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Abstract

We consider voting rules in settings where voters’ identities are difficult to verify. Vot-
ers can manipulate the process by casting multiple votes under different identities or
abstaining from voting. Immunities to such manipulations are called false-name-proofness
and participation, respectively. For the universal domain of (strict) preferences, these
properties together imply anonymity and are incompatible with neutrality. For the domain
of preferences defined over all subsets of a given set of objects, both of these properties
cannot be met by onto and object neutral rules that also satisfy the tops-only criterion.
However, when preferences over subsets of objects are restricted to be separable, all these
properties can be satisfied. Furthermore, the domain of separable preferences is maximal
for these properties.

1 Introduction

Societies make decisions by means of voting rules, mapping profiles of voters’ preferences into
social alternatives. In highly anonymous settings, such as the Internet, there are various ways
a voter can manipulate the voting mechanism. When participants’ identities cannot be easily
verified, or when the number of participants is unpredictable, opportunities for manipulation
arise. One such manipulation involves a voter using multiple identities to cast several votes. We
say that a rule immune to voters casting duplicate votes is “false-name-proof”. More generally,
a voting rule is “strongly false-name-proof” if it prevents voters from submitting multiple (and
possibly different) votes.1 A voter can also benefit by abstaining from voting, leading to what is
known in the literature as the no-show paradox [10, 14]. We say that a rule that does not allow
such behavior satisfies “participation”. Since defining these properties requires a changing
active set of voters, we consider societies with a variable set of voters.

We are interested in studying voting rules that satisfy false-name-proofness and participation in
two different social choice problems. In the first, social alternatives do not have any specific
structure. In the second, social alternatives consist of subsets from a given set of objects
(candidates, binary issues, or alike).

When social alternatives are unstructured and all preferences over those alternatives are ad-
missible, i.e., when we consider the universal domain of preferences, results on voting rules
satisfying some form of false-name-proofness are rather negative. Bu [6] shows that strong
false-name-proofness implies both “strategy-proofness” (no voter ever gains by untruthful
voting) and “anonymity” (changing voters’ identities does not affect the choice made by the
rule). As it is well-known from Gibbard [11] and Satterthwaite [15] celebrated result, there
are no non-constant strategy-proof and anonymous rules defined in the universal domain.
Therefore, no non-constant strongly false-name-proof rule defined in the universal domain
exists either. Nevertheless, the weakening of this requirement may allow for some possibility
results.2

1Our strong false-name-proofness property is typically called false-name-proofness in the literature [see, for
example, 19, 8, 6].

2The property of strategy-proofness is central to the literature on mechanism design and has been extensively
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Our first interest is to analyze the existence of voting rules that satisfy false-name-proofness
and participation in the universal domain of preferences. In most voting settings, it is common
to also assume that there are no alternatives that deserve special treatment. The requirement
of “neutrality” formalizes this by demanding that the changing of alternatives’ names does
not affect the choice made by the rule. We demonstrate that voting rules satisfying false-name-
proofness and participation are inherently anonymous (Proposition 2) and, as a consequence,
that there are no neutral rules that also satisfy our two requirements of immunity to manipula-
tion (Proposition 3).

When the set of social alternatives consists of all the subsets of a given set of objects, an important
restricted domain of preferences is that of “separable” preferences: adding an object to a set
leads to a better set if and only if the object is “good” (as a singleton set, the object is better than
the empty set). On that restricted domain, Fioravanti and Massó [9] characterize all voting rules
that satisfy false-name-proofness, strategy-proofness, and “ontoness” (every subset of objects is
a possible outcome) as the class of voting by quota [3], where to be chosen, each object needs
either at least one vote or a unanimous vote.

Our second interest is to analyze what happens when separability is relaxed, i.e. when all pref-
erences over subsets of objects are admissible.3 Besides false-name-proofness and participation,
we would like to impose three other desirable properties. The first one is ontoness. As we
previously said, it implies that no subset of objects should be discarded from consideration a
priori. Second, the internal structure of this restricted domain allows us to define the weaker
neutrality axiom of “object neutrality”, by which changing objects’ names does not affect the
choice made by the rule. Third, as voters may not be willing to submit full preferences (this
seems particularly important, for example, in online voting settings), we also require the infor-
mational simplicity property of “tops-onliness”, by which only the top choices of the voters are
relevant for the rule. We demonstrate that there are no rules satisfying false-name-proofness
and participation that also fulfill these three additional desiderata (Theorem 1). Even though
it might seem to be over-demanding to require voting rules to satisfy so many properties, the
impossibility result is far from being straightforward since (i) we show that the five axioms
are independent in the domain of all preferences over subsets of objects, and (ii) the rules
characterized by Fioravanti and Massó [9] satisfy all these axioms in the domain of separable
preferences.

Finally, we ask to what extent the domain of separable preferences can be enlarged while
maintaining the compatibility of all five properties. It turns out that such a restricted domain is
maximal for those properties: adding a non-separable preference to the domain entails losing at
least one of the properties involved (Theorem 2).

The property of (strong) false-name-proofness was introduced by Yokoo et al. [19], for the
problem of assigning objects with transfers where agents have quasi-linear preferences. In
voting environments, for the case when the preferences are single-peaked [4], Todo et al. [17]
characterize the class of all strongly false-name-proof, anonymous, and “efficient” (no voter
can be made better off without making some voter worse off) voting rules. Todo et al. [17] and
Todo et al. [18] extend the analysis to the case where the set of alternatives has a tree structure.
Moreover, Conitzer [8] characterizes all anonymous and neutral probabilistic voting rules over
a finite set of alternatives that satisfy strong false-name-proofness and participation. Each
element in the class identified by Conitzer [8] is characterized by a probability p ∈ [0, 1]. With

studied [see 2, for a comprehensive survey]. We deliberately depart from this line of inquiry and instead focus on
rules that satisfy false-name-proofness and participation.

3A typical example of when this domain can be deemed relevant is inspired by Barberà et al. [3]. Suppose you are
on a university professor hiring committee. You might think that Borda and Condorcet are outstanding professors,
and would love to have any of them employed, but believe that the department will be chaos with the two of them
in it (probably because of some dissidence on how they like to vote).
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probability p, an alternative is chosen uniformly at random. With probability 1 − p, a pair of
alternatives is chosen uniformly at random. If all voters unanimously prefer one alternative
over the other in the pair, the preferred alternative is chosen; otherwise, a fair coin is used to
decide between the two. Although Conitzer’s [8] result implies the impossibility of neutral
and deterministic voting rules that satisfy strong false-name-proofness and participation, our
Proposition 3 is not a direct corollary of his, as we use a weaker version of the axiom.

The plan of the paper is as follows. Section 2 presents the basic notions and axioms that we use,
while we present the results in Section 3. Finally, Section 4 contains some concluding remarks.

2 Model

Let N be the family of all finite and non-empty subsets of the set of positive integers Z+. An
element N ∈ N is interpreted as a society. We denote the cardinality of N by n and refer to
an element i ∈ N as a voter. Each set of voters N ∈ N has to collectively choose an alternative
from a set A. Let UA denote the set of all strict linear orders over A. Therefore, each voter
i is endowed with a preference Pi ∈ UA, where A Pi B means that for voter i, alternative A is
preferred to alternative B. We denote the weak counterpart of Pi by Ri. When a preference order
is not attached to a particular voter, we write it as P0. For each N ∈ N , a profile is an ordered list
of preferences PN = (Pi)i∈N ∈ U N

A . Given a preference Pi ∈ UA, denote with t(Pi) ∈ A to the
top alternative for voter i and denote with b(Pi) ∈ A to the bottom alternative for voter i.

When the set of alternatives A is unstructured, we call UA the universal domain of preferences.
Besides studying this domain, we will be interested in the domain arising from considering
as alternatives all the subsets of a given set of objects O = {1, . . . , O} with O ≥ 2, i.e., the case
where A = 2O. Call UO the domain (of preferences) over subsets of objects. Notice that, after some
renaming of the alternatives involved, any domain over subsets of objects can be considered
a universal domain but, in general, there are universal domains that cannot be considered as
domains over subsets of objects.4

Given a domain D ⊆ UA, let DN =
⋃

N∈N DN . A voting rule on D is a mapping f : DN −→ A
that assigns, for each N ∈ N and each PN ∈ DN , an element f (PN) ∈ A. Next, we define
desirable properties for voting rules. To do this, fix a domain D and a rule f : DN −→ A.

The first property states that all alternatives should be feasible to be selected in all societies.

Ontoness: For each N ∈ N and each A ∈ A, there is a profile PN ∈ DN such that f (PN) = A.

The next axiom asserts that all essential information for the voting rule is found in the top
alternatives of the voters. Thus, the rule requires minimal information from the voters.

Tops-onliness: For each N ∈ N and each pair of profiles PN , P′
N ∈ DN such that t(Pi) = t(P′

i )
for all i ∈ N, it is the case that f (PN) = f (P′

N).

The following three properties are particularly relevant in contexts such as online voting,
where a social planner cannot easily verify voters’ identities or determine the total number
of participants. The first property asserts that a voter should never have an incentive to cast
repeated votes.

False-name-proofness: For each N, N′ ∈ N with N ∩ N′ = ∅, each i ∈ N, each PN ∈ DN , and
each PN′ ∈ DN′

such that Pj = Pi for each j ∈ N′, we have f (PN) Ri f (PN∪N′).

4For example, if |A| = 3 then there is no set of objects O such that A = 2O .
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Conitzer’s [8] related condition imposes stronger restrictions on the voting rule by not requiring
that the additional preferences submitted by voter i ∈ N coincide with voter i’s original
preference Pi.

Strong false-name-proofness: For each N, N′ ∈ N with N ∩ N′ = ∅, each i ∈ N, each PN ∈ DN ,
and each PN′ ∈ DN′

, we have f (PN) Ri f (PN∪N′).

The next axiom states that voters should be induced to vote.

Participation: For each N ∈ N with |N| ≥ 2, each i ∈ N, and each PN ∈ DN , we have
f (PN) Ri f (PN\{i}).

The following property states that no voter should receive a differential treatment.

Anonymity: For each permutation σ : Z+ −→ Z+, each N ∈ N , and each PN ∈ DN ,
f (σ(PN)) = f (PN), where σ(PN) = (Pσ(i))i∈N .

Conitzer [8] merges the properties of strong false-name-proofness, participation and anonymity
under the name of anonymity-proofness. A principle similar to anonymity, but applied to alterna-
tives, is provided next. Given a permutation γ : A −→ A, and a profile PN ∈ DN , let Pγ

N be the
profile such that, for each i ∈ N and each pair A, A′ ∈ A, γ(A) Pγ

i γ(A′) if and only if APi A′.

Neutrality: For each permutation γ : A −→ A and each PN ∈ DN , γ( f (PN)) = f (Pγ
N).

A weaker notion of neutrality is available for voting rules defined on the domain of subsets
of objects, UO. Given a permutation µ : O −→ O, a subset of objects S ∈ 2O, and a profile
PN ∈ U N

O , let µ(S) = {µ(x) : x ∈ S} and let Pµ
N be the profile such that, for each i ∈ N and each

pair S, T ∈ 2O, µ(S) Pµ
i µ(T) if and only if S Pi T.

Object neutrality: For each permutation µ : O −→ O, each N ∈ N , and each PN ∈ U N
O ,

µ( f (PN)) = f (Pµ
N).

3 Results

3.1 Universal domain

Our first result shows that if the identity of a voter changes while the ballot remains the same,
the outcome of the rule remains unchanged. This result is instrumental in proving one of
our main findings: that any false-name-proof voting rule satisfying participation must also be
anonymous. Let D ⊆ UA, that is, a generic subset of the universal domain.

Proposition 1 Let f : DN −→ A be a voting rule that satisfies false-name-proofness and participa-
tion. Let N ∈ N , i ∈ N, and PN ∈ DN . Then, if i⋆ /∈ N and Pi⋆ ∈ D is such that Pi⋆ = Pi, it is the
case that f (P(N∪{i⋆})\{i}) = f (PN).

To show that Proposition 1 holds, we use the following result, which helps us get rid of repeated
votes.

Lemma 1 Let f : DN −→ A be a voting rule that satisfies false-name-proofness and participation.
Let N ∈ N , i ∈ N, and PN ∈ DN . Then, if i⋆ /∈ N and Pi⋆ ∈ D is such that Pi⋆ = Pi, it is the case that
f (PN) = f (PN∪{i⋆}).
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Proof. Let f , N, PN , i, i⋆, and Pi⋆ be as stated in the lemma. By false-name-proofness,
f (PN) Ri f (PN∪{i⋆}). By participation, f (PN∪{i⋆}) Ri⋆ f (PN). As Pi⋆ = Pi, we have that
f (PN∪{i⋆}) Ri f (PN). Thus, f (PN) Ri f (PN∪{i⋆}) Ri f (PN) and f (PN) = f (PN∪{i⋆}). □

Proof of Proposition 1. Let f , N, PN , i, i⋆, and Pi⋆ be as stated in the proposition. By Lemma 1
and participation, f (PN) = f (PN∪{i⋆}) Ri f (PN\{i}∪{i⋆}). By Lemma 1 and participation again,
f (PN\{i}∪{i⋆}) = f (PN∪{i⋆}) Ri⋆ f (PN). As Pi = Pi⋆ , f (PN) Ri f (PN\{i}∪{i⋆}) Ri f (PN) and, there-
fore, f (PN) = f (PN\{i}∪{i⋆}). □

Bu [6] and Fioravanti and Massó [9] explore the connection between false-name-proofness and
anonymity. Our next result follows that line and shows that the names of the voters are not
important for a rule that satisfies false-name-proofness and participation.

Proposition 2 A voting rule f : DN −→ A that satisfies false-name-proofness and participation,
also satisfies anonymity.

Proof. Let f satisfy false-name-proofness and participation. Consider N ∈ N , a profile PN ∈ DN ,
and a permutation σ : Z+ −→ Z+. We need to show that f (σ(PN)) = f (PN), where σ(PN) =
(Pσ(i))i∈N . There are two cases to consider:

1. N ∩ σ(N) = ∅. By iterating the result of Proposition 1, we obtain that f (σ(PN)) = f (PN).

2. N ∩ σ(N) ̸= ∅. Let N′ = σ(N), and consider N′′ ∈ N such that N′′ ∩ (N ∪ N′) = ∅ and
|N′′| = |N|. Then, there are two permutations σ̃, σ̂ : Z+ −→ Z+ such that σ̃(N) = N′′,
σ̂(N′′) = N′, and σ = σ̂ ◦ σ̃. By the previous case, f (σ(PN)) = f (PN′) = f (σ̂(PN′′)) =
f (PN′′) = f (σ̃(PN)) = f (PN).

Therefore, f satisfies anonymity.

□

Remark 1 Both requirements in Proposition 2 are necessary to obtain anonymity, i.e., there are
non-anonymous voting rules that satisfy either false-name-proofness or participation. The rule
that selects voter 1’s top alternative whenever 1 is present, and otherwise assigns a status-quo
alternative, satisfies participation and is not anonymous. Furthermore, the rule that selects voter
1’s bottom alternative whenever 1 is present, and otherwise assigns a status-quo alternative,
satisfies false-name-proofness and is not anonymous.

It is well known that, for most choices of |N| and |A|, there is no way to make anonymity and
neutrality compatible on the universal domain.5 This implies that both requirements cannot be
met for voting rules defined in a variable population environment.

Remark 2 There is no voting rule f : U N
A −→ A that satisfies anonimity and neutrality.

Our first impossibility result says that for rules defined in the universal domain, false-name-
proofness together with participation are incompatible with neutrality.

5In fact, such compatibility exists if and only if |A| cannot be written as the sum of dividers of |N| different than
1 [see, for example, Exercise 9.9 in 13, for more details].
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Proposition 3 There is no voting rule f : U N
A −→ A that satisfies false-name-proofness, participa-

tion, and neutrality.

Proof. Let f satisfy false-name-proofness and participation. Then, by Proposition 2, f satisfies
anonymity. By Remark 2, f cannot be neutral. □

Remark 3 Proposition 3 is not directly implied by Theorem 1 of Conitzer [8], which states
there is no neutral and deterministic voting rule that satisfies these properties, as he uses
strong false-name-proofness for his negative result. Still, using our weaker false-name-proofness, an
impossibility result is obtained.

3.2 Domain over subsets of objects

Now, we turn our attention to rules defined in the domain over subsets of objects, UO. In
this new environment, it makes sense to relax neutrality to object neutrality, in order to look
for positive results. In the following example we show the existence of false-name-proof rules
that also satisfy participation and object neutrality. Alas, neither ontoness nor tops-onliness are
guaranteed.

Example 1 First, define rule fO : U N
O −→ 2O as follows. For each N ∈ N and each PN ∈ U N

O ,
fO(PN) = O. This constant rule always selects the whole set of objects O and clearly satisfies
all properties but ontoness.

Next, given N ∈ N and PN ∈ U N
O , let Õ(PN) = {i ∈ N : t(Pi) ̸= O and O Pi S for each

S ∈ 2O \ {t(Pi),O}}. Define rule f̃ : U N
O −→ 2O as follows. For each N ∈ N and each

PN ∈ U N
O ,

f̃ (PN) =

{
t(Pi) if i ∈ Õ(PN) and t(Pi) = t(Pj) for each j ∈ Õ(PN)

O otherwise

Rule f̃ selects the set of all objects, O, unless all voters who consider O as their second choice
share their top choice, in which case the rule recommends such top choice. This rule satisfies
all properties but tops-onliness. To see this, let O = {x, y}, N ∈ N , and consider PN , P′

N ∈ U N
O

such that t(Pi) = t(P′
i ) = {x} for each i ∈ N, b(Pi) = O for each i ∈ N, and Õ(P′

N) = N. Then,
f̃ (PN) = O ̸= {x} = f̃ (P′

N). ♢

Our second impossibility result says that, in the domain over subsets of objects, our five desired
properties are not compatible.

Theorem 1 There is no voting rule f : U N
O −→ 2O that satisfies ontoness, tops-onliness, false-

name-proofness, participation, and object neutrality.

Proof. Assume there is a voting rule f : U N
O −→ 2O that satisfies the five axioms. First, we claim

that there are N ∈ N , a profile PN ∈ U N
O , and a voter i ∈ N, such that

f (PN) ̸= f (PN\{i}). (1)

If this is not the case, for each {j, k} ∈ N and each (Pj, Pk) ∈ U
{j,k}
O , we have f (Pj) = f (Pj, Pk) =

f (Pk) and thus f (Pj) = f (Pk), implying that all one-voter societies are assigned the same
alternative. This violates ontoness. So (1) holds.
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Next, let P′
i ∈ UO be such that t(P′

i ) = t(Pi) and t(P′
i ) R′

i f (PN\{i}) P′
i T for each T ∈ 2O \

{t(Pi), f (PN\{i})}. By participation, f (P′
i , PN\{i}) R′

i f (PN\{i}). By tops-only, f (P′
i , PN\{i}) =

f (PN). Thus, (1) implies f (P′
i , PN\{i}) ̸= f (PN\{i}) and, therefore, we have f (P′

i , PN\{i}) = t(P′
i ).

Hence, using tops-only again, we get

f (PN) = t(Pi). (2)

By Lemma 1, we can safely assume that all the tops in PN are different. Let j ∈ N \ {i} and
consider P′

j ∈ UO such that t(P′
j ) = t(Pj) and b(P′

j ) = t(Pi). By tops-only and (2), f (P′
j , PN\{j}) =

t(Pi). By participation, f (P′
j , PN\{j}) R′

j f (PN\{j}) and, since b(P′
j ) = t(Pi), we have f (PN\{j}) =

t(Pi). Removing in the same way each remaining voter, one at a time, we obtain f (Pi) = t(Pi).
Thus, by object neutrality, f (Pµ

i ) = µ( f (Pi)) for any permutation µ : O −→ O. Together with
anonymity, granted by Proposition 2, this implies that

f (P′
ℓ) = t(P′

ℓ) for each {ℓ} ∈ N and P′
ℓ ∈ UO with |t(P′

ℓ)| = |t(Pi)|. (3)

Now, let {j, k} ∈ N and (Pj, Pk) ∈ U
{j,k}
O be such that t(Pj) ̸= t(Pk) and |t(Pj)| = |t(Pk)| =

|t(Pi)|. There are three cases to consider:

1. f (Pj, Pk) /∈ {t(Pj), t(Pk)}. Let P′
j ∈ UO be such that t(P′

j ) = t(Pj) and b(P′
j ) = f (Pj, Pk).

By tops-only, f (P′
j , Pk) = f (Pj, Pk). By participation, f (P′

j , Pk) R′
j f (Pk). Thus, f (Pk) =

f (Pj, Pk) ̸= t(Pk), contradicting (3).

2. f (Pj, Pk) = t(Pj). Consider a permutation µ : O −→ O such that µ(t(Pj)) = t(Pk) and
µ(t(Pk)) = t(Pj). By object neutrality we obtain f (Pµ

j , Pµ
k ) = µ( f (Pj, Pk)) = µ(t(Pj)) =

t(Pk), and thus f (Pµ
j , Pµ

k ) = t(Pk). By Theorem 2, f is anonymous. Therefore, by anonymity
and tops-only,

f (Pj, Pk) = f (Pk, Pj) = f (Pµ
j , Pµ

k ) = t(Pk),

and so f (Pj, Pk) = t(Pk), contradicting this case’s hypothesis.

3. f (Pj, Pk) = t(Pk). A similar reasoning to the previous case allows us to deduce that
f (Pj, Pk) = t(Pj), contradicting this case’s hypothesis.

Since in each case we reach a contradiction, we conclude that no such rule f exists. □

It is important to notice that we are not demanding voting rules to satisfy an excessively high
number of properties, i.e., there are no redundant axioms in Theorem 1. To see this, we consider
several voting rules. Each one satisfies all the axioms but one.

• All but ontoness: The rule fO in Example 1.

• All but tops-onliness: The rule f̃ in Example 1.

• All but false-name-proofness: For each N ∈ N and each PN ∈ U N
O , f min(PN) =

t(Pmin{i : i∈N}). This rule selects the top of the voter with the minimum index in the
society. This rule satisfies participation but is not anonymous, thus, by Proposition 2, f min is
not false-name-proof.

• All but participation: For each N ∈ N and each PN ∈ U N
O , x ∈ f ⋆(PN) if and only

if |{i ∈ N | x ∈ t(Pi)}| = 1. This rule selects those objects that belong to only one top-
choice set of the preference profile. To see that f ⋆ does not satisfy participation, let O =
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{x, y, z}, N = {i, j} and (Pi, Pj) ∈ U
{i,j}
O be such that t(Pi) = {x, y}, {x, y, z} Pi {z},

and t(Pj) = {x, y, z}. Then, if voter i does not participate, she can manipulate f ⋆ since
f ⋆(Pj) = {x, y, z} Pi {z} = f ⋆(Pi, Pj).

• All but object-neutrality: Let ≻ be a linear order over 2O. For each N ∈ N and each
PN ∈ U N

O , f≻(PN) = max≻{t(Pi) : i ∈ N}. This rule selects, for each profile, the
best positioned top according to ≻. To see that f≻ does not satisfy object-neutrality, let
O = {x, y, z}, {x} ≻ {y} ≻ {z}, N = {i, j}, and PN ∈ U N

O be such that t(Pi) = {x} and
t(Pj) = {z}. Thus f (PN) = {x}. If we consider a permutation µ : O −→ O such that
µ(x) = z, µ(y) = x, and µ(z) = y, then µ( f≻(PN)) = µ({x}) = {z} ̸= {y} = f≻(Pµ

N).

3.3 Domain of separable preferences: maximality

We have seen that when we consider the domain of all preferences over subsets of objects, there
are no voting rules that satisfy ontoness, tops-onliness, false-name-proofness, participation, and object
neutrality. Nevertheless, we can find several rules that satisfy all of them when the preferences
of the voters are separable. We can find two examples in Fioravanti and Massó [9], with voting
by quota 1 and voting by unanimous quota. A natural question is whether there is a domain
larger than the domain of separable preferences in which voting rules still satisfy all the axioms.
Next, we answer the latter in the negative.

First, we remember the definition of separability. For a voter, an object is good if it is better to
choose this object alone than choosing no object at all; otherwise, the object is bad. A preference
is separable if the division between good and bad objects guides the ordering of subsets, in the
sense that adding a good object leads to a better set while adding a bad object leads to a worse
set. Formally, preference P0 is separable if for each S ∈ 2O and each x ∈ O \ S,

S ∪ {x} P0 S if and only if {x} P0 ∅.

Let S be the domain of separable preferences. An important characterization of separability is
presented in the following remark.

Remark 4 [3] Preference P0 ∈ UO is separable if, for each S ∈ 2O and each x ∈ O \ S,

S ∪ {x} P0 S if and only if x ∈ t(P0).

Let F denote the class of all rules defined on the domain of separable preferences that are onto,
tops-only, false-name-proof, satisfy participation, and are object neutral. The following definition,
inspired by Bonifacio et al. [5] and Arribillaga and Bonifacio [1], formalizes the idea of maximal
domain for a set of rules satisfying a list of properties.6

Definition 1 Let S ⋆ be such that S ⊆ S ⋆ ⊆ UO and let F ⋆ ⊆ F . Domain S ⋆ is maximal for
F⋆ if

(i) for each f ∈ F ⋆ the tops-only extension of f to S ⋆ satisfies ontoness, false-name-proofness,
participation and object neutrality,7 and

6Previous studies on maximal domains, mostly focus on the property of strategy-proofness [see, for example,
16, 7, 12].

7Given a tops-only rule f : S N −→ 2O and a domain S ⋆ such that S ⊆ S ⋆, the tops-only extension of f to S ⋆

is such that, for each N ∈ N and each PN ∈ S ⋆, f (PN) = f (PN) for some PN ∈ S with t(Pi) = t(Pi) for each
i ∈ N.
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(ii) for each P0 ∈ UO \ S ⋆ there is f ∈ F ⋆ such that the tops-only extension of f to S ⋆ ∪ {P0}
violates (at least) one of the properties listed in (i).

An important fact about the maximality of a domain with respect to a list of properties thus
defined is its monotonicity: the bigger the set of rules considered for maximality, the smaller
the domain of preferences in which the properties hold. We highlight this observation in the
following remark.

Remark 5 Assume that S ⋆ is maximal for F ⋆. If F i ⊆ F ⋆ and S i is maximal for F i with
i ∈ {1, 2}, then by Definition 1 it follows that S ⋆ ⊆ S 1 ∩S 2.

Next, we present our maximality result.

Theorem 2 The domain of separable preferences is maximal for the set of all onto, tops-only, and
false-name-proof rules that satisfy participation and object neutrality, i.e., S is maximal for F .

Proof. Let P0 ∈ UO \S . By Remark 4, there are S ⊆ O and x ∈ O \ S such that either

x ∈ t(P0) and S P0 S ∪ {x} (4)

or
x /∈ t(P0) and S ∪ {x} P0 S. (5)

First, consider rule f> : S N −→ 2O such that, for each N ∈ N and each profile PN ∈ S N

satisfies8

x ∈ f>(PN) if and only if |{t(Pi) ∈ t(PN) : x ∈ t(Pi)}| >
|t(PN)|

2
.

Clearly, f> is tops-only and object neutral. Since the rule only depends on the set of top subsets
of options and not on how many times each subset appears, f> is false-name-proof. Moreover, as
casting a vote can only add support to a good object for a voter, f> also satisfies participation.
Therefore, f> ∈ F .

Assume further that t(P0) ̸= ∅ and consider the tops-only extension of f> to S ∪ {P0}. There
are two cases to consider. If (4) holds, let (P1, P2) ∈ (S ∪ {P0}){1,2} be such that t(P1) = S and
t(P2) = S ∪ {x}. Let i⋆ /∈ {1, 2} and endow voter i⋆ with preference P0. Notice that, by (4),
t(Pi⋆) ̸= S ∪ {x}. Then,

f>(P1, P2) = S Pi⋆ S ∪ {x} = f>(P1, P2, Pi⋆),

contradicting participation. If (5) holds and t(P0) ⊈ S, let y ∈ t(P0) \ S and consider (P1, P2, P3) ∈
(S ∪ {P0}){1,2,3} such that t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = S ∪ {x, y}. Let i⋆ /∈ {1, 2, 3}
and endow voter i⋆ with preference P0. Then,

f>(P1, P2, P3) = S ∪ {x} Pi⋆ S = f>(P1, P2, P3, Pi⋆),

contradicting participation. If (5) holds and t(P0) ⊆ S, let y ∈ t(P0) and consider (P1, P2, P3) ∈
(S ∪ {P0}){1,2,3} such that t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = (S \ {y}) ∪ {x}. Let
i⋆ /∈ {1, 2, 3} and endow voter i⋆ with preference P0. Notice that, by (5), t(Pi⋆) ̸= S. Then,

f>(P1, P2, P3) = S ∪ {x} Pi⋆ S = f>(P1, P2, P3, Pi⋆),

8Notation: given a society N ∈ N and profile PN ∈ U N
O , let t(PN) = {t(Pi) | i ∈ N} be the collection of

(different) tops of profile PN .
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contradicting participation. Since in both cases we reach a contradiction, it follows that t(P0) = ∅.
Thus, this implies that

if S > is maximal for { f>}, then S > ⊆ S ∪ {P0 ∈ UO \S : t(P0) = ∅}. (6)

Second, consider the rule f≥ : S N −→ 2O such that, for each N ∈ N and each profile PN ∈ S N

satisfies that

x ∈ f≥(PN) if and only if |{t(Pi) ∈ t(PN) : x ∈ t(Pi)}| ≥
|t(PN)|

2
.

A reasoning similar to the one used for f> shows that f≥ ∈ F .

Assume now that t(P0) ̸= O and consider the tops-only extension of f≥ to S ∪ {P0}. There are
two cases to consider. If (4) holds and S ̸= ∅, let (P1, P2, P3) ∈ (S ∪ {P0}){1,2,3} be such that
t(P1) = S, t(P2) = S ∪ {x}, and t(P3) = ∅. Let i⋆ /∈ {1, 2, 3} and endow voter i⋆ with preference
P0. Notice that, by (4), t(Pi⋆) ̸= S ∪ {x}. Then,

f≥(P1, P2, P3) = S Pi⋆ S ∪ {x} = f≥(P1, P2, P3, Pi⋆),

contradicting participation. If (4) holds and S = ∅, let y ∈ O \ t(P0) and consider (P1, P2, P3) ∈
(S ∪ {P0}){1,2,3} be such that t(P1) = ∅, t(P2) = {x}, and t(P3) = {y}. Let i⋆ /∈ {1, 2, 3} and
endow voter i⋆ with preference P0. Notice that, by (4), t(Pi⋆) ̸= {x}.9 Then,

f≥(P1, P2, P3) = ∅ Pi⋆ {x} = f≥(P1, P2, P3, Pi⋆),

contradicting participation. If (5) holds, let (P1, P2) ∈ (S ∪ {P0}){1,2} be such that t(P1) = S
and t(P2) = S ∪ {x}. Let i⋆ /∈ {1, 2} and endow voter i⋆ with preference P0. Notice that by (5),
t(Pi⋆) ̸= S. Then,

f≥(P1, P2) = S ∪ {x} Pi⋆ S = f≥(P1, P2, Pi⋆),

contradicting participation. Since in each case we reach a contradiction, it follows that t(P0) = O.
Thus, this implies that

if S ≥ is maximal for
{

f≥
}

, then S ≥ ⊆ S ∪ {P0 ∈ UO \S : t(P0) = O}. (7)

Finally, let S ⋆ be maximal for F . By Definition 1, S ⊆ S ⋆. Since f>, f≥ ∈ F , Remark 5 implies
that S ⋆ ⊆ S > ∩S ≥. By (6) and (7), S > ∩S ≥ ⊆ S and thus S ⋆ ⊆ S . Hence, S ⋆ = S . □

Remark 6 Notice that to prove Theorem 2, the only property used, besides tops-onliness, is
participation. Therefore, a more general maximality result is available considering only these
two properties.

4 Conclusion

We analyze voting rules that satisfy false-name-proofness and the participation criterion. We show
that these two axioms imply anonymity and that this holds for any domain of preferences.
Moreover, we further extend previous negative results for the case of the universal domain,
showing that there are no neutral voting rules consistent with these two axioms. For the domain
where preferences are strict linear orders over subsets of objects, we show that compatibility
of these two properties of immunity to manipulation with ontoness, tops-onliness and object
neutrality can only be achieved, in a strong sense, in the domain of separable preferences.

9Also note that, if O = {x, y}, then (4) is trivially contradicted.
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As a by-product of Proposition 2 we obtain a new characterization of voting rules over the
domain of separable preferences. This follows from two observations. The first one is that
the combination of false-name-proofness, strategy-proofness, and ontoness is equivalent, due to
Propositions 6 and 8 of Fioravanti and Massó [9], to the combination of strong false-name-proofness,
participation, ontoness, and anonymity. The second is due to our Proposition 2: anonymity is
superfluous in the latter list. Therefore, by Theorem 1 of Fioravanti and Massó [9] we can
characterize all voting rules that satisfy strong false-name-proofness, participation, and ontoness as
the class of voting rules in which an object is chosen if it has either at least one vote in every
society or a unanimous vote in every society.
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