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Abstract
In the classic committee election setting each voter approves a subset of candidates and
the goal is to select k winners based on these preferences. A central focus of recent
research in the area has been to achieve proportional representation, as formalized by
the family of Justified Representation (JR) axioms. In this work, we explore notions of
proportionality in a more expressive setting that allows voters to downvote candidates—a
common feature on online polling platforms and beyond. We propose two conceptually
distinct interpretations of down votes, resulting in different perspectives of proportionality.
In the first, preventing the election of disapproved candidates is as important to voters as
electing approved ones. In the second, approvals and disapprovals are treated separately,
with each receiving its own fairness guarantees. For each approach, we introduce suitable
axioms capturing proportionality and examine their satisfiability by appropriate variants
of Phragmén’s rule, Proportional Approval Voting rule (PAV) and the Method of Equal
Shares (MES).

1 Introduction

Consider the problem of selecting up to k winners among a set of m candidates based on voters’
preferences. Voters can approve (upvote) or disapprove (downvote) a candidate, or otherwise
abstain. The objective is to select a committee in a proportional manner, which roughly means
that each group of voters with sufficiently similar preferences should have an influence on the
outcome in proportion to its size. In recent years, the proportional selection problem for approval
ballots (upvotes) has become one of the most active research directions and core challenges in
computational social choice [23, 15, 27]—we address the open challenge of allowing voters to
also disapprove candidates.

In the classic approval voting framework, the ballot design of approval ballots lacks the nuance
to capture whether not approving a candidate corresponds to indifference or disapproval towards
that candidate. Incorporating down votes has been identified as an important open problem
in the field [13, 23, 30]. Indeed, it introduces significant complexity, the primary conceptual
challenge being to capture proportionality in the presence of down votes. To make this explicit,
we consider the following simple instance with up and down votes, which will serve as a running
example throughout the paper.

Example 1. Consider a committee election in the thumbs-up/down setting where there are 27
candidates, divided into three groups, namely C1, C2, and C3, and 100 voters, divided into two
disjoint groups, namely V1 and V2. The preferences of the voters over the candidates’ sets appear
below.

C1 (10 candidates) C2 (7 candidates) C3 (10 candidates)
V1 (60 voters) neutral approve (✓) approve (✓)
V2 (40 voters) approve (✓) disapprove (✗) neutral

Say that the size of the committee to be elected is k = 10. If we ignore the negative votes and
apply the naïve utilitarian rule that simply selects the k candidates with the highest approval
counts, we would end up choosing candidates exclusively from C2 ∪ C3. This would be unfair,
as it would effectively disregard the preferences of the voters in V2. Moreover, not only would
the voters in V2 fail to elect any of their preferred candidates, but also (depending on the
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tie-breaking1) the selected outcome could include all the candidates they oppose. The solution
that includes 6 candidates from C2 and 4 candidates from C1 is a more fair one since each group
enjoys a satisfaction proportional to its size. However, it also disregards negative votes. Selecting
candidates from C2 causes dissatisfaction among the voters in V2 and, hence, candidates from
C3 appear to be a better fit than those from C2.

How many candidates from C3 should then be elected? This depends on how we interpret voters’
disapproval statements. One could argue that electing candidates from C3 instead of C2 should
not affect the entitlement of group V2 to 4 candidates from C1. On the other hand, one might
say that V2 gains satisfaction from blocking the election of candidates they dislike and should
“pay” for this influence. Under this view, a proportional outcome might include fewer than 4
candidates from C1. These two intuitions reflect the two distinct models of proportionality we
propose and examine. ⌟

Motivation.
There is significant evidence that negative voting influences voting behavior and is often desired
in practice. A study on the 2020 U.S. Presidential election found that approximately a third
of American voters cast their ballots more “against” a candidate than “for” one [18]. Another
example which highlights the importance of incorporating negative feedback comes from par-
ticipatory budgeting (PB) [30], a form of citizen participation employed in cities where citizens
directly decide how a portion of a public budget is spent. While some cities, like Madrid [14],
allow voters to express opposition to projects, most PB elections do not. This has led to issues,
as seen, for instance, when residents of a large Warsaw housing estate protested against the
construction of a playground selected through the PB process [35]. Since the formal model of PB
generalises committee elections, our work is a fundamental step towards incorporating negative
voting in the PB model while maintaining guarantees on proportional representation. Indeed,
some of our proposed rules can already be applied in PB.

Further examples where negative voting has been used in practice include Decentralized Au-
tonomous Organizations (e.g., projectcatalyst.io) and civic participation via digital platforms
(e.g., pol.is). Moreover, in constitutional AI [7], a constitution—a slate of ethical principles—is
used to align LLMs with human values. For this purpose, Anthropic and the Collective Intel-
ligence Project recently used a civic participation approach to draft a constitution based on
the preferences of approximately 1000 Americans. The process involved participants voting on
ethical principles by approving, dissapproving or abstaining, which were later aggregated to
form the final constitution [2].
Contribution.
Our main conceptual contribution consists in proposing two (incomparable) approaches to
defining proportionality in the presence of down votes. The two approaches differ in how (and
whether) the utilities from electing preferred candidates and from blocking the undesirable
ones compare. We introduce suitable proportionality axioms for each, and we design efficient
voting rules that generalize existing ones from the approval setting, specifically Phragmén’s rule,
Proportional Approval Voting rule (PAV), and the Method of Equal Shares (MES). Finally, we
provide positive and negative results on these rules concerning the formulated axioms. Our
analysis employs several new techniques that are potentially applicable in broader contexts, e.g.,
in the presence of diversity constraints.

In our first interpretation of down votes, not selecting a disapproved candidate is considered just
as important to a voter as selecting an approved one. We call this the symmetric utility model.
Here, for each candidate c we introduce its virtual negative counterpart ¬c, and impose constraints
to ensure that c and ¬c are never selected together. Each voter’s utility is additive, derived either

1A more complex version of our example which does not rely on tie-breaking is deferred to the full version of
this work [22].
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from including c in the winning committee if approved, or ¬c if the voter disapproves of c. In
this context, we first exploit the notion of ℓ-cohesiveness, as defined by Masařík et al. [25], which
captures when a group S deserves ℓ representatives under general constraints for a committee.
This is the core idea of proportionality axioms such as Base Proportional Justified Representation
(Base PJR), Base Extended Justified Representation (Base EJR) and proportionality degree [25].
The definition of ℓ-cohesiveness for general constraints is challenging due to its abstract nature,
so we first provide a characterization of it in the context of thumbs-up/down voting, almost
tight for small groups of voters. Then, we introduce a variant of Phragmén’s rule, we show
that it satisfies Base PJR and we provide an almost-tight guarantee for the proportionality
degree of the rule. We then move to the PAV rule, and, while it follows from Masařík et al. [25]
that it fails Base EJR in our setting, as our main technical contribution we show that this rule,
nonetheless, gives near-optimal proportionality guarantees for ℓ-cohesive groups of voters.

Our second interpretation of down votes gives rise to a fundamentally different approach, called
the asymmetric utility model. The distinction stems from the view that voters deserve to
be represented by members of the elected committee, regardless of whether they have already
influenced the outcome by blocking the selection of certain disliked candidates. Thus, we treat the
right of a voter to be represented and their right to block candidates they oppose asymmetrically.
Our axioms for this model are based on an adaptation of the idea of ℓ-cohesiveness in which a
group’s voting power is determined not merely by its size but by its effective size—a measure
that accounts for the number of opponents of the candidates the group supports. Our positive
results build on priceable voting rules, where the election can be viewed as a process where voters
“purchase” candidates [27]. It turns out that MES and Phragmén’s rule can be adapted to satisfy
our fairness objectives, by introducing the concept of a “virtual tax” imposed by opponents of
the candidates, which effectively increases the cost of disapproved candidates. In contrast, we
show that there is no natural adaptation of PAV to this setting.
Related Work.
Proportionality in committee elections is a central topic in computational social choice [23,
Chapter 4]. The election framework where voters can both up and down vote candidates
or abstain (often referred to as ternary or trichotomous voting) has been already studied
[36, 10, 1, 19, 37, 8, 9, 26, 24]. However, to our knowledge, the only existing work merging both
topics is by Talmon and Page [33]. The authors introduce seven proportionality axioms, which
differ significantly from the ones proposed in our work. They further examine variants of the
Monroe, Chamberlin-Courant, STV, and PAV voting rules, all adapted to the examined setting.
None of these rules satisfy any of the considered axioms; instead the authors rely on simulations
to examine how often the rules produce outcomes that align with their proportionality criteria.
Therefore, our work is the first to provide theoretical guarantees for the examined problem.

Our problem can be viewed as a special case of elections with general feasibility constraints, a
setting in which the concept of proportionality has been recently explored. Masařík et al. [25]
adapt PAV and Phragmén to that framework and show these rules satisfy desirable proportionality
axioms provided the constraints form matroids. These results do not apply to our setting, as
our feasibility constraints in the symmetric setting do not have a matroid structure. We defer
a detailed discussion to the full version of our paper [22]. The setting we examine can also
be viewed as a special case of voting under weak preference orders or cardinal preferences (cf.
[3, 28]). For more details on the crucial differences among these formats and the one we examine,
we also refer to the full version.

A related line of research is public decisions, where the voters submit ballots as in trichotomous
voting and proportional considerations have been studied in this framework [17, 32, 11]. A key
distinction is that in the model of public decisions there is no upper bound on the number
of selected candidates; this is enough to make the two frameworks critically different, both
conceptually and technically.
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2 Preliminaries

An election E is a tuple (C, V, k, B), where C := {c1, c2, . . . , cm} is the set of candidates,
V := {1, 2, . . . , n} is the set of voters, k ⩽ m is an integer corresponding to an upper bound on
the number of candidates to be elected, and B := (Bi)i∈V , with Bi being the ballot submitted
by the i-th voter. Since voters are allowed to express both positive and negative preferences
for candidates, each ballot Bi is represented as a pair Bi = (Ai, Di), with Ai, Di ⊆ C and
Ai ∩ Di = ∅. Ai denotes the set of candidates approved by voter i, and Di is the set of candidates
disapproved/vetoed by this voter. If a candidate c /∈ Ai ∪ Di, we say that voter i is indifferent or
neutral toward c.

For each candidate c ∈ C, let Ac and Dc denote the sets of voters who approve and disapprove
c, respectively. Formally, Ac := {i ∈ V : c ∈ Ai} and Dc := {i ∈ V : c ∈ Di}. For each
group of voters S ⊆ V, let AS and DS denote the sets of candidates commonly approved and
disapproved by S, respectively. Formally, AS :=

⋂
i∈S Ai and DS :=

⋂
i∈S Di. An election rule

is a function R which for each election E returns a set of at most k candidates: a winning
outcome/committee. Clearly if Di = ∅ for every voter i ∈ V, the considered election is a classic
approval-based committee election.

Below we briefly describe election rules that are known to perform particularly well in terms of
proportionality in the approval setting [23]. In the subsequent sections, we focus on designing
generalizations of these rules that also perform well in the presence of negative ballots.

Phragmén’s rule [29, 20]. Each candidate is assumed to have a unit cost. Each voter has a
virtual budget starting at 0 and increasing continuously over time. At time t, each voter has
been allocated a total budget of t. When a group of voters approving a common candidate
accumulates enough budget to cover the candidate’s cost, the candidate is added to the winning
committee and the budgets of the voters involved in the purchase are reset to 0. This process
continues until k candidates are selected.
Thiele rules [34, 20] and Proportional Approval Voting (PAV) [5, 6, 27]. Each rule in the class
of Thiele methods is parameterized by a nondecreasing function f : {0, 1, . . . , k} → R⩾0 with
f(0) = 0. A voter i assigns a score of f(|W ∩ Ai|) to a committee W . The winning outcome is
the committee of size k that maximizes

∑
i∈V f(|W ∩ Ai|). PAV is the rule in the class of Thiele

methods for which f(x) =
∑x

j=1 1/j.

Method of Equal Shares (MES) [27]. The rule works in rounds. Let bi be the virtual budget of
voter i, initially set to k/n. Each candidate is assumed to have a unit cost. In each round, we
consider every not yet elected candidate c whose supporters have at least a total budget that
suffices to buy c. We say that such a candidate c is ρ-affordable for ρ ∈ R+ if

∑
i∈Ac

min (bi, ρ) = 1.
The candidate that is ρ-affordable for the smallest value of ρ is selected and added to the
committee. The budgets of her supporters are then updated accordingly, i.e., bi := bi −min (bi, ρ).
The rule stops if there is no ρ-affordable candidate for any value of ρ.

3 The Symmetric Utility Model

In the symmetric utility model, a voter values the inclusion of supported candidates in the
winning committee equally to the exclusion of disliked candidates. To formalize this notion,
we introduce the concept of a virtual negative candidate. Specifically, for each candidate c, we
define its negative counterpart ¬c. An outcome W then consists of x ⩽ k positive candidates
and at most m − x negative ones, ensuring that if c ∈ W , then ¬c /∈ W and that if ¬c ∈ W ,
then c /∈ W . These impose feasibility constraints on the election outcome.

We now introduce some additional useful notation: for each set X ⊆ C we define ¬X := {¬c |
c ∈ X}. For each voter i, we define Ui := Ai ∪ ¬Di. Thus, Ui represents the set of both positive
and negative candidates that can contribute to the voter’s satisfaction. Given a group S and a
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committee W , we define the utility of a voter i ∈ S from W as ui(W ) := |Ai ∩ W | + |¬Di ∩ W |,
and the average satisfaction of voters from S as avgsatS(W ) := 1/|S| ·

∑
i∈S ui(W ).

In this section, we demonstrate that both Phragmén’s rule and PAV continue to provide strong
guarantees of proportionality in the presence of negative votes, under the symmetric utility
interpretation.

3.1 The Base Extended Justified Representation Axiom

We begin by recalling the axiom of Base Extended Justified Representation (Base EJR) from
the work of Masařík et al. [25]. For that, we first highlight that it gives the guarantees that the
prominent axiom of Extended Justified Representation (EJR) [5] would give, when we restrict
attention to instances with Di = ∅, for every voter i, i.e. in the approval setting. EJR is the
concept that has received the most attention in the computational social choice literature when
it comes to formalizing proportionality. Base EJR roughly says that a set of voters S deserves ℓ
candidates if they can complete any reasonable selection made by the remaining voters, with ℓ
commonly approved candidates. For a more detailed discussion and intuitive interpretations
we refer to [25]. This axiom was introduced for the model with general feasibility constraints
and we now adapt it to our setting. Let F be a collection of feasible outcomes. In our case,
F = {W ⊆ C ∪ ¬C such that |W ∩ C| ⩽ k and ¬(W ∩ C) ∩ (W ∩ ¬C) = ∅}.

Definition 1 (Base Extended Justified Representation (Base EJR)). Consider an election E.
Given a positive integer ℓ, we say that a set of voters S ⊆ V is ℓ-cohesive if for each feasible
solution T ∈ F either there exists a set X ⊆ AS ∪ ¬DS with |X| ⩾ ℓ such that T ∪ X remains
feasible, or |S|/n > ℓ/(|T |+ℓ). An outcome W is said to provide Base EJR for E if for every
ℓ-cohesive set of voters S there exists a voter i with a satisfaction ui(W ) ⩾ ℓ. A rule R satisfies
Base EJR if for every election E its winning outcome provides Base EJR. ⌟

We note that this axiom is always satisfiable and generalises EJR for approval-based committee
elections [25]. Observe that the definition of Base EJR requires considering all possible sets T ,
which often makes it difficult to interpret in terms of the actual number of representatives a
group S is entitled to. Our first technical lemma addresses this limitation by providing a closed
formula estimating this value.

Lemma 1. Consider an election E. A set of voters S ⊆ V is ℓ-cohesive if:

ℓ ⩽



|DS | − k, if n
n−|S|k ⩽ |DS |.

|S|
2n−|S|(|DS | + k), if n−|S|

n k ⩽ |DS | ⩽ n
n−|S|k and 2n−|S|

n |AS | + n−|S|
n |DS | ⩾ k.

|S|
n k, if |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|

n k and |AS | ⩽ m − n−|S|
n k.

|AS | + k − m, if |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|
n k and

m − n−|S|
n k ⩽ |AS | and |AS | + k − m ⩽ |S|

n (|AS | + |DS |).
|S|
n (|DS | + |AS |), otherwise.

All the bounds are tight up to the factor of |S|/n−|S|.

Proof Sketch. Consider an election E and a group S ⊆ N . Let us denote by claim(S) the upper
bound of ℓ for S in the statement of the lemma. To prove the statement, we will show that each
group of voters S ⊆ V is claim(S)-cohesive and is not (claim(S) + 1)-cohesive.

Consider a feasible subset of candidates T ⊆ C and let T + and T − denote the parts of T that
consist of the positive and negative candidates, respectively. If we have that |S|

n > claim(S)
claim(S)+|T | ,
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then S is entitled to a satisfaction of claim(S). From now on let us assume that the opposite
inequality holds, which is equivalent to:

|T | ⩽ n − |S|
|S|

· claim(S). (1)

Moreover, let us assume that the expression n−|S|
|S| · claim(S) is integral, that is, it is possible to

find set T of exactly this size. Whenever it is true, the estimations for claim(S) will be tight.
Otherwise, since the space of possible sets T is smaller, the actual value of claim might be larger
by less than:

claim(S) − |S|
n − |S|

·
⌊

n − |S|
|S|

· claim(S)
⌋

= |S|
n − |S|

·
(

n − |S|
|S|

· claim(S) −
⌊

n − |S|
|S|

· claim(S)
⌋)

<
|S|

n − |S|
.

So we want to show that for any such a choice of T , there is a set X ⊆ AS ∪ ¬DS that can be
proposed by group S such that T ∪ X is feasible and |X| = claim(S) and there is no such larger
set X. This will give us the desired result, because such a set T certifies that group S is not
(claim(S) + 1)-cohesive as Formula (1) is also satisfied for any ℓ > claim(S).

Now, subject to the constraint of Formula (1) we will choose T adversarially, so as to minimize
the size of the largest such set X. Given the set T , group S should be able to propose a set
of candidates X ⊆ AS ∪ ¬DS of size claim(S) (but not any larger) such that T ∪ X is feasible.
Due to the committee size constraint, the set X contains at most k − |T +| candidates from AS .
Furthermore, X ∪ T must not include both a and ¬a for any a ∈ C. Hence the maximum sized
set X satisfies |X ∩ ¬DS | ⩽ |DS \ T +| and |X ∩ AS | ⩽ |AS \ ¬T −|.

From these inequalities, we obtain the following formula for the maximum size of set X that S
can propose so that T ∪ X is feasible:

|DS \ T +|+ min(|AS \ ¬T −|, k − |T +|)
= |DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |AS ∩ ¬T −|) − |AS ∩ ¬T −|.

Additional to the size constraint (Formula (1)), we now impose further restrictions on T and show
that these do not decrease the size of the largest set X ⊆ AS ∪ ¬DS for which X ∪ T is feasible.
We can assume that T has the following properties without loss of generality: T + ∩ AS = ∅
and T − ⊆ ¬AS . To justify this claim, observe that removing a candidate from T does not affect
the satisfiability of Formula (1). Removing the candidates from T + ∩ AS does not increase the
maximum possible size of X (i.e., the number of “slots” in X available for the candidates from
AS ∪ ¬DS). The same holds for removing the candidates from T − \ ¬AS . Moreover, if there is
a set X ⊆ AS ∪ DS of size at least claim(S), then this also holds for any subset of T . Therefore,
we have that T − contains only candidates from ¬AS , and, hence, |AS ∩ ¬T −| = |¬T −| = |T −|.
Hence, we obtain that the maximum size of X is:

|DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |AS ∩ ¬T −|) − |AS ∩ ¬T −|
= |DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |T −|) − |T −|

= |DS | + |T + \ DS |+ min(|AS |, k − |T +| + |T −|) − |T |. (2)

Let us now check for which sets T the Formula (2) is minimal. Any candidate, positive or
negative, which is included in T contributes −1 to the term −|T |. Among those, only positive
candidates included in T contribute −1 to the term k − |T +| + |T −| and thereby potentially
reduce the size of X (this is in contrast to negative candidates, which increase this term). Finally,
only positive candidates in DS additionally contribute 0 to |T + \ DS | if included in T + while
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all other positive candidates contribute 1. Thus, to minimize the formula, we always prefer
to add candidates from DS to T + instead of the ones from C \ DS (subject to Formula (1)
and committee constraint k). So, if possible, we choose T to be of size n−|S|

|S| · claim(S) and
T = T + = DS . If |DS | or k are too small (that is, smaller than n−|S|

|S| · claim(S), so that using
up to k possible candidates from DS is insufficient), we will sometimes fill the remaining slots in
T with candidates from C \ DS \ AS to T + or the ones from ¬AS to T −.

The remainder of the proof requires an extensive case analysis. □

Given an election E and a set of voters S, Lemma 1 allows for a direct computation of the
satisfaction that S is entitled to; this is in contrast to the definition of Base EJR.

Continuation of Example 1. For S = V1 we have that |DS | = 0, |AS | + |DS | = |AS | = 17,
which is greater than k = 10 and smaller than m − n−|S|

n k = 23. Hence, V1 is entitled
at least to a satisfaction of |S|/n · k = 6. On the other hand, for S = V2 we have that
|DS | = 7 > n−|S|

n k, |AS | + |DS | = 17 > k and |AS | = 10 < m − n−|S|
n k. Hence, V2 is ℓ-cohesive

for ℓ ⩽ |S|/n · (|AS | + |DS |) = 34/5, which means that they are entitled at least to a satisfaction
of 6. Note that this fact prevents an EJR-compliant rule from electing 6 candidates from C2, as
then it would be impossible for V2 to get a satisfaction of 6. ⌟

While the formula from Lemma 1 appears to be quite complex—because it succeeds in pre-
cisely accounting for all edge cases, particularly those where the sizes of sets AS and DS are
disproportionate—its core logic can be captured by a much simpler equation as our next result
demonstrates. The estimation we provide is helpful for our later proofs. It is also insightful on
its own as it clarifies the guarantees provided by Base EJR in our context, and affirms their align-
ment with the intuitive understanding of proportionality. The maximum satisfaction attainable,
given the part of the preference profile on which the voters in S agree, is (|DS | + min(k, |AS |);
thus, the group deserves a proportional share of this maximum satisfaction, subject to their
agreement in preferences. Additionally, we need to include the factor of |S|/n−|S| following from
the potential non-tightness of the bounds in Lemma 1.

Lemma 2. Consider an election E and fix any ℓ-cohesive group of voters S. For each k-element
subset W ⊆ C, there exists a voter i ∈ S such that ui(W ) ⩾ ℓ or

ℓ <
|S|
n

(
|DS | + min(k, |AS |) + n

n − |S|

)
.

3.2 Phragmén’s Rule

Recall the definition of Phragmén’s rule for approval-based committee elections from Section 2.
A natural first approach to extend Phragmén’s rule to the setting of negative votes could be
as follows. Run two parallel elections: one (positive) election for positive candidates and one
(negative) election for negative ones, with money accumulating at the same rate in both. When
a candidate is elected in the positive election, their corresponding negative candidate is removed
from the negative election and vice versa. This approach can fail to recognize synergies between
groups that derive satisfaction differently, leading to suboptimal outcomes. Indicatively, consider
an election with n = 2ℓ voters split into two equal groups, S1 and S2. There are four disjoint
candidate sets C1, C2, C3, C4 with |C1| = |C3| = 2ℓ and |C2| = |C4| = ℓ. Voters in S1 collectively
approve C1, and each voter in S1 down votes a unique candidate from C4. S2 collectively
disapproves C3, and each voter in S2 approves a unique candidate from C2. According to the
discussed variant we only select ℓ candidates from C1 and C2 and the negative counterparts of ℓ
candidates from C3 and all from C4. A solution that would better satisfy all voters is to select
all candidates from C1 along with the negative counterparts from C3. In response, we adapt the
rule as follows:
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Phragmén’s rule for thumbs-up/down voting. All voters continuously earn money
at the same rate. They can spend it not only to elect candidates but also to block
those they oppose. If a group of voters collectively accumulates enough funds to
veto a (yet unelected) disliked candidate, they do so by purchasing the corresponding
negative candidate and their budget is reset. Electing a candidate c costs one unit and
simultaneously removes ¬c from consideration. Similarly, purchasing ¬c for one unit
removes c. This process continues until no more candidates can be elected.

Phragmén’s rule does not satisfy EJR for the committee setting, hence our extension is not
intended to satisfy Base EJR. However, there are two other (weaker) properties concerning
ℓ-cohesive groups that are satisfied by the classic version of Phragmén, and—under the definition
of ℓ-cohesiveness provided by Masařík et al. [25]—hold also for our extension. The first of them
is the axiom called Base Proportional Justified Representation (Base PJR) [31, 25]. In contrast
to Base EJR, it only ensures that the group as a whole is adequately represented, without
guaranteeing that any individual benefits sufficiently. The second one is the high proportionality
degree, guaranteeing that each ℓ-cohesive group of voters will have high representation on average
[31]. The bound we offer for the latter is tight up to a constant of one [25]. Combining these
results with its polynomial runtime, makes the rule particularly attractive in the presence of
negative ballots as well.

Theorem 3. Let W be an outcome returned by Phragmén’s rule. For each ℓ-cohesive set of voters
S the following conditions are satisfied:

(1)
∣∣(∪i∈S Ai ∪ ∪i∈S¬Di

)
∩ W

∣∣ ⩾ ℓ, (Base PJR)

(2) avgsatS(W ) ⩾ ℓ − 1
2 . (proportionality degree)

3.3 Proportional Approval Voting Rule

Another prominent rule for approval-based committee elections is Proportional Approval Voting
(PAV). In contrast to Phragmén’s rule, PAV extends straightforwardly to the model with negative
votes, under the symmetric interpretation of utilities.

PAV rule for thumbs-up/down voting.It selects a feasible outcome W that maximizes:

∑
i∈V

f(|W ∩ (Ai ∪ ¬Di)|), where f(x) =
x∑

j=1

1/j.

It follows from the work of Masařík et al. [25] (see the construction proving the negative statement
of Theorem 7 there) that PAV does not satisfy Base EJR in our setting. However, we prove that
it provides a guarantee closely approximating ℓ on average for voters of every ℓ-cohesive set S
(the smaller the size of S is, the closer is the guarantee). This means that, even in the case where
there is no single voter from S having a utility of at least ℓ (as required by EJR), on average, the
voters from S have a utility close to ℓ. Hence we once again establish a strong proportionality
guarantee. This is the main result of this section, and the main technical contribution of our
paper.

Theorem 4. Consider an election E and let W be an outcome of PAV. For each ℓ-cohesive
S ⊆ V :

avgsatS(W ) ⩾ (1 − ε)
(

ℓ − |S|
n − |S|

)
− 3/2, where ε := 2

k + 4 .

8



Proof Sketch. We assume, for the sake of contradiction, that there exists an outcome W selected
by PAV where a group of voters S achieves a lower satisfaction than stated in the theorem.
Typically in the literature, analogous results (c.f., [5, 25]) are proved by considering “one-to-one”
swaps between carefully chosen candidates from W and C \ W . It is then shown that there
exists such a swap which increases the PAV score, leading to a contradiction. Instead, in our
setting, adding a candidate c to W may require not just removing an arbitrary candidate
from W , but also addressing the presence of ¬c. As a result, we consider a much broader
space of (non-disjoint) exchanges that involve “one-to-many” and “many-to-many” swaps. This
consideration of swaps between groups of candidates makes the proof significantly more complex
and technically demanding compared to results on proportionality for PAV in the absence of
down votes. □

On the negative side, PAV is NP-hard to compute [4]. Nevertheless, for approval-based com-
mittee elections, its local-search variant runs in polynomial time while also achieving strong
proportionality guarantees [6, 21]. The proof of Theorem 4 also manages to reveal that a
local-search approach based on the swaps we employed in the course of the proof works for our
setting as well. In general, Base EJR is satisfiable, but by a rather technical algorithm running
in exponential time in the number of voters and candidates [25]. In contrast, the guarantee in
Theorem 4 also applies to a polynomial-time algorithm. To conclude, it remains a major open
problem to develop a suitable generalization of the Method of Equal Shares for the symmetric
setting—a question already posed by Masařík et al. [25].

We conclude by noting that Base EJR, Base PJR, and proportionality degree are closely related.
In all these definitions, the key element is how cohesiveness is defined, and this element is
common for the three definitions. Thus, our results stated for proportionality degree imply
analogous results for Base EJR and Base PJR. Therefore, all the results in this section revolve
around the notion analyzed in Section 3.1.

4 The Asymmetric Utility Model

The utility model examined in Section 3 enforces symmetry, treating voters as equally concerned
with electing approved candidates and preventing the selection of disliked ones. However, this
symmetry may not always reflect voters’ true feelings. In some scenarios, voters might rightfully
feel entitled to a certain number of representatives in the elected body, regardless of whether
their negative votes contributed to blocking certain candidates. To account for this, we introduce
the asymmetric utility model, where voters’ satisfaction depends only on the election of approved
candidates, while disapprovals serve to hinder a candidate’s selection. This imbalance requires
introducing separate guarantees with respect to (i) approved, and (ii) disapproved candidates.

4.1 Axioms for Positive Representation and the Group Veto Axiom

In this section, we propose two axioms which formalize voters’ entitlement to (i) representation
in the committee and (ii) the ability to veto candidates. Our first axiom ensures guarantees
for voters with shared positive preferences. It is inspired by the classic Extended Justified
Representation (EJR) for approval-based committee elections and reduces to it when Di = ∅ for
all i ∈ V. We propose a definition of cohesiveness in the examined setting which defines how
large a group S must be, in the presence of voters with opposing preferences, to justify electing
ℓ representatives of their liking. Specifically, we say that S must have enough voters to outweigh
the effect of vetoing voters—meaning that for each down vote, there must be a voter in S to
cancel it out—and still remain large enough to claim a fair share.

Definition 2 (ℓ-positive-cohesiveness). Consider an election E. Given a positive integer ℓ ⩽ k, we
say that a set of voters S ⊆ V is ℓ-positively-cohesive if there exists a set of at least ℓ candidates
T such that T ⊆ AS and |S| − |Dc| ⩾ ℓ · n/k for every candidate c ∈ T . ⌟
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After defining ℓ-positive-cohesivess, we can provide the analogs of EJR and PJR in this setting.
We say that an outcome W for an election E provides Extended Justified Positive Representation
(EJPR) if for each ℓ-positively-cohesive group of voters S there exists a voter i ∈ S such that
|Ai ∩ W | ⩾ ℓ, and Proportional Justified Positive Representation (PJPR) if for each ℓ-positively-
cohesive group of voters S, it holds that | ∪i∈S Ai ∩ W | ⩾ ℓ. A rule R satisfies EJPR (resp.
PJPR) if for every election E its winning outcome provides EJPR (resp. PJPR).

Having defined a guarantee for commonly approved candidates, we now aim to define a negative
guarantee as well. This will ensure that sufficiently large groups of voters also have a right to
block candidates they dislike from being selected. The necessity of such an axiom is evident
as EJPR can be easily satisfied by disregarding negative ballots—hence dissolving any hopes
for negative guarantees—and then applying any rule that satisfies EJR in the approval-based
committee elections setting. On the flip side, the naïve rule that always returns the empty
committee fully respects down votes, but offers no positive guarantees. Thus, from a rule-design
standpoint, the goal is to develop a rule that offers both positive and negative guarantees
simultaneously. The axiom we propose, called Group Veto, aims to ensure the exclusion from
the committee of candidates based on the vetoes they receive from sufficiently large groups of
voters. In other words, a strong opposition limits the number of candidates that can be elected
from the opposed set.
Definition 3 (Group Veto). Consider an election E. For a set of candidates T, say that ap(T ) is
the set of voters that approve at least one candidate from T . Given a non-negative integer ℓ ⩽ k
and a set of at least ℓ candidates T , we say that a set of voters S ⊆ V is (ℓ, T )-negatively-cohesive
if T ⊆ DS and |S| ⩾ |ap(T )| − ℓ · n/k. An outcome W is said to provide Group Veto for E if for
each (ℓ, T )-negatively-cohesive group it holds |W ∩ T | ⩽ ℓ. A rule R satisfies the Group Veto
axiom if for every election E its winning outcome provides Group Veto. ⌟

We return to our running example to illustrate the axioms we introduced.

Continuation of Example 1. Since for both groups of voters V1, V2, we can find approved sets
(respectively) C3, C1 that are not opposed by the other group, the guarantees given by both
EJPR and PJPR are 6 for V1 and 4 for V2. Note that by themselves they do not say whether
the guarantee for V1 should be satisfied by candidates from C2 or from C3.

Setting S = V2 and T = C2 in the Group Veto definition, we find that ℓ = (|ap(T )| − |S|) · k/n =
(|V1| − |V2|) · k/n = 2. As a result, any rule satisfying the Group Veto axiom should elect at most
2 candidates from C2. ⌟

In the remainder of our work we propose rules that fit to the interpretation of utilities in the
asymmetric model and we analyze them in terms of whether they satisfy the proposed axioms
simultaneously.

4.2 Method of Equal Shares and Phragmén’s Rule with Opposition Tax

According to the original definitions of the Method of Equal Shares and Phragmén’s rule (see
Section 2) each candidate is assumed to have a unit cost. In our generalizations, we increase
this cost by introducing an opposition tax. In turn, we call the rules Method of Equal Shares
and Phragmén with Opposition Tax (Tax-MES and Tax-Phragmén for short). The tax captures
the idea that the more voters veto a candidate c, the higher the price her supporters need to
pay to elect c. As a result, candidates’ prices become unequal, setting our methods apart from
their standard analogs. We select the tax appropriately to ensure that (i) among candidates
with equal number of supporters, the one with higher net approval is prioritized, and (ii) among
those with equal net approval, the one with more supporters is prioritized. Moreover, we focus
on electing only candidates with more supporters than opponents; note that this would not
necessarily hold for rules designed to fit the symmetric model.
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Tax-MES/Tax-Phragmén.Given an election E, we define C ′ = {c ∈ C : |Ac| > |Dc|}.
For each c ∈ C ′ we set its price to p(c) := |Ac|

|Ac|−|Dc| . We create a ballot profile B′ such
that for each voter i ∈ V, we set B′

i := (Ai, ∅), ∀i ∈ V. Then, in (C ′, V, k, B′) we execute
MES (respectively, Phragmén) in their standard form. In the case of Phragmén, we
stop increasing a voter’s budget once she has received k/n in total.

It is straightforward to check that in the instance of Example 1 both tax-MES and tax-Phragmén
elect outcomes which provide the earlier defined proportionality axioms. Specifically, since the
price is 1 for candidates in C1 ∪C3 and 3 for C2, both rules elect 6 candidates from C3 and 4 from
C1. This observation can be generalized as our next result shows. Especially for Tax-Phragmén,
we note that it must fail EJPR since for Di = ∅ for all i ∈ V it reduces to classic Phragmén,
which fails EJR [12].

Theorem 5. Tax-MES satisfies EJPR and Group Veto. Tax-Phragmén satisfies PJPR and Group
Veto.

Proof Sketch. The proofs regarding positive representation for tax-MES and tax-Phragmén are
both by contradiction: after assuming that the required axiom is violated for an ℓ-positively-
cohesive group S, we obtain that at the end of the procedure the group has too much money
left in total for that to be possible.

The fact that both rules satisfy Group Veto, follows by lower-bounding the price of each c ∈ T
by a function of |ap(T )| and |S| and by observing that the total budget that the voters in ap(T )
may spend is limited. Hence, there is an upper bound in the number of candidates from T which
can be selected. We note that the part of the proof regarding Group Veto actually applies to a
broad family of (priceable) rules [27] which includes Tax-MES and Tax-Phragmén. □

One could wonder why the definition of tax-Phragmén we propose halts the procedure at time
k/n—a condition non-existent in the standard definition of Phragmén’s rule. Without it, the rule
would always elect k candidates (provided there are at least k candidates with more in-favor
than against ballots). This is not always the case under tax-Phragmén, and this is intentional.
An adaptation that wouldn’t stop the procedure would not satisfy Group Veto and its negative
guarantees would be much weaker (see Appendix B). On the other hand, tax-MES might select
fewer than k candidates even in the absence of negative ballots, i.e., for classic MES [16].
Therefore, classic MES is typically paired with a completion strategy [16] to increase the number
of selected candidates. However, in the model with negative votes (where adding a candidate
can worsen the committee for some voters), the seek for exhaustiveness has a much weaker
justification than in the standard setting.

4.3 Generalized Thiele Rules

In Section 3.3 we proved that PAV exhibits strong proportionality guarantees in the symmetric
utility model. Interestingly, the rule is not suitable if we take the asymmetric interpretation. In
particular, below, we show that PAV cannot be adapted to satisfy EJPR while accounting for
negative ballots. This limitation extends to the entire family of Thiele rules when adapted for
this setting: the class of generalized Thiele rules. Each rule is defined via a mapping f , where
f(z, s) specifies the score that a committee obtains from a voter that approves z candidates in it
while disapproving s.
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Generalized Thiele Rules.A generalized Thiele rule induced by the scoring function
f : N2 → R selects for each election E a feasible outcome W that maximizes:∑

i∈V

f(|W ∩ Ai|, |W ∩ Di|).

Theorem 6. No generalized Thiele rule induced by a scoring function f such that f(z, s) < f(z, 0)
for some (z, s) ∈ N2, satisfies EJPR.

Proof Sketch. Consider a generalized Thiele rule induced by a function f for which the desired
pair of values (z, s) ∈ N2 exists. Assume for the sake of contradiction that the rule satisfies
EPJR. Since in the standard setting EJPR is equivalent to standard EJR, and PAV is the only
Thiele rule satisfying EJR [5], it holds that f(x, 0) =

∑
1⩽i⩽x

1/i for every x ∈ N. We construct
a family of instances parameterized by z and s. Specifically, for any value of t > s, we define
an election Et = (C, V, k, B) as follows: The set of candidates C consists of 3(t + z) candidates
in total, 2(t + z) of which are dummy candidates who are neither approved nor disapproved
by any voter. Apart from the dummy candidates, we have 3 disjoints sets of candidates: T1 of
t − s candidates, T2 of s candidates and T3 of z candidates. There are two disjoint groups of
voters: V1 approves T1 ∪ T2 ∪ T3, and V2 approves T3 and disapproves T2. We set k = 3(t + z).
EJPR requires that voters in V1 deserve at least t + z approved candidates in the committee,
hence the considered rule should elect all candidates from T1 ∪ T2 ∪ T3. Nevertheless, using the
obtained relation for f(x, 0), we show that there exists a value of t such that, in the election Et,
the committee T1 ∪ T3 is better according to f . Such an election Et serves as the counterexample
establishing the theorem. □

The assumption appearing in Theorem 6 simply says that no voter should prefer a committee
containing candidates they disapprove over one without (as long as both include the same
number of candidates they approve)—a natural restriction. A direct consequence of Theorem 6
is that no generalized Thiele rule satisfies any form of a negative guarantee, such as Group Veto,
while also satisfying EJPR. In particular, there does not exist a reasonable (i.e., not neglecting
negative ballots) extension of PAV to this setting. Importantly, Theorem 6 also applies to PJPR
without any changes to the construction used in its proof. The markedly different behavior of
the two PAV variants we study in Section 3 and Section 4 reinforces the intuition that the two
interpretations of down votes we employ necessitate for different approaches—both conceptually
and technically—when designing proportional voting rules for each utility model.

5 Concluding Discussion

We have presented two formal approaches capturing the idea of proportional representation in the
presence of down votes. These approaches are fundamentally different, and the choice between
them may depend on the context. Specifically, the symmetric approach is more appropriate in
contexts such as selecting a set of blog posts or comments, where the primary goal is to fairly
aggregate voters’ opinions rather than to provide direct representation within the elected com-
mittee. In contrast, the asymmetric approach appears better suited for participatory budgeting
elections or elections to representative bodies, where ensuring proportional representation of
voters is a key objective. Moreover, the symmetric setting is appropriate when vote budgets are
limited or candidates cannot be duplicated easily. In contrast, the asymmetric setting gives voters
incentives to cast negative votes against neutral candidates, making it necessary to constrain the
allowed number of down votes. A major conceptual open problem for future work is designing
voting rules and axiomatic properties that lie between the two settings. Our adaptations of
Phragmén’s rule and MES can be directly applied to PB; establishing proportionality guarantees
for this setting, in the presence of both up and down votes, is a clear direction for future work.
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Technical Appendix

A Proofs Omitted from the Main Text

Lemma 1. Consider an election E. A set of voters S ⊆ V is ℓ-cohesive if:

ℓ ⩽



|DS | − k, if n
n−|S|k ⩽ |DS |.

|S|
2n−|S|(|DS | + k), if n−|S|

n k ⩽ |DS | ⩽ n
n−|S|k and 2n−|S|

n |AS | + n−|S|
n |DS | ⩾ k.

|S|
n k, if |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|

n k and |AS | ⩽ m − n−|S|
n k.

|AS | + k − m, if |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|
n k and

m − n−|S|
n k ⩽ |AS | and |AS | + k − m ⩽ |S|

n (|AS | + |DS |).
|S|
n (|DS | + |AS |), otherwise.

All the bounds are tight up to the factor of |S|/n−|S|.

Proof. Consider an election E and a group S ⊆ N . Let us denote by claim(S) the upper bound
of ℓ for S in the statement of the lemma. To prove the statement, we will show that each group
of voters S ⊆ V is claim(S)-cohesive and is not (claim(S) + 1)-cohesive.

Consider a feasible subset of candidates T ⊆ C and let T + and T − denote the parts of T that
consist of the positive and negative candidates, respectively. If we have that |S|

n > claim(S)
claim(S)+|T | ,

then S is entitled to satisfaction claim(S). From now on let us assume that the opposite
inequality holds, which is equivalent to:

|T | ⩽ n − |S|
|S|

· claim(S). (3)

Moreover, let us assume that the expression n−|S|
|S| · claim(S) is integral, that is, it is possible to

find set T of exactly this size. Whenever it is true, the estimations for claim(S) will be tight.
Otherwise, since the space of possible sets T is smaller, the actual value of claim might be larger
by less than:

claim(S) − |S|
n − |S|

·
⌊

n − |S|
|S|

· claim(S)
⌋

= |S|
n − |S|

·
(

n − |S|
|S|

· claim(S) −
⌊

n − |S|
|S|

· claim(S)
⌋)

<
|S|

n − |S|
.

(4)

So we want to show that for any choice of such a set T , there is a set X ⊆ AS ∪ ¬DS that can
be proposed by group S such that T ∪ X is feasible and |X| = claim(S) and there is no such
larger set X. This will give us the desired result, because such a set T certifies that group S is
not (claim(S) + 1)-cohesive as Formula (3) is also satisfied for any ℓ > claim(S).

Now, subject to the constraint of Formula (3) we will choose T adversarially, so as to minimize
the size of the largest such set X.

Given a set T , group S should be able to propose a set of candidates X ⊆ AS ∪ ¬DS of size
claim(S) (but not any larger) such that T ∪ X is feasible. Due to the committee size constraint,
the set X contains at most k − |T +| candidates from AS . Furthermore, X ∪ T must not include
both a and ¬a for any a ∈ C. Hence the maximum sized set X satisfies |X ∩ ¬DS | ⩽ |DS \ T +|
and |X ∩ AS | ⩽ |AS \ ¬T −|. From these inequalities, we obtain the following formula for the
maximum size of set X that S can propose so that T ∪ X is feasible:

|DS \ T +|+ min(|AS \ ¬T −|, k − |T +|)
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= |DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |AS ∩ ¬T −|) − |AS ∩ ¬T −|.

In addition to the size constraint (Formula (3)), we now impose further restrictions on T and show
that these do not decrease the size of the largest set X ⊆ AS ∪ ¬DS for which X ∪ T is feasible.
We can assume that T has the following properties without loss of generality: T + ∩ AS = ∅
and T − ⊆ ¬AS . To justify this claim, observe that removing a candidate from T does not affect
the satisfiability of Formula (3). Removing the candidates from T + ∩ AS does not increase the
maximum possible size of X (i.e., the number of “slots” in X available for the candidates from
AS ∪ ¬DS). The same holds for removing the candidates from T − \ ¬AS . Moreover, if for T
there is a set X ⊆ AS ∪ DS of size at least claim(S), then this also holds for any subset of T .

Therefore, we have that T − contains only candidates from ¬AS , and, |AS ∩¬T −| = |¬T −| = |T −|.
Hence, the maximum size of X is:

|DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |AS ∩ ¬T −|) − |AS ∩ ¬T −|
= |DS | − |T +| + |T + \ DS |+ min(|AS |, k − |T +| + |T −|) − |T −|

= |DS | + |T + \ DS |+ min(|AS |, k − |T +| + |T −|) − |T |. (5)

Let us now check for which sets T the Formula (5) is minimal. Any candidate, positive or
negative, included in T , contributes −1 to the last term −|T |. Among those, only positive
candidates included in T contribute −1 to the term k − |T +| + |T −| and thereby potentially
reduce the size of X (this is in contrast to negative candidates, which increase this term). Finally,
only positive candidates in DS additionally contribute 0 to |T + \ DS | if included in T + while
all other positive candidates contribute 1. Thus, to minimize the formula, we always prefer
to add candidates from DS to T + instead of the ones from C \ DS (subject to Formula (3)
and committee constraint k). So, if possible, we choose T to be of size n−|S|

|S| · claim(S) and
T = T + = DS . If |DS | or k are too small (that is, smaller than n−|S|

|S| · claim(S), so that using
up to the k maximum possible candidates from DS is insufficient), we will sometimes fill the
remaining slots in T with candidates from C \ DS \ AS to T + or the ones from ¬AS to T −. The
remainder of the proof requires an extensive case analysis.

Case 1: Assume that |DS | ⩾ n
n−|S| · k.

In this case we have that claim(S) = |DS | − k. The condition in the assumption can be rewritten
as:

|DS | ⩾ n

n − |S|
· k ⇐⇒ |DS | − k ⩾

|S|
n − |S|

· k ⇐⇒ n − |S|
|S|

· claim(S) ⩾ k.

Then it is possible to take T = T + ⊆ DS such that T + has the maximal possible size of k. As
argued in the main text, this minimizes Formula (5). Then we can transform Formula (5) as:

|DS | + min(|AS |, 0) − k = |DS | − k = claim(S),

which shows that indeed Base EJR gives precisely a guarantee of claim(S) in this case.

Case 2: Assume that n−|S|
n · k ⩽ |DS | ⩽ n

n−|S| · k and 2n−|S|
n |AS | + n−|S|

n |DS | ⩾ k.
In this case we have that claim(S) = |S|

2n−|S| ·(|DS |+k). The assumption n−|S|
n ·k ⩽ |DS | ⩽ n

n−|S| ·k
implies both n−|S|

|S| · claim(S) ⩽ n−|S|
2n−|S|(

n
n−|S|k + n−|S|

n−|S|k) and n−|S|
|S| · claim(S) ⩽ n−|S|

2n−|S|(
n−|S|
n−|S|DS +

n
n−|S|DS). Therefore,

n − |S|
|S|

· claim(S) ⩽ |DS |, and n − |S|
|S|

· claim(S) ⩽ k.
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Hence, it is possible to take T = T + ⊆ DS such that T has the maximal possible size of
n−|S|

|S| · claim(S). Now we can rewrite Formula (5) as:

|DS | + min(|AS |, k − n − |S|
|S|

· claim(S)) − n − |S|
|S|

· claim(S). (6)

Then, from the assumptions of the considered case we obtain
2n − |S|

n
|AS | + n − |S|

n
|DS | ⩾ k,

which can be equivalently written as:

|AS | ⩾
k − n−|S|

n |DS |
2n−|S|

n

⇐⇒ |AS | ⩾ k − n − |S|
2n − |S|

(|DS | + k)

⇐⇒ |AS | ⩾ k − n − |S|
|S|

· |S|
2n − |S|

(|DS | + k)

⇐⇒ |AS | ⩾ k − n − |S|
|S|

claim(S).

So, min(|AS |, k − n−|S|
|S| claim(S)) = k − n−|S|

|S| claim(S) in Formula (6), which can be further
simplified as follows

|DS | + k − n − |S|
|S|

· claim(S) − n − |S|
|S|

· claim(S)

=|D + S| + k − 2(n − |S|)
|S|

|S|
2n − |S|

(|DS | + k) = |S|
2n − |S|

· (|DS | + k) = claim(S),

which shows that indeed Base EJR gives a guarantee of claim(S) in this case.

Case 3: Assume that |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|
n · k and |AS | ⩽ m − n−|S|

n · k.
In this case, we have that claim(S) = |S|

n k. Hence, |DS | ⩽ n−|S|
n ·k = n−|S|

|S|
|S|
n ·k ⩽ n−|S|

|S| ·claim(S).
For the purpose of analysis consider T = T + = DS , we will enlarge T thereafter. Under this
assumption the term min(|AS |, k − |T +| + |T −|) in Formula (5) equals k − |DS | using that
|AS | + |DS | ⩾ k. We now add further x = n−|S|

n · k − |DS | to T so as to minimize Formula (5).
Since for our temporary choice of T it holds that k − |T +| + |T −| ⩽ |AS |, it is true that the min
term can be further reduced by adding x positive candidates from C \ DS \ AS to T +, upon
which term min(|AS |, k −|T +|+ |T −|) decreases by x while |T + \DS | increases by x and the part
−|T | decreases by x. Overall, Formula (5) decreases by x. Note that if we increased the size of
T in any other way (i.e., by adding candidates to T −) the decrease would be smaller, so that our
choice of T minimizes Formula (5). It remains to justify that there are at least x = n−|S|

n ·k−|DS |
candidates in C \ DS \ AS or equivalently, whether m − |DS | − |AS | ⩾ n−|S|

n · k − |DS |. The
latter condition is equivalent to |AS | ⩽ m − n−|S|

n · k, which holds by assumption. Finally, we
simplify Formula (5) as:

|DS | + |T + \ DS | + min(|AS |, k − |T +| + |T −|) − |T | =

|DS | + n − |S|
|S|

claim(S) − |DS | + k − |DS | −
(

n − |S|
|S|

claim(S) − |DS |
)

− n − |S|
|S|

claim(S) =

n − |S|
|S|

claim(S) + k − n − |S|
|S|

claim(S) − n − |S|
|S|

claim(S) = k − n − |S|
|S|

claim(S) = claim(S),

which shows that indeed Base EJR gives a guarantee of claim(S) in this case.
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Case 4: Assume that |AS | + |DS | ⩾ k and |DS | ⩽ n−|S|
n · k and m − n−|S|

n · k ⩽ |AS |.
In this case we can have that either claim(S) = |AS | + k − m or claim(S) = |S|

n (|AS | + |DS |),
depending on which value is smaller. Alternatively, we can say that claim(S) = min(|AS | + k −
m, |S|

n (|AS | + |DS |)). We have that:

n − |S|
|S|

(|AS | + k − m) ⩾ n − |S|
|S|

(m − n − |S|
n

· k + k − m) = n − |S|
n

· k ⩾ |DS |,

n − |S|
n

(|AS | + |DS |) ⩾ n − |S|
n

k ⩾ |DS |,

which means that |DS | ⩽ n−|S|
|S| claim(S) and, as in Case 3, we first include all candidates from

DS in T . Now, the question is whether set T should be completed by the candidates from
C \ AS \ DS or by the candidates from ¬AS . Note that from our assumptions, we have that:

m − |AS | ⩽ n − |S|
n

k ⩽ k,

m − |AS | ⩽ n − |S|
n

k ⩽
n − |S|

n
(|AS | + |DS |),

m − |AS | ⩽ n − |S|
n

k ⇐⇒ n

|S|
m − n

|S|
|AS | ⩽ n − |S|

|S|
k ⇐⇒ m − |AS | ⩽ n − |S|

|S|
(|AS | + k − m),

which means that m − |AS | ⩽ min(k, n−|S|
|S|claim(S)) and it is possible to include all the candidates

from C \ AS \ DS in T . On the other hand, we have that |AS | + |DS | ⩾ |S|
n (|AS | + |DS |) and

|AS | + |DS | ⩾ k ⩾ |AS | + k − m, which means that it is not possible to include all the candidates
from ¬AS in T .
Looking at the Formula (5), we can prove the following claim:
Claim 7. An optimal set T minimizing Formula (5), either contains all the candidates from
C \ AS \ DS , or none of them.

Proof of Claim 7. Indeed, consider a set T in which there is some x (0 < x < m − |AS | − |DS |)
candidates from C \ AS \ DS and some y candidates from ¬AS . We will show that T does not
minimize Formula (5).
We know that y < |AS | (as we noted above, it is not possible to include all the candidates from
¬AS in T ). First of all, consider the case when y = 0. Then, as noted above, |T | < m − |AS | ⩽
n−|S|

|S| claim(S) and it is possible to add a candidate from ¬AS to T . From the perspective of
minimizing Formula (5), such an operation clearly is (weakly) profitable—it always decreases the
value of the part −|T | by one, and it can increase the value of part min(|AS |, k − |T +| + |T −|)
only by at most one. Further, let us assume that y > 0.
Observe now that the part min(|AS |, k −|T +|+ |T −|) is either equal to |AS | or to k −|T +|+ |T −|.
In the first case, we consider T ′ obtained from T by making a swap between c ∈ T ∩ (C \AS \DS)
and a candidate c′ ∈ AS \ T . In the second case, we consider T ′ obtained from T by making a
swap between a candidate c ∈ (C \AS \DS)\T and a candidate c′ ∈ T ∩AS . It is straightforward
to check that in both cases the value of Formula (5) under T ′ decreases, which proves that T
does not minimize Formula (5). □

Hence, the optimal T in this case either contains all the candidates from DS and n−|S|
|S| claim(S)−

|DS | candidates from ¬AS (let us denote such T by T1) or all the candidates from C \ AS and
n−|S|

|S| claim(S) − (m − |AS |) candidates from ¬AS (let us denote such T by T2. In the first case,
Formula (5) can be transformed as follows:

|DS | + min(|AS |, k − |DS | + n − |S|
|S|

claim(S) − |DS |) − n − |S|
|S|

claim(S). (7)
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In the second case, Formula (5) can be transformed as follows:

m − |AS | + min(|AS |, k − (m − |AS |) + n − |S|
|S|

claim(S) − (m − |AS |)) − n − |S|
|S|

claim(S)

= m − |AS | + min(|AS |, k − 2m + 2|AS | + n − |S|
|S|

claim(S)) − n − |S|
|S|

claim(S). (8)

Let us now consider the following subcases:

Subcase 4.1: Assume that |AS | + k − m ⩾ |S|
n (|AS | + |DS |).

In this subcase, we have that claim(S) = |S|
n (|AS | + |DS |). From our assumption we have that:

|S|
n

(|AS | + |DS |) ⩽ |AS | + k − m

⇐⇒ |S|
n

(|AS | + |DS |) + |DS | ⩽ |AS | + |DS | + k − m

=⇒ |S|
n

|AS | + n + |S|
n

|DS | ⩽ k

⇐⇒ |AS | + 2|DS | ⩽ k + n − |S|
n

(|AS | + |DS |)

⇐⇒ |AS | ⩽ k − |DS | + n − |S|
|S|

claim(S) − |DS |.

Hence, taking T = T1, we can transform Formula (7) as:

|DS | + |AS | − n − |S|
n

(|AS | + |DS |) = |S|
n

(|AS | + |DS |) = claim(S),

and when we take T = T2, then, depending on the value of the min part, we can transform
Formula (8) either as:

m − |AS | + |AS | − n − |S|
n

(|AS | + |DS |) ⩾ |S|
n

m ⩾ claim(S)

or as:

m − |AS | + k − 2m + 2|AS | + n − |S|
|S|

claim(S) − n − |S|
|S|

claim(S)

= |AS | + k − m ⩾
|S|
n

(|AS | + |DS |) = claim(S).

In all cases group S has a guarantee of at least claim(S) and for T = T1, the inequality is tight,
which shows that indeed Base EJR gives a guarantee of claim(S) in this subcase.

Subcase 4.2: Assume that |AS | + k − m ⩽ |S|
n (|AS | + |DS |).

In this subcase we have that claim(S) = |AS | + k − m. Note that our assumption, together with
the fact that |AS | + |DS | ⩽ m, implies that |AS | + k − m ⩽ |S|

n m. From that we further obtain:

|S|
n

m ⩾ |AS | + k − m

⇐⇒ n + |S|
n

m − k ⩾ |AS |

⇐⇒ |AS | ⩾ k + 2|AS | − n + |S|
n

m

⇐⇒ |AS | ⩾ k − 2m + 2|AS | + n − |S|
n

m
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=⇒ |AS | ⩾ k − 2m + 2|AS | + n − |S|
|S|

(|AS | + k − m)

⇐⇒ |AS | ⩾ k − 2m + 2|AS | + n − |S|
|S|

claim(S).

Therefore, taking T = T2, we can transform Formula (8) as follows:

m − |AS | + k − 2m + 2|AS | + n − |S|
|S|

claim(S) − n − |S|
|S|

claim(S) = |AS | + k − m = claim(S).

If we take T = T1, then, depending on the value of the min part, we can transform Formula (7)
either as:

|DS | + |AS | − n − |S|
|S|

(|AS | + k − m) ⩾ |DS | + |AS | − n − |S|
n

(|AS | + |DS |)

= |S|
n

(|AS | + |DS |) ⩾ |AS | + k − m = claim(S),

or as:

|DS | + k − 2|DS | + n − |S|
|S|

claim(S) − n − |S|
|S|

claim(S) = k − |DS | ⩾ |AS | + k − m = claim(S).

In all cases group S has a guarantee of at least claim(S) and for T = T2, the inequality is tight,
which shows that indeed Base EJR gives a guarantee of claim(S) in this subcase.

Case 5: Assume that none of the conditions examined in the previous cases hold.
In this case we have that claim(S) = |S|

n · (|AS | + |DS |). We start by proving that now that at
least one of the following is true:(2n − |S|

n
|AS | + n − |S|

n
|DS | ⩽ k and |AS | ⩽ |S|

n − |S|
|DS |

)
or(

|AS | + |DS | ⩽ k and |AS | ⩾ |S|
n − |S|

|DS |
)

.

(9)

Suppose first that 2n−|S|
n |AS | + n−|S|

n |DS | > k. Then, since the conditions for Cases 1 and 2 are
not satisfied, it has to hold that |DS | < n−|S|

n k. Since the conditions for Cases 3 and 4 are not
satisfied, it has to hold that |AS | + |DS | < k. But then |AS | + |DS | < 2n−|S|

n |AS | + n−|S|
n |DS |,

from which we obtain |AS | > |S|
n−|S| |DS |. Eventually, the second part of Formula (9) is satisfied.

Suppose now that 2n−|S|
n |AS | + n−|S|

n |DS | ⩽ k and |AS | > |S|
n−|S| |DS |. Then we have that k ⩾

2n−|S|
n |AS |+ n−|S|

n |DS | = |AS |+ n−|S|
n |AS |+ n−|S|

n |DS | > |AS |+ |S|
n |DS |+ n−|S|

n |DS | = |AS |+|DS |.
Therefore, once again, we have that the second part of Formula (9) is satisfied.
We will now split the further analysis into two subcases, based on Formula (9).

Subcase 5.1: Assume that 2n−|S|
n |AS | + n−|S|

n |DS | ⩽ k and |AS | ⩽ |S|
n−|S| |DS |.

In this subcase, the following two relations hold:

|AS | + |DS | ⩽ k =⇒ n − |S|
n

(|AS | + |DS |) ⩽ k ⇐⇒ n − |S|
|S|

claim(S) ⩽ k

|AS | ⩽ |S|
n − |S|

|DS | ⇐⇒ n − |S|
n

(|DS | + |AS |) ⩽ |DS | ⇐⇒ n − |S|
|S|

claim(S) ⩽ |DS |

Hence, in this case it is possible to take T = T + ⊆ DS such that |T | = n−|S|
|S| claim(S). The

Formula (5) then can be written as:

|DS | + min(|AS |, k − n − |S|
|S|

claim(S)) − n − |S|
|S|

claim(S).
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Since 2n−|S|
n |AS | + n−|S|

n |DS | ⩽ k ⇐⇒ |AS | ⩽ k − n−|S|
n (|AS | + |DS |) ⇐⇒ |AS | ⩽ k −

n−|S|
|S| claim(S), we may further transform Formula (5) as:

|DS | + |AS | − n − |S|
n

(|AS | + |DS |) = |S|
n

(|AS | + |DS |) = claim(S),

which shows that indeed Base EJR gives a guarantee of claim(S) in this case.

Subcase 5.2: Assume that |AS | + |DS | ⩽ k and |AS | ⩾ |S|
n−|S| |DS |.

In this subcase the following equivalence holds:

|AS | ⩾ |S|
n − |S|

|DS | ⇐⇒ |DS | ⩽ n − |S|
n

(|DS | + |AS |) ⇐⇒ |DS | ⩽ n − |S|
|S|

claim(S).

Hence, we can add all the candidates from DS to T . Then, Formula (5) becomes:

|DS | + min(|AS |, k − |DS |) − |DS |

However, we can still add n−|S|
|S| claim(S) − |DS | candidates more to T . Since we assumed that

|AS | + |DS | ⩽ k, it also holds that min(|AS |, k − |DS |) = |AS | and we can add more candidates
to T − without increasing this part of the expression. Note that |AS | + |DS | = n

|S|claim(S) ⩾
n−|S|

|S| claim(S), hence, we can add n−|S|
|S| claim(S) − |DS | candidates from ¬AS to T . After that,

we may further transform Formula (5) as:

ui(W ) = |DS | + |AS | − n − |S|
|S|

claim(S) = claim(S),

which shows that indeed Base EJR gives a guarantee of claim(S) in this case.

To conclude the case analysis, we can see than in each case Base EJR provides the guarantee of
exactly claim(S) for the worst-case adversarial set, which completes the proof. □

Lemma 2. Consider an election E and fix any ℓ-cohesive group of voters S. For each k-element
subset W ⊆ C, there exists a voter i ∈ S such that ui(W ) ⩾ ℓ or

ℓ <
|S|
n

(
|DS | + min(k, |AS |) + n

n − |S|

)
.

Proof. The proof strategy is as follows: we consider the cases in the expression of the statement
of Lemma 1 to show that all of them are less than or equal |S|

n (|DS | + min(k, |AS |)). After that,
it is sufficient to use Relation (4) to prove the statement of the lemma.

First, observe that the voters from S will always have the satisfaction of at least |DS | − k no
matter what is the result of the election. Similarly, if we select k candidates then, we will not
select (m−k) of them. Thus, the voters from S will have at least the satisfaction of |AS |+k −m.
Hence, we can focus on the remaining three cases only, namely the second, third, and the last
one.

Consider the second case. Clearly, it always holds that:

2n − |S|
n

k + n − |S|
n

|DS | = k + n − |S|
n

(k + |DS |) ⩾ k.

Consequently, since, by assumption, it also holds that 2n−|S|
n |AS | + n−|S|

n |DS | ⩾ k, we get that:

2n − |S|
n

min(k, |AS |) + n − |S|
n

|DS | ⩾ k.
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After reformulation, we get that:

2n − |S|
n

min(k, |AS |) + 2n − |S|
n

|DS | ⩾ |DS | + k,

from which our statement follows immediately.

Let us now move to the third case. Here we have that:

|AS | + |DS | ⩾ k =⇒ min(|AS |, k) + |DS | ⩾ k,

from which our statement follows immediately.

Regarding the last case, say, first, that |AS | + k − m > |S|
n (|AS | + |DS |) (that is, the negated

last condition in the fourth case). Using the previous observation that every k-element set W
provides to every voter i ∈ S at least the satisfaction |AS | + k − m, we immediately obtain that
ui(W ) ⩾ |S|

n (|AS | + |DS |). Finally, we simply need to show that in the remaining part of the
last case we have that |AS | ⩽ k, or equivalently, that |AS | > k is covered by the previous cases.
Indeed, if |AS | ⩾ k then all previous conditions that involve AS are satisfied. At the same time
the conditions involving only DS cover the whole space of possibilities. □

Theorem 3. Let W be an outcome returned by Phragmén’s rule. For each ℓ-cohesive set of voters
S the following conditions are satisfied:

(1)
∣∣(∪i∈S Ai ∪ ∪i∈S¬Di

)
∩ W

∣∣ ⩾ ℓ, (Base PJR)

(2) avgsatS(W ) ⩾ ℓ − 1
2 . (proportionality degree)

Proof. We begin with Statement (1) on Base PJR. Consider a group S that deserves ℓ candidates
and suppose | ∪i∈S (Ai ∪ ¬Di) ∩ W | < ℓ where W is the outcome returned by the proposed
rule. Consider the first moment, t, when all the candidates from AS ∪ ¬DS are either elected or
removed. Note that t ⩽ ℓ

|S| . Indeed, if t > ℓ
|S| , then at time ℓ

|S| the group S would collect in
total ℓ dollars, and would buy at least ℓ candidates from ∪i∈SAi ∪ ¬Di (the possibility of buying
such candidates comes from the fact that there would always be a candidate from AS ∪ ¬DS

available for purchase). As in the proof of Theorem 8 in the paper by Masařík et al. [25], the
outcome W selected by time t, can be decomposed as W = T ∪ A where A ⊆ ∪i∈S(Ai ∪ ¬Di)
and T = W \ ∪i∈S(Ai ∪ ¬Di), and there exists X ⊆ AS ∪ DS of size ℓ such that T ∪ X is feasible.

Note that for every positive candidate a ∈ A there is i ∈ S that approves a and so ¬a is not in
X. Similarly, for every negative candidate ¬a ∈ A, there is i ∈ S that vetoes a and so a /∈ X.
From this and the fact that |X| > |A| it follows that there exists c ∈ X \ A such that W ∪ {c} is
feasible. But then Phragmén should have selected c instead of terminating; a contradiction.

We now move to Statement (2) on proportionality degree. Consider a group S ⊂ N deserving
ℓ = claim(S) candidates. Toward a contradiction assume that the average satisfaction that
group S has for W , the outcome returned by Phragmén, is less than ℓ−1

2 . As in the proof of
Theorem 9 in the paper of Masařík et al. [25] we define

t = ℓ

|S|
+ ∆ − 1

n
,

where ∆ is the smallest non-negative value such that at t the voters from S have at most ∆ unspent
dollars (if such ∆ does not exist, then we simply set ∆ = 0). Observe that t ⩾ ℓ

|S| − 1
n ⩾ ℓ−1

|S| .
Consider the set W of candidates elected by Phragmén up to time t and observe that it follows
from Statement (1) on Base PJR that W contains at least ℓ − 1 candidates from ∪i∈SAi. We can
therefore take a set A ⊆ W of exactly ℓ − 1 candidates from the union of approval sets of voters
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¬DS

b

¬Di

ri

Ai

ai

A+

W
W + W −

dom(ϕ)=
{a0, a1, . . . , ad+−a−1}

co-dom(ϕ)=
{b0, b1, . . . , bk′−1}

k m − k

k′ = k − ad+ − a =
min(k, |AS |) − |A+ ∩ W +|

a

Figure 1: Illustration of sets and parameters involved in the proof of Theorem 4. We denote by dom(ϕ)
the domain of an injection ϕ and by co-dom(ϕ) its co-domain.

S, selecting maximally many candidates from their intersection, AS , and define T = W \A. Note
that T ∩ AS = ∅. Since S deserves ℓ candidates, there exists a set X of size ℓ such that T ∪ X is
feasible (if X does not exist, then the same argument as in the proof of Theorem 9 in [25] holds
since A has size exactly ℓ − 1). Now comparing W = T ∪ A and T ∪ X, we argue similarly as in
the poof of Statement (1). For every a ∈ A there is some voter v in S that approves a since A is a
subset of the union of approval sets of voters in S. So the negation of a is not in X, as voter v does
not vote both for and against the candidate a. Since |A| < |X| and |T ∩ X| = ∅, we have that
|W | = |T ∪A| < |T ∪X|, and as we argued the restricted exchange property applies, implying the
existence of x ∈ X \ A such that W ∪ {x} is feasible. The remaining proof continues as in [25].□

Theorem 4. Consider an election E and let W be an outcome of PAV. For each ℓ-cohesive
S ⊆ V :

avgsatS(W ) ⩾ (1 − ε)
(

ℓ − |S|
n − |S|

)
− 3/2, where ε := 2

k + 4 .

Proof. We begin by outlining the strategy of the proof. Assume, for the sake of contradiction,
that there exists an outcome W selected by PAV where the group of voters S achieves a lower
satisfaction than stated in the theorem. To address this, we consider a series of possible swaps
that replace certain candidates in the committee W with candidates outside W . Instead of
analyzing each individual swap, we aggregate them to compute the overall change in the PAV-
score of W resulting from these swaps. It is crucial that these swaps are applied independently
to the original committee W , rather than sequentially. It suffices to demonstrate that the
aggregated change in the PAV-score is positive. Then, by the pigeonhole principle, this implies
that there is at least one swap that can improve the PAV-score of the outcome W , leading to
a contradiction. This line of reasoning was employed in the original proof that PAV satisfies
EJR without negative votes. However, in the original setting, swaps simply involve replacing
candidates one for one; an approach that fails in our setting. This is because adding a candidate
c to the committee may require not just removing an arbitrary candidate from W , but also
addressing the presence of a “virtual candidate” ¬c, which represents the exclusion of c from
W . Hence, our analysis has to be much more nuanced, involving the consideration of swaps
between groups of candidates rather than individual candidates, which makes it more technically
demanding. Figure 1 illustrates several sets and parameters that will be defined and utilized
subsequently.

Let us now start by introducing some additional notation. Let A+ be an arbitrary subset of AS

of size d+ = min(k, |AS |). Let A = ¬DS ∪ A+. These are the candidates we will be trying to add
to the committee W , while removing others to maintain feasibility. We denote the size of A as d.

d = |DS | + min(|AS |, k).
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By Lemma 2 we know that if |W | = k, then we can assume:

claim(S) <
|S|
n

·
(

d + n

n − |S|

)
=⇒ claim(S) − |S|

n − |S|
<

|S|
n

· d.

If W < k then in order to add any candidate from Ui \ W to W we need to remove at most one
candidate from W . Then the proof simplifies, and the reasoning from the proof of Theorem 6
by Masařík et al. [25] can be directly applied.

We split the committee W into positive candidates W + and negative candidates W −. We assume
in the following that |W +| = k; if not, the outcome can simply be extended by adding dummy
candidates that are neither approved nor disapproved by any voter. Let a = |A+ ∩ W +|. We
assume that a < k as otherwise W + ⊆ AS and the committee W ∪{¬c | c ∈ DS} is feasible. This
committee would already imply the desired result. Further, we assume without loss of generality
that for every c ∈ C, either c ∈ W + or ¬c ∈ W −. Indeed, if this is not the case, then ¬c can be
always added to the outcome, and the PAV score will not decrease after such a change. Finally,

k′ := k − a = |W + \ A+|.

We will now define k′ injections from A+ \ W + to W + \ A+. Note that

|A+ \ W +| = d+ − a ⩽ k − a = |W + \ A+|.

For convenience we label the candidates in A+ \ W + as a0, . . . , ad+−a−1, and the candidates
in W + \ A+ as b0, . . . , bk′−1. We define ϕi for i = 0, . . . , k′ − 1 as follows

ϕi(aj) = bj+i mod k′ , for j = 0, . . . , d+ − a − 1.

We begin by considering a concrete example of how to construct the exchanges from a single fixed
injection ϕ before exhibiting our general construction. Let k = 3 be the committee size, and let
W = {c1, c2, c3, ¬c4, ¬c5, ¬c6}, i.e. W + = {c1, c2, c3} and W − = {¬c4, ¬c5, ¬c6} Suppose that
group S jointly approves AS = {c4, c5, c6} and DS = {¬c1, ¬c2}. Then, we want to add elements
from AS ∪ DS and remove elements from W . For feasibility, adding a negative candidate
(i.e., one from DS) only requires removing the corresponding positive. However, adding a
positive candidate (i.e., one from AS) requires removing both the corresponding negative and an
additional positive from W , as determined by the injection. Note that W + ∩A+ = ∅ and consider
a sample injection ϕ from A+ to W +: ϕ(c4) = c1, ϕ(c5) = c2 and ϕ(c6) = c3. The primary swaps
associated with ϕ are depicted in Figure 2 (Left); to add x we remove ¬x and ϕ(x). The set
of swaps associated with the injection has the following property: if we restrict our attention
to rows where positive candidates are being added, any positive candidate is removed in at most
one such swap. Consequently, each positive candidate is removed in at most two swaps across
the entire table. However, for our proof we will need that each candidate (positive or negative)
is either removed or added in at most one swap; and, clearly any candidate might be considered
for addition or removal but not both. To achieve this, we iteratively identify pairs of swaps that
involve the removal of the same positive candidate x. These pairs have the following structure:
in one swap, x is removed to make room for ¬x; in the other, x and some ¬y are removed to
accommodate y. We merge these into a single exchange where ¬x and y are added, and x and
¬y are removed. The merged exchanges are illustrated in Figure 2 (Right). It is evident that
in the merged table every candidate is removed or added at most once, our desired property.
In the general case, let ϕ be an arbitrary injection from A+ \ W + to W + \ A+. Let T ⊆ DS

be exactly the subset of negative candidates ¬c from ¬DS for which there exists some a ∈ A+

such that ϕ(a) = c (in our example these are candidates ¬c1 and ¬c2). The collection of swaps
E = {(X1, Y1), . . . , (Xr, Yr)}, r ⩽ d associated with ϕ (the first element of a swap corresponds
to candidates to be added and the second to those to be removed) is defined as follows:
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Add Remove

c4 ¬c4, ϕ(c4) = c1
c5 ¬c5, ϕ(c5) = c2
c6 ¬c6, ϕ(c6) = c3

¬c1 c1
¬c2 c2

Add Remove

c4 ¬c4, c1
c5 ¬c5, c2
c6 ¬c6, c3

¬c1 c1
¬c2 c2

Add Remove

c4, ¬c1 ¬c4, c1
c5, ¬c2 ¬c5, c2

c6 c3, ¬c6

Figure 2: Illustration of the example presented in the proof of Theorem 4. The table on the left depicts the
primary swaps associated with ϕ. The right part of the figure illustrates the operation of merging two swaps.

1. Trivial swaps: If x ∈ A ∩ W , ({x}, {x}) ∈ E .

2. If ¬x ∈ (DS \ W ) \ T , then ({¬x}, {x}) ∈ E .

3. If for x ∈ A+ \ W +, ¬ϕ(x) ∈ A, ({x, ¬ϕ(x)}, {¬x, ϕ(x)}) ∈ E .

4. If for x ∈ A+ \ W +, ¬ϕ(x) /∈ A, ({x}, {¬x, ϕ(x)}) ∈ E .

Let wi = |Ui ∩ W |. Further, let p be the number of swaps (X, Y ) ∈ E such that |X| = 2 (denote
the set of these swaps as E2) and let x be the number of such swaps where |X| = 1 (with the set
of these swaps denoted as E1). Then, clearly, the following holds:

2p + x = |A| = d (10)

Note that for swaps with |X| = 2, it holds that Y ∩ A = ∅, i.e., no voter approves the removed
candidates. Let ∆i(X, Y ) denote the change of the PAV score that voter i assigns to committee
W due to performing the swap (X, Y ). We have that:

∑
(X,Y )∈E

∑
i∈S

∆i(X, Y ) =
∑

(X,Y )∈E2

∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
+

∑
(X,Y )∈E1

∑
i∈S

1
wi + 1 −

∑
i∈S,

|Ui∩Y |=1

1
wi + 1


=
∑
i∈S

(
p

wi + 1 + p

wi + 2

)
+
∑
i∈S

x

wi + 1 −
∑
i∈S

∑
(X,Y )∈E1,
|Ui∩Y |=1

1
wi + 1

⩾
∑
i∈S

(
p + x

wi + 1 + p

wi + 2

)
−
∑
i∈S

wi

wi + 1

=
∑
i∈S

(
p + x

wi + 1 + p

wi + 2

)
+
∑
i∈S

1
wi + 1 − |S|

⩾
(2p + x + 1)

2 ·
∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
− |S|

Now consider the swaps E(ϕj) we obtain from each ϕj by the above-mentioned construction. By
summing up over all swaps that arise by all possible defined injections, we obtain:∑

j∈[k′]

∑
(X,Y )∈E(ϕj)

∑
i∈S

∆i(X, Y ) ⩾ k′ ·
(

(2p + x + 1)
2 ·

∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
− |S|

)
. (11)

Let us introduce some further notation that will prove highly useful in the careful analysis that
follows. For each voter i ∈ N , we define:

b = |¬DS ∩ W −| bi = |¬Di ∩ (¬DS ∩ W −)|
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a = |A+ ∩ W +| ai = |Ai ∩ (A+ ∩ W +)|
ri = |¬Di ∩ W −| wi = |Ui ∩ W |
pi = |{c ∈ DS | c ∈ Ai ∩ W +}|

Note that pi ⩽ wi − ri − ai and that bi = b, pi = 0 for i ∈ S. Our goal is to lower bound the
following term, being the lower bound on the change in the PAV score of the voters from N \ S
due to performing the swaps:

∆N\S = −
∑
ϕj

∑
(X,Y )∈E(ϕj)

 ∑
i∈N\S,

|Ui∩Y |=2

( 1
wi

+ 1
wi − 1

)
+

∑
i∈N\S,

|Ui∩Y |=1

1
wi

 .

We also note the following observation, which will become useful later on.

Claim 8. We may assume wlog that if some i ∈ N \ S approves ¬c ∈ W − then c ∈ A+ or
¬c ∈ DS .

Proof of Claim 8. If some i ∈ N \ S approves ¬c ∈ W − for which neither c ∈ A+ nor ¬c ∈ DS

holds, we may simply delete such an approval. This only results in decreasing the above term
and so lower bounds the one for the original instance. □

Let E = ∪k′−1
j=0 E(ϕj). For each agent i the trivial swaps contribute −k′(ai+bi)

wi
to ∆N\S . Then,

the counting of the number of swaps of the form (¬c, c) with ¬c ∈ DS and c ∈ W + \ A+ can
be done as follows. Among the k′ injections ϕ1, . . . , ϕk′ , whenever c is in the image of a ϕi, the
initial exchange (¬c, c) will be merged into an exchange of the form ({¬c, ϕ−1

i (c)}, {ϕi(c), c}).
So we need to count the number of these injections for which the exchange (¬c, c) does not
get merged this way. Since each of the k′ injections has an image of size d+ − a and each of
the k′ candidates c ∈ W + \ A+ is in the image of the same number of such injections, each of
them is in the image k′(d+−a)

k′ = d+ − a times. Hence, the candidate c is not in the image of
k′ − (d+ − a) = k − d+ injections. Thus, the swaps of the form (¬c, c) for the voter i ∈ N \ S
contribute −(k − d+) · pi

wi
to the above negative term ∆N\S . We have now covered all the swaps

(X, Y ) ∈ E for which |Y | = 1.

We next count the swaps (X, Y ) ∈ E where |Y | = 2. These are swaps that involve removing a
negation ¬c and another positive candidate g in W + \ A+ as well as adding candidate c ∈ A+

(and potentially adding ¬g). So the set Y has the form {¬c, g} where g ∈ W + \ A+ and
c ∈ A+ \ W +.

We will split these swaps further into these for which agent i approves (1) only ¬c, (2) only g or
(3) both of them. (It is also possible that i approves neither of them; however, then the removal
of those candidates does not decrease the score the voter assigns to W .)

The number of candidates g ∈ W + \ A+ that i approves is wi − ri − ai. The number of
candidates g ∈ W + \ A+ that i does not approve is the rest of them, i.e., (k′ − (wi − ri − ai)).
The number of candidates c ∈ A+ \ W + such that ¬c ∈ W − and i disapproves c is (ri − bi)
(where we use Claim 8 that if i ∈ N \ S disapproves c then either c ∈ A+ or c ∈ DS). The
number of candidates c ∈ A+ \ W + such that i does not disapprove c is the rest of them i.e.
|A+ \ W +| − (ri − bi) = d+ − a − (ri − bi). Consequently, the number of pairs in which i both
disapproves c and approves g is (ri − bi)(wi − ri − ai), the number of pairs in which i disapproves
c but does not approve g is (ri − bi)(k − a − (wi − ri − ai)) and finally the number of pairs in
which i approves g but does not disapprove c is (d+ − a − (ri − bi))(wi − ri − ai).

Now, observe that the reason why |Y | = 2 is that for a positive candidate c from A+ \ W we are
adding we also need to remove ¬c which is in the committee. In each of the k′ injections c is
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matched with a different candidate from W + \ A+ to form such a swap (X, Y ). Thus, each set
Y appears at most once in all the injections.

Collecting all the terms we get the following equality:

∆N\S = −
∑
ϕj

∑
(X,Y )∈E(ϕj)

∑
i∈N\S,

|Ui∩Y |=2

( 1
wi

+ 1
wi − 1

)
+

∑
i∈N\S,

|Ui∩Y |=1

1
wi

⩾ −
∑

i∈N\S

(ri − bi)(wi − ri − ai)
( 1

wi
+ 1

wi − 1

)
−

∑
i∈N\S

((d+ − a) − (ri − bi))(wi − ri − ai)
1
wi

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′(ai + bi)
1
wi

−
∑

i∈N\S

(k − d+)pi
1
wi

.

We now proceed to simplify the summations. The proof of the corresponding lemma is quite
technical and so we defer it to Appendix A. To show how close our analysis is to being tight,
we note that the proof relies on inequalities only twice: first we use the approximation that
−pi ⩾ −(wi − ri) and later we also use that 1

wi−1 > 1
wi

for wi > 1.

Lemma 9. It holds that ∆N\S ⩾ −(k′ + 1)(n − |S|).

Proof of Lemma 9. In the main proof of Theorem 4 we derived the following estimation:

∆N\S = −
∑
ϕj

∑
(X,Y )∈Ej

∑
i∈N\S,

|Ui∩Y |=2

( 1
wi

+ 1
wi − 1

)
+

∑
i∈N\S,

|Ui∩Y |=1

1
wi

⩾ −
∑

i∈N\S

(ri − bi)(wi − ri − ai)
( 1

wi
+ 1

wi − 1

)

−
∑

i∈N\S

((d+ − a) − (ri − bi))(wi − ri − ai)
1
wi

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′(ai + bi)
1
wi

−
∑

i∈N\S

(k′ − (d+ − a))pi
1
wi

Adding up the highlighted terms and using the fact that pi ⩽ wi − ri − ai we get that:

∆N\S ⩾ −
∑

i∈N\S

(ri − bi)(wi − ri − ai)
( 1

wi
+ 1

wi − 1

)

−
∑

i∈N\S

(−(ri − bi))(wi − ri − ai)
1
wi

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′(ai + bi)
1
wi

−
∑

i∈N\S

k′(wi − ri − ai)
1
wi

= −
∑

i∈N\S

(ri − bi)(wi − ri − ai)
1
wi

−
∑

i∈N\S

(ri − bi)(wi − ri − ai)
1

wi − 1
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−
∑

i∈N\S

(−(ri − bi))(wi − ri − ai)
1
wi

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′(ai + bi)
1
wi

−
∑

i∈N\S

k′(wi − ri − ai)
1
wi

In the last step, we split up the first term and obtained further cancellations. Next we simplify
the 1

wi−1 term and also obtain further cancellations. Hence, we have that:

∆N\S ⩾ −
∑

i∈N\S

(ri − bi)(wi − ri − ai)
( 1

wi − 1

)

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′(ai + bi)
1
wi

−
∑

i∈N\S

k′(wi − ri − ai)
1
wi

= −
∑

i∈N\S

(ri − bi) −
∑

i∈N\S

−
((ri − bi)(ri + ai − 1)

wi − 1

)

−
∑

i∈N\S

(ri − bi)(k′ − (wi − ri − ai))
1
wi

−
∑

i∈N\S

k′bi
1
wi

−
∑

i∈N\S

k′(wi − ri)
1
wi

Finally, it remains to iteratively collect terms that cancel.

> −
∑

i∈N\S

(ri − bi) −
∑

i∈N\S

−
((ri − bi)(ri + ai − 1)

wi

)

−
∑

i∈N\S

(ri − bi)k′

wi
−

∑
i∈N\S

−(ri − bi)(wi − ri)
wi

−
∑

i∈N\S

−(ri − bi)(−ai)
wi

−
∑

i∈N\S

k′bi
1
wi

−
∑

i∈N\S

k′(wi−ri)
1
wi

= −
∑

i∈N\S

(ri − bi) −
∑

i∈N\S

−
((ri − bi)(ri + ai − 1)

wi

)

−
∑

i∈N\S

−(ri − bi)(wi − ri)
wi

−
∑

i∈N\S

−(ri − bi)(−ai)
wi

−
∑

i∈N\S

kwi
1
wi

= −
∑

i∈N\S

−
((ri − bi)(ri + ai − 1)

wi

)

−
∑

i∈N\S

−(ri − bi)(−ri)
wi

−
∑

i∈N\S

−(ri − bi)(−ai)
wi

−
∑

i∈N\S

k′wi
1
wi
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= −
∑

i∈N\S

−
((ri − bi)(ai − 1)

wi

)
−

∑
i∈N\S

−(ri − bi)(−ai)
wi

−
∑

i∈N\S

k′wi
1
wi

= −
∑

i∈N\S

(
k′ + ri − bi

wi

)
⩾ −

∑
i∈N\S

(
k′ + ri

wi

)
⩾ −

∑
i∈N\S

(
k′ + 1

)
= −(n − |S|)(k′ + 1),

which concludes the proof of Lemma 9. □

We now combine Relation (11) with the result from Lemma 9, taking into account that W is
the outcome selected by PAV, and we get the following:

k′ (2p + x + 1)
2 ·

∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
− k′|S| − (k′ + 1)(n − |S|) ⩽ 0 (10)⇐==⇒

k′ · (d + 1)
2 ·

∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
− k′n − n + |S| ⩽ 0 ⇐⇒

0 ⩾
(d + 1)

2 ·
∑
i∈S

( 1
wi + 1 + 1

wi + 2

)
− n − n − |S|

k′ ⇐⇒

0 ⩾ (d + 1)·
∑
i∈S

1
wi + 3/2

− n − n − |S|
k′ . (12)

Now observe that from A+ we did not select at most k′ candidates. Also, DS contains at most
k′ negative candidates that have a positive counterpart selected. All other candidates from DS

were selected. Thus, we know that the average satisfaction of the voters from S equals at least
d − 2k′. If d − 2k′ ⩾ d · s

n , then the proof follows immediately. Thus, from now on we can assume
that d − 2k′ < d · s

n , hence:

k′ >
1
2d · n − |S|

n

(12)⇐==⇒ 0 ⩾ (d + 1)
∑
i∈S

1
wi + 3/2

− n − 2n

d
.

From the inequality between harmonic and arithmetic mean we get that:∑
i∈S

1
wi + 3/2

⩾
|S|

avgsatS(W ) + 3/2
,

and combining the last two relations we get the following:

|S|
avgsatS(W ) + 3/2

<
2n + nd

d(d + 1) ⇐⇒ avgsatS(W ) >
d + 1
d + 2 · d

|S|
n

− 3
2.

If d ⩾ k/2, then the proof is complete. Now, we consider the case when d < k/2. In this case
however, we know that k′ = k − a ⩾ k − d > k/2. From Relation (12) we get that:

0 ⩾ (d + 1)·
∑
i∈S

1
wi + 3/2

− n · k′ + 1
k′ ⇐⇒

∑
i∈S

1
wi + 3/2

⩽ n · k′ + 1
k′(d + 1).

By using again the inequality between harmonic and arithmetic mean we get:

|S|
avgsatS(W ) + 3/2

⩽ n · k′ + 1
k′(d + 1) ⇐⇒

avgsatS(W ) ⩾ |S|
n

· (d + 1) · k′

k′ + 1 − 3
2 ⩾

|S|
n

· d · k′ + 1
k′ + 2 − 3

2,
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where the last inequality follows from d < k/2. In all cases we got:

avgsatS(W ) ⩾ |S|
n

· d ·
k/2 + 1
k/2 + 2 − 3

2 = |S|
n

· d ·
(

1 − 2
k + 4

)
− 3

2.

This completes the proof. □

Theorem 5. Tax-MES satisfies EJPR and Group Veto. Tax-Phragmén satisfies PJPR and Group
Veto.

Proof. For proving that Tax-Phragmén satisfies PJPR consider an ℓ-positively-cohesive group S,
as witnessed by T ⊆ AS , |T | ⩾ ℓ. Fix a candidate c ∈ T . Any candidate c ∈ T costs |Ac|

|Ac|−|Dc| .
By the fact that Ac ⊇ S we have the following:

|Ac||Dc| ⩾ |S||Dc| ⇐⇒ |Ac|(|S| − |Dc|) ⩽ |S|(|Ac| − |Dc|).

Therefore, the cost of c is upper bounded by |S|
|S|−|Dc| ⩽ |S| k

ℓn . Hence, ℓ candidates from T cost
in total at most |S| k

n . Thus, voters in S have participated in buying at least ℓ candidates in
total, i.e. |W ∩ ∪i∈SAi| ⩾ ℓ.

Regarding the Group Veto axiom, we will show the following: Let R be a priceable rule such that
p(c) ⩾ |Ac|

|Ac|−|Dc| whenever |Ac| > |Dc|, and p(c) = ∞, otherwise. Additionally, assume that the
voters in R are initially endowed with the budget of at most k/n. Then, R satisfies the Group Veto.
Notice that both Tax-MES and Tax-Phragmén belong to the aforementioned family fo rules.

Consider a candidate c ∈ T . Since Ac ⊆ ap(T ), it holds that |Ac| ⩽ |ap(T )| and since S ⊆ Dc

it holds that |Dc| ⩾ |S|, and so |ap(T )| − |S| ⩾ |Ac| − |Dc|. We get:

1
|S|

(|ap(T )| − |S|) ⩾ 1
|Dc|

(|Ac| − |Dc|) ⇐⇒ |ap(T )|
|S|

− 1 ⩾
|Ac|
|Dc|

− 1 ⇐⇒

|Dc|
|Ac|

⩾
|S|

|ap(T )| ⇐⇒ 1 − |S|
|ap(T )| ⩾ 1 − |Dc|

|Ac|
⇐⇒ |Ac|

|Ac| − |Dc|
⩾

|ap(T )|
|ap(T )| − |S|

.

We note that all fractions that appear above are well defined. This is simply because, by the
definition of R, it holds that |Dc| < |Ac|, and similarly |S|

|ap(T )| ⩽
|Dc|
|Ac| < 1.

Since p(c) ⩾ |Ac|
|Ac|−|Dc| , we have that p(c) ⩾ |ap(T )|

|ap(T )|−|S| . It holds that only voters from ap(T ) can
pay for candidates from T and jointly they have at most |ap(T )| k

n money. Since the purchase of a
candidate from T costs at least |ap(T )|

|ap(T )|−|S| , they can afford a number of candidates that is at most

|ap(T )| k
n

|ap(T )|
|ap(T )|−|S|

= (|ap(T )| − |S|)k

n
⩽ ℓ · n

k
· k

n
= ℓ.

This implies in particular that at most ℓ candidates from T are selected. □

31



B Negative Guarantee for Exhaustive Priceable Rules

Recall that the proof of Theorem 5 relies on voters having a limited budget. This, combined
with the high cost of electing strongly opposed candidates, ensures that such candidates need
significant support to be selected. When voter funds are unlimited, the proposed rules could
continue adding candidates as long as they have more supporters than opposers (respecting
the committee size constraint). However, even in this case, vetoing preferences are still being
respected. Candidates with less opposition are prioritized, and others are included only if no
better options exist. Below we formulate an axiom that sets the requirement on the level of
support vetoed candidates must have in order to be elected.

Definition 4. Consider an election E = (C, V, k, B) in which there is a set of voters S′ such that
AS′ = {c∗} and Dc∗ = ∅. In such an election, given a positive integer ℓ ⩽ k and a set of at
least ℓ candidates T , we say that a set of voters S ⊆ V is weakly (ℓ, T )-negatively-cohesive if
T ⊆ DS and |S| ⩾ |ap(T )| − ℓ · |S′|. An outcome W is said to provide weak Group Veto for E if
when c∗ /∈ W then every weakly (ℓ, T )-negatively-cohesive group satisfies |W ∩ T | < ℓ. A rule R
satisfies the weak Group Veto axiom if for every election E it outputs an outcome that provides
weak Group Veto.

Theorem 10. Let R be a priceable rule such that p(c) ⩾ |Ac|
|Ac|−|Dc| whenever |Ac| > |Dc|, and

p(c) = ∞, otherwise. Then, R satisfies weak Group Veto.

Proof. Let S be a group of voters satisfying the conditions of weak Group Veto, specifically,
there exists a set of candidates T ⊆ ∩i∈SDi of cardinality ℓ and |S| ⩾ |ap(T )| − ℓ|S′|. Following
the arguments from the proof of Theorem 5 we get that p(c) ⩾ |ap(T )|

|ap(T )|−|S| .

We now turn on computing |W ∩ T |. Note that only voters from ap(T ) paid for including a
candidate from T into W . Voters from ap(T ) have spent at most ap(T )1/|S′| until the end of
the execution of R as we will now justify. Say that until the end of the execution of the rule,
each voter has been allocated and has been allowed to spent at most q. Voters from S′ didn’t
buy c∗ by assumption. Therefore, |S′| · q < 1 ⇒ q < 1

|S′| . Hence, voters from ap(T ) had at most
ap(T )1/|S′| to spend. By the fact that each purchase cost at least |ap(T )|

|ap(T )|−|S| , voters in ap(T ) can
afford a number of candidates that is strictly less than

|ap(T )| 1
|S′|

|ap(T )|
|ap(T )|−|S|

= (|ap(T )| − |S|) 1
|S′|

⩽ ℓ · |S′| 1
|S′|

= ℓ.

This completes the proof. □

We note that the term “exhaustive” has been used in the committee elections literature for rules
that always elect k candidates. In our setting, fewer than k candidates may be elected even with
unlimited voter budgets. This occurs when fewer than k candidates have more supporters than
opposers.
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