S |/n⌋.

Recall that AbsorbRank attempts to divide the graph G into equal parts to maximize the minimal
PageRank in G − E(S) among nodes in S. Given this, AbsorbRank violates Component-Entitlement
because, depending on the structure, some components may be easier or harder to divide into several
equal parts. As a result, it might be more beneficial to select an additional node from one component
rather than another. Interestingly, AbsorbKatz not only fails this axiom but also Clique-Entitlement,
which highlights a crucial difference between the two absorbing methods.

Theorem 4. AbsorbRank satisfies Clique-Entitlement, but does not satisfy Component-Entitlement.
AbsorbKatz does not satisfy Clique-Entitlement.

On the other hand, MesRank and MesKatz also satisfy a stronger property. Consider an arbitrary strongly
connected subgraph within a larger component of a graph. Since this subgraph is not entirely separate
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Figure 4: The College Football Network, where each
group of nodes represents one of 11 conferences or a
group of independent teams. For k = 8, TopRank (red
double lines) selects nodes only from 4 conferences,
while MesRank (blue pattern) and SeqAbsorbRank
(green shading) select at most 1 team per conference.
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Figure 5: Maximum number of nodes from one confer-
ence that are selected by our rules for a given committee
size in the College Football Network.

from other nodes, its delegated votes may flow outside the group. However, these votes will always flow
to their successors. In the previous axioms, we assumed that a group deserving representation would be
represented by its own members. In contrast, we now allow for representation through successors.

Subgraph-Entitlement: For every graph G = (V, E), if there exists a subset of nodes S ⊆ V such that
G[S ] is strongly connected, then |(S ∪ Succ(S )) ∩ R(G, k)| ≥ ⌊k · |S |/n⌋.

Subgraph-Entitlement implies Component-Entitlement, and, in turn, Clique-Entitlement. Consequently,
Subgraph-Entitlement is violated by TopRank, AbsorbRank, and their variants. Our positive result for
MesRank and MesKatz is even more general, as it applies to all selection rules based on the Method of
Equal Shares and any centrality measure that satisfies a basic consistency condition.

Theorem 5. Assume that a utility function µG satisfies µG(u, v) > 0 if and only if there is a path from
u to v. Applying the Method of Equal Shares for such a utility function results in a rule satisfying
Subgraph-Entitlement. In particular, MesRank and MesKatz satisfy this property.

6 Experiments on Real-Life and Synthetic Data

We compare TopRank, SeqAbsorbRank, and MesRank, along with their Katz counterparts, empircally.
Additionally, we include BosRank and BosKatz, defined similarly to MesRank and MesKatz but using
the fine-tuned variant of MES called the Method of Equal Shares with Bounded Overspending (BOS) [31].
This is argued to better handle data with high variance in candidate utilities, a common characteristic of
our model. We set α = 0.85 for PageRank-based rules, as used by [11], and α = 0.85/λ for Katz-based
ones. First, we analyze two network datasets often used as benchmarks for community detection [23].

6.1 College Football Network

The first dataset [20] is a graph of 115 nodes representing U.S. college football teams. Each undirected
edge denotes a game played in Division IA during the 2000 Fall season (see Figure 4). We interpet each
edge as a pair of directed edges in both directions. The teams are split into 11 conferences and a group of
independents. Around 64% of games occur within the conferences and the rest are played across them.
Figure 4 shows the outcomes of TopRank, MesRank, and SeqAbsorbRank for k = 8. To generalize
this analysis for other values of k and the Katz versions of our rules, we plot the maximum number of
teams selected from a single conference for each rule and each k ∈ {1, . . . , 50} (see Figure 5). Katz and
PageRank yield similar results: Top approaches select the most from one conference, while SeqAbsorb
select the fewest. Mes and Bos closely align with SeqAbsorb.
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Figure 6: The fraction of nodes with the minority label in the graph (gray dashed lines) and in the rule outputs
(lines with markers) in the Political Blogs Network after removing blogs from one side of the spectrum. Vertical
lines denote 95% confidence intervals.

6.2 Political Blogs Network

The second network [1] consists of 1,490 nodes representing political blogs active during the 2004 U.S.
presidential election. A directed edge from blog A to blog B indicates a front-page link from A to B.
Blogs are labeled as “liberal” or “conservative” with a roughly balanced composition: 758 liberal and
732 conservative. To assess how our rules perform on unbalanced data, we delete each node of a given
fixed label with probability p and evaluate how well the label distribution in the outcomes reflects that in
the modified graph. For each p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we generate 100 graphs (50 graphs with liberal
nodes removed, and 50 with conservative). Figure 6 shows the fraction that the nodes from the pruned
side constitute among all nodes (grey dashed line) and among nodes selected by our rules. The results
are consistent across different values of k. For PageRank-based rules, the proportions of nodes with the
two labels in the input graphs are closely reflected in the outcomes of our rules. We see this especially
for lower deletion probabilities. At p = 0.9, BosRank performs slightly better than the other rules. For
Katz-based rules, the differences are stark. BosKatz closely follows the proportions in the input graphs,
outperforming BosRank in this aspect. MesKatz performs a bit worse, but TopKatz and AbsorbKatz
exclude minority nodes even for moderate values of p.

6.3 Further Real-World Data

We analyze two additional real-world networks, each with nodes split into multiple categories. The
first one is a network of Facebook pages, where nodes represent official pages and edges denote mutual
likes [36]. It includes pages from four categories: politicians, governmental organizations, TV shows, and
companies. The second one is a CiteSeer network were nodes represent articles labeled with six academic
categories [35]. For both datasets, in Table 2, we report the ℓ1 distance between the vector of frequencies
of different node labels in the outputs of our rules for k ∈ {10, 20, 50} and the corresponding vector of
frequencies for the entire network. Note that for the Facebook network and k = 10, the distance of
BosRank is larger than that of TopRank, MesRank, and SeqAbsorbRank. Two factors might have resulted
in that. First, for k = 10, selecting one node instead of another may change the distance significantly,
hence there is a high degree of randomness in the outcomes. Second, 0.79 is not a particularly bad
outcome, but the other rules, including TopRank, seem to perform quite well in this case. This is due to
the fact that PageRank itself gives somewhat proportional outcomes; refer to Section 6.5 for details.
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network k TopRank MesRank BosRank SeqAbsRank TopKatz MesKatz BosKatz SeqAbsKatz

Facebook
10 0.68 0.41 0.79 0.67 1.39 0.99 0.59 1.39
20 0.58 0.49 0.39 0.59 1.39 0.99 0.49 1.39
50 0.51 0.42 0.27 0.51 1.35 0.59 0.39 1.15

CiteSeer
10 0.83 1.03 0.44 0.83 1.59 1.23 0.41 1.59
20 0.53 0.73 0.42 0.43 1.59 0.83 0.28 1.49
50 0.35 0.55 0.22 0.16 1.23 0.67 0.17 1.11

Table 2: The ℓ1 distance between the vector of frequencies of different node labels in the outputs of our rules
and the corresponding vector of frequencies for the entire network. The smallest distance among rules based on a
particular centrality is highlighted.

6.4 Euclidean Data

Our final set of experiments is inspired by applications in social choice. Our methods can be applied
to elect a committee among a group of voters who vote amongst themselves (without a predetermined
set of candidates). In the social choice literature, voters and candidates are often modeled as points
in a two-dimensional Euclidean space, typically representing an ideological spectrum [15]. Similarly,
we assume that the nodes in our graph (representing both voters and candidates) correspond to points.
These points are sampled from a specific distribution, which we describe later. Edges between nodes are
introduced based on the distances between them, using one of four strategies. The first two strategies
align with conventional assumptions in social choice, where voters are more likely to prefer candidates
closer to them in the ideological space:

E-radius:Each node connects (with a certain fixed probability) to the nodes within a specified radius.

E-appr:Each node connects to a fixed number of its closest neighbors. To introduce some noise, we
assume that each neighbor can be omitted with a fixed probability.

We also propose a novel Euclidean model, which is well aligned with the idea inspired by liquid
democracy: that the voters tend to vote for their close friends (i.e., close points), yet in their preferences,
exhibit a bias toward candidates with higher competence. In this model, each candidate is assigned an
objective value representing their competence (represented as the y-coordinate). A node located at point
(x, y) connects to the nodes closest to (x, y + b) rather than to itself, where b is a constant representing the
competence bias. Variants of this model are denoted as B-radius and B-appr, respectively, depending
on whether the voters tend to approve the candidates within a certain radius of acceptability or a certain
number of candidates.

For each of these models, the points are drawn from two Gaussian distributions, with the points divided
between the two groups in a 1 : 3 or 2 : 3 ratio. From each setting, we sample 1000 instances. Each
instance consists of n = 1000 points. For each instance, we construct a graph with n nodes and select
k = 10 of them using one of our four methods combined with PageRank or Katz centrality. We identify
the points corresponding to the selected nodes and mark them (in green) on the plot. The points from
1000 experiments are combined into a single plot, forming a histogram that represents the distribution
of selected points. The histograms are presented in Figure 7 and Figure 8. The first row shows the
distribution of the points, while the subsequent rows illustrate the histograms generated for our rules.
Additionally, below each histogram, we provide the proportion of points selected from each half of the
histogram. First, we observe that BosKatz and BosRank most accurately reflect the original proportions
of the points in the two Gaussians; other PageRank rules and MesKatz perform slightly worse, while
AbsorbKatz performs significantly worse, particularly when edges are formed based on radii. TopKatz
often fails to provide any proportionality, which strongly motivates our proposed methods. Second, we
confirm that our methods recover competence bias from the graph, selecting nodes corresponding to high
competence. Interestingly, these are not necessarily the nodes with the highest in-degree.
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E-radius-1/3 E-radius-2/3 E-appr-1/3 E-appr-2/3 B-radius-1/3 B-radius-2/3 B-appr-1/3 B-appr-2/3

0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41

TopRank

0.41 : 0.59 0.45 : 0.55 0.59 : 0.41 0.52 : 0.48 0.65 : 0.35 0.56 : 0.44 0.99 : 0.01 0.81 : 0.19

MesRank

0.83 : 0.17 0.61 : 0.39 0.8 : 0.2 0.61 : 0.39 0.83 : 0.17 0.63 : 0.37 0.88 : 0.12 0.67 : 0.33

BosRank

0.68 : 0.32 0.57 : 0.43 0.75 : 0.25 0.6 : 0.4 0.68 : 0.32 0.57 : 0.43 0.83 : 0.17 0.63 : 0.37

AbsorbRank

0.81 : 0.19 0.59 : 0.41 0.7 : 0.3 0.58 : 0.42 0.8 : 0.2 0.62 : 0.38 0.87 : 0.13 0.64 : 0.36

Figure 7: Histograms generated by our PageRank-based methods for Euclidean graphs. The distributions (first
row) are presented at their original scale, while the histograms are displayed at 130% zoom for improved clarity.

6.5 Outlook of the Experiments

As a general rule, we observe that the straightforward approach of selecting the k nodes with the highest
centralities leads to a more proportional representation under PageRank than under Katz centrality. This
suggests that PageRank is inherently more proportional, which is also reflected in our axiomatic analysis
(Section 5). To some extend, this can be explained by the fact that in PageRank every node distributes
its contribution evenly among the centralities of other nodes, leaving no possibility of increasing one’s
impact. In particular, PageRank significantly limits the influence of even the most influential nodes
with higher out-degree. The strict dampening of influence based on out-degree is often undesirable,
making PageRank unsuitable for certain scenarios. For example, if we interpret edges as votes, PageRank
extends satisfaction approval voting, while Katz follows the logic of approval voting (see Section 4.1).
In social choice theory, approval voting is often considered the preferable method and is widely used
in practice [27]. This observation is further supported by the first two columns of Figure 7, where
PageRank tends to select more extremist nodes in the surrounding of the two Gaussians. This occurs
because these nodes receive edges from nodes with a very few outgoing edges on their own, which
greatly boosts PageRank. In a way the candidates coming from less popular regions of voters preferences
are additionally privileged, an arguably very undesired behaviour in election context. Additionally, the
axiomatic analysis of PageRank per se suggests that it is unsuitable for certain applications [39]. In such
applications, our work mitigates the limitations of PageRank by allowing the use of Katz.

We observe that all of our proposed methods enable a significantly more representative selection of
nodes compared to the Top approach. The difference is particularly pronounced for Katz centrality, but
even for PageRank we see noticeable improvements across different datasets. This effect is especially
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E-radius-1/3 E-radius-2/3 E-appr-1/3 E-appr-2/3 B-radius-1/3 B-radius-2/3 B-appr-1/3 B-appr-2/3

0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41 0.72 : 0.28 0.59 : 0.41

TopKatz

1.0 : 0.0 1.0 : 0.0 0.6 : 0.4 0.53 : 0.47 0.78 : 0.22 0.71 : 0.29 0.99 : 0.01 0.81 : 0.19

MesKatz

0.91 : 0.09 0.68 : 0.32 0.8 : 0.2 0.61 : 0.39 0.83 : 0.17 0.63 : 0.37 0.88 : 0.12 0.67 : 0.33

BosKatz

0.87 : 0.13 0.61 : 0.39 0.75 : 0.25 0.6 : 0.4 0.72 : 0.28 0.59 : 0.41 0.83 : 0.17 0.64 : 0.36

AbsorbKatz

1.0 : 0.0 0.99 : 0.01 0.7 : 0.3 0.58 : 0.42 0.88 : 0.12 0.76 : 0.24 0.87 : 0.13 0.64 : 0.36

Figure 8: Histograms generated by our Katz-based methods for Euclidean graphs. The distributions (first row) are
presented at their original scale, while the histograms are displayed at 150% zoom for improved clarity.

evident in Euclidean graphs (particularly in columns 1, 2, 7, and 8 of Figure 7) and in the College
Football Network. Among the studied rules, those based on the Method of Equal Shares with Bounded
Overspending—namely BosRank and BosKatz—yield the most representative committees, regardless of
whether they are combined with PageRank or Katz centrality. Even when these methods do not yield
the best overall results, they never perform poorly in terms of proportionality in any of our examined
scenarios. The absorbing rules, on the other hand, prove more effective when used with PageRank rather
than Katz, which is being also justified in our axiomatic analysis (Section 5). We highlight that this
approach interprets proportionality differently, prioritizing representatives who minimize their maximum
length of the influence propagation chain to non-selected voters, even if this means overlooking nodes
that are highly influential in the original graph (see Section 4.2). The universality of the Bos approach
suggests that it is also a prefarable method to be combined with centrality measures beyond the ones
studied in this paper as well as machine learning models.

7 Conclusion

We introduced the problem of selecting k influential nodes from a network while ensuring proportional
representation of different groups implicitly present in the structure of the network. We proposed two
techniques of extending a given centrality measure to a proportional node-selection method, focusing
on the PageRank and Katz centralities. Our theoretical studies and experimental analyses yield largely
similar conclusions. Both of our techniques show a significant improvement over the Top approach. The
approach based on the Method of Equal Shares (MES) offers the strongest axiomatic guarantees, and its
specific variant incorporating the Method of Equal Shares with Bounded Overspending (BOS) performs
best across the datasets used in our evaluation.
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Appendix

A Omitted Proofs

In this appendix, we present the proofs of our theorems and propositions.

A.1 Proof of Theorem 1

First we define the decision version of the computational problem that corresponds to AbsorbRank, which
we are going to prove hardness for. The problem statement and the proof for AbsorbKatz are analogous.

AbsorbRank

Input: A directed graph G = (V, E) and parameters c ∈ R≥0, k ∈ N.
Question: Does there exist a set S ⊆ V such that |S | = k and PRα→1

G−E+(S )(S ) ≥ c?

We reduce from the Independent Set (IS) problem, where, given an undirected graph G′ = (V ′, E′) and
an integer r, the goal is to determine if there exists an independent set of size r, i.e., a subset of nodes
R ⊆ V ′ such that |R| = r and no two nodes in R are connected by an edge in G′. The NP-hardness holds
even when G′ has no nodes of degree 0 or 1 [14]. Given an instance of IS, I′ = (G′, r), with n nodes in V ′

and m edges in E′, we create an instance I = (G, c, k) of AbsorbRank with graph G = (V, E) as follows:

• We let the set of nodes V contain all original nodes from V ′ as well as n + 1 new nodes for each
edge in E′, i.e., V = V ′ ∪ Vnew, where Vnew = {xi

e : e ∈ E′, i ∈ [n + 1]}. This gives us a set V of
m(n + 1) + n nodes in total.

• For each undirected edge {u, v} ∈ E′, let E contain a pair of directed edges (u, v) and (v, u) as well
as an edge from each of the original nodes u and v to each new node corresponding to edge {u, v}.
Formally, we have E =

⋃
{u,v}∈E′

(
{(u, v), (v, u)} ∪ {(u, xi

(u,v)), (v, x
i
(u,v)) : i ∈ [n + 1]}

)
.

• Finally, we set k = r + m(n + 1) and c = 1 + ϵ, where ϵ is an arbitrary constant smaller than
1/2·maxu∈V deg+G(u).

The following figure depicts the used gadget for an edge (u, v) of G′. The nodes with the dotted lines
correspond to the nodes termed as new, while the remaining two nodes correspond to the original ones.

u v

x1
{u,v}

x2
{u,v}

...

xn+1
{u,v}

Observe that if α ≥ 1/2, a node v can have the value of PageRank less than c in a subgraph G′′ of G
only if it does not have any incoming edges in G′′. Indeed, if it has at least one incoming edge, say
from u, then PRαG′′(v) ≥ 1 + α/deg+G′′ (u) ≥ c. Thus, the question of the decision variant of AbsorbRank in
the instance I can be equivalently expressed as follows: Does there exist a subset S ⊆ V with |S | = k
such that deg−G−E+(S )(i) > 0 for every i ∈ S (i.e., there is no node in S that has a zero in-degree after the

16



removal of the outgoing edges of nodes in S)? Let us show that the positive answer to this question for I
is equivalent to the existence of an indpendent set of size r in I′.

First, assume that there is an independence set R of size r in G′. We will show that this implies that
S = R ∪ Vnew, i.e., the subset of the original nodes corresponding to R together with all the new nodes,
witnesses that I is a yes-instance as well. Observe first that |S | = r + m(n + 1) = k. Thus, it remains to
show that every node in S has a positive in-degree in the graph G − E+(S ).

Fix an arbitrary i ∈ S . If i ∈ Vnew, then let {u, v} ∈ E′ be an associated edge. Since R is an independent set
it must be that u < R or v < R. But this implies that in the graph G − E+(S ), node i receives an edge from
u or from v, so it has a positive in-degree. If, on the other hand, i ∈ R, then by our assumption that no
node has degree of 0 in G′, we know that there is a j ∈ V ′ such that {i, j} ∈ E′. Since R is an independent
set, it holds that j < R. Thus, i receives an edge from j in the graph G − E+(S ), hence it has a positive
in-degree. This concludes the proof of the forward direction.

For the reverse direction, assume that there exists a subset S ⊆ V such that |S | = k and for every i ∈ S
it holds that deg−G−E+(S )(i) > 0. We will show that this implies the existence of an independent set of
size r in G′. Let us denote by R the set of original nodes belonging in S, formally, R := S \ Vnew.
Since there are m(n + 1) new nodes in total, we can show that R has to contain at least r nodes. Indeed,
|R| = |S \ Vnew| ≥ |S | − m(n + 1) = k − m(n + 1) = r.

We will now prove that R has to be an independent set in G′. For a contradiction assume that this is not the
case, i.e., there exists an edge {u, v} ∈ E′ such that u, v ∈ R. Observe that there must be a new node xi

{u,v},
for some i ∈ [n + 1], that is selected to S . Otherwise, if all the new nodes associated with the egde {u, v}
were not in S , the size of S would be too small, i.e., |S | ≤ |V |−(n+1) = m(n+1)+n−(n+1) = m(n+1)−1 < k.
Since both u and v are in S , node xi

{u,v} has no incoming egdes in G − E+(S ), which contradicts our
assumption proving that R is indeed an independent set. □

A.2 Proof of Theorem 2

First, we observe that AbsorbRank and AbsorbKatz can be computed in polynomial time when applied
to bipartite graphs. If the number of nodes with incoming edges, i.e., |V2|, is at least k, then those
rules simply coincide with their Top counterparts. Otherwise, if |V2| < k, then both AbsorbRank and
AbsorbKatz output any subset of nodes of size k as the minimum centrality in such a subset is necessarily
1. Thus, in the remainder of the proof let us focus on functional graphs. Observe that on such graphs,
AbsorbRank coincides with AbsorbKatz, simply because the two centralities are equivalent when the
out-degree of every node is at most 1. Therefore, we focus on AbsorbRank below.

It holds that if G = (V, E) is a functional graph and S ⊆ V is an arbitrary subset of nodes, then in the
graph G − E+(S ) each node i ∈ S is a root of some in-tree, i.e., a connected functional graph without a
cycle. This means that PageRank of i for α → 1 is just equal to the number of i’s predecessors in this
graph. Hence, PRα→1

G (S ) = mini∈S |PredG−E+(S )(i)|. Therefore, we get that AbsorbRank chooses a subset
of nodes S ⊆ V that maximizes the minimal number of predecessors of nodes from S in G − E+(S ). To
find such a subset, given parameters p, ℓ ∈ N and a functional graph G = (V, E), we ask whether there
is a subset S ⊆ V of size ℓ, such that each node i ∈ S has at least p predecessors in G − E+(S ). We
will denote this decision problem by Π(G, p, ℓ). Deciding Π(G, p, ℓ) for all possible values of p (which
are upper bounded by |V |) and selecting the set S that witnesses that Π(G, p, k) is a yes-instance for the
maximum possible value of p, solves the optimization version of AbsorbRank.

It holds that Π(G, p, ℓ) can be solved in polynomial time for in-trees [32, 19]. We refer to such a proce-
dure as alg-tree(G, p, ℓ). In what follows, we extend alg-tree(G, p, ℓ) first to arbitrary connected
functional graphs (possibly with a cycle), and then to all functional graphs (possibly disconnected).

Suppose that G is an arbitrary connected functional graph. Observe that G can have at most one cycle and

17



Figure 9: An example demonstrating that TopRank and TopKatz violate Clique-Entitlement (Proposition 3). Nodes
with red double lines have the highest PageRank and Katz centrality.

we can assume that at least one node will be selected form the cycle (if no node is selected to S from the
cycle, then we can take a selected node that is closest to the cycle, remove it from S , and instead select a
node from the cycle; such a procedure will not decrease the number of predecessors in G − E+(S) of any
node in S). Hence, for each node v in the cycle we can remove an outgoing edge of this node and check
wether Π(G − E+({v}), p, ℓ) is a yes-instance using alg-tree. If this is the case for some node v in the
cycle, we know that (G, p, ℓ) is a yes-instance as well, otherwise, it is a no-instance. Let us denote this
procedure as alg-connected.

Finally, suppose that G is an arbitrary functional graph. By c we denote the number of its components
and by G1,G2, . . . ,Gc the components themselves. To solve Π(G, p, ℓ) we us a dynamic programming
approach. Let A be a c × ℓ array. The values in the first row of A reflect for which numbers j ∈ [ℓ] we can
select j nodes in G1 in such a way that each has at least p predecessors after the removal of their outgoing
edges, i.e,. A[1, j] = 1, if Π(G1, p, j) is a yes-instance, and A[1, j] = 0, otherwise. Since G1 is a connected
functional graph, Π(G1, p, j) can be decided using alg-connected. Then, for each consecutive row
i ∈ {2, 3, . . . , c}, the values reflect whether we can select such j nodes in G1,G2, . . . ,Gi jointly. Thus,
A[i, j] = 1, if there exists a j′ ∈ [ j] such that A[i − 1, j′] = 1, and Π(Gi, p, j − j′) is a yes-instance, i.e.,
we can select j′ nodes in G1,G2, . . . ,Gi−1, and remaining j − j′ nodes in Gi (we assume that Π(G′, p, 0)
returns yes for every graph G′). Finally, Π(G, s, ℓ) is a yes-instance, if and only if, A[c, ℓ] = 1. □

A.3 Proof of Proposition 3

In Figure 9 we present a graph that demonstrates that TopRank and TopKatz violate Clique-Entitlement,
for k = 3. The graph consists of 2 components, one of size 2 that is strongly connected, say G1, and
one of size 4 that is only weakly connected, say G2. Under the examined axiom, the nodes from G1 are
entitled to 1 representative in the selected committee. However, the three nodes of maximal PageRank
and Katz centrality all belong to G2. As a result, no node from G1 will be selected under TopRank or
TopKatz. □

A.4 Proof of Theorem 4

Let us start by showing that AbsorbKatz violates Clique-Entitlement. To this end, we will use the Katz
recursive formula that is an equivalent definition of Katz centrality [24]. It relates the centrality of a node
to the centrality of its direct predecessors as follows:

KαG(v) = α
∑

(u,v)∈E

KαG(v) + 1

Let us denote an n-clique by Kn. Simple calculations based on the above formula show that

KαKn
(v) =

1
1 − (n − 1)α

.

Hence, Katz centrality of a node in a clique is strictly increasing with the size of the clique for a given
α. Moreover, observe that if we remove outgoing edges of a node in an n-clique, then Katz centrality
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Figure 10: A component of the graph used in the proof that AbsorbRank does not satisfy Component-Entitlement
(Theorem 4).

of the remaining nodes will be equal to the centrality in (n − 1)-clique—the existence of this node does
not affect the number of walks ending in other nodes. Thus, if we have a graph in which one third of
all nodes form clique Kn and two thirds form clique K2n, then, for k < n, AbsorbKatz would select only
nodes from the larger clique. This clearly violates Clique-Entitlement.

Now, let us prove that AbsorbRank violates Component-Entitlement. To this end, consider graph
G = (V, E) that consists of a clique of 24 nodes and disconnected from that a subgraph identical to that
presented in Figure 10. Let us set k = 15, i.e., we want to select half of the nodes. By Component-
Entitlement this would mean that we need to select 3 nodes from the structure in Figure 10. However,
AbsorbRank will select at most 2 from there. Specifically, if we select 2 from the structure and 13 from
the clique, we get PageRank 2.98 for each in the structure and 1.83 for each from the clique, resulting in
a minimum of 1.83. On the other hand, say that we select 3 from the structure and 12 from the clique.
Then, we get PageRank of 1.90 for each in the clique. If we pick the 2 middle nodes from the structure or
1 middle and a neighbor of it, then we have a PageRank of 1. If we pick 1 middle and 2 non-neighboring
(e.g. 1 and 4,6) then the minimum PageRank equals 1.33. If we pick 0 from the middle (e.g. picking
3,5,6) then the minimum PageRank equals 1.78. As a result, AbsorbRank will pick at most 2 from the
structure, since, adding any node as third, results in lower minimal PageRank than 1.83.

In the remainder of the proof, let us show that AbsorbRank satisfies Clique-Entitlement. To this end,
consider arbitrary graph G = (V, E), in which there exists a component S such that G[S ] is a clique. Let
W ⊆ V be an arbitrary subset of nodes of size |W | = k < n. Also, let us denote the number of nodes from
S in W by ℓ = |W ∩ S |. We will first prove the following bounds on PageRanks of nodes in W in the
graph with outgoing edges of W removed:

PRα→1
G−E+(W)(i) = |S |/ℓ, for every i ∈ W ∩ S , and (4)

PRα→1
G−E+(W)( j) ≤ (n−|S |)/(k−ℓ), for some j ∈ W \ S . (5)

Then, we will show that both formulas imply that whenever the Clique-Entitlement condition is not
satisfied, i.e., ℓ < ⌊k · |S |/n⌋, then the minimum PageRank of nodes from W in G − E+(W) can be
increased. Since AbsorbRank maximizes this minimum, this will mean that AbsorbRank satisfies
Clique-Entitlement.

We note that for every node v ∈ V with a successor that does not have outgoing edges, Equation (1) is
also well defined for α = 1 (as the probability that the random walk returns to v after visiting it is strictly
less than 1, the expected number of visits in the walk is finite). Thus, since we will consider only such
nodes, to simplify our calculations, we will consider PageRank with α = 1.

To prove Equation (4), we will use PageRank’s recursive formula, which is an equivalent definition of
PageRank [30]. The formula relates PageRank of a node with PageRanks of the nodes from which it
receives incoming edges as follows

PRαG(v) = 1 + α ·
∑

(u,v)∈E

PRαG(u)
deg+(u)

.
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Consider an arbitrary unselected node in the clique, i.e., v ∈ S \W. Since in graph G − E+(W), node v
receives one edge from every other node in S \W and each such node has an out-degree of |S | − 1, by
PageRank’s recursive formula

PR1
G−E+(W)(v) = 1 +

1
|S | − 1

·
∑

u∈S \W\{v}

PR1
G−E+(W)(u).

Now, when we sum this equation side-wise for all v ∈ S \ W, on the right-hand side of the equaiton,
PR1

G−E+(W)(u) for each node u will appear |S \W | − 1 = |S | − ℓ − 1 times. Thus,

∑
v∈S \W

PR1
G−E+(W)(v) = |S | − ℓ +

|S | − ℓ − 1
|S | − 1

∑
u∈S \W

PR1
G−E+(W)(u).

Moving the sum to one side and dividing by 1 − (|S |−ℓ−1)/(|S |−1) = ℓ/(|S |−1), we get∑
v∈S \W

PRαG−E+(W)(v) = (|S | − ℓ)
|S | − 1
ℓ
.

Then, take an arbitrary node i ∈ S ∩W and observe that it receives one edge from every node in S \W.
Thus,

PR1
G−E+(W)(i) = 1 +

1
|S | − 1

·
∑

v∈S \W

PRαG−E+(W)(v) = 1 +
|S | − ℓ
ℓ
=
|S |
ℓ
.

Hence, Equation (4) indeed holds.

Next, let us prove Inequality (5). To this end, let us denote by T the set of all predecessors of nodes in
W \ S that are not selected to W themselves, i.e., T = {v ∈ V : ∃u∈Wv ∈ Pred(u)} \W. Then, let us sum
PageRank’s recursive formula sidewise, for all nodes v ∈ T . We obtain

∑
v∈T

PR1
G−E+(W)(v) = |T | +

∑
(u,v)∈E:v∈T

PR1
G−E+(W)(u)

deg+(u)
.

For every u ∈ T , let dw(u) be the number of edges that go to nodes in W (possibly dw(v) = 0), while by
dr(u) let us denote the number of its remaining outgoing edges, i.e., dr(u)+dw(u) = deg+(u). Observe that
every node that has an outgoing edge to a node in T must be in T itself. Thus, the set of edges between
nodes in T is exactly the same as the set of all edges counted in dr(u) for some u ∈ T . This gives us∑

v∈T

PR1
G−E+(W)(v) = |T | +

∑
u∈T

(
dr(u)

deg+(u)
PR1

G−E+(W)(u)
)
.

Moving all PageRanks to the left-hand side, we get∑
v∈T

(
dw(v)

deg+(v)
PR1

G−E+(W)(v)
)
= |T |.

Now, let us sum the PageRank’s recursive formula for all j ∈ W \ S . We get

∑
v∈(N\S )∩W

PR1
G−E+(W)(v) = k − ℓ +

∑
(u,v)∈E:v∈(N\S )∩W

PR1
G−E+(W)(u)

deg+(u)
.
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Observe that the set of all incoming edges to nodes in W \ S is exactly the set of edges that are counted in
dw(u) for some u ∈ T . Thus, we get∑
v∈(N\S )∩W

PR1
G−E+(W)(v) = k−ℓ+

∑
u∈T

(
dw(v)

deg+(v)
PR1

G−E+(W)(v)
)
= k−ℓ+|T | ≤ k−ℓ+(n−|S |−(k−ℓ)) = n−|S |.

Then, Inequality (5) follows from the pigeonhole principle.

Next, let us show that if ℓ ≤ ⌊k · |S |/n⌋, then a node in W with minimum PageRank is in set V \ S . To this
end, observe that

|S |
ℓ
≥

|S |
⌊k · |S |/n⌋

≥
n
k
.

Multiplying both the nominator and the denominator by (1 − |S |/n), we obtain

|S |
ℓ
≥

n(1 − |S |/n)
k(1 − |S |/n)

=
n − |S |

k − k · |S |/n
≥

n − |S |
k − ⌊k · |S |/n⌋

≥
n − |S |
k − ℓ

.

Thus, by Equation (4) and Inequality (5), indeed, if ℓ ≤ ⌊k · |S |/n⌋, then mini∈W PR1
G−E+(W)(i) ≤

n−|S |
k−ℓ . This

means, that as long as the inequality is strict, i.e., |S ∩W | < ⌊k · |S |/n⌋, the minimum can be increased by
removing a node with minimal PageRank from W and adding to W another node from the set S . This
means that AbsorbRank satisfies Clique-Entitlement. □

A.5 Proof of Theorem 5

Our proof is based on the fact that the Method of Equal Shares satisfies a property called priceability [34].
The property portrays an election as a market in which the voters who control equal parts of a budget will
jointly pay for candidates.

Given an election profile (V,C, µ) and requested committee size k, a price system is a pair P = (b, p),
where b ∈ R, b ≥ k is an initial budget (where each voter controls an equal part of the budget, i.e., b/n) and
p = (pi)i∈V is a sequence of payment functions where for each i ∈ V the function pi : C → R≥0 represents
how much money voter i spends for each candidate. We will assume that each candidate costs 1 unit of
money. Then, a committee W is supported by the price system P if the following conditions hold:

1. The voters do not pay for candidates they do not support, i.e., µi(c) = 0 implies that pi(c) = 0 for
every i ∈ V and c ∈ C.

2. The sum of payments by i does not exceed their budget, i.e.,
∑

c∈W pi(c) ≤ b/n.

3. Each elected candidate is fully paid, i.e.,
∑

i∈V pi(c) = 1 for every c ∈ W.

4. The voters do not pay for unelected candidates, i.e., pi(c) = 0 for every i ∈ V and c ∈ C \W.

5. For each unselected candidate, its supporters do not have enough money to buy it, i.e.,∑
i∈V:µi(c)>0(b/n −

∑
c′∈W pi(c′)) < 1.

A committee W is priceable if there is a price system P that supports it. Peters et al. [34] observed
that MES always outputs a priceable outcome. We will use this fact to show that it satisfies Subgraph-
Entitlement.

Assume otherwise and take an arbitrary graph G = (V, E), constant k < n, and utility function µG :
V × V → R≥0 such that µG(u, v) > 0⇔ u ∈ Pred(v) and there exists a subset S with G[S ] being strongly
connected for which |(S ∪ Succ(S )) ∩W | ≤ ⌊k · |S |/n⌋ − 1, where W is an outcome of MES on election
(V,V, µG) with committee size k.
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Since W is priceable, we know that there exists a price system P = (b, p) that supports it. First, let us
show that each node v ∈ S can pay only for nodes in (S ∪ Succ(S )) ∩W, i.e., pv(u) = 0 for every v ∈ S
and u < (S ∪ Succ(S )) ∩ W. Indeed, for u < S ∪ Succ(S ), there is no walk from v to u, hence by our
assumption on µG and condition 1 of a priceable system, we get that pv(u) = 0. Moreover, pv(u) = 0 for
u < W by condition 4.

Thus, we can show the following lower bound on the money that is unspent by nodes in S .
|S | · b

n
−

∑
v∈S

∑
c∈C

pv(c) =
|S | · b

n
−

∑
v∈S

∑
c∈(S∪Succ(S ))∩W

pv(c)

≥
|S | · b

n
−

∑
v∈V

∑
c∈(S∪Succ(S ))∩W

pv(c) (increase the set over which we sum)

=
|S | · b

n
− |(S ∪ Succ(S )) ∩W | (by condition 3)

≥
|S | · b

n
−

(⌊
k ·
|S |
n

⌋
− 1

)
(as S is supposed to witness Subgraph-Entitlement violation)

≥
|S | · b

n
− k ·

|S |
n
+ 1 (since ⌊x⌋ ≤ x)

≥ 1. (since b ≥ k)

Now, let us show that there must exist a node in S that is unselected to W. Assume otherwise, i.e., S ⊆ W.
Then, (S ∪ Succ(S )) ∩W = S ∪ (Succ(S ) ∩W). Moreover, since S is witnessing Subgraph-Entitlement
violation, we get

|S | ≤ |S ∪ (Succ(S ) ∩W)| = |(S ∪ Succ(S )) ∩W | ≤ ⌊k · |S |/n⌋ − 1 ≤ k · |S |/n − 1.

However, this is a contradiction as this implies that 0 ≤ (n−k)/n · |S | ≤ −1.

Therefore, there is a node i ∈ S \W. Since S is strongly connected, by assumption that µG(u, v) > 0⇔
u ∈ Pred(v), it must be that i is supported by all voters in S . On the other hand, as we have shown, these
voters have together at least 1 unit of money, which contradicts condition 5 of a price system. □
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