Fair Allocation with Initial Utilities

Niclas Boehmer, Luca Kreisel

Abstract

The problem of allocating indivisible resources to agents arises in a wide range of domains,
including treatment distribution and social support programs. An important goal in algorithm
design for these problems is fairness, where the focus in previous work has been on ensuring
that the computed allocation provides equal treatment to everyone. However, this perspective
disregards that agents may start from unequal initial positions, which is crucial to consider in
settings where fairness is understood as equality of outcome. In such settings, the goal is to
create an equal final outcome for everyone by leveling initial inequalities through the allocated
resources. To close this gap, focusing on agents with additive utilities, we extend the classic model
by assigning each agent an initial utility and study the existence and computational complexity
of several new fairness notions following the principle of equality of outcome. Among others,
we show that complete allocations satisfying a direct analog of envy-freeness up to one resource
(EF1) may fail to exist and are computationally hard to find, forming a contrast to the classic
setting without initial utilities. As our main contribution, we propose a new, always satisfiable
fairness notion, called minimum-EF1-init and design a polynomial-time algorithm based on an
extended round-robin procedure to compute complete allocations satisfying this notion.

1 Introduction

Allocating resources to agents is a central problem in algorithmic decision-making, with applications
ranging from task and house allocation to treatment distribution and scheduling [45, 37, 26, 8, 36, 1, 22].
Thus, the problem has been widely studied across artificial intelligence, machine learning, multi-agent
systems, operations research, and computational social choice. Much of this literature focuses on
the design and analysis of algorithms that compute allocations satisfying formal fairness criteria, for
instance, envy-freeness [2, 11, 35].

Both outside and inside computer science, the discourse on fairness distinguishes between two
paradigms: On the one hand, equality of opportunity (also known as formal equality in law) demands
equal treatment for everyone regardless of individual circumstances [21, 28]. On the other hand, equality
of outcome (also known as substantive equality in law) acknowledges the existence of initial disparities
and seeks to create an equal final outcome for everyone by leveling the existing inequalities [7, 36].
These two principles stand in an inherent conflict with each other, as countering initial disparities
oftentimes necessitates the prioritization of those starting from an inferior position, contradicting the
principle of equal treatment.!

In algorithmic fair allocation, an overwhelming majority of works adhere to equality of opportunity:
They assess fairness by how the allocation distributes resources—irrespective of agents starting positions
[2, 11, 35]. For example, under the classic notion of envy-freeness, an allocation is considered fair
if no agent prefers the bundle allocated to another agent to their own. However, this ignores initial
inequalities prevalent in many application areas of fair allocation. For example, in medical resource
allocation programs, patients have different initial probabilities of recovery; educational interventions
serve students with varying levels of prior knowledge or preparedness; and more generally, support
programs often address individuals from diverse backgrounds and starting positions [17, 20, 22].

Motivated by the prevalence of such disparities, this paper initiates the study of equality of outcome
in algorithmic fair allocation. In many real-world allocation problems, decision makers aim for equal

'This conflict recently surfaced in an executive order of US President Trump [40].



post-allocation outcomes instead of equal treatment [33, 39]. One example is the Fairer Scotland Duty
[39], which places a statutory responsibility on certain public bodies to consider how their decisions
can help reduce inequalities of outcome. Notably, existing, intensively studied formal models of fairness
reflecting equality of opportunity fail to capture this goal of equality of outcome, a gap that we address
in this work.

To give another concrete motivating example, consider the following real-world case: the Indian NGO
ARMMAN runs large-scale mobile health programs for new mothers, enrolling millions across the
country [3]. To boost program engagement, ARMMAN can make a limited number of weekly calls to
participants, a sequential resource allocation problem [41]. Crucially, ARMMAN seeks to prioritize calls
to mothers with lower initial engagement, often from historically marginalized communities: Rather
than allocating calls proportionally across demographics, their goal is to ensure that engagement levels
between different demographic groups are equalized post-intervention [42], thus following the principle
of equality of outcome.

1.1 Our Contributions

We initiate the formal study of fair allocation for agents with initial disparities, focusing on fairness
notions aligned with the principle of equality of outcome. We do so by equipping each agent ¢ with
an agent-specific initial utility value b; € R>( and measuring fairness in terms of the utility the agent
derives from their bundle plus b;. Throughout, we restrict attention to additive utilities, as is standard
in the literature [2].

In Section 3, we present straightforward adaptations of classical fairness notions — envy-freeness
(EF) and envy-freeness up to one resource (EF1) — which we term EF-init and EF1-init, respectively.
Concretely, for EF-init (EF1-init), we require for every pair of agents ¢ and j that agent ¢’s initial utility
plus ¢’s utility for their own bundle is at least as large as agent j’s initial utility plus agent 4’s utility for
j’s bundle (after removing a resource). Our results reveal that introducing initial utilities fundamentally
changes the nature of the problem: even in simple cases with identical resources, complete EF1-init
allocations may fail to exist, and deciding whether such an allocation exists is NP-complete. This stands
in stark contrast to the classical setting, where complete EF1 allocations are always guaranteed and
efficiently computable.

Nevertheless, we show that for a constant number of agents (under unary encoding), the existence
of a complete EF-init and EF1-init allocations can be decided efficiently using dynamic programming.
Furthermore, for the special case of identical resources, we present a polynomial-time algorithm for
deciding the existence of EF-init allocations. From a practical standpoint, the allocation of identical
resources is a natural and frequently encountered scenario, for example when allocating treatments
or interventions (e.g., the allocation task faced by ARMMAN described above). From a theoretical
perspective, our result highlights the added complexity introduced by initial utilities: while in the
classical setting without initial utilities any envy-free allocation simply assigns the same number
of resources to each agent, in our model, ensuring fairness requires a technically involved dynamic
programming approach and a meticulous analysis of the interplay between initial utilities and allocated

bundles.

The non-existence of complete EF1-init allocations highlights the need for fundamentally new ap-
proaches. In Section 4, we therefore search for an envy-based fairness criterion that is always satisfiable.
As our main contribution, we present minimum-EF1-init, a new envy-based fairness notion for which a
satisfying allocation is guaranteed to exist. The core idea is to relax EF1-init when evaluating whether
an agent ¢ with higher initial utility envies an agent j with lower initial utility. Instead of comparing the
sums of the initial utilities and ¢’s values for the bundles, we take a different approach: We first allow j
to level the initial utility difference between ¢ and j with a subset X* of j’s resources which, from j’s
perspective, equalizes this difference. Then, we compare ¢’s bundle to j’s bundle without X™* under



EF1. We show that minimum-EF1-init coincides with EF1-init in settings where resources’ usefulness is
diminishing in initial utility. We develop an adaptation of the classic round-robin algorithm for the
setting with initial utilities that computes an allocation satisfying minimum-EF1-init. In our version,
agents still select their most preferred available resource in rounds, but participation in each round
is restricted: Initially, only agents with the lowest initial utility are present, and additional agents are
added to the picking order as soon as all present agents have reached their initial utility. While our
algorithm is simple to state, making it an appealing distribution algorithm in and of itself, the proof that
it guarantees minimum-EF1-init is more involved, requiring a careful analysis of the position where
newly added agents are inserted into the picking order.

The (complete) proofs of all statements can be found in the appendix.

1.2 Related Work

There is a rich body of work on the formal analysis of fair allocation of indivisible resources, considering
various preference models and fairness concepts [2, 11, 35]. Our work aligns with two major strands
in this literature. First, alongside share-based notions such as the maximin share [16, 32], envy-based
concepts—as considered here—have arguably received the most attention [2, 34, 13]. Second, additive
utility functions constitute the standard preference model in this domain. They are especially common
in initial work on new allocation settings—such as ours—due to their relative simplicity and expressive
power [14, 2, 11].

While fair allocation has been studied extensively, there are, to the best of our knowledge, only two
works that extend fair allocation models to account for generally differing starting positions prior to the
allocation process [38, 18]. Both focus on the following problem: given a partial initial allocation, can it
be extended to a complete allocation satisfying a specified, traditional fairness criterion? They analyze
the (parameterized) computational complexity of this extension problem under various preference
models and fairness notions, highlighting its general intractability. Our work relates to theirs in that our
model can be viewed as a special case of theirs, where all agents assign identical utilities to the initially
allocated resources and each agent holds at most one resource in the initial allocation. As a result,
some of their positive complexity results for restricted cases carry over to our setting (see Appendix B
for a detailed discussion). However, our study fundamentally differs in two key aspects: First, instead
of focusing on computational aspects of existing fairness axioms, we design new fairness notions
(following the principle of equality of outcome) tailored to the setting with initial utilities. Second, by
putting a focus on the case of initial utilities, we are able to obtain stronger axiomatic guarantees more
relevant to our setting. Our negative results can be interpreted as strengthened versions of analogous
results in the setting considered by Prakash HV et al. [38] and Deligkas et al. [18].

Moreover, our work connects to the study of fair allocation with subsidies [27], in which an additional
divisible resource can be used to make an allocation of indivisible resources envy-free, and to lines of
work on fair allocation with agents with different entitlements [23, 15] and budget constraints [43, 6].
More broadly, our work fits into the study of completion problems in computational social choice, such
as possible and necessary winner problems in voting [44] and stable matching [19, 5].

2 Preliminaries

Fair Allocation of Indivisible Resources We consider the problem of allocating a set R of m
indivisible resources among a set A := [n] of n > 2 agents. We refer to subsets X C R of resources
as bundles and denote by 27 the set of all bundles. Each agent i € A has a utility function u; : 2% —



R>¢, where u;(#) = 0.%*> We assume throughout that utility functions are additive, i.e., u;(X) =
> rex Ui({r}) forany i € Aand X C R. In certain cases, we consider identical resources, where
ui({r}) = u;({r'}) foralli € A and resourcesr,r’ € R. An allocation X is a tuple of n disjoint bundles
(X1,...,Xy) such that X; N X; = () for all distinct 4, j € A, where X is allocated/assigned to agent
i € A. An allocation X is complete if | J;c 4 X; = R, which can be viewed as a very moderate efficiency
criterion. We study the problem of finding fair and complete allocations. Two popular fairness notions
for indivisible resources are envy-freeness (EF) and its relaxation, envy-freeness up to one resource (EF1).
An allocation X is EF if u;(X;) > u;(X) for each i, j € A. Itis EF1if, for every pair of agents i, j € A,
there is a resource r € X such that u;(X;) > u;(X; \ {r}) or X; = (. For a variant of envy-freeness,
we say that an agent i € A envies another agent j € A under this variant, if the pair ¢, j € A violates
the conditions of the variant, e.g., 7 envies j under EF if u;(X;) < u;(X}).

Initial Utilities We study the new problem of fairly allocating indivisible resources in the presence
of initial utilities. That is, we assume that every agent ¢ € A has an initial utility b; € R>q. Thus, after
the allocation X', agent 7 attains utility b; + u;(X;). Conceptually, we assume that initial utilities are
common knowledge and comparable across agents, i.e., unlike with bundles to which two agents might
assign different utilities, the agents agree on their initial utility values. The classical setting is recovered
by taking b; = 0 for all ¢ € A. We group agents by their initial utilities as follows:

Definition 2.1. The agents are partitioned intot € [n|levels L1, ..., L, where each level L;, with h € [t]
contains all agents with the same initial utility. The levels are indexed such that b; < b; for anyi € Ly,
j € Lp,andh < h'.

3 A First Attempt at Adapting Envy Notions to Initial Utilities

In this section, we present first adaptations of the classical fairness notions of envy-freeness and its
relaxation, envy-freeness up to one resource, to the setting with initial utilities. Following the equality of
outcome principle, we are interested in measuring the fairness of an allocation & in terms of the total
utility of agents after resources have been allocated, i.e., their initial utility plus the utility they derive
from X. Following this rationale, we adapt EF and EF1 as follows:

Definition 3.1 (EF-init). An allocation X is EF-init, if for every pair of agentsi, j € A either X; = (* or
it holds that b; + u;(X;) > bj + UZ(X])

Definition 3.2 (EF1-init). An allocation X is EF1-init, if for every pair of agentsi, j € A either X; = ()
or there exists a resource € X such that b; + u;(X;) > bj + uw;(X; \ {r}).

In the classical setting without initial utilities, a complete EF1 allocation always exists, while a complete
EF allocation may not exist, even with two agents and a single resource. In contrast, with initial utilities,
even complete EF1-init allocations fail to exist:

Observation 3.3. There exists an instance with two agents and identical resources in which no complete
allocation satisfies EF1-init.

Proof. Consider four identical resources R and two agents: agent j with b; = 1 and u;({r}) = 3 for all
r € R, and agent ¢ with b; = 10 and u;({r}) = 10 for all » € R. In any complete allocation where i

To rule out trivial edge cases, we assume that for every agent i € A, there exists some resource r € R such that
ui({r}) > 0.

*Regarding the encoding of utility functions, all our hardness results hold even if utility functions are encoded in unary. If
not stated otherwise, our positive results hold for both unary- and binary-encoded utility functions.

*This condition implies that an agent i € A with b; 4 u;(X;) < b; does not envy an agent j under EF-init or EF1-init if
X; = 0, as otherwise achieving an envy-free allocation would be impossible in settings with large initial utility disparities.



receives at least one resource, j has to get at least three resources, as otherwise j envies ¢ under EF1-init.
However, in allocation & where j receives three resources and ¢ receives only one resource, ¢ envies j
under EF1-init, as b; + u;(X;) =10+ 10 < 14210 = b; + u;(X; \ {r}) for any r € Xj. O

Given the non-existence of complete EF-init and EF1-init allocations, we analyze the complexity of
determining whether a given instance with initial utilities admits such an allocation. We refer to these
computational problems as EF-INIT ExISTENCE and EF1-INIT EXISTENCE, respectively.

EF1-INIT EXISTENCE We begin with EF1-init allocations, noting that, in the classical setting, EF1
allocations can be found via a simple round-robin algorithm in polynomial time. However, with initial
utilities, the problem becomes computationally hard via a reduction from GraPH COLORING [24]:

Theorem 3.4. EF1-INiT EXISTENCE is NP-complete.

EF1-iN1T EXISTENCE/EF-INIT EXISTENCE for Few Agents On the positive side, following a
dynamic programming approach, deciding the existence of a complete EF1-init or EF-init allocation
becomes tractable when the number of agents is constant:

Proposition 3.5. For a unary encoding of the utility functions and a constant number of agents, EF1-INIT
ExISTENCE and EF-INIT EXISTENCE are polynomial-time solvable.

EF-INIT EXISTENCE The complexity of deciding the existence of a (complete) envy-free allocation
(without initial utilities) is well understood, and the problem is known to be hard, even for restrictive
settings such as if there are only two agents with identical preferences or agents have 0/1 utilities
for each resource [10]. By setting b; = 0 for all i € A, these results directly carry over to EF-INIT
ExIsTENCE. We therefore focus on the special case where all resources are identical, obtaining the
following result:

Theorem 3.6. EF-INIT EXISTENCE for identical resources can be decided in O(n? - m3) time and O(n - m?)
space.

To solve this problem, we examine the partitioning of agents by their initial utility into ¢ levels, as
introduced in Definition 2.1. Note that in any EF-init allocation, all agents in a level need to get the
same number of resources, as all resources are identical. The following observation is crucial to prove
the above result. If there are two agents i, j € A with b; < b;, where agent i has a strictly smaller
utility for each resource than j, then agent j cannot get any resources in an EF-init allocation.” We call
such a pair of agents ¢, j € A a violating pair.

Importantly, this observation provides the following useful way to structure the levels. Let h* € [t] be
the minimum level such that there is an agent j € Ly« that is part of a violating pair (j is the agent with
higher initial utility). If there is no violating pair in the whole instance, set h* := ¢ 4 1. It follows that
all agents in levels A* and above cannot get any resources. Moreover, using the structure implied by the
fact that there is no violating pair in the first t* := h* — 1 levels, we can show that within these levels,
envy-freeness between pairs of agents behaves “transitively” with respect to the ordering of the levels.

Lemma 3.7. Let h,h', h" € [t*] with h' < h < " and consider agentsi* € Ly, i € Ly, and j € Lyy.
If in some allocation X there is no envy between agents ¢ and i*, and between v* and j under EF-init, then
there is no envy between i and j under EF-init.

’Otherwise, agent 3 has to receive some number x of resources more than agent j to equalize the difference b; — b; in
initial utilities. However, as j has a strictly higher utility for each of these resources, this implies that j envies ¢ under EF-init,
as the utility that j assigns to the x additional resources is strictly greater than b; — b;.



This enables a dynamic programming approach to decide EF-IN1T Ex1sTENCE for identical resources.

Proof Sketch of Theorem 3.6. We decide EF-INIT EXISTENCE using a dynamic program based on the
following table D of size O(n - m?). For a € [m], b € [t*] and ¢ € [m], we store in entry D[a][b][c]
whether there is an allocation X without envy under EF-init between agents in the first b levels satisfying
the following three properties: (i) exactly a resources are allocated, (ii) the set of agents that get at least
one resource is the union of the first b levels | veqp) Lo (iii) and every agent i € Ly gets exactly ¢ = | X |
resources. Initializing this table for b = 1 is trivial. Next, we sketch how to fill entry D][a][b][c] for b > 2.
By Lemma 3.7, it suffices to consider the entries for level b — 1, and to check if there is an entry for this
level (with a’ = a — ¢ - | L|) where there is no envy under EF-init between the agents in L;_; and the
agents in Ly, when all agents in L;, get c resources each. After filling table D, the final step is to check
if there is a "yes"-entry for a = m where none of the agents that receive no resources are envious. [

A natural follow-up question to this result is whether it can be extended to decide EF1-1N1T EXISTENCE for
identical resources. However, directly adapting our dynamic programming approach seems challenging,
since the crucial “transitivity” property from Lemma 3.7 does not hold any more for EF1-init: For three
agents i,1*, j € A, under EF1-init, we are allowed to disregard a resource each when checking whether
1 envies ¢* and whether ¢* envies j. As a result, even when there is no envy between ¢ and ¢* and
between i* and j under EF1-init, a single resource may not be sufficient to eliminate envy between ¢
and j. Moreover, it does not hold that no agent in level h* (the first level containing an agent j from a
violating pair) and above can get a resource, if the differences in the utility agents from a violating pair
derive for a resource are only small.

4 A Satisfiable Envy Notion

In Observation 3.3, we showed that a complete EF1-init allocation may not exist, even in simple instances,
and we proved that finding such an allocation is computationally intractable. This limits the practical
applicability of EF1-init. Motivated by this, we propose a relaxation of EF1-init that is always satisfiable
(see Section 4.1) and show that an allocation satisfying this relaxed notion can be computed efficiently
(see Section 4.2). Furthermore, we identify a natural special case where this relaxation coincides with
EF1-init.

4.1 Minimum EF1 with Initial Utilities

To derive a meaningful fairness notion that is always satisfiable, we revisit Observation 3.3. The key
challenge illustrated by this counterexample is that agent j with lower initial utility also derives a lower
utility from each resource than agent 7, so the agents fundamentally disagree on how many resources
are needed to bridge their initial utility gap. Thus, there will always be an agent who is envious under
EF1-init. To circumvent this, we need to deviate from the comparison approach taken by EF1-init where
we compare initial utilities plus bundle values. Instead, when checking whether an agent ¢ with higher
initial utility envies another agent j with lower initial utility, we first allow agent j with lower utility
to receive a subset of resources, X* C X, that, from their perspective, are worth less than the initial
utility gap b; — b;, and disregard X* when evaluating if agent 7 is envious of j’s bundle. Formally, one
could adjust the EF1-init definition for the case b; > b; as follows:

If b; > bj, thereis X* C X with u;(X™) < b;—bj and r € X so that u;(X;) > u;(X; \ (X U{r})).

(1)
However, this relaxation falls short if there are multiple agents with low initial utility values that have
very different utility functions:



Example 4.1. Consider an instance with agents A = {1,2,3} and m = 10 identical resources. The
agents have initial utilities b; = by = 0 and b3 = 10. Agents 1 and 3 have uy ({r}) = us({r}) = 100 for
everyr € R, while agent 2 has ua({r}) = 1. Since agents 1 and 2 have the same initial utility, we need to
have | X5| — | X1| < 1. Moreover, Condition (1) requires that | X1| — | X3| < 1, since only the set X* = ()
satisfies u1 (X*) < 10 — 0. However, this implies that 2 envies 3.

Intuitively, the example shows that it is insufficient to only consider each pair of agents individually
when restricting the set X*, since this may lead to the introduction of envy between agents with similar
initial utility, if the difference in initial utility can be offset more easily for some agents than others.
To overcome this, when checking whether an agent ¢ with higher initial utility envies an agent j with
lower initial utility, we further relax the restriction on X* by considering, for each resource in X*, the
minimum utility it gives to any agent with a lower initial utility than ¢. In Example 4.1, by considering
the minimum utility, both of the agents 1 and 2 with low initial utility can choose a set X* of the same
size, allowing them to get the same number of resources more than agent 3 and enabling the existence
of a fair allocation. This yields the following notion:

Definition 4.2. An allocation X is minimum EF1-init (min-EF1-init) if for every pairi,j € A, X; = ()
or it holds that:

(C1) Ifb; < bj, then b; + u;(X;) > bj + u;(X; \ {r}) for somer € X;.

(C2) Ifb; > bj, then there exists a resourcer € X; and a subset X* C X; with

Z min Uj/({T/}) < b; — bj,

i J'€Aby<b;
such that u;(X;) > w;(X; \ (X* U{r})) holds.

While we believe that min-EF1-init is, in a sense, the strongest always-satisfiable fairness notion in this
setting, it is also clearly a weaker requirement than (1), and may permit allocations that agents with
high initial utilities could perceive as unfair:

Example 4.3. Consider three agents A = {1, 2,3} withb; = by = 0, b3 = 10, and m = 100 resources.
Agent 1 has uy ({r*}) = 500 for a particular r* € R and ui({r}) = 0 for all other r € R. Agents 2 and
3 have ug({r}) = us({r}) = 50 for allr € R. The allocation X; = {r*}, Xo = R\ {r*}, X3 = 0 is
min-EF1-init. Agents 1 and 2 do not envy agent 3 since X3 = () and agent 3 does not envy the others (since
|X1| = 1 and u1(X2) = 0). Further, it is easy to see that agent 1 does not envy agent 2 and vice versa.
However, agent 3 may regard such an allocation as unfair.

On the positive side, we show that min-EF1-init implies EF1-init if agents’ utility for a resource
diminishes in their initial utility.

Definition 4.4. We call utilities diminishing, ifb; < b; implies u;({r}) > w;({r}) foralli,j € A and
re R

Diminishing utilities arise, for instance, in support programs (like the ARMMAN program featured in
the introduction), where aid typically has a stronger effect on those who are initially worse off.

Proposition 4.5. Let X be an allocation that is min-EF1-init. If utilities are diminishing, then allocation

X is EF1-init.

Proof. In the following, to highlight that an inequality follows from Definition 4.4, we will write > gim
and <gim, and analogously <(c) to highlight that an inequality follows from (C2) in Definition 4.2. We
need to verify that for every pair of agents i, j € A, either X; = () or there exists 7 € X such that



Algorithm 1 Round-Robin with Initial Utilities
1: Partition set of agents A into levels L1, ..., L; and initialize X as the empty allocation.
2: Initialize set of active agents £L C A to L.
3: Initialize linear order < over L to some arbitrary linear order over L;.
4: while there are unallocated resources do

5: Start a new round:
6 while an agent in £ has not picked in the current round do
7: Pick first agent ¢+ € L according to < that has not picked in this round.
8 Agent i picks unallocated resource r € R with maximum utility u;({r}): X; « X; U {r}
9: if all resources are allocated then return X’
10: else if all i’ € L reached the agents in some level Ly, with ¢ € [t] and Ly N £ = () then
11: Let Ly be the level with minimum ¢ € [¢] that satisfies the stated condition.
12: L+ LULy
13: Extend < (maintaining the order of agents in £ \ Ly) to the updated £ such that:

> all agents that have already picked in this round are before the agents in Ly,
> all agents in £\ L, that have not yet picked are after the agents in L,.

Since X is min-EF1-init, conditions (C1) and (C2) from Definition 4.2 hold. If b; < b;, (C1) implies
(%). If b; > b;, we have that (C2) holds for some set X* C X, and resource r € X;. Note that
’U,Z(X*) = ZWGX* uz({r'}) Sdim ZWGX* minjleA; bj/<b7l Uj/({TI}) <(C2) bi - bj. Since ul(XZ) >
ui (X5 \ (X* U {r})) by (C2), it follows that u;(X; \ {r}) < ui(X; \ (X* U {r})) + u:(X*) <(c2) dim
ui(X;) + b; — bj, which implies (). O

4.2 A Round-Robin Algorithm Guaranteeing Minimum EF1 with Initial Utilities

In this section, we propose an algorithm that computes a complete minimum-EF1-init allocation. For
this, we extend the well-known “round-robin” algorithm for the setting with initial utilities.®

Idea In our algorithm, we use the concept that the agents are partitioned into ¢ levels by their initial
utility, as introduced in Definition 2.1. Our extension is based around the idea that at any point of our
round-robin algorithm, only a subset of the agents is active and can be assigned a pick. We maintain a
picking order over all currently active agents in the algorithm. In the beginning, only the agents with
the lowest initial utility in level L, are active. After each pick, we check whether all currently active
agents have reached the agents in some (not yet active) level L, with initial utility value b. By this, we
mean that for each currently active agent ¢, the sum of ¢’s initial utility and ¢’s utility for their bundle is
at least the initial utility b (all active agents believe that they have “reached the initial situation” of all
agents from Ly).

Definition 4.6. We say that an agent i € A with bundle X; C R has reached an agent j € A if

If all active agents have reached the agents in Ly, the agents in L, become active and are inserted into
the picking order after the agents that have already picked in this round, meaning that they get to pick
directly after being activated. This ensures that each agent from L, prefers the resources picked by
them over the resources picked by any other agent that was active before them after L,’s activation.
Another observation crucial to the inner workings of the algorithm is that if agent j is activated after
another agent ¢ picked some resource r, then ¢ had not yet reached j in the round before, implying

%In the standard round-robin algorithm, we fix an ordering of the agents. In each round of the algorithm, following
this ordering, agents pick their favorite so far unallocated resource. Once there are no more resources left, the algorithm
terminates. In the classical setting without initial utilities, the resulting allocation is guaranteed to satisfy EF1.



that the value of 7 for their current bundle without 7 is less than the initial utility difference b; — b;
(see Observation 4.9). A full description is given in Algorithm 1. We show that Algorithm 1 returns a
complete allocation satisfying min-EF1-init, implying that a min-EF1-init allocation always exists.

Theorem 4.7. The allocation computed by Algorithm 1 is complete and satisfies min-EF1-init. Further,
Algorithm 1 runs in polynomial time.

4.3 Proof of Theorem 4.7

In this subsection, we give an overview of the proof of Theorem 4.7. We start with defining notation
and formalizing two observations (Section 4.3.1) before we present the crucial activation gap lemma
(Section 4.3.2) and finally give a proof sketch (Section 4.3.3).

4.3.1 Notation and Inital Observations

We say that an agent ¢ € A is active in a round if ¢ € £ at the end of the round. An agenti € A is
activated in a round (after/by a pick) if ¢ is added to £ at some point during the round (after/by the pick).
A picking sequence starting with/after some pick is the contiguous subsequence of all picks until the
end of the algorithm after this pick.” We start by observing the following properties of Algorithm 1.

Observation 4.8. Consider Algorithm 1 and let < be the final linear order when the algorithm terminates.
Leti,j € A be two distinct agents. For k € {i,j}, let X} be the bundle picked by k in a given subset R of
rounds in which both i and j are active and where j picks in at least one round in R. Then it holds that:

1. Assume that i picks in the last round® in R. For the resource r € X picked by agent i in the last
round in R and some ' € X7, we have that u;(X; \ {r}) > u;(X; \ {r'}).

2. If i does not pick in the last round in R, we have that u;(X;) > u;(X; \ {r'}) for somer’ € X7.

3. Ifi = j, then u;(X]) > ui(X7).

Secondly, we formalize an observation from above:

Observation 4.9. Consider Algorithm 1 and leti,j € A be two agents with b; > b; such that j is
activated after agent i picked some resourcer € R. Let X be the bundle of i after this pick. Then, it holds
thatui(X; \ {T}) < bj — b;.

4.3.2 The Activation Gap Lemma

The following lemma gives a bound on the value of the bundle assigned to an active agent j at the point
when some agent 7 is activated. More concretely, we show that the sum of the minimum utility of an
agent with lower initial utility than ¢ for each resource in j’s bundle is at most the initial utility gap
between ¢ and j after removing some resource r. This is crucial in our proof of Theorem 4.7, since it
implies that j’s current bundle without r satisfies the restriction on X* in min-EF1-init (C2), allowing to
disregard the resources picked by j in rounds when ¢ was not active when checking whether ¢ envies j.

Lemma 4.10 (Activation Gap Lemma). Consider Algorithm 1 and leti,j € A be two agents that were
active in some round with b; > b; and b; > mingc 4 by. For k € A, let X, be the bundle of k after the
pick that activated i. Then, either X7 = () or there exists r € X7 such that

Z min wy ({r'}) < b; — b;.
'I”EX;\{T}] €A by <b;

"We will also consider picking sequences starting with a given pick up to another pick, by which we mean the contiguous
subsequence of all picks in the algorithm between the two given picks.
¥The ordering of the rounds in R that we refer to here is given by the order in which they occur in Algorithm 1.




Proof. For agents a,b € Awitha € Ly andb € Ly for1 < h' < h <t, we define A,p == h — 1.
We prove the claim by induction over A; ;. For A; ; = 0, the claim holds trivially, as both agents are
activated in the same round and thus | X7| < 1.

Induction Step. Assume the claim holds for all 7,j € A with b; > b; and b; > min;c4 by, and
with A; ; < A* for some A* € [t — 1]. We show that the claim then also holds for i, j € A with
b; > bj and b; > minyc 4 by, and with A; ; = A* 4 1. If X; = (), then the claim holds trivially, so we
assume in the following that X; # (). Note that we have that b; > b; since A; ; > 1. Let j* € A be
the agent after whose pick agent ¢ was activated and let » € X . be the resource picked by j* in this
pick. Let < be the final linear order when the algorithm terminates. If j = j*, the claim holds, since
bi —bj > u;j(X; \ {r}) for the resource r € X7 picked by j in the round when i was activated by
Observation 4.9 and u; (X7 \ {r}) > Zr'ex;\{r} mingreA: b, <b; ujr({r'}) since b; < b;. Thus, assume
that 7 # j. Note that we have that j* < . We make a case distinction based on b; and b;«.

Case 1 (b; = bj+). First, consider that b; = bj«. Note that this implies that j and j* are active
in the same rounds. Let R be the set of rounds in which j and j* are active up to (and including)
the round in which i is activated. In these rounds, agent j* picks the resources in X, and agent j
picks a superset of the resources X7 (since agent j may pick after ¢ is added in the last round in R).
Observation 4.8 (1) implies that u;« (X7 \ {r}) > u;=(X; \ {r'}) for r € X picked last by j* and
some 7’ € X. Moreover, it holds that u;«(X7. \ {r}) < b; — b; by Observation 4.9. Thus, the claim
holds in this case since b; — b; > u;« (X7 \ {r'}) > Zr”eX;\{r’} minjea; b, <p, Wi ({r"}).

Case 2 (b; > b;«). Next, consider that b; > b;+ and let XN;‘* be the bundle of j* after the pick that
activated j. Since j was activated, it needs to hold that

uje (X5) > by — by 2)
Recall that agent j* picked the resource € X7. in the round in which i is activated. Thus, the bundle
of agent j* in the round prior is X7 \ {r}. By Observation 4.9, we get that u;« (X7 \ {r}) < b; — bj-.
Note that r ¢ X j«» as X7, is the bundle of j* when j was activated and r is picked by j* when i is
activated, and it holds that b; > b;. Using Equation (2), this implies that

ujs (X5 \ (X5 U{r})) < bi — by, 3)
Note that it suffices to show that
bi = bj > u (X5 \ {r'}) 4)
for some 7" € X7, since u;- (X7 \ {r'}) > ZT,,GX;\{T,} minjea; o, <b; Wi ({r"}), as bjx < b;. To show
that there exists a resource such that Equation (4) holds, we now make a case distinction between
Jj =2 7% and j* = j. Note that j* < j implies that j* <7 < j, since b; < b; and there can only be agents
with initial utility at least b; between j* and 7 in <: Since 7 was activated directly after j*’s pick, only
agents that became active after or by the same pick as ¢ can be between j* and i.

If j* <4 < 4, consider the set R of all rounds after the round in which j is activated up to (excluding)
the round in which i is activated. The resources picked by agent j* in the rounds in R is the set
X5\ (X;** U {r}). Note that agent j has not yet picked in the round when i is activated, since
j* =2 i < j. Thus, the resources picked by j in the rounds in R is exactly the set X} \ {r'} for the
resource 1’ € X ; picked first by j. Since j* = j, we can apply Observation 4.8 (3) to show that
Equation (4) holds for resource 7', as’

bi — bj > e (X \ (X5 U{r}) 2 uge (X5 \ {r'}).

°In the following, to highlight that an inequality follows from a previous result, definition, or equation, we add a reference
in the subscript, e.g., by writing <, for an inequality that follows from a previously introduced equation ().




If j < 5%, we consider the set R of all rounds in which j is active up to (now including) the round in
which ¢ is activated. Note that as j < j*, agent j* has not yet picked in the round when j is activated,
so X7. only contains resources picked by j* in rounds in which j is not active. Thus, the resources

picked by agent j* in the rounds in R is the set X \ X;** and agent j picks the resources in X7.
Using Observation 4.8 (1), it follows there exists a resource 1’ € X ; such that Equation (4) holds, since

bi —bj >@) wj+ (X \ (X;'; U{r})) >(s) uj«(X;\{r'}), for resource ' € X from Observation 4.8 (1).

Case 3 (b; < bj+). It remains to consider that b; < b;+. Note that this implies that b;« is strictly
greater than the minimum initial utility of all agents. Since b;« < b;, we have that A« ; < A*, so we

can apply the induction hypothesis for j* and j. Let X']* be the bundle of j after the pick that activated
j*. Note that it cannot be the case that X J* = (), since b; < bj;+. Thus, there exists " € X:;‘ such that

bj« —b; > Z min gy ({r"}). (5)

//6)5*\{ /}j/GAZ bj/<bj*
T “\{r
J

Moreover, by Observation 4.9, we have that u;«(X7. \ {r}) < b; — b;« for the resource r € X7. picked
last by j*. Consider the picking sequence starting with agent j*’s first pick up to (excluding) the pick
by j* that activates . Agent j picks the resources in X7 \ X7, and agent j* the resources in X7. \ {r}.

Since j* picks first in the picking sequence, it follows that w;« (X7 \ {r}) > u;- (X} \ X]*), so we have
bi = bjr >(ao) uyr (X5 \ {r}) > uys (X7 \ X7). (6)

This implies the claim, since

bi— b = (b —bje) + (bjr = b)) >0, ur X\ X))+ Y reaBl g ({r"'})
T//GX;\{TI}. J J
> . ., "
2 D, min w7,
rreXI\{r}

4.3.3 Putting the Pieces Together

We now sketch the proof that Algorithm 1 computes a complete min-EF1-init allocation. Intuitively, the
main idea is that an agent 7 does not envy another agent j with higher initial utility, since ¢ is allowed
to pick resources until ¢ has reached j before j gets activated and makes their first pick. Moreover, ¢
does not envy an agent with lower initial utility, since the bound from Lemma 4.10 allows to disregard
the resource picked by this agent before ¢ was activated in min-EF1-init, and agent ¢ picks before the
other agent in the picking sequence after this pick.

Theorem 4.7. The allocation computed by Algorithm 1 is complete and satisfies min-EF1-init. Further,
Algorithm 1 runs in polynomial time.

Proof (Sketch). Let X be the computed allocation and let < be the final linear order. We show that for
any two agents ¢, j € A, agent ¢ does not envy agent j under min-EF1-init in X'. Thus, we need to show
that X; = ) or condition (C1) holds if b; < b; or (C2) holds if b; > b;. In the following, we sketch the
proof for the case X; # () and b; < b; and the case X; # () and b; > b;.



(Case X # (0 and b; < bj) Fork € A, let X be the bundle of k after j’s first pick and let 7 € R be
the first resource picked by j, ie., X7 = {r}. Since i had reached j when agent j was activated:

bi +ui (X]) > by +ui (X5 \ {r}) -
=0

Moreover, since ¢ picks before j in the picking sequence starting with the pick after j’s first pick, agent
i prefers the resources they pick in this picking sequence (i.e., X; \ X) over those picked by j (i.e.,
X\ X7). Thus, wi(X \ X7) > wi (X5 \ X]*) and (C1) follows for resource r.

(Case X; # () and b; > b;) We need to argue that condition (C2) holds. We make a case distinction:
First, we consider the case that agent ¢ was activated at some point during the algorithm. Let X be
the bundle of agent k£ € A after the pick that activated i. As b; > b; and j has reached 7 before their
activation, we have that X;‘ # (. Thus, Lemma 4.10 implies that there is a resource r € X J* such that

Z min Uj/({’l“,}) <b; — bj.

" j'EA: bj’ <b;
reXi\{r}

Importantly, this implies that the set X* = X \ {r} satisfies the condition from (C2). Consider the
picking sequence of all picks starting with (including) agent ¢’s first pick. In this sequence, agent ¢ picks

the resources in X; and agent j picks the resources in X; \ X7. As agent i picks first, we have that
ui(Xi) > ui( X5\ X7) = wi(X; \ (X" U{r})), so (C2) holds for resource  and X7 \ {r}.

If agent ¢ was not activated, then there needs to be an agent j* € A with b;« < b; that never reaches 1,
ie, uj«(Xjx) < b; — bj«. In this case, using a more involved case distinction, one can show that it is
always possible to choose a resource r € X; and a set X* C X satisfying the constraint on X* from

(C2) such that X* U {r} = X}, which directly implies u;(X;) > 0 = u;(X; \ (X* U {r})). O

5 Conclusion

We initiated the study of fair allocation with initial utilities, focusing on fairness notions that implement
the principle of equality of outcome. Our results show that incorporating initial utilities fundamentally
alters and complicates the nature of fair allocation problems. Nevertheless, positive algorithmic and
axiomatic results can be recovered by tailoring fairness notions to this setting, most notably through our
always-satisfiable notion of min-EF1-init, and by focusing on special cases, such as our polynomial-time
algorithm for EF-1N1T EX1STENCE for identical resources.

Our work opens several directions for future research. First, it would be interesting to obtain a more
fine-grained understanding of the complexity of EF1-IN1T EXISTENCE, for instance, in the case when
resources are identical (see discussion at the end of Section 3) or agents value resources as 0 or 1. Second,
it is worth exploring further relaxations of envy-freeness for initial utilities. Conceptually, min-EF1-init
relaxes EF1 in a way that allows more flexibility to assign resources to agents with lower initial utility
without creating envy, potentially at the expense of agents with higher initial utility (see Example 4.3).
It would be interesting to study whether always-satisfiable envy notions can also incorporate favorable
treatment of agents with higher initial utility or interpolate between both directions. Third, adapting
fairness notions beyond envy-freeness, such as the maximin share (MMS), to equality of outcome
deserves attention.!® Lastly, the idea of initial utilities and equality of outcome also deserve attention in
other allocation domains, including the allocation of indivisible resources with non-additive utilities
[25], chore division [4], online settings [31, 9], and the allocation of divisible resources [12].

Note that in Appendix B we use the work of Prakash HV et al. [38] to show that we cannot guarantee the existence of an
o-approximation of an adapted version of MMS for any o« > 0 in the presence of initial utilities
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A Appendix

In the following, to highlight that an inequality follows from a previous result, definition, or equa-
tion, we add a reference in the subscript, e.g., by writing <(,) for an inequality that follows from
a previously introduced equation (x). Given an instance I, we denote the set of all allocations by

I(I) = {(X1,.... Xn) € (@) |Vi,je A, i#j = X;NX; =0}

B Additional Related Work

As mentioned in Section 1.2, the setting with initial utilities is formally closely related to the completion
(or extension) setting considered by Prakash HV et al. [38], Deligkas et al. [18]. In their setting, in
addition to the resources R and agents A with utility functions, an instance of the completion problem
they consider contains a frozen (or partial) allocation X of a subset F' C R of the resources (to which
they refer as frozen resources). All other resources are called open. A straightforward way to translate
an instance in our setting to an instance in their setting is the following construction: Given an instance
with agents A with utility function u; and initial utility b; for ¢ € A and resources R, we construct the
following instance in the completion setting, which we call the derived instance. The derived instance
has the same set of agents A. The set of resources is R = RU {r] | i € A}. Agenti € A has utility
function u} : 2% — Rsq with u}({r}) = u;({r}) forall» € R and u;({r;}) = bj forall j € A.In the
frozen allocation X, each agent 7 € A is assigned the resource r; and the resources in R are unassigned.

First, we discuss the work by Deligkas et al. [18], who focus on the problem of deciding whether the
frozen allocation can be completed to a complete allocation without envy under (standard) EF. As this
problem is known to be NP-hard even without any frozen resources, they study the parameterized
complexity of this problem with the number of open resources (i.e., |R \ F'|) as parameter. They find
that the problem is W[1]-hard for this parameter. To obtain a positive result, they consider agent types
(two agents are of the same type if they have the same utility for each resource), showing that the
completion problem is fixed-parameter tractable when parameterized by the number of open resources
plus the number of agent types. Moreover, they consider variants of the completion problem where the
open resources can be allocated to at most p different agents, and study the parameterized complexity
of this problem for parameter p. While their positive parameterized complexity results could technically
be translated to our setting, the parameter regarding the number of open resources becomes vacant,
since there is only one frozen resource per agent in the derived instance and all resources from the

original instance are open.

We continue by discussing how our work relates to the work by Prakash HV et al. [38]. They also
consider the completion problem for standard fairness notions, but, in addition to EF, consider EF1
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and the maximin share (MMS) [16, 32]. Their work too focuses on the computational complexity of
determining whether an allocation completing the given frozen allocation exists that satisfies these
fairness notions, and they prove that, in contrast to the standard setting, many such problems become
computationally intractable. We discuss how their results relate to our setting in the following. First, we
remark that while the setting with initial utilities can be seen as a special case of the completion setting
as described above, an EF1 allocation in the completion setting does not correspond to an EF1-init
allocation in the initial utility setting: Since EF1 does not distinguish between open and frozen resources,
it is possible to simply “disregard” the initial disparities by removing the corresponding frozen resources
when comparing two agents bundles to check for envy. This is not possible in our adapted EF1-init
notion, which requires that the difference in initial utility is equalized and that the removed resource
needs to come from the resources to be distributed (or, that the agent with higher initial utility does not
get any resources). Therefore, our new envy-based fairness notions for initial utilities are better suited
to our specialized setting. Moreover, since our setting is a special case of their completion setting, their
negative results do not immediately translate to our setting.

In addition to EF1, Prakash HV et al. [38] consider MMS. As a first step towards studying MMS in the
initial utility setting, we show that their result that even an arbitrarily bad approximation of MMS
cannot be guaranteed extends to our initial utility setting. An intuitive adaptation of MMS to our setting
with initial utilities is the following.

Definition B.1. The max-min-share of an agent ¢ € A in instance I with initial utilities is

Wi = Xrél%?]) 5%1;‘1 bj + ui(X;).
We say that an allocation X is max-min-share fair (MMS-init) if it holds that b; + u;(X;) > p; for all
i € A. An allocation X is a-MMS-init for 0 < o < 1, if it holds that b; + u;(X;) > a - p; foralli € A.

This definition matches the idea behind the extension of MMS to the completion setting by Prakash HV
et al. [38], who define the max-min-share as
[ pmax minui(X;),

where IT*(I) denotes the set of all possible allocations that complete the frozen allocation X, that is,
X; C X, forall ¥ € II*(I) and i € A. If we reduce an allocation instance with initial utilities to the
completion setting as described above, then the max-min-share y; in the original instance is equal to
the max-min-share 1 in the derived instance for any ¢ € A: It holds that ui(X j) =bj and X; CX;
forall ¥ € II*(]) and ¢, j € A. Moreover, let X be an allocation in the original instance and define
allocation X’ with X/ = X; U {r}} for all i € A in the derived instance. Then, X is MMS-init if and
only if X’ is MMS, since b; + u;(X;) = u;(X]) for all i € A. Using this fact, it follows from Proposition
1 by Prakash HV et al. [38] that a Pareto-optimal (PO) and MMS-init allocation always exists for binary
additive valuations and initial utilities b; € {0, 1} for all i € A: they show that in their setting such an
allocation always exists in this case when the frozen allocation is PO, which is the case in any derived
instance.

Proposition B.2. For binary additive valuations and initial utilitiesb; € {0, 1} foralli € A, an MMS-init
and PO allocation always exists and can be computed in polynomial time.

On the negative side, Prakash HV et al. [38] show that for every 0 < o < 1, there exists an instance in
their completion setting that does not admit an a-MMS allocation. Since their construction introduces
an asymmetry in the utility of the agents for the frozen resources, we cannot immediately translate
their result to our setting, since all agents agree on the initial utilities. However, using an adapted
construction, we can prove the result in our setting, using their key idea that each agent i € [n] believes
that the first i agents should share the resources equally, since the remaining agents are already “rich”

enough. We note that in both constructions, the number of agents grows exponentially in o'



Proposition B.3. For every 0 < « < 1, there exists an instance that does not admit an o.-MMS-init
allocation, even when all resources are identical.

Proof. Let 0 < o < 1. For every ¢ € N, we denote by H; := Zie[z] % the /-th harmonic number. We
choose the number of agents n such that 1 < § - Hj,. The set R contains m = 2n identical resources.
Agent i € [n] has an initial utility and a utility for a resource of b; = u;({r}) = m~V forall € R.
Observe that for every agent i € [n], it holds that y; > |2 - m(~Y, which can be achieved by
distributing the resources equally among the first 7 agents. Note that all remaining agents j € A \ [i]
already have at least initial utility b; > mt > b

Now, suppose for the sake of contradiction that there exists an a-MMS-init allocation X. Then, it needs
to hold that b; + u;(X;) > a - > o~ [ %] o= > o -mU=1 foralli € A. It follows that for all
i€ A,

a-m
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Since X can allocate at most all m resources, it follows that
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However, this contradicts our choice of n, which completes the proof. g

C Additional Material for Section 3

We first prove the NP-hardness of EF1-iN1T EX1STENCE for additive utility functions.

Theorem 3.4. EF1-INIT EXISTENCE is NP-complete.

Our reduction is from EQUITABLE COLORING. To define EQUITABLE COLORING, we first introduce some
necessary definitions.

Definition C.1. For some ¢ € N, an (-coloring of a graph G = (V, E) assigns a color c¢(v) € [{] to
every vertex v € V. We call an {-coloring proper if it holds for every edge e = {u, v} that c(u) # c(v).
The color class V(h) C V of color h € [l] is the subset of vertices colored with color h, formally,
V(h) :={v € V| c(v) = h}. We say that an {-coloring is equitable if it is proper and for any two colors
h,h' €[], it holds that |V (h)| < |V (RW)| + 1.

For some given ¢ € N, the EQuITABLE COLORING problem asks whether a given graph admits an
equitable /-coloring.

EouiTtaBLE COLORING
Input: A graph G = (V, E) and a number ¢ € N.
Question: Is there an equitable /-coloring of G?

The NP-hardness of EQuITABLE COLORING can be shown by a straightforward reduction (outlined below)
from GraPH COLORING, which is defined as follows and is known to be NP-hard (see, e.g., Garey and
Johnson [24]).



GraprH COLORING
Input: A graph G = (V, E) and a number ¢ € N.
Question: Is there a proper ¢-coloring of G?

We shortly sketch the reduction from GrapH COLORING to EQUITABLE COLORING. Given a graph
G = (V, F) and ¢ € N, we construct a graph G’ from G by adding (¢ — 1) - |V| isolated vertices. Clearly,
G admits a proper ¢-coloring if and only if G’ admits an equitable ¢-coloring: Any proper ¢-coloring of
G can be extended to an equitable /-coloring of G’ by coloring the added isolated vertices such that
every color class has size |V|. Conversely, any equitable /-coloring of G’ needs to induce a proper
£-coloring when restricted to G.

Now, we are ready to prove that EF1-INIT EXISTENCE is NP-complete. Our reduction is inspired by a
reduction due to Hosseini et al. [30]'!, who reduce from a variant of EQuITABLE COLORING where all
color classes are required to be of the same size to proof NP-hardness of deciding the existence of an
envy-free allocation (without initial utilities) for binary utilities'?.

Proof of Theorem 3.4. First, we observe that EF1-IN1T EXISTENCE is in NP: Given an allocation X', we
can check for any pair of agents ¢, j € A whether agent ¢ envies j under EF1-init. To show NP-hardness,
we reduce from EQUITABLE COLORING. Given a graph G = (V, E') and a number ¢ € N, we construct
an instance for EF1-IN1T EXISTENCE with agents A and resources R as follows:

« The set of agents A is the union of two sets Ag and A¢. The set Ag contains an edge agent e for
each edge e € E. A¢ contains a color agent h for every color h € [/].

« For every vertex v € V, the set R contains a vertex resource v.

+ The utility functions and the initial utilities of the agents are defined as follows. All color agents
from A¢ have an initial utility of 0 and get a utility of 1 for every resource, that is, u; (X ) = | X|
forany i € Ac and X C R. All edge agents ¢ € Ag have an initial utility of |[V| + 1. An
edge agent e for edge e = {u,v} € E gets a utility of |V| 4+ 2 for the two vertex resources
corresponding to edge e’s endpoints u and v. All other resources do not increase the utility of e.
Formally, u.(X) = [en X|- (|]V]|+2) forany X C R.

This construction can clearly be computed in polynomial-time. It remains to prove that G admits an
equitable /-coloring if and only if the constructed instance has a complete EF1-init allocation.

(=): Given an equitable ¢-coloring of GG, we construct an allocation X' by assigning the vertex
resource v to the color agent ¢(v). As every vertex is colored, the constructed allocation X" is complete.
Furthermore, note that only color agents receive resources.

Next, we show that X is EF1-init. Consider any two agents 7, j € A.If j € Ap, then, as X; = (), agent
i does not envy agent j under EF1-init. Next, suppose that i € Ap and j € Ac. If X; = (), then agent i
does not envy agent j under EF1-init. Otherwise, we choose a resource r € X as follows. First, assume
that X; N ¢ # (), that is, one of the endpoints of the edge corresponding to i is assigned color j. Then,
we choose a resource r € X; M 4, otherwise, we choose an arbitrary resource € X;. Note that it
needs to hold that | X; Ni| < 1, as the coloring would otherwise not be proper. Thus, we have that
(X; \ {r}) Ni = 0 and thus b; + u;(X; \ {r}) = 0. Therefore, agent i does not envy agent j under
EF1-init.

""The reduction can be found in the full version of their paper [29].
2 Agents either approve or disapprove a resource. The utility for a bundle X C R is the number of approved resources in

X.



Finally, assume that ¢, j € A¢. Since the coloring is equitable, we have that | X;| < |X;| + 1. Therefore,
either X; = () or it holds for any r € X that

bi +ui(Xi) = wi(X;) = [Xi| > |Xj] =1 > b +ui(X; \ {r}),

so agent ¢ does not envy agent j under EF1-init. As we have exhausted all possible cases, it follows that
X is EF1-init.

(«): Let X be any complete EF1-init allocation for the constructed instance. We first prove that no
edge agent can have a resource in X'. Suppose for the sake of contradiction that there is an edge agent
J € Ap with X; # (). Pick any color agent ¢ € A¢. Note that for all » € X, it holds that

bi +ui(X;) < |V < [V +1=0; <bj +u(X;\ {r}).

Thus, agent j envies agent ¢ under EF1-init. Therefore, only color agents can be allocated resources in
X.

Next, we construct an /-coloring in GG from the allocation &" by coloring every vertex v € V with the
color corresponding to the color agent i € A such that v € X},. As no edge agent can have a resource
and X is complete, every vertex is assigned a color. First, we argue that the coloring is proper. Consider
any edge e = {u,v} € E. Suppose that u and v have the same color h. Then, e C X},. However, this
implies that the edge agent for e envies the color agent h under EF1-init, as X}, # (), and for all » € X},

be +ue(Xe) = [V +1 < |[V]+2 < bp + ue(Xp \ {r}).

This contradicts that X is EF1-init, therefore the constructed coloring is proper.

It remains to show that the coloring is also equitable. Assume for the sake of contradiction that there
are two colors h, k € [¢] such that |V (h)| > |V (k)| + 1. However, this implies that the color agent k&
envies color agent h under EF1-init. We have that X}, # (), and for all » € X}, it holds that

b + ur(Xi) = | Xp| < |Xn| =1 =0bp +up(Xp \ {r}).

Thus, the constructed coloring is an equitable ¢-coloring of G, which completes the proof. O

Next, we show that the hardness result cannot be extended for a constant number of agents, assuming
a unary encoding of the utility functions.

Proposition 3.5. For a unary encoding of the utility functions and a constant number of agents, EF1-INIT
EXISTENCE and EF-INIT EXISTENCE are polynomial-time solvable.

Proof. Both problems can be solved by a similar dynamic programming approach for a constant number
of agents n = |A|. We first prove the statement for EF-init, and then show how the proof can be adapted
for EF1-init. We fix an arbitrary ordering of the resources, i.e., R = {ry,r2,..., 7, }. Since we assume
a unary encoding of the utility functions, without loss of generality, we assume that u;(X) € N for all
i € Aand X C R, and define s := max;c 4 u;(R).

The dynamic program for EF-init is based on a boolean table T'[/, (v; ;);';_;], where ¢ € [m] and
v;j € [s] foralli,j € A. An entry should be set to "true” if there is an allocation X of the resources
{r1,...,7¢}, where it holds that u;(X;) = v; j for all ¢, j € A. Note that as n is constant and s is
polynomial in the input size since we assume a unary encoding, it follows that the size of the table
in O(m - 5”2) is polynomial in the size of the input. We initialize the entry for / = 0 and v; ; = 0
forall ¢, j € A to "true" and all other entries to "false". The table entries are filled in ascending order
for £ € {1,...,m} as follows. To fill an entry for given indices ¢ € {1,...,m} and v; ; € [s] with
i,j € A, check if there exists an agent i* € A, such that the entry for ' = £ — 1, v} .. = vj —u;({re})



forall j € A, and ”z,‘,j =v;jforalli € Aand j # " is set to "true". Intuitively, this means that the
/-th resource is given to agent 7*, and it remains to check if there is an (already computed) entry that
represents that the first { — 1 resources can be distributed accordingly. Clearly, each entry can be
computed in polynomial time. After computing the table, to decide EF-IN1T EXISTENCE, check if there is
an entry for { = m, where for all 7, j € A, it holds that b; + v;; > bj + v; j or vy ; = 0forall i € A
(note that this implies that X; = () in the corresponding allocation X’).

To adapt the approach for EF1-init, we introduce additional dimensions p; ; for each pair of agents
i,j € A used to store the value of the resource in j’s bundle that ¢ likes the most, yielding a table
T, (Ui,j)ijl, (pm);fj:l], where ¢ € [m] and v; j,p; j € [s] forall i, j € A. We initialize the entry for
¢ =0andv;; =p;; =0foralli,j € Ato "true" and all other entries to "false". Again, table entries are
filled in ascending order for ¢ € {1, ..., m}. Analogously as before, to fill an entry for given indices
te{l,...,m}and v j,p;; € [s] withi,j € A, check that there is an agent i* € A such that it holds
that pj;« > u;({r¢}) forall j € A, and such that there is a "true"-entry for i* with the following indices:

=01,

o« V) = vj40 —uj({re}) forall j € A and v ; = v;; foralli € Aand j # i*,

. p;.,l.* = pji+ if pjix > u;({r¢}) and otherwise p;ﬂ-* € [pji+] forall j € A,
. Pé,j = p; foralli € Aand j # i*.

Again, it is clear that the table size and the time to compute each entry is polynomial in the input size.
To decide EF1-I1N1T EXISTENCE, after filling the table, check if there is an entry for ¢ = m, where for all
i,j € A, itholds that b; + v;; > bj + v; j — 15 j or vy j = O forall ¢/ € A. O

Finally, we give the complete proof for Theorem 3.6, which we sketched in the main section of the
paper.
Theorem 3.6. EF-INIT EXISTENCE for identical resources can be decided in O(n? - m?) time and O(n - m?)
space.

For agenti € A, let v; == u;({r}) for any r € R be the value that agent ¢ derives from a single resource.
We begin by formalizing the following observations, which we informally introduced already in the
main part of the paper.

Observation C.2. Let h € [t]. Let X' be an allocation where there is no envy between any pair of agents
1,7 € Uee[h} Ly in the first h levels. Then, the following holds.

1. If for some h' € [h), there is an agent i € Ly, with | X;| > 1, then |X;| > 1 forall j € Ly with
B < H.
2. For any level Ly, with i/ € [h], it holds that any two agentsi,j € Ly are allocated the same

number of resources | X;| = | X;|.

3. Leti, j € Ugepp) Le be two agents in the first h levels. Ifb; < b; and v; < vj, we have that | X[ = 0.

Proof. 1t is easy to see that the first two properties need to hold. To see why the third property holds,
consider two agents ¢, j € UEE[h] Ly with b; < bj and v; < v;. Now, assume for the sake of contradiction
that | X;| > 0. We have that | X;| > 0, since otherwise agent ¢ envies agent j under EF-init, as i has a
lower initial utility. Since agent ¢ does not envy j under EF-init in X', we have that
bi + ui(Xi) > by + ui(X;)
<~ b; +v; - |Xl’ > bj—H)i : |X]|
bj — bl

)

= |Xi| = |X;] =



However, since agent j does not envy ¢ under EF-init, we need to have that

bj + u;(X;) = bi +u;(X5)
<:>bj+vj-\Xj| Zbi—i-vj“Xﬂ
b; —b;
= > X - X

J

Note that this is a contradiction: Since b; — b; > 0 and v; < v;, we have that
b; —b; bi—0b
|1 Xi| = 1Xj] < F—— <
’Uj 4

LX) - | X

Therefore, it needs to hold that | X;| = 0. O

Note that for h = t, the allocation X from Observation C.2 is EF-init. Then, the properties hold for any
level and all agents.

As defined in the main part of the paper, let h* € [t] be the minimal level such that there is a violating
pair of agents i,j € A with b; < bj and v; < v; where j € Ly (if such a pair exists). Then, by
Observation C.2, it needs to hold for any EF-init allocation X and agent ¢’ € Lj, with h’ > h* that
| Xi7| = 0. That is, no agent outside the first h* — 1 levels gets a resource in any EF-init allocation. If
h* = 1, we know that the given instance for EF-INIT EXISTENCE is a no-instance, since there cannot be
a complete EF-init allocation.

Otherwise, we define t* :== h* — 1. Let ¢ € Uée{h*,...J} Ly be an agent outside the first t* levels. For

every level Ly, with b’ € [t*], we know that an agent j € Lj/ can get at most Lbi;bj | resources, as

otherwise agent ¢ would envy j under EF-init. By defining kp/ as the minimum of these values for all
1€ Uée{h*,...,t} Ly, we get an upper-bound on the number of allocated resources for each agent in the
first t* levels in any EF-init allocation. If there is no violating pair in the whole instance, we set t* =t
and ky, :== m forall b/ € [t].

Now, we can show the following crucial lemma.

Lemma 3.7. Let h, ', h" € [t*] with h' < h < h" and consider agentsi* € Ly, i € Ly, and j € Lyy.
If in some allocation X there is no envy between agents i and i*, and between i* and j under EF-init, then
there is no envy between i and j under EF-init.

Proof. We prove the statement by proving the following two implications.

1. If i does not envy ¢* and i* does not envy j, then ¢ does not envy j (under EF-init).

2. If j does not envy ¢* and ¢* does not envy ¢, then j does not envy ¢ (under EF-init).

Firstly, assume that 7 does not envy i* and i* does not envy j under EF-init. If X;« = (), then also
X; =0, as 7* does not envy j under EF-init and b; > b;«, which implies that ¢ does not envy j under
EF-init. Thus, we assume that X;+ # () and X; # (). As i does not envy ¢* under EF-init, we have that

b; + Uz(Xz) > b + ul(XZ*) <~ b; +v;- ’XI‘ > b + v; - ‘Xz*’

b+ — b;
= | X - | X > = L
(%
Furthermore, agent i* does not envy j under EF-init, so
b —l—ui*(Xi*) > bj +ui*(Xj) < bjx + vj= - |Xi* > bj + v - |X]’

x> bj — by N bjfbi*7
V= (%




where the last inequality holds since b; — b;+ > 0 and v;+ < v; (as there is no violating pair in the first
t* levels and h’ < h). This implies that i does not envy j under EF-init, since
bj —bx= b —0b; bj—b;
) — 15| = X — X + X — 3] 2 220 20 =
Vs (o V;
<~ b;+ ;- ’XZ‘ > bj + v; - ’XJ‘

Secondly, assume symmetrically that j does not envy ¢* and ¢* does not envy ¢ under EF-init. Since j
does not envy i* under EF-init, if X;» # (), then it holds that

bj +uj(Xj) = bir +uj(Xix) < bj v [X;| = bi= +v; - [ Xi-

bj — by
22> | X | — 1 X1
Uj
If X;« = 0, then | X;+| — | X;| <0< bj;?i* , S0 in any case, it holds that bj;& > X — | X1
J J

Furthermore, we have that i* does not envy 7 under EF-init. If X; = (), then this directly implies that j
does not envy 7 under EF-init. Otherwise, it follows that

bix + wpe (Xi=) > by + ui=(X;) <= b= + v - | Xyx| > bs + v - | X5

bi- — bi _ b — by
< <

= ‘Xz| — |Xi*

Vi Uj ’
where the last inequality holds since b;« — b; > 0 and v;+ > v; (since there is no violating pair in the
first t* levels and h” > h). This implies that j does not envy i under EF-init, since
bis —b:  bi—bs  bs—b:
Xl = [X5] = [X| = [ X | + [ X | = | X € —— + F =
Uj Yj Uj
<~ b + ;- |X1| < bj + ;- |X]|

O]

Now, we are ready to prove that EF-INIT EXISTENCE for identical resources and additive utility functions
can be decided in time polynomial in n and m.

Proof of Theorem 3.6. We prove the statement by giving a dynamic-programming algorithm based on
the following table D of size O(n - m?). For a € [m], b € [t*], and ¢ € [m], we store in entry D[a][b][c]
whether there is an allocation &’ that satisfies the following requirements, which we call fitting for this
entry. The table entry may be omitted when it is clear from context.

« Allocation X allocates exactly a resources,
« the set of agents that get at least one resource is the union of the first b levels | J oee) Lo
« every agent i € Ly, gets exactly ¢ = | X;| resources,

« there is no pair of agents ¢,j € Ule[b} Ly in the first b levels such that 7 envies j in X under
EF-init,

« and it holds that | X;| < kj, for any h € [t*] and agent i € Lj, (recall that we defined these
upper-bounds above when defining ¢*).



Algorithm 2 Decide EF-INIT EXISTENCE

1: Global Table: D[a][b][c], for a € [m], b € [t*], and ¢ € [m].
2: fora € [m], b € [t*], and ¢ € [m] do

3: Dia][b][c] - "no" > Initialize Table D entries to "no".
4: for a € [m] and ¢ € [k1] do

5: if |L1|- ¢ = a then

6: Dial[1][c] < "yes" > Initialize entries for the first level.

7. forbe {2,...,t"} do

8: for a € [m] and ¢ € [kp] do

9: if a — |Lp| - ¢ > 0 then

10: a <+ a—|Ly|-c

11: V—b-1

12: Choose i € Ly with minimal v; and j € L; with maximal v;

13: Choin < C+F [b]T_Zbﬂ > Lower bound ensures that i does not envy j.
14: Craz & C+ LI)JT_ijJ > Upper bound ensures that j does not envy i.
15: ifc . <c .. then

16: forcd € {c/ ;. - Cnaa} do

17: if D[a'][t][c/] = "yes" then

18: Dlal[b][c] « "yes"

19: for b € [t*] and ¢ € [kp] do

20: if D[m|[b][c] = "yes" and CheckEFInit(m, b, c) = "yes" then
21: Accept > Accept if fitting allocation is EF-init.
22: Reject

23: function CHECKEFINIT(a, b, C)
24: Choose arbitrary j € Ly,
25: if b < t* then

> Check if an agent in levels Ly 1, ..., Ly~ (that receives no resources) envies j.
26: fori € Upepin,. 1oy Ln do
. b;—b; " "
27: if ¢ > ~-— then return "no

28: return "yes"

Next, we give Algorithm 2 to decide EF-IN1T Ex1STENCE. The algorithm first fills table D and then
checks if there is a "yes"-entry for which a fitting allocation is EF-init. Note that for a fitting allocation
for an entry for level b € [t*], we only require that there is no envy under EF-init between agents
i,jelU oep) Le In the first b levels, so we have to check if agents in higher levels are envious. To prove
the correctness of Algorithm 2, we first prove that table D has been filled correctly when we check if
there is a fitting EF-init allocation for a "yes"-entry after Line 19.

Claim C.3. After Line 19, for any a € [m], b € [t*], and ¢ € [m], it holds that entry D[a][b][c] = "yes" if
and only if there is a fitting allocation for entry D]a][b][c].

Proof. Note that for any a € [m] and b € [t*], a fitting allocation can only exist if ¢ < k;. Moreover, in
Algorithm 2, for any b € [t*], we only introduce "yes"-entries for ¢ < k. Thus, for all b € [t*], entries
with ¢ > k;, are correctly set to "no", and it suffices to consider entries with ¢ € [k;]. We prove this
claim by induction over b € [t*].

First, we consider the base case of b = 1. Note that for any a € [m| and ¢ € [k;], a fitting allocation X
for Dl[a][1][c] allocates exactly a resources only to agents in L1, | X;| = ¢ for every agent i € L; and
X satisfies that there is no envy between any pair ¢, j € L; under EF-init. Clearly, there is such an




allocation if and only if |L| - ¢ = a. As we set D[a][1][c] = "yes" if and only if |L;| - ¢ = a in Line 6,
the base case holds.

For the induction step, assume that for some 1 < h < t*, the claim holds for all table entries D[a][b][c]
with b < h, a € [m] and ¢ < k. We need to show that for any a € [m] and ¢ € [kp11], entry
Dlal][h + 1][c] = "yes" if and only if there is a fitting allocation X for this entry.

(<): Recall that we set D[a][h + 1][c] = "yes" in Line 18 if we find a suitable "yes"-entry for the
preceding level Lj,. Suppose that there is a fitting allocation X’ for D[a][h + 1][c]. In X, every agent
in level h + 1 gets exactly ¢ resources and agents in A \ Uée[h +1) Le do not receive any resources.
Next, we will construct a fitting allocation X’ for an entry in the previous level h. Clearly, by setting
X! =0Qforalli € Lpy; and X! = X, forall i ¢ Ly, allocation X’ induces an allocation X’
that allocates @’ = a — |Lp41| - ¢ > 0 resources and where the set of agents that get a resource is
U vein] Ly. Furthermore, in X’, there cannot be any envy under EF-init between agents 7, j € | veln] Ly,
as these agents would also be envious in X. Finally, by Observation C.2, in X”, all agents in Lj need
to get the same number ¢’ of resources. It needs to hold that ¢/ < ky, since X is fitting. Thus, X’
is fitting for D[a/][h][¢/]. By the induction assumption, this implies that D[a][h][¢/] = "yes". As in
the algorithm, choose an agent :* € Lj with minimal v;+ and j* € Lj41 with maximal v;+, and let
C;m'n =c+ [%—I and Clmaac =c+ \_W
X, it needs to hold that ’

|. Note that since i* does not envy j* under EF-init in

bix + wix (Xix) > bje + uix (Xj+)
< bj+ + vjx - ’XZ/*‘ > bj* + v+ - cC
bjx — by

3%

Furthermore, j* does not envy ¢* under EF-init in X, so we have that

< bjx +vjx - > by +vjx | XL

bix — b«
AT S XL —e = | XL <

max*

j*

Note that as shown above, ¢, < ¢/ = |X/.| < ], Thus, we consider the "yes"-entry for X” in the

algorithm and set entry D[a][h + 1][c] = "yes" in Line 18.

=): Conversely, assume that D[a][h + 1]|[c] = "yes". Letd’ = a — |Lj+1| - ¢. Again, choose
y y + g

. . .. . . . bjx —b;x

i* € Ly with minimal vy and j* € Ly, with maximal vj, and let ¢,;, = ¢ + [“——] and
bix —b;x . . .

Craw = €+ L]vji*lj As we only set the entry to "yes" in Line 18, there needs to exist some ¢ €

{cin> - - -+ Cimaz + Such that D[a'][h][¢/] = "yes". By the induction assumption, this implies that there

is a fitting allocation X for D[a’][h][¢/]. Extending X by allocating ¢ resources to every agent in level
h + 1 yields an allocation X" that allocates exactly a’ + ¢ - |Lp41| = a resources and where the set of
agents that receive a resource is | ¢e[ht1) Le- It remains to prove that there is no envy under EF-init
between any agents ¢, j € Ufe[h+1] Ly in X'. Clearly, there cannot be a pair of agents i, j € Uﬁe[h} Ly
where i envies j, as ¢ would also envy j (under EF-init) in X'. Next, consider two agents i € L;, and



J € Lpy1. Note that

1z X+ [~

X=d>c . =
X = >¢ c+ [ o o

min

b — bi

|

=X - 1Xj| >

(2
= b+ | X]| - v > bj + | X]] - vy,
so agent i does not envy j under EF-init. Furthermore, we have that
b bj — b;

bov —
| Xil = ¢ < g = 4 [ ] < |Xj| + [
vj* vj

]

b; —b;
= > |X]| - |X]]
Uj
<~ bj + |XJ,| “vj 2> b; + |Xz,| - vy,

so agent j does not envy ¢ under EF-init. It remains to prove that there is no envy under EF-init between
an agent i € Ly, with i/ < h and an agent j € Lj1. Consider an agent j' € Lj;,. We have that there is
no envy between agents i and j’, as there is no envy between any agents in Uée[h] Ly (under EF-init),
since X is fitting. Moreover, as argued above, there is no envy between agent j' € L and j € L.
With Lemma 3.7, it follows that there is no envy between agent i € Lj, with h’ < hand j € Lj1.
Thus, X’ is fitting for D[a][h + 1][c]. ¢

Now, we are ready to prove the correctness of the algorithm in the following claim.

Claim C.4. Algorithm 2 accepts if and only if there is a complete EF-init allocation.

Proof. We prove the claim by proving both directions of the equivalence.

(=): First, suppose that Algorithm 2 accepts. Note that we only accept in Line 21 if there is an entry
D[m][b][c] = "yes" for some b € [t*] and ¢ € [m]. By Claim C.3, there exists a fitting allocation X" for
D[m][b][c]. Clearly, this allocation is complete.

Note that no agent in A\ {Jcp) Le gets a resource in X' Thus, only agents in () Le can be envied
under EF-init by any agent. Since X is fitting for D[m][b][c], no agent i € (J;c L can be envious of
another agent under EF-init. Therefore, we only need to check if there is an agenti € A\ |J oee) Lo
that envies an agent j € Uée[b] Ly under EF-init. First, observe that no agent ¢ € Uee{t*,.‘.,t} Ly envies
an agent j € Jy L¢ under EF-init: Consider some agent i € {Jye g4« 4y L and an agent j € Ly for
some ¢ € [b]. Since X is fitting, the allocation needs to satisfy the upper-bounds on the number of
resources for agents in the first ¢* levels that we defined in the beginning. Formally, it needs to hold
that | X ;| < k. Thus, we have that

b — b;

7

|Xj‘ <k < = b; >bj+v;- ’X]‘ = b +ui(X;) > b, —i—ui(Xj),

so agent ¢ does not envy j under EF-init. Note that if b = ¢*, we already have shown that there is
no envy between any pair of agents under EF-init. Otherwise, if b < t*, it remains to consider an
agent ¢ € Uee{b-s—l,...,t*} Ly. Let j* € Ly be an agent in L. Recall that j* does not envy any agent
Jje Uée[b] Ly under EF-init, since X is fitting. Thus, if < does not envy j*, by Observation C.2, ¢ does
byx—b;

v;

not envy j (under EF-init). Note that ¢ does not envy j* under EF-init if and only if ¢ = | X+| <
as

bje — b;

%

|Xj*| < < b]'* =+ v; - |Xj*

<b <— bj* +U¢(Xj*) < b; +Uz(Xz)

Since we accept in Line 21 only if this inequality holds for all agents i € J,c (b41,...%} Ly, allocation X
is EF-init.



(«): Suppose there is a complete EF-init allocation X'. If the algorithm accepts, we are done. In the
following, assume for the sake of contradiction that the algorithm does not accept. Note that it needs
to hold for all h € [t*] and i € Ly, that |X;| < kj, as argued in the beginning: If t* < ¢, all agents in
Urege41,...4) Le cannot get a resource in X'. Therefore, if | X;| > kj, for some h € [t*] and i € Ly, then
there is some agent j € Uze{t*ﬂ,...,t} Ly that envies ¢ under EF-init. If t* = ¢, we set kj, = m (recall
that this is the case if there is no violating pair in the instance), so | X;| < kj = m holds trivially.

Let h be the maximal level 4 € [¢] such that an agent i € Ly, receives a resource in X'. Note that h < t*,
since only agents in Uze[t*] Ly can get a resource in an EF-init allocation. Moreover, by Observation C.2,
all agents in | J very Le need to get at least one resource and every agent in Lj, needs to get exactly | X;|
resources in X. Clearly, since X" is EF-init, there is no envy under EF-init between any pair of agents in
X. Tt follows that X is fitting for D[m][h][|X;|] and thus D[m][h][|X;|] = "yes" by Claim C.3.

If h = t*, CheckEFInit(m, h, | X;|) returns "yes" and we accept in Line 21, which is a contradiction.
Thus, assume that h < ¢* and consider an agent 7’ € Uée{h+1 ey Lt and an agent j* € Lj,. As argued

< IV Thus, this inequality needs to

hold for all agents i’ € (J,c (h+1,...t+} Le in allocation X' Therefore, CheckEFInit(m, h, | X;|) = "yes".
Again, this implies that we accept in Line 21, which is a contradiction. Therefore, the algorithm needs
to accept either for this entry or for an entry that was checked earlier. ¢

bj* 7bi/

above, 7’ does not envy j* under EF-init if and only if | X

Finally, it remains to show that Algorithm 2 runs in O(n? - m?) time and O(n - m?) space. Recall
that we proceed in two steps: Firstly, we partition the agents into the levels, compute ¢t* € [¢] and the
upper-bounds kj, for all h € [t*]. Secondly, we decide EF-INIT EXISTENCE using Algorithm 2.

Partitioning the agents into the levels and computing t* and the upper-bounds can be done in time
O(n? - m3). Moreover, we need to store at most t* < n upper-bounds. Next, we consider Algorithm 2.
First, since ¢ < n, the table D has size O(n - m?). Clearly, the initialization of the table within Line 2 to
Line 4 can be done in running time O(n - m?). To compute a table entry for level L, with b € {2, ..., ¢},
we need to look at at most m entries for level L;_;. Note that we also need to find the agents i € Ly
with minimal value v; and j € L; with maximal value v;. However, for every one of the at most n
levels, we can store the agents with minimal and maximal value when partitioning the agents into the
levels. Thus, each one of the O(n - m?) entries can be computed in O(m), so the algorithm fills table D
in time O(n - m3). Lastly, we analyze the running time of checking if there is a "yes"-entry with a fitting
EF-init allocation within the loop in Line 19. First, observe that we check at most O(n - m) entries. For
every "yes"-entry, we check whether a fitting allocation is EF-init using function CheckEFInit, which
takes time at most O(n - m). O

Note that the running time and space consumption from above may be improved by a more careful
analysis. For example, in Algorithm 2, the space consumption of table D can be improved by storing
only the O(m?) entries of the previous level. Whenever we introduce a "yes"-entry, we can directly
check if a fitting allocation is also EF-init, in which case we can directly accept. Moreover, the algorithm
can also be modified to compute an EF-init allocation by storing a fitting allocation for "yes"-entries.
Note that it suffices to store an arbitrary fitting allocation for an entry: Extending a fitting allocation
for an entry for level L;, with b € [t] to level L and checking if the allocation is EF-init only depends
on the number of resources allocated to an agent in L, which is the same for all fitting allocations for
this entry.

D Additional Material for Section 4

In this section, we provide the complete proof for Theorem 4.7.



Theorem 4.7. The allocation computed by Algorithm 1 is complete and satisfies min-EF1-init. Further,
Algorithm 1 runs in polynomial time.

We start by formalizing properties of Algorithm 1 that we informally remarked in the main part, before
restating the crucial Lemma 4.10 (Activation Gap Lemma). Using this, we then complete the proof of
Theorem 4.7.

We observe the following.

Observation D.1. Consider Algorithm 1 and let X be the allocation returned by the algorithm. Leti,j € A
be two distinct agents, and for each k € {1, j}, let X; denote the bundle of k after a given pick in the
algorithm. If either X = () or there exists a resource r € X such that b; +u;(X}) > b; +u; (X7 \ {r}),
and after this pick agent i picks before j’s next pick, then it holds that b; + u;(X;) > bj +w;(X; \ {r}) in
the final allocation X .

Lemma 4.10 (Activation Gap Lemma). Consider Algorithm 1 and leti,j € A be two agents that were
active in some round with b; > b; and b; > minyc 4 byr. For k € A, let X be the bundle of k after the
pick that activated i. Then, either X7 = () or there exists r € X7 such that

Z min  uy({r'}) < b —b;.

j'E€A: by <b;
r’EX;.‘\{r}J i1 <0i
Using the above lemma, we can now prove Theorem 4.7.

Proof of Theorem 4.7. Let X be the allocation computed by the algorithm and let < be the final linear
order. We show that for any two agents ¢, j € A, agent ¢ does not envy agent j under min-EF1-init
in X. Thus, we need to show that X; = ) or condition (C1) holds if b; < b; or (C2) holds if b; > b;.
Therefore, in the following, assume that X; # (.

Case 1 (b; = bj). In this case, we need to argue that there is a resource € X; such that condition
(C1) holds. Note that 7 and j are active in the same rounds. Thus, condition (C1) holds by applying
Observation 4.8 on the set of all rounds: At least one of the cases is applicable, and every case implies
that u; (X;) > u;(X; \ {r}) for some r € Xj.

Case 2 (b; < bj). For k € A, let X be the bundle of k after j’s first pick and let r € R be the first
resource picked by j,i.e., X j* = {r}. Since 7 had reached j when agent j was activated, it holds that
bi +ui(X7) = bj +ui (X7 \ {r}).
=0

Moreover, since ¢ picks before j in the picking sequence starting with the pick after j’s first pick,
agent i prefers the resources they pick in this picking sequence (i.e., X; \ X/°) over those picked by j
(ie, X; \ X7). Thus, u;(X; \ X7) > u;(X; \ X7). With Observation D.1, condition (C1) follows for

resource r.

Case 3 (b; > bj). In this case, we need to argue that condition (C2) holds for some resource r* € X},
that is, that there exists a subset X* C X; with

Z min  wuy({r}) < b; — by, (7)

rexX* J'eA: bj/ <b;

such that it holds that u;(X;) > u;(X; \ (X* U {r*})).



We make a case distinction whether agent ¢ was activated at some point during the algorithm. First,
suppose that agent ¢ was activated. Let X, be the bundle of agent k& € A after the pick that activated 1.
Note that b; > b; implies that b; > min; ¢4 by, so by Lemma 4.10, we have that either Xj* = D orit

holds that
g _min wjyr ({r'}) < bi — b,
T’GX;\{T} J'eA: bj/ <b;

for some resource 7 € X7 Note that it needs to hold that X} # () since b; > b;. Thus, let X* = X7\ {r}
and 7* = r. Note that X ™ satisfies Equation (7). Next, consider the picking sequence of all picks starting
with (including) agent 7’s first pick. In this sequence, agent ¢ picks the resources in X; and agent
J picks the resource in X \ X7. Since agent ¢ picks first, we have that u;(X;) > u;(X; \ X7) =
wi(X; \ (X*U{r*})), so X* and r* satisfy (C2).

Finally, suppose that agent ¢ was not activated. In this case, we will argue that it is always possible
to choose X* and resource 7* in (C2) such that X* U {r*} = X, which implies that u;(X;) > 0 =
u;i(X; \ (X" U{r*})) holds trivially. If agent 7 was not activated, there needs to be an agent j* € A
with b« < b; such that

U j* (XJ*) < bi — bj*. (8)

If j = j*, this implies that (C2) holds for X* = X, and any arbitrary resource r* € X}, since

bi — b >) uj> (Xj ) > ,Ez); j’Ef{rzlibIjl/<bi ’u,j/({r’}).
T EX i+

Thus, it remains to consider the case that j # j*. First, we assume that b; = b;+. Note that in this case,
agents j and j* are active in the same set of rounds R. Thus, using Observation 4.8, we get that

upe (X \{r}) <ws) wj=(Xj+) <) bj= —bi = bj — b;

for some resource r € X;. Thus, condition (C2) holds for X* = X; \ {r} and resource r* = r, since
X*U{r} = X, and X" satisfies Equation (7). We consider the remaining case that b; # b;.

First, assume that b; > bj+. Let X7, be the bundle of agent j* when agent j was activated. It needs to
hold that

Uj (X]**) >bj — by~ 9)
From Equations (8) and (9), it follows that
’LLj*(Xj* \X]**) < b; —b;. (10)

Let 7 € X be the first resource picked by agent j. Consider the picking sequence of all picks starting
with the pick after agent j’s first pick. In this picking sequence, agent j picks the resources in X; \ {r}
and agent j* picks the resources in X= \ X7.. Since agent j* picks before j in this picking sequence,
we have that

wjs (X \ Xjv) >qag) uj= (X5 \ {r}). (11)

With this, it follows that

bi = bj >qo) ujr (X0 \ X2) Zan w (X \ {r}) = D pepin | up({r'}).
rex\ry

This implies that condition (C2) holds for X* = X; \ {r} and resource r* = r.



Finally, assume that b; < b;-. Let X7 be the bundle of agent j when agent j* was activated. Note that
it cannot be the case that X; = (), since bj < bj«. Moreover, b; < bj« implies that bj+ > min;c 4 b
By Lemma 4.10, we thus have that there exists a resource r € X J* such that

b« —bj > Z min  u;({r'}). (12)

€A by <bje
rexy\ry? T

Consider the picking sequence starting with agent j*’s first pick. In this sequence, agent j* picks the
resources in X~ and agent j picks the resources in X; \ X 7. Since agent j* picks first, we get that

It follows from Equations (12) and (13) that

bi—bj = (bi = bje) + (b — b)) >anap upr G\ X))+ > Jmin_ - ug({r'})
r’EX’.‘\{r}J EA 04 <y
J
> i A({r')).
= > omin uy({r'))
r'eXi\{r} !
Thus, condition (C2) holds for X* = X \ {r} and resource r* = r. This completes the proof. O
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