
Temporal Fair Division of Indivisible Items

Edith Elkind1, Alexander Lam2, Mohamad Latifian3, Tzeh Yuan Neoh4, Nicholas Teh5
1Northwestern University, USA 2Hong Kong Polytechnic University, Hong Kong SAR
3University of Edinburgh, UK 4Harvard University, USA 5University of Oxford, UK

Abstract

We study a fair division model where indivisible items arrive sequentially, and must be allocated
immediately and irrevocably. Previous work on online fair division has shown impossibility
results for achieving approximate envy-freeness under the assumption that agents have no
information about future items. In contrast, we assume that the algorithm has complete knowl-
edge of the future, and aim to ensure that the cumulative allocation at each round satisfies
approximate envy-freeness, which we define as temporal envy-freeness up to one item (TEF1). We
focus on settings where items are exclusively goods or exclusively chores. For goods, while TEF1
allocations may fail to exist, we identify several special cases where they do—two agents, two
item types, generalized binary valuations, unimodal preferences—and provide polynomial-time
algorithms for these cases. We also prove that determining the existence of a TEF1 allocation is
NP-hard. For chores, we obtain analogous results for the special cases, but present a slightly
weaker intractability result. We also show that TEF1 is incompatible with Pareto optimality,
with the implication that it is intractable to find a TEF1 allocation that maximizes any p-mean
welfare, even for two agents.

1 Introduction

Fair division, a topic at the intersection of economics and computer science, has been extensively
studied over the years, with applications ranging from divorce settlements and inheritance disputes
to load balancing [23, 56]. Typically, in fair division there is a set of agents and a set of items, and the
goal is to obtain a fair allocation of items to agents. In our work, we study a model where these items
are indivisible, so each must be wholly allocated to an agent. Moreover, the items can provide either
positive utility (in which case they are called goods) or negative utility (in which case they are called
chores, or tasks). When allocating indivisible items, a desirable and widely-studied fairness notion is
envy-freeness up to one item (EF1), a natural relaxation of envy-freeness (EF). In an envy-free allocation,
each agent values the bundle of items they receive at least as highly as every other agent’s bundle.
However, this desideratum is not always achievable for indivisible items (consider two agents and a
single item that they both value). In contrast, in an EF1 allocation, the envy that agent A has towards
another agent B can be eliminated by removing a single item from B’s bundle (in case of goods) or A’s
bundle (in case of chores).

Most prior research studies fair division in the offline setting, assuming that all of the items are
immediately available and ready to be allocated. However, there are various applications where the
items arrive and need to be allocated on the spot in a sequential manner. For example, when the
university administration places an order for lab equipment, or when a company orders new machines
for its franchises, the items may arrive over time due to their availabilities and delivery logistics. In
case of chores, collaborative project management may require division of tasks over time. For a variety
of reasons, arriving items may have to be allocated immediately; there may not be any storage space to
keep any unallocated goods, or the central decision maker may desire a non-wasteful allocation in the
sense that items or tasks should not sit idle for periods of time.

These applications can be captured by an online fair division model, in which items arrive over time and
must be immediately and irrevocably allocated, though it is assumed that each item’s valuation is not
known until its arrival. Prior research has found that a complete EF1 allocation of goods cannot be

1



guaranteed under the online fair division model1 [19]. However, this result relies on the assumption
that the algorithm has no information about the future. In contrast, in our examples, the delivery
services could provide the estimated delivery dates, and there may be a pre-planned timeline for the
tasks. Motivated by these nuances, our work studies the informed online fair division setting, assuming
that the algorithm can access the items’ valuations and arrival order upfront.

Note that the assumption of complete information about the future trivially leads to a complete EF1
allocation at the end of the allocation period: simply treat the instance as an offline problem and apply
any algorithm known to satisfy EF1 (e.g., [52, 9, 26]). However, this approach ignores the cumulative
bundles of the items throughout the allocation period, and, consequently, agents may feel that their
partial allocations are unfair for extended periods of time. Inspired by this issue, we propose temporal
EF1 (TEF1), an extension of EF1 to the informed online fair division setting which requires that at each
round, the cumulative allocation satisfies EF1.

The main focus of our work is on achieving TEF1, so for the informed online fair division of indivisible
goods or chores, we aim to answer the following existence and computational questions:

Which restricted settings guarantee the existence of a TEF1 allocation, and can we compute
such an allocation in polynomial time in these settings? Is it computationally tractable to
determine the existence2 of a TEF1 allocation? In terms of existence and tractability, is TEF1
compatible with natural notions of efficiency?

1.1 Our Contributions

We outline our paper’s answers to these key questions as follows.

In Section 3, we show the existence of TEF1 allocations (for goods or chores) in restricted settings,
such as the case of two agents, when there are two types of items, when agents have generalized
binary valuations, or when they have unimodal preferences. For each of these cases, we provide an
accompanying polynomial-time algorithm. For the allocation of goods, we show that determining
whether there exists a TEF1 allocation is NP-hard; whereas for chores, we show that given a partial
TEF1 allocation, it is NP-hard to determine if there exists a TEF1 allocation that allocates all remaining
chores.

In Section 4, we investigate the compatibility of TEF1 and Pareto-optimality (PO). We show that even
in the case of two agents, while a TEF1 allocation is known to exist and can be computed in polynomial
time (for both goods and chores), existence is no longer guaranteed if we mandate PO as well. Moreover,
we show that in this same setting, determining the existence of TEF1 and PO allocations is NP-hard.
Our result also directly implies the computational intractability of determining whether there exists a
TEF1 allocation that maximizes any p-mean welfare objective (which subsumes most popular social
welfare objectives).

Finally, in Section 5, we consider the special case where the same set of items arrive at each round,
and show that even determining whether repeating a particular allocation in two consecutive rounds
can result in a TEF1 allocation is NP-hard. We complement this with a polynomial-time algorithm for
computing a TEF1 allocation in this case when there are just two rounds.

1In fact, the maximum pairwise envy is Ω(
√
t) after t rounds in the worst case.

2Prior work by He et al. [46] has shown that a TEF1 allocation is not guaranteed to exist for goods in the general setting
with three or more agents.

2



1.2 Related Work

Our work is closely related to online fair division, whereby items arrive over time and must be irrevocably
allocated to agents. The key difference is that in the standard online setting, the algorithm has completely
no information on future items, whereas we assume complete future information. Moreover, the goal in
online fair division models is typically to guarantee a fair allocation to agents at the end of the time
horizon, rather than at every round.

As we focus on EF1, papers satisfying envy-based notions in online allocations are particularly relevant.
Aleksandrov et al. [4] consider envy-freeness from both ex-ante and ex-post standpoints, giving a
best-of-both-worlds style result by designing an algorithm for goods which is envy-free in expectation
and guarantees a bounded level of envy-freeness. Additionally, Benadè et al. [19] find that allocating
goods uniformly at random leads to maximum pairwise envy which is sublinear in the number of
rounds. For further reading, we refer the reader to the surveys by Aleksandrov and Walsh [3] and
Amanatidis et al. [6].

There has also been work on online fair division with partial information on future items. Benadè
et al. [19] study the extent to which approximations of envy-freeness and Pareto efficiency can be
simultaneously satisfied under a spectrum of information settings, ranging from identical agents and
i.i.d. valuations to zero future information. An emerging line of work on learning-augmented online
algorithms has an alternate approach to partial future information: the algorithms are aided by (possibly
inaccurate) predictions, typically from a machine-learning algorithm. The focus is to design algorithms
which perform consistently well with accurate predictions, and are robust under inaccurate predictions.
These predictions could be of each agent’s total utility for the entire item set [11, 12], or for a random
subset of k incoming items [20].

Unlike the aforementioned papers, our work considers a completely informed variant of the online fair
division setting, which has been studied by He et al. [46] for the allocation of goods. Similar to our
paper, their objective is to ensure that EF1 is satisfied at each round, but they allow agents to swap
their bundles. When multiple goods may arrive at each round, our setting also generalizes the repeated
fair division setting, in which the same set of goods arrives at each round. For this model, Igarashi
et al. [47] give results on the existence of allocations which are envy-free and Pareto optimal in the end,
with the items in each round being allocated in an EF1 manner. However, they do not analyse whether
the cumulative allocation at each round can satisfy some fairness constraint, which is the focus of our
paper. Caragiannis and Narang [25] also consider a model where the same set of items appear at each
round, but each agent gets exactly one item per round.

When the valuations are known upfront for the allocation of chores, the model is similar to the field of
work on job scheduling. There have been numerous papers studying fair scheduling, but the fairness is
typically represented by an objective function which the algorithm aims to minimize or approximate
[63, 48, 17]. On the other hand, there is little work on satisfying envy-based notions in scheduling
problems, but Li et al. [51] study the compatibility of EF1 and Pareto optimality in various settings.
While we consider separately the cases of goods allocation and chores allocation, to the best of our
knowledge, there is no prior work which studies an online fair division model with both goods and
chores in the same instance under any information assumption.

Similar temporal models that study concepts of achieving fairness over time have also been recently
considered in the social choice literature [5, 27, 35, 38, 37, 53, 57, 59, 50, 69].

In a contemporary and independent work, Cookson et al. [32] consider the same setting of temporal
fair division but with a different approach. They only consider goods and prove positive result in the
three settings: when there are only two agents, when the identical set of goods appear in each timestep,
and when agents have an identical ranking over the items. They consider several fairness notions and
seek to achieve different pairs of these notions per-day and overall.

3



2 Preliminaries

For each positive integer k, let [k] := {1, . . . , k}. We consider the problem of fairly allocating indivisible
items to agents over multiple rounds. An instance of the informed online fair division problem is a tuple
I = ⟨N,T, {Ot}t∈[T ],v = (v1, . . . , vn)⟩, where N = [n] is a set of agents, T is the number of rounds,
for each t ∈ [T ] the set Ot consists of items that arrive at round t, with O = ∪t∈[T ]Ot, and for each
i ∈ N the valuation function vi : O → R specifies the values that agent i assigns to items in O.

We assume that agents have additive valuations, i.e., we extend the functions vi to subsets of O by
setting vi(S) =

∑
o∈S vi(O) for each S ⊆ O. We write v instead of vi when all agents have identical

valuation functions. We refer to the vector v = (v1, . . . , vn) as the valuation profile. We define the
cumulative set of items that arrive in rounds 1, . . . , t by Ot :=

⋃
ℓ∈[t]Oℓ. Note that O = OT .

We consider both goods, where vi(o) ≥ 0 for each i ∈ N and o ∈ O, and chores, where vi(o) ≤ 0 for
each i ∈ N and o ∈ O. For clarity, in the goods setting we use g instead of o and refer to the items as
goods, while in the chores setting we use c instead of o and refer to the items as chores.

An allocationA = (A1, . . . , An) of items inO to the agents is an ordered partition ofO, i.e.,
⋃

i∈N Ai =
O and Ai ∩ Aj = ∅ for all i, j ∈ N with i ̸= j. For t ∈ [T ], i ∈ N we write At

i = Ai ∩ Ot; then
At = (At

1, . . . , A
t
n) is the allocation after round t, with A = AT . For t < T , we may refer to At as a

partial allocation.

Our goal is to find an allocation that is fair after each round. The main fairness notion that we consider
is envy-freeness up to one item (EF1), a well-studied notion in fair division.

Definition 2.1. In a goods (resp., chores) allocation instance, an allocation A = (A1, . . . , An) is said
to be EF1 if for each pair of agents i, j ∈ N there exists a good g ∈ Aj (resp., chore c ∈ Ai) such that
vi(Ai) ≥ vi(Aj \ {g}) (resp. vi(Ai \ {c}) ≥ vi(Aj)).

To capture fairness in a cumulative sense, we introduce the notion of temporal envy-freeness up to one
item (TEF1), which requires that at every prefix of rounds the cumulative allocation of items that have
arrived so far satisfies EF1.

Definition 2.2 (Temporal EF1). For every t ∈ [T ], an allocation At = (At
1, . . . , A

t
n) is said to be

temporally envy-free up to one item (TEF1) if for each ℓ ∈ [t] the allocation Aℓ is EF1.

A key distinction between TEF1 and EF1 is that, while the EF1 property only places constraints on the
final allocation, TEF1 requires envy-freeness up to one item at every round.

However, He et al. [46, Thm. 4.2] show that for goods TEF1 allocations may fail to exist; they present
an example with 3 agents and 23 items, which can be generalized to n > 3 agents. For completeness,
we include this counterexample along with an intuitive explanation in the appendix. We remark that
the construction of He et al. [46] cannot be translated to the chores setting. While we conjecture that a
non-existence result of this form also holds for chores, this remains an open question.

We assume that the reader is familiar with basic notions of classic complexity theory [60]. All omitted
proofs can be found in the appendix.

3 On the Existence of TEF1 Allocations

As some instances do not admit TEF1 allocations, our first goal is to explore if there are restricted classes
of instances for which TEF1 allocations are guaranteed to exist. In this section we identify several such
settings.

To simplify the presentation, we will first demonstrate that it usually suffices to consider instances
where only one item appears at each round (i.e., T = m and |Ot| = 1 for all t ∈ [T ]). Indeed, any

4



impossibility result for this special setting also holds for the general case, and we will now argue that
the converse is true as well.
Lemma 3.1. Given an instance I with |O| = m items, we can construct an instance I=1 with the same
set of items and exactly m rounds so that |Ot| = 1 for each t ∈ [m] and if I=1 admits a TEF1 allocation,
then so does I .

Proof. Consider an arbitrary instance I = ⟨N,T, {Ot}t∈[T ],v = (v1, . . . , vn)⟩. Renumber the items in
a non-decreasing fashion with respect to the rounds, so that for any two rounds t, r ∈ [T ] with t < r
and items oj ∈ Ot, oj′ ∈ Or it holds that j < j′. We construct I=1 = ⟨N,m, {Õt}t∈[m],v⟩ by setting
Õt = {ot} for each t ∈ [m]. Let A be a TEF1 allocation for I=1. We construct an allocation B for
instance I by allocating all items in the same way as in A: if A allocates at item j to agent i in round r,
we identify a t ∈ [T ] such that

∑t−1
ℓ=1 |Oℓ| < r ≤

∑t
ℓ=1 |Oℓ| and place j into Bi in round t. To see that

B satisfies TEF1, note that if Bt violates EF1 for some t ∈ [T ], then for r =
∑t

ℓ=1 |Oℓ| the allocation
Ar satisfies Ar

i = Bt
i for all i ∈ N and hence violates EF1 as well.

In what follows, unless specified otherwise, we simplify the notation based on the transformation in the
proof of Lemma 3.1: we assume that |Ot| = 1 for each t ∈ T and denote the unique item that arrives in
round t by ot (or gt, or ct, if we focus on goods/chores).

3.1 Two Agents

He et al. [46, Thm. 3.4] put forward a polynomial-time algorithm that always outputs a TEF1 allocation
for goods when n = 2; in particular, this implies that a TEF1 allocation is guaranteed to exist for n = 2.
We will now extend this result to the case of chores.

Intuitively, in each round the algorithm greedily allocates the unique chore that arrives in that round to
an agent that does not envy the other agent in the current (partial) allocation. A counter s keeps track
of the last round in which As was envy-free; if for some round t ∈ [m] the allocation of a chore ct
results in both agents envying each other in At \ As, then the agents’ bundles in At \ As are swapped.
Theorem 3.2. For n = 2, Algorithm 1 returns a TEF1 allocation for chores, and runs in polynomial time.

Next, we consider temporal envy-freeness up to any item (TEFX), the temporal variant of the stronger
notion of envy-freeness up to any item (EFX).
Definition 3.3. In a goods (resp., chores) allocation instance, an allocation A = (A1, . . . , An) is said
to be EFX if for all pairs of agents i, j ∈ N , and all goods g ∈ Aj (resp., chores c ∈ Ai) we have
vi(Ai) ≥ vi(Aj \ {g}) (resp. vi(Ai \ {c}) ≥ vi(Aj)).
Definition 3.4 (Temporal EFX). For every t ∈ [T ], an allocation At = (At

1, . . . , A
t
n) is said to be

temporal envy-free up to any item (TEFX) if for each ℓ ≤ t the allocation Aℓ is EFX.

Unfortunately, TEFX allocations (for goods or chores) may not exist, even for two agents with identical
valuations, and even when there are only two types of items.
Proposition 3.5. A TEFX allocation for goods or chores may not exist, even for n = 2 with identical
valuations and two types of items.

3.2 Other Restricted Settings

The next natural question we ask is whether there are other special cases where EF1 allocation is
guaranteed to exist. We answer this question affirmatively by demonstrating the existence of EF1
allocations in three special cases, each supported by a polynomial-time algorithm that returns such an
allocation.

5



Algorithm 1 Returns a TEF1 allocation for chores when n = 2

Input: Set of agents N = {1, . . . , n}, set of chores O = {c1, . . . , cm}, and valuation profile
v = (v1, v2)
Output: TEF1 allocation A of chores in O to agents in N

1: Initialize s← 0 and A0 ← (∅,∅)
2: for t = 1, 2, . . . ,m do
3: if v1(At−1

1 \As
1) ≥ v1(A

t−1
2 \As

2) then
4: At ← (At−1

1 ∪ {ct}, At−1
2 )

5: else
6: At ← (At−1

1 , At−1
2 ∪ {ct})

7: end if
8: if v1(At

1 \As
1) < v1(A

t
2 \As

2) and v2(A
t
2 \As

2) < v2(A
t
1 \As

1) then
9: At ← (As

1 ∪At
2 \As

2, A
s
2 ∪At

1 \As
1)

10: end if
11: if v1(At

1 \As
1) ≥ v1(A

t
2 \As

2) and v2(A
t
2 \As

2) ≥ v2(A
t
1 \As

1) then
12: s← t
13: end if
14: end for
15: return A = (Am

1 , Am
2 )

Two Types of Items

The first setting we consider is one where items can be divided into two types, and each agent values all
items of a particular type equally. Formally, let S1, S2 ⊆ O be a partition of the set of items, so that
S1 ∩ S2 = ∅, and S1 ∪ S2 = O. Then, for any r ∈ {1, 2}, two items o, o′ ∈ Sr, and agent i ∈ N , we
have that vi(o) = vi(o

′).

Settings with only two types of items/tasks arise naturally in various applications, such as distributing
food and clothing donations from a charity, or allocating cleaning and cooking chores in a household.
This preference restriction has been studied for chores in offline settings [10, 42], and we remark that
agents may have distinct valuations for up to 2n different items, unlike the extensively studied bi-valued
preferences [33, 41] which involve only two distinct item values.

We show that for this setting, a TEF1 allocation for goods or chores always exists and can be computed
in polynomial time. Intuitively, the algorithm treats the two item types independently: items of the
first type are allocated in a round-robin manner from agent 1 to n, while items of the second type are
allocated in reverse round-robin order from agent n to 1. Then, our result is as follows.

Theorem 3.6. When there are two types of items, a TEF1 allocation for goods or chores exists and can be
computed in polynomial time.

Generalized Binary Valuations

The next setting we consider is one where agents have generalized binary valuations (also known as
restricted additive valuations [1, 24]). This class of valuation functions generalizes both identical and
binary valuations, which are both widely studied in fair division [45, 61, 65]. Formally, we say that
agents have generalized binary valuations if for every agent i ∈ N and item oj ∈ O, vi(oj) ∈ {0, pj},
where pj ∈ R \ {0}.

We show that for this setting, a TEF1 allocation can be computed efficiently, with the following result.

6



We remark that the resulting allocation also satisfies Pareto-optimality (Definition 4.1).

Theorem 3.7. When agents have generalized binary valuations, a TEF1 allocation for goods or chores
exists and can be computed in polynomial time.

Unimodal Preferences

The last setting that we consider is the class of unimodal preferences, which consists of the widely
studied single-peaked and single-dipped preference structures in social choice [22, 7] and cake cutting
[67, 21]. We adapt these concepts for the online fair division setting with a single item at each timestep.

Definition 3.8. A valuation profile v is single-peaked if for each agent i ∈ N , there is an item oi∗

where for each j, k ∈ [m] such that j < k < i∗, vi(oj) ≤ vi(ok) ≤ vi(oi∗), and for each j, k ∈ [m]
such that i∗ < j < k, vi(oi∗) ≥ vi(oj) ≥ vi(ok).

Definition 3.9. A valuation profile v is single-dipped if for each agent i ∈ N , there is an item oi∗ where
for each j, k ∈ [m] such that j < k < i∗, vi(oj) ≥ vi(ok) ≥ vi(oi∗), and for each j, k ∈ [m] such that
i∗ < j < k, vi(oi∗) ≤ vi(oj) ≤ vi(ok).

In other words, under single-peaked (resp. single-dipped) valuations, agents have a specific item oi∗

that they prefer (resp. dislike) the most, and prefer (resp. dislike) items less as they arrive further away
in time from oi∗ .

Note that this restricted preference structure is well-defined for the setting of a single item arriving per
round, but may not be compatible with a generalization to multiple items per round as described in
Lemma 3.1 (unless the items in each round are identically-valued by agents).3

Unimodal preferences may arise in settings where agents place higher value on resources at the time
surrounding specific events. For example, in disaster relief, the demand for food and essential supplies
peaks as a natural disaster approaches, then declines once the immediate crisis passes. Similarly, in
project management, the workload for team members intensifies (in terms of required time and effort)
as the project nears its deadline, but significantly decreases during the final stages, such as editing and
proofreading.

Unimodal preferences also generalizes other standard preference restrictions studied in fair division and
voting models, such as settings where agents have monotonic valuations [39] or identical rankings [61].

We propose efficient algorithms for computing a TEF1 allocation for goods when agents have single-
peaked valuations, and for chores when agents have single-dipped valuations.

Theorem 3.10. When agents have single-peaked valuations, a TEF1 allocation for goods exists and can
be computed in polynomial time. When agents have single-dipped valuations, a TEF1 allocation for chores
exists and can be computed in polynomial time.

We note that while a simple greedy algorithm performs well in the case of single-peaked valuations for
goods and single-dipped valuations for chores, it fails in the reverse scenario—single-dipped valuations
for goods and single-peaked valuations for chores. This is due to the fact that, in the latter case, the
position of the dip or peak becomes critical and significantly complicates the way we allocate the item.
We leave the existence of polynomial-time algorithm(s) for the reverse scenario as an open question.

3Specifically, in the multiple items per round case, if the bundles of items at each timestep are unimodally valued, the
single-item per round transformation of the instance may not necessarily be unimodal.

7



3.3 Hardness Results for TEF1 Allocations

The non-existence of TEF1 goods allocations for n ≥ 3 prompts us to explore whether we can determine
if a given instance admits a TEF1 allocation for goods. Unfortunately, we show that this problem is
NP-hard, with the following result.

Theorem 3.11. Given an instance of the temporal fair division problem with goods and n ≥ 3, determining
whether there exists a TEF1 allocation is NP-hard.

Proof. We reduce from the 1-in-3-SAT problem which is NP-hard. An instance of this problem consists
of a conjunctive normal form formula F with three literals per clause; it is a yes instance if there exists
a truth assignment to the variables such that each clause has exactly one True literal, and a no instance
otherwise.

Consider an instance of 1-in-3-SAT given by the CNF F which contains n variables {x1, . . . , xn} and
m clauses {C1, . . . , Cm}. We construct an instance I with three agents and 2n+ 2 goods. For each
i ∈ [n], we introduce two goods ti, fi. We also introduce two additional goods s and r. Let the agents’
(identical) valuations be defined as follows:

v(g) =


5m+n−i +

∑
j :xi∈Cj

5m−j , if g = ti,

5m+n−i +
∑

j :¬xi∈Cj
5m−j , if g = fi,∑

j∈[m] 5
j−1, if g = r,∑

i∈[n] 5
m+i−1 + 2×

∑
j∈[m] 5

j−1, if g = s.

Intuitively, for each variable index i ∈ [n], we associate with it a unique value 5m+n−i. For each clause
index j ∈ [m], we also associate with it a unique value 5m−j . Note that no two indices (regardless of
whether its a variable or clause index) share the same value. Then, the value of each good ti comprises
of the unique value associated with i, and the sum over all unique values of clauses Cj which xi appears
as a positive literal in; whereas the value of each good fi comprises of the unique value associated with
i, and the sum over all unique values of clauses Cj which xi appears as a negative literal in. We will
utilize this in our analysis later.

Then, we have the set of goods O = {s, t1, f1, t2, f2, . . . , tn, fn, r}. Note that v(O) = v(s) + v(r) +∑
i∈[n] v(ti) +

∑
i∈[n] v(fi). Also observe that

∑
i∈[n] 5

m+n−i =
∑

i∈[n] 5
m+i−1. Now, as each clause

contains exactly three literals, we have∑
i∈[n]

∑
j:xi∈Cj

5m−j +
∑
i∈[n]

∑
j:¬xi∈Cj

5m−j = 3×
∑
j∈[m]

5j−1.

Then, combining the equations above, we get that

v(O) = 3×
∑
i∈[n]

5m+i−1 + 6×
∑
j∈[m]

5j−1. (1)

Let the goods be in the following order: s, t1, f1, t2, f2, . . . , tn, fn, r. We first prove the following result.

Lemma 3.12. There exists a truth assignment α such that each clause in F has exactly one True literal if
and only if there exists an allocation A such that v(A1) = v(A2) = v(A3) for instance I .

Proof. For the ‘if’ direction, consider an allocation A such that v(A1) = v(A2) = v(A3). Then, we
have that O = A1 ∪ A2 ∪ A3 and v(A1) = v(A2) = v(A3) = 1

3v(O). Since agents have identical
valuations, without loss of generality, let s ∈ A1. Then, since v(A1

1) = v(s) = 1
3v(O), agent 1 should

not receive any more goods after s, and each remaining good should go to agent 2 or 3.

8



Again, without loss of generality, we let r ∈ A2. Then since v(A2) =
1
3v(O), we have that

v(A2 \ {r}) =

∑
i∈[n]

5m+i−1 + 2×
∑
j∈[m]

5j−1

− ∑
j∈[m]

5j−1

=
∑
i∈[n]

5m+i−1 +
∑
j∈[m]

5j−1.

Note that this is only possible if for each i ∈ [m], ti and fi are allocated to different agents. The reason
is because the only way agent 1 can obtain the first term of the above bundle value (less good r) is if he
is allocated exactly one good from each of {ti, fi} for all i ∈ [n].

Then, from the goods that exist in bundle A2, we can construct an assignment α: for each i ∈ [n], let
xi = True if ti ∈ A2 and xi = False if fi ∈ A2. Then, from the second term in the expression of
v(A1 \ {r}) above, we can observe that each clause has exactly one True literal (because the sum is
only obtainable if exactly one literal appears in each clause, and our assignment will set each of these
literals to True).

For the ‘only if’ direction, consider a truth assignment α such that each clause in F has exactly one
True literal. Then, for each i ∈ [n], let

ℓi =

{
ti if xi = True under α,
fi if xi = False under α.

We construct the allocation A = (A1, A2, A3) where

A1 = {s}, A2 = {ℓ1, . . . , ℓn, r}, and A3 = O \ (A1 ∪A2).

Again, observe that
∑

i∈[n] 5
m+n−i =

∑
i∈[n] 5

m+i−1. Also note that v(A1) =
1
3v(O). Then, as each

clause has exactly one True literal, v(A2) =
∑

i∈[n] 5
m+i−1 + 2×

∑
j∈[m] 5

j−1, and together with (1),
we get that v(A3) =

2
3v(O)− v(A1) = v(A1) and hence v(A1) = v(A2) = v(A3), as desired.

Now consider another instance I ′ that is similar to I , but with an additional 21 goods {g1, . . . , g21}.
Let agents’ valuations over these new goods be defined as follows:

v g1 g2 g3 g4 g5 g6 g7

1 90 80 70 100 100 100 15
2 90 70 80 100 100 100 95
3 80 90 70 100 100 100 25

g8 g9 g10 g11 g12 g13 g14

1 10000 11000 12000 20000 20000 20000 20000
2 10000 11000 12000 20000 20000 20000 20000
3 10000 11000 12000 20000 20000 18500 20000

g15 g16 g17 g18 g19 g20 g21

1 20000 20000 20000 20000 20000 19010 18005
2 20000 20000 20000 12000 12000 19085 14106
3 20000 20000 20000 20000 20000 19010 19496

Then, we have the set of goods O′ = O ∪ {g1, . . . , g21}. Let the goods be in the following order:
s, t1, f1, t2, f2, . . . , tn, fn, r, g1, . . . , g21. We now present the final lemma that will give us our result.

Lemma 3.13. If there exists a partial allocation A2n+2 over the first 2n+ 2 goods such that v(A2n+2
1 ) =

v(A2n+2
2 ), then there exists a TEF1 allocation A. Conversely, if there does not exist a partial allocation

A2n+2 over the first 2n + 2 goods such that v(A2n+2
1 ) = v(A2n+2

2 ), then there does not exists a TEF1
allocation A.

9



We use a program as a gadget to verify the lemma (see the full version of the paper), leveraging its
output to support its correctness. Specifically, if there exists a partial allocation A2n+2 over the first
2n + 2 goods such that v(A2n+2

1 ) = v(A2n+2
2 ), then our program will show the existence of a TEF1

allocation by returning all such TEF1 allocations. If there does not exist such a partial allocation, our
program essentially does an exhaustive search to show that a TEF1 allocation does not exist. This
lemma shows that there exists a TEF1 allocation over O′ if and only if v(A2n+2

1 ) ̸= v(A2n+2
2 ), and by

Claim 3.12, this implies that a TEF1 allocation over O′ exists if and only if there is a truth assignment α
such that each clause in F has exactly one True literal.

We note that the above approach cannot be extended to show hardness for the setting with chores.
Nevertheless, we are able to show a similar, though weaker, intractability result for the case of chores
in general. The key difference is that we assume that we can start from any partial TEF1 allocation.

Theorem 3.14. For every t ∈ [T ], given any partial TEF1 allocation At for chores, deciding if there exists
an allocation A that is TEF1 is NP-hard.

4 Compatibility of TEF1 and Efficiency

In traditional fair division, many papers have focused on the existence and computation of fair and
efficient allocations for goods or chores, with a particular emphasis on simultaneously achieving EF1
and Pareto-optimality (PO) [13, 26]. In this section, we explore the compatibility between TEF1 and PO.
We begin by defining PO as follows.

Definition 4.1 (Pareto-optimality). We say that an allocation A is Pareto-optimal (PO) if there does
not exist another allocation A′ such that for all i ∈ N , vi(A′

i) ≥ vi(Ai), and for some j ∈ N ,
vj(A

′
j) > vj(Aj). If such an allocation A′ exists, we say that A′ Pareto-dominates A.

Observe that for any A that is PO, any partial allocation At for t ≤ [T ] is necessarily PO as well. We
demonstrate that PO is incompatible with TEF1 in this setting, even under very strong assumptions (of
two agents and two types of items), as illustrated by the following result.

Proposition 4.2. For any n ≥ 2, a TEF1 and PO allocation for goods or chores may not exist, even when
there are two types of items.

Despite this non-existence result, one may still wish to obtain a TEF1 and PO outcome when the instance
admits one. However, the following results show that this is not computationally tractable.

Theorem 4.3. Determining whether there exists a TEF1 allocation that is PO for goods is NP-hard, even
when n = 2.

Theorem 4.4. Determining whether there exists a TEF1 allocation that is PO for chores is NP-hard, even
when n = 2.

The proof of the above result essentially implies that even determining whether an instance admits a
TEF1 and utilitarian-maximizing (i.e., sum of agents’ utilities) allocation is computationally intractable,
since a utilitarian-welfare maximizing allocation is necessarily PO. In fact, for the case of goods, we can
make a stronger statement relating to the general class of p-mean welfares, defined as follows.4

Definition 4.5. Given p ∈ (−∞, 1] and an allocation A = (A1, . . . , An) of goods, the p-mean welfare
is
(
1
n

∑
i∈N vi(Ai)

p
)1/p.

4Note that we cannot say the same for chores as when agents’ valuations are negative, the p-mean welfare may be
ill-defined.

10



In the context of fair division, p-mean welfare has been traditionally and well-studied for the setting
with goods [14, 28], although it has recently been explored for chores as well [34]. Importantly, p-means
welfare captures a spectrum of commonly studied fairness objectives in fair division. For instance,
setting p = 1 (resp. p = −∞) would correspond to the utilitarian (resp. egalitarian) welfare. Setting
p→ 0 corresponds to maximizing the geometric mean, which is also known as the Nash welfare [26].

Then, from our construction in the proof of Theorem 4.3 (for goods), we have that an allocation is TEF1
and PO if and only if it also maximizes the p-mean welfare, for all p ∈ (−∞, 1], thereby giving us the
following corollary.

Corollary 4.6. For all p ∈ (−∞, 1], determining whether there exists a TEF1 allocation that maximizes
p-mean welfare is NP-hard, even when n = 2.

5 Multiple Items per Round

We now revisit the setting where multiple items may arrive at each round. While Lemma 3.1 reduces
this case to the setting where a single item arrives per round, there are restricted variants of our problem
that are not preserved by this reduction. We will now consider two such variants: T = 2 and repeated
allocation.

We begin by showing that when there are two rounds, a TEF1 allocation can be computed efficiently.

Theorem 5.1. When T = 2, a TEF1 allocation for goods or chores exists and can be computed in
polynomial time.

For the remainder of Section 5, we consider the repeated setting (also studied by Igarashi et al. [47] and
Caragiannis and Narang [25]), where the sets O1, . . . , OT are identical. Formally, for each t ∈ T we
have Ot = {ot1, . . . , otk}, and vi(o

t
j) = vi(o

r
j) for all t, r ∈ [T ] and all i ∈ N , j ∈ [k]. Note that this

property of the instance is not preserved by our reduction from many items per round to a single item
per round.

In general, it remains an open question whether a TEF1 allocation exists for this setting. However, we
can show that, perhaps surprisingly, it is NP-hard to determine whether there exists a TEF1 allocation
that allocates the items in the same way at every round. We say that an allocation A is repetitive if for
each i ∈ N , j ∈ [k] and all t, r ∈ [T ] we have otj ∈ At

i \A
t−1
i if and only if orj ∈ Ar

i \A
r−1
i . Then we

have the following result.

Theorem 5.2. Determining whether there exists a repetitive allocation A = (A1, . . . , An) that is TEF1
is NP-complete both for goods and for chores. The hardness result holds even if T = 2 and agents have
identical valuations.

Proof. It is immediate that this problem is in NP: we can guess a repetitive allocation, and check
whether it is TEF1. Both for goods and for chores, we reduce from the NP-hard problem Multiway
Number Partitioning [44]. An instance of this problem is given by a positive integer κ and a multiset
S = {s1, . . . , sµ} ofµ non-negative integers whose sum isκW ; it is a yes-instance ifS can be partitioned
into κ subsets such that the sum of integers in each subset isW , and a no-instance otherwise.

Consider an instance of Multiway Number Partitioning given by a positive integer κ and a multiset
S = {s1, . . . , sµ} of µ non-negative integers that sum up to κW .

We first prove the result for goods. We construct an instance with κ + 1 agents and µ + 1 goods in
each round: O1 = {g11, . . . , g1µ+1} and O2 = {g21, . . . , g2µ+1}. The agents have an identical valuation
function v defined as follows: v(g1j ) = v(g2j ) = sj if j ∈ [µ], and v(g1µ+1) = v(g2µ+1) = 2W . We will
now prove that there exists a repetitive TEF1 allocation A if and only if the set S can be partitioned
into κ subsets with equal sums (ofW each).

11



For the ‘if’ direction, consider a κ-way partition P = {P1, . . . , Pκ} of S with
∑

s∈Pi
s = W for each

i ∈ [κ]. We construct allocations A1 and A2 by allocating the goods corresponding to the elements of
subset Pi to agent i for i ∈ [κ]; the goods g1µ+1 and g2µ+1 are allocated to agent κ+ 1. Then, in A1, for
each agent i ∈ [κ] we have v(A1

i ) =
∑

s∈Pi
s = W , and v(A1

κ+1) = v(g1µ+1) = 2W . It is easy to verify
that A1 is EF1: no agent i ∈ [κ] envies another agent j ∈ [κ] \ {i}, as they have the same bundle value,
and agent i’s envy towards agent κ+1 can be removed by dropping g1µ+1 from A1

κ+1. Also, agent κ+1
does not envy the first κ agents: she values her bundle at 2W and the bundles of i ∈ [κ] at W .

Moreover in A2 each agent i ∈ [κ] values the bundles A2
1, . . . , A

2
κ at 2W and hence does not envy any

of the first κ agents; her envy towards κ+ 1 can be eliminated by dropping g1µ+1 from A2
κ+1. On the

other hand, agent κ+1 values her bundle at 4W and all other bundles at 2W , so she does not envy the
first κ agents.

For the ‘only if’ direction, suppose we have a repetitive allocation A2 that satisfies TEF1. Since agents
have identical valuation functions, we can assume without loss of generality that agent κ+ 1 receives
goods g1µ+1 and g2µ+1 in rounds 1 and 2. For agent i ∈ [κ] not to envy κ+1 inA2 after we drop one item
from A2

k+1, it has to be the case that vi(A2
i ) ≥ 2W . As this holds for all i ∈ [κ] and

∑
j∈[µ] sj = κW ,

this is only possible if there is a κ-way partition of S such that each subset sums up toW .

The proof for chores is similar, and can be found in the appendix.

6 Conclusion

In this work, we studied the informed online fair division of indivisible items, with the goal of achieving
TEF1 allocations. For both goods and chores, we showed the existence of TEF1 allocations in four
special cases and provided polynomial-time algorithms for each case. Additionally, we showed that
determining whether a TEF1 allocation exists for goods is NP-hard, and presented a similar, though
slightly weaker, intractability result for chores. We further established the incompatibility between
TEF1 and PO, which extends to an incompatibility with p-mean welfare. Finally, we explored the special
case of multiple items arriving at each round.

Numerous potential directions remain for future work, including revisiting variants of the standard
fair division model. Examples include studying the existence (and polynomial-time computability)
of allocations satisfying a temporal variant of the weaker proportionality up to one item property (as
defined by Conitzer et al. [30]), which would be implied by EF1; studying group fairness considerations
in the temporal setting [2, 8, 18, 31, 49, 62]; considering the more general class of submodular valuations
[43, 55, 66, 68]; considering the house allocation model where each agent gets a single item [29, 40],
which was partially explored by Micheel and Wilczynski [54]; or even looking at more general settings
with additional size constraints [16, 15, 36]. Another promising direction is to examine the number of
approximate TEF1 allocations that exist in order to identify additional special cases [58, 64]. It would
also be interesting to extend our results, which hold for the cases of goods and chores separately, to
the more general case of mixed manna(see, e.g., [9]). In fact, with an appropriate modification of the
instance, we can extend Theorem 3.2 to show that a TEF1 allocation exists in the mixed manna setting
when there are two agents (see the appendix).

Acknowledgments

Most of this work was done when Edith Elkind was at the University of Oxford. Edith Elkind and
Mohamad Latifian were supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grants EP/X038548/1 and EP/Y003624/1. We would like to thank the anonymous reviewers.

12



References

[1] HannanehAkrami, Rojin Rezvan, andMasoud Seddighin. An EF2X allocation protocol for restricted
additive valuations. In Proceedings of the 31st International Joint Conference on Artificial Intelligence
(IJCAI), pages 17–23, 2022.

[2] Martin Aleksandrov and Toby Walsh. Group envy freeness and group pareto efficiency in fair
division with indivisible items. In Proceedings of the 41st, pages 57–72, 2018.

[3] Martin Aleksandrov and Toby Walsh. Online fair division: A survey. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 13557–13562, 2020.

[4] Martin Aleksandrov, Haris Aziz, Serge Gaspers, and Toby Walsh. Online fair division: Analysing a
food bank problem. In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI), pages 2540–2546, 2015.

[5] Shiri Alouf-Heffetz, Laurent Bulteau, Edith Elkind, Nimrod Talmon, and Nicholas Teh. Better col-
lective decisions via uncertainty reduction. In Proceedings of the 31st International Joint Conference
on Artificial Intelligence (IJCAI), pages 24–30, 2022.

[6] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin,
Alexandros A Voudouris, and Xiaowei Wu. Fair division of indivisible goods: Recent progress and
open questions. Artificial Intelligence, 322:103965, 2023.

[7] Kenneth J. Arrow. Social Choice and Individual Values. Yale University Press, 2012.
[8] Haris Aziz and Simon Rey. Almost group envy-free allocation of indivisible goods and chores. In

Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pages 39–45,
2020.

[9] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of indivisible
goods and chores. In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 53–59, 2019.

[10] Haris Aziz, Jeremy Lindsay, Angus Ritossa, and Mashbat Suzuki. Fair allocation of two types of
chores. In Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, pages 143–151, 2023.

[11] Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1–19, 2022.

[12] Siddhartha Banerjee, Vasilis Gkatzelis, Safwan Hossain, Billy Jin, Evi Micha, and Nisarg Shah.
Proportionally fair online allocation of public goods with predictions. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (IJCAI), pages 20–28, 2023.

[13] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 19th ACM Conference on Economics and Computation (EC), pages
557–574, 2018.

[14] Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram. Tight approxi-
mation algorithms for p-mean welfare under subadditive valuations. In Proceedings of the 28th
Annual European Symposium on Algorithms (ESA), pages 11:1–11:17, 2020.

[15] Siddharth Barman, Arindam Khan, Sudarshan Shyam, and K. V. N. Sreenivas. Guaranteeing envy-
freeness under generalized assignment constraints. In Proceedings of the 24th ACM Conference on
Economics and Computation (EC), pages 242–269, 2023.

[16] Siddharth Barman, Arindam Khan, Sudarshan Shyam, and K.V.N. Sreenivas. Finding fair allocations
under budget constraints. In Proceedings of the 37th AAAI Conference on Artificial Intelligence
(AAAI), pages 5481–5489, 2023.

[17] Sanjoy K Baruah. Fairness in periodic real-time scheduling. In Proceedings 16th IEEE Real-Time
Systems Symposium, pages 200–209. IEEE, 1995.

[18] Nawal Benabbou, Mithun Chakraborty, Edith Elkind, and Yair Zick. Fairness towards groups of
agents in the allocation of indivisible items. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI), pages 95–101, 2019.

13



[19] Gerdus Benadè, Aleksandr M Kazachkov, Ariel D Procaccia, Alexandros Psomas, and David Zeng.
Fair and efficient online allocations. Operations Research, 72(4):1438–1452, 2024.

[20] Ziyad Benomar and Vianney Perchet. Non-clairvoyant scheduling with partial predictions. arXiv
preprint arXiv:2405.01013, 2024.

[21] Bhavook Bhardwaj, Rajnish Kumar, and Josue Ortega. Fairness and efficiency in cake-cutting with
single-peaked preferences. Economics Letters, 190:109064, 2020.

[22] Duncan Black. On the rationale of group decision-making. Journal of Political Economy, 56(1):
23–34, 1948.

[23] Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

[24] Franklin Camacho, Rigoberto Fonseca-Delgado, Ramón Pino Pérez, and Guido Tapia. Generalized
binary utility functions and fair allocations. Mathematical Social Sciences, 121:50–60, 2023.

[25] Ioannis Caragiannis and Shivika Narang. Repeatedly matching items to agents fairly and efficiently.
Theoretical Computer Science, 981:114246, 2024.

[26] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing
Wang. The unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and
Computation, 7(3):12:1–12:32, 2019.

[27] Nikhil Chandak, Shashwat Goel, and Dominik Peters. Proportional aggregation of preferences for
sequential decision making. In Proceedings of the 38th AAAI Conference on Artificial Intelligence
(AAAI), pages 9573–9581, 2024.

[28] Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. Fair and efficient allocations under subaddi-
tive valuations. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages
5269–5276, 2021.

[29] Davin Choo, Yan Hao Ling, Warut Suksompong, Nicholas Teh, and Jian Zhang. Envy-free house
allocation with minimum subsidy. Operations Research Letters, 54:107103, 2024.

[30] Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In Proceedings
of the 2017 ACM Conference on Economics and Computation, pages 629–646, 2017.

[31] Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Vaughan. Group fairness for the
allocation of indivisible goods. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI), pages 1853–1860, 2019.

[32] Benjamin Cookson, Soroush Ebadian, and Nisarg Shah. Temporal fair division. arXiv preprint
arXiv:2410.23416, 2024.

[33] Soroush Ebadian, Dominik Peters, and Nisarg Shah. How to fairly allocate easy and difficult chores.
In 21st International Conference on Autonomous Agents and Multiagent Systems, 2022.

[34] Owen Eckart, Alexandros Psomas, and Paritosh Verma. On the fairness of normalized p-means for
allocating goods and chores. arXiv preprint arXiv:2402.14996, 2024.

[35] Edith Elkind, Sonja Kraiczy, and Nicholas Teh. Fairness in temporal slot assignment. In Proceedings
of the 15th International Symposium on Algorithmic Game Theory (SAGT), pages 490–507, 2022.

[36] Edith Elkind, Ayumi Igarashi, and Nicholas Teh. Fair division of chores with budget constraints.
In Proceedings of the 17th International Symposium on Algorithmic Game Theory (SAGT), pages
55–71, 2024.

[37] Edith Elkind, Tzeh Yuan Neoh, and Nicholas Teh. Temporal elections: Welfare, strategyproofness,
and proportionality. In Proceedings of the 27th European Conference on Artificial Intelligence (ECAI),
pages 3292–3299, 2024.

[38] Edith Elkind, Svetlana Obraztsova, and Nicholas Teh. Temporal fairness in multiwinner voting. In
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pages 22633–22640, 2024.

[39] Edith Elkind, Svetlana Obraztsova, and Nicholas Teh. Verifying proportionality in temporal
multiwinner voting. In Proceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 2246–2248, 2024.

[40] Jiarui Gan, Warut Suksompong, and Alexandros A. Voudouris. Envy-freeness in house allocation
problems. Mathematical Social Sciences, 101:104–106, 2019.

14



[41] Jugal Garg, Aniket Murhekar, and John Qin. Fair and efficient allocations of chores under bivalued
preferences. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
5043–5050, 2022.

[42] Jugal Garg, Aniket Murhekar, and John Qin. Weighted ef1 and po allocations with few types of
agents or chores. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence (IJCAI), pages 2799–2806, 2024.

[43] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi
Yami. Fair allocation of indivisible goods: Beyond additive valuations. Artificial Intelligence, 303:
103633, 2022.

[44] Ronald Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathe-
matics, 17(2):416–429, 1969.

[45] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. Fair division with binary
valuations: One rule to rule them all. In Proceedings of the 16th International Workshop on Internet
and Network Economics (WINE), pages 370–383, 2020.

[46] Jiafan He, Ariel Procaccia, Alexandros Psomas, and David Zeng. Achieving a fairer future by
changing the past. In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 343–349, 2019.

[47] Ayumi Igarashi, Martin Lackner, Oliviero Nardi, and Arianna Novaro. Repeated fair allocation
of indivisible items. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI),
pages 9781–9789, 2024.

[48] Sungjin Im and Benjamin Moseley. Fair scheduling via iterative quasi-uniform sampling. SIAM
Journal on Computing, 49(3):658–680, 2020.

[49] Maria Kyropoulou, Warut Suksompong, and Alexandros Voudouris. Almost envy-freeness in
group resource allocation. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI), pages 400–406, 2019.

[50] Martin Lackner. Perpetual voting: Fairness in long-term decision making. In Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI), pages 2103–2110, 2020.

[51] Bo Li, Minming Li, and Ruilong Zhang. Fair scheduling for time-dependent resources. Advances
in Neural Information Processing Systems, 34:21744–21756, 2021.

[52] Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce,
pages 125–131, 2004.

[53] Andrew Mackenzie and Vilmos Komornik. Fairly taking turns. Games and Economic Behavior, 142:
743–764, 2023.

[54] Karl Jochen Micheel and Anaëlle Wilczynski. Fairness in repeated house allocation. In Proceedings
of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
2390–2392, 2024.

[55] Luisa Montanari, Ulrike Schmidt-Kraepelin, Warut Suksompong, and Nicholas Teh. Weighted
envy-freeness for submodular valuations. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI), pages 9865–9873, 2024.

[56] Hervé Moulin. Fair Division and Collective Welfare. MIT Press, 2003.
[57] Tzeh Yuan Neoh and Nicholas Teh. Welfare maximization in perpetual voting (student abstract).

In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pages 23597–23599,
2024.

[58] Tzeh Yuan Neoh and Nicholas Teh. Understanding efx allocations: Counting and variants. In
Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI), 2025.

[59] Tzeh Yuan Neoh and Nicholas Teh. Strategic manipulation in temporal voting with undesirable
candidates (student abstract). In Proceedings of the 39th AAAI Conference on Artificial Intelligence
(AAAI), 2025.

[60] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007. ISBN
978-1-4288-1409-7.

15



[61] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. SIAM
Journal on Discrete Mathematics, 34(2):1039–1068, 2020.

[62] Jonathan Scarlett, Nicholas Teh, and Yair Zick. For one and all: Individual and group fairness in the
allocation of indivisible goods. In Proceedings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 2466–2468, 2023.

[63] Uwe Schwiegelshohn and Ramin Yahyapour. Fairness in parallel job scheduling. Journal of
Scheduling, 3(5):297–320, 2000.

[64] Warut Suksompong. On the number of almost envy-free allocations. Discrete Applied Mathematics,
284:606–610, 2020.

[65] Warut Suksompong and Nicholas Teh. On maximum weighted nash welfare for binary valuations.
Mathematical Social Sciences, 117:101–108, 2022.

[66] Warut Suksompong and Nicholas Teh. Weighted fair division with matroid-rank valuations:
Monotonicity and strategyproofness. Mathematical Social Sciences, 126:48–59, 2023.

[67] William Thomson. Resource-monotonic solutions to the problem of fair division when preferences
are single-peaked. Social Choice and Welfare, 11(3):205–223, 1994.

[68] Gilad Ben Uziahu and Uriel Feige. On fair allocation of indivisible goods to submodular agents.
arXiv preprint arXiv:2303.12444, 2023.

[69] Valentin Zech, Niclas Boehmer, Edith Elkind, and Nicholas Teh. Multiwinner temporal voting
with aversion to change. In Proceedings of the 27th European Conference on Artificial Intelligence
(ECAI), 2024.

16



Appendix

A Counterexample for Goods when n ≥ 3

As mentioned in the main text, He et al. [46, Thm. 4.2] used the following counterexample to show that
a TEF1 allocation may not exist for goods when n = 3. Note that in this counterexample, one good
arrives at each round.

v g1 g2 g3 g4−6 g7 g8 g9 g10 g11−12 g13 g14−17 g18−19 g20 g21−22 g23

1 0.9 0.8 0.7 1 0.15 100 110 120 200 200 200 200 200 200 200
2 0.9 0.7 0.8 1 0.95 100 110 120 200 200 200 120 200 120 200
3 0.8 0.9 0.7 1 0.25 100 110 120 200 185 200 200 200 200 200

For completeness, we briefly explain the counterexample. There are three parts to this example, which
ultimately ensure that in any TEF1 allocation, after g22 is allocated, agent 2 envies both other agents,
and one other agent envies agent 2. As a result, g23 cannot be allocated to any agent without violating
TEF1.

The first part consists of goods g1 to g7. The instance is constructed such that after all of the goods in
this part have been allocated in a TEF1 manner, the possible envy relations are restricted. Specifically,
we have that after round 7, agent 3 cannot envy agent 1, and that agent 2 cannot envy agents 1 or 3.

The second part consists of goods g8 to g16, and builds on top of the previous envy restriction to ensure
that after round 16, agent 2 is envied by either agent 1 or agent 3 in any TEF1 allocation.

The final part consists of goods g17 to g23. Since agent 2 is envied by some agent at the start, it cannot
receive good g17 or g20, and must receive one of {g18, g19} and one of {g21, g22}. This causes agent 2
to envy both other agents, while one of the other agents continues to envy agent 2. Therefore, TEF1
will be violated regardless of which agent receives g23.

Note that this example cannot be modified to act as a counterexample for chores. We have found that in
the first part, we cannot sufficiently restrict the possible envy relations. This is due to the fundamental
difference in allocating goods and chores: goods cannot be allocated to an agent which is envied, whilst
chores cannot be allocated to an agent which envies others.

B Omitted Proofs from Section 3

B.1 Proof of Theorem 3.2

The polynomial runtime of Algorithm 1 is easy to verify: there is only one for loop, with a counter that
runs from 1 tom, and each operation within the loop runs in O(m) time. Thus, we focus on proving
correctness.

For each t ∈ [m], we define rt < t as the latest round before t such that Art is EF. This implies that
if Aℓ \ Art is EF1 for all ℓ = rt, rt + 1, . . . , t, then At is also EF1. Therefore, it suffices to show that
At \ Art is EF1 for each t ∈ [m]. We will prove this by induction on t.

For t = 1, the claim is immediate, as any allocation of a single chore is EF1. Now, suppose that t > 1. If
t = rt+1 the allocationAt \Art consists of a single chore, so, again, the claim is immediate. Otherwise,
rt−1 = rt and by the induction hypothesis it holds that At−1 \ Art is EF1. Let r′t be the earliest round
ahead of rt such that Ar′t \ Art is EF (if such a round exists). We divide the remainder of the proof into
two cases depending on whether a partial bundle swap (as in line 9 of the algorithm) occurs at round r′t.

17



Case 1: Round r′t does not exist or no swap at round r′t. Suppose without loss of generality that
v1(A

t−1
1 \Art

1 ) < v1(A
t−1
2 \Art

2 ), i.e., agent 1 envies agent 2 inAt−1 \Art . Then agent 2 does not envy
agent 1 (otherwise we would swap the bundles, contradicting the definition of rt), and consequently
receives ct. If agent 2 envies agent 1 after receiving ct, this envy can be removed by removing ct. We
also know that At \ Art is EF1 w.r.t. agent 1 (who did not receive a chore in round t) because by our
inductive assumption, At−1 \ Art is EF1, concluding the proof of this case.

Case 2: Swap occurs at round r′t. We assume that r′t > t, because if r′t = t, then At \ Art is
EF and therefore EF1. For each i ∈ {t − 1, t}, let Bi \ As refer to the algorithm’s allocation of the
chores Oi \Os before the bundle swap, and suppose without loss of generality that v1(Bt−1

1 \Brt
1 ) <

v1(B
t−1
2 \Brt

2 ). We therefore must have v2(Bt−1
2 \Brt

2 ) ≥ v2(B
t−1
1 \Brt

1 ) to avoid contradicting the
definition of rt. Since agent 2 is not envied by agent 1 in round t− 1, it receives chore ct, so we have
Bt \ Brt = (Bt−1

1 \Brt
1 , (Bt−1

2 \Brt
2 ) ∪ {ct}). This means that after the bundle swap is executed, we

have At \ Art = ((Bt−1
2 \Brt

2 ) ∪ {ct}, Bt−1
1 \Brt

1 ). Recall that v1(Bt−1
2 \Brt

2 ) > v1(B
t−1
1 \Brt

1 ), so
ct can be removed from agent 1’s bundle to eliminate their envy towards agent 2. Also, by the inductive
assumption, there exists a chore c ∈ At−1

2 \ Art
2 such that v2((At−1

2 \ Art
2 ) \ {c}) ≥ v2(A

t−1
1 \ Art

1 ).
Observe that At

2 \ A
rt
2 = At−1

2 \ Art
2 and At

1 \ A
rt
1 = (At−1

1 \ Art
1 ) ∪ {ct}. Combining this with the

inductive assumption, we have that there exists a chore c ∈ At
2 \A

rt
2 such that

v2((A
t
2 \A

rt
2 ) \ {c}) = v2((A

t−1
2 \Art

2 ) \ {c})
≥ v2(A

t−1
1 \Art

1 )

≥ v2((A
t−1
1 \Art

1 ) ∪ {ct})
= v2(A

t
1 \A

rt
1 ).

Therefore, At \ Art is EF1 in this case.

We have shown that At \ Art is EF1 regardless of whether the allocation has undergone a bundle swap,
so by induction, Algorithm 1 returns a TEF1 allocation for chores.

B.2 Proof of Proposition 3.5

We first prove the result for the case of goods. Consider the instance with two agents N = {1, 2} and
three goodsO = {g1, g2, g3}, where agents have identical valuations: v(g1) = v(g2) = 1 and v(g3) = 2.
In order for the partial allocation at the end of the second round to be TEFX, each agent must be allocated
exactly one of {g1, g2}—suppose that agent 1 is allocated g1 and agent 2 is allocated g2. In the third round,
without loss of generality, suppose that g3 is allocated to agent 1. Then, agent 2 will still envy agent 1
even after dropping g1 from agent 1’s bundle, as v(A2) = v(g2) = 1 < v(A1 \ {g1}) = v(g3) = 2.

Next, we prove the result for chores. Consider the instance with two agentsN = {1, 2} and three chores
O = {c1, c2, c3}, where agents have identical valuations: v(c1) = v(c2) = −1 and v(c3) = −2. In
order for the partial allocation at the end of the secound round to be TEFX, each agent must be allocated
exactly one of {c1, c2}—suppose that agent 1 is allocated c1 and agent 2 is allocated c2. In the third round,
without loss of generality, suppose that c3 is allocated to agent 1. Then, agent 1 will still envy agent 2
even after dropping c1 from her own bundle, as v(A1 \ {c1}) = v(c3) = −2 < v(A2) = v(c2) = −1.

B.3 Proof of Theorem 3.6

Consider the following greedy algorithm (Algorithm 2).

The polynomial runtime of the Algorithm 2 is easy to verify: there is only one for loop which runs in
O(m) time, and the other operations within run inO(mn) time. Thus, we focus on proving correctness.

Intuitively, α and β each keep a counter of which agent should be next allocated an item of type T1 and
T2, respectively. For this reason, for each r ∈ {1, 2}, we can observe that with respect to only items

18



Algorithm 2 Returns a TEF1 allocation for goods or chores when there are two types of items

Input: Set of agents N = {1, . . . , n}, set of items O = {o1, . . . , om}, and valuation profile
v = (v1, . . . , vn)
Output: TEF1 allocation A of items in O to agents in N

1: Initialize α← 1, β ← n, and A0 ← (∅, . . . ,∅)
2: for t = 1, 2, . . . ,m do
3: if α = n+ 1 then
4: α← 1
5: else if β = 0 then
6: β ← n
7: end if
8: if ot ∈ T1 then
9: At

α ← At−1
α ∪ {ot}, At

j ← At−1
j for all j ∈ N \ {α}, and α← α+ 1

10: else
11: At

β ← At−1
β ∪ {ot}, At

j ← At−1
j for all j ∈ N \ {β}, and β ← β − 1

12: end if
13: end for
14: return A = (Am

1 , . . . , Am
n )

of type Tr, the algorithm allocates these items in a round-robin fashion. We can therefore make the
following two observations:

(i) for any pair of agents i, j ∈ N , if |At
i ∩ T1| > |At

j ∩ T1|, then i < j; if |At
i ∩ T2| > |At

j ∩ T2|, then
i > j; and

(ii) for any pair of agents i, j ∈ N , round t ∈ [m], and r ∈ {1, 2}, we have that∣∣∣|At
i ∩ Tr| − |At

j ∩ Tr|
∣∣∣ ≤ 1.

The first observation follows from fact that the α counter is increasing in agent indices whereas the β
counter is decreasing in agent indices. The second observation follows from the widely-known fact that,
with respect to items of a specific type, a round-robin allocation always returns a balanced allocation,
i.e., the bundle sizes of any two agents differ by no more than one.

Next, we have that for any two agents i, j ∈ N , round t ∈ [m], and r, r′ ∈ {1, 2} where r ̸= r′, if
|At

i ∩ Tr| > |At
j ∩ Tr|, then |At

i ∩ Tr′ | ≤ |At
j ∩ Tr′ |. To see this, suppose for a contradiction that there

exists agents i, j ∈ N and round t ∈ [m] such that both |At
i∩T1| > |At

j ∩T1| and |At
i∩T2| > |At

j ∩T2|.
Then, observation (i) will give us i < j and i > j respectively, a contradiction.

For the case of goods, we have that for any pair of agents i, j ∈ N and round t ∈ [m], if i < j, then

vi(A
t
i ∩ T1) ≥ vi(A

t
j ∩ T1) (2)

because i precedes j in the round-robin allocation order, and by the well-established EF1 property of
the round-robin algorithm for goods, there exists a good g ∈ At

j ∩ T2 such that

vi(A
t
i ∩ T2) ≥ vi(A

t
j ∩ T2 \ {g}). (3)

Combining (2) and (3), there exists a good g ∈ At
j such that

vi(A
t
i) = vi(A

t
i ∩ T1) + vi(A

t
i ∩ T2) ≥ vi(A

t
j ∩ T1) + vi(A

t
j ∩ T2 \ {g}) = vi(A

t
j \ {g}).

19



Moreover, if i > j, then
vi(A

t
i ∩ T2) ≥ vi(A

t
i ∩ T2), (4)

and there exists a good g ∈ At
j ∩ T1 such that

vi(A
t
i ∩ T1) ≥ vi(A

t
j ∩ T1 \ {g}). (5)

Combining (4) and (5), there exists a good g ∈ At
j such that

vi(A
t
i) = vi(A

t
i ∩ T1) + vi(A

t
i ∩ T2) ≥ vi(A

t
j ∩ T1 \ {g}) + vi(A

t
j ∩ T2) = vi(A

t
j \ {g}).

For the case of chores, we have that for any pair of agents i, j ∈ N and round t ∈ [m], if i > j, then

vi(A
t
i ∩ T1) ≥ vi(A

t
j ∩ T1), (6)

and again by the EF1 property of the round-robin algorithm for chores [9], there exists a chore c ∈ At
i∩T2

such that
vi(A

t
i ∩ T2 \ {c}) ≥ vi(A

t
j ∩ T2). (7)

Combining (6) and (7), there exists a chore c ∈ At
i such that

vi(A
t \ {c}) = vi(A

t
i ∩ T1) + vi(A

t
i ∩ T2 \ {c}) ≥ vi(A

t
j ∩ T1) + vi(A

t
j ∩ T2) = vi(A

t
j).

Moreover, if i < j, then
vi(A

t
i ∩ T2) ≥ vi(A

t
j ∩ T2), (8)

and there exists a chore c ∈ At
i ∩ T1 such that

vi(A
t
i ∩ T1 \ {c}) ≥ vi(A

t
j ∩ T1). (9)

Combining (8) and (9), there exists a chore c ∈ At
i such that

vi(A
t \ {c}) = vi(A

t
i ∩ T1 \ {c}) + vi(A

t
i ∩ T2) ≥ vi(A

t
j ∩ T1) + vi(A

t
j ∩ T2) = vi(A

t
j).

Thus, our result holds.

B.4 Proof of Theorem 3.7

We first prove the result for goods. Consider the following greedy algorithm (Algorithm 3) which
iterates through the rounds and allocates each good to the agent who has the least value for their
bundle.

We first show that for any i, j ∈ N and t ∈ [m], it holds that vi(At
i) ≥ vj(A

t
i). Suppose for a

contradiction that there exists some i, j ∈ N and t ∈ [m] such that vi(At
i) < vj(A

t
i). This means there

exists some good g ∈ At
i whereby vi(g) = 0 and vj(g) > 0. However, then the algorithm would not

have allocated g to i, a contradiction.

Next, we will prove by induction that for every t ∈ [m], At is TEF1. The base case is trivially true:
when t = 1, if every agent values g1 at 0, then allocating it to any agent will satisfy TEF1, whereas if
some agent values g1, allocating it to any agent will also be TEF1: the envy by any other agent towards
this agent will disappear with the removal of g1 from the agent’s bundle (every agent’s bundle will then
be the empty set).

Then, we prove the inductive step. Assume that for some k ∈ [m− 1], Ak is TEF1. We will show that
Ak+1 is also TEF1. Due to the assumption, it suffices to show that for all i, j ∈ N , there exists a good
g ∈ Ak+1

j such that vi(Ak+1
i ) ≥ vi(A

k+1
j \ {g}). Consider the agent i ∈ N that is allocated gk+1.

20



Algorithm 3 Returns a TEF1 allocation of goods under generalized binary valuations

Input: Set of agents N = {1, . . . , n}, set of goods O = {g1, . . . , gm}, and valuation profile
v = (v1, . . . , vn)
Output: TEF1 allocation of goods A in O to agents in N

1: Initialize the empty allocation A0 where A0
i = ∅ for all i ∈ N .

2: for t = 1, 2, . . . ,m do
3: Let S := {i′ ∈ N | vi′(gt) > 0}
4: if S = ∅ then
5: Let i be any agent in N
6: else
7: Let i ∈ argmini′∈S vi′(A

t−1
i′ ), with ties broken arbitrarily

8: end if
9: At

i ← At−1
i ∪ {gt} and At

j ← At−1
j for all j ∈ N \ {i}

10: end for
11: return A = (Am

1 , . . . , Am
n )

We first show agent i must be unenvied before being allocated gk+1. Suppose towards a contradiction
this is not the case, i.e., there exists some other agent j ̸= i whereby vj(A

k
j ) < vj(A

k
i ). Together with

the fact that vj(Ak
i ) ≤ vi(A

k
i ) from the result above, we get that

vj(A
k
j ) < vj(A

k
i ) ≤ vi(A

k
i ),

contradicting the fact that i is an agent with the minimum bundle value and thus chosen by the algorithm
to receive gk+1. As such, i must be unenvied before being allocated gk+1, i.e., for any other agent
j ∈ N \ {i}, we have that vj(Ak

j ) ≥ vj(A
k
i ).

Consequently, we get that

vj(A
k+1
j ) = vj(A

k
j ) ≥ vj(A

k
i ) = vj(A

k+1
i \ {gk+1}).

Thus, by induction, the result holds.

Next, we prove the result for chores. Consider the following greedy algorithm (Algorithm 4) which
iterates through the rounds, allocating each chore to an agent with zero value for it if possible, and
otherwise, allocates the chore to an agent who does not envy any other agent.

We first show that for any i, j ∈ N and t ∈ [m], it holds that

vi(A
t
i) ≥ vj(A

t
i). (10)

Suppose for a contradiction that there exists some i, j ∈ N and t ∈ [m] such that vi(At
i) < vj(A

t
i).

This means there exists some chore c ∈ At
i whereby vi(c) < 0 and vj(c) = 0. However, then the

algorithm would not have allocated c to i, a contradiction.

Next, we will prove by induction that for every t ∈ [m], At is TEF1. The base case is trivially true:
when t = 1, if there exists an agent that values c1 at 0, then allocating it to any such agent will satisfy
TEF1, whereas if all agents values c1 negatively, allocating it to any agent will also be TEF1: the envy
by this agent towards any other agent will disappear with the removal of c1 from the former agent’s
bundle (every agent’s bundle will then be the empty set).

Then, we prove the inductive step. Assume that for some k ∈ [m − 1], Ak is TEF1. We will show
that Ak+1 is also TEF1, i.e., for all i, j ∈ N , there exists a chore c ∈ Ak+1

i such that vi(Ak+1
i \ {c}) ≥

vi(A
k+1
j ).

21



Algorithm 4 Returns an TEF1 allocation of chores under generalized binary valuations

Input: Set of agents N = {1, . . . , n}, set of chores O = {c1, . . . , cm}, and valuation profile
v = (v1, . . . , vn)
Output: TEF1 allocation of chores A in O to agents in N

1: Initialize the empty allocation A0 where A0
i = ∅ for all i ∈ N .

2: for t = 1, 2, . . . ,m do
3: if there exists an agent i ∈ N such that vi(ct) = 0 then
4: Let i ∈ {i′ ∈ N | vi′(ct) = 0}
5: else
6: Let i ∈ argmaxi′∈N vi′(A

t−1
i′ )

7: end if
8: At

i ← At−1
i ∪ {ct} and At

j ← At−1
j for all j ∈ N \ {i}

9: end for
10: return A = (Am

1 , . . . , Am
n )

Suppose agent i is allocated the chore ck+1. If vi(ck+1) = 0, then each agents’ valuation for every other
agent’s bundle (including his own) remains the same, and thus Ak+1 remains TEF1. If vi(ck+1) < 0,
then we know that vj(ck+1) < 0 for all j ∈ N . We then proceed to show that agent i must not envy
any other agent before being allocated ck+1. Suppose for contradiction this is not the case, i.e., that
there exists some other agent j ̸= i whereby vi(A

k
i ) < vi(A

k
j ). Since ck+1 is allocated to the agent

with the highest bundle, we have that vi(Ak
i ) ≥ vj(A

k
j ), and therefore

vi(A
k
j ) > vi(A

k
i ) ≥ vj(A

k
j ).

However, this contradicts (10).

Since agent i does not envy another agent before being allocated ck+1, we get that for any j ̸= i,

vi(A
k+1
i \ {ck+1}) = vi(A

k
i ) ≥ vi(A

k
j ) = vi(A

k+1
j ) and vj(A

k+1
j ) = vj(A

k
j ).

Thus, by induction, we get that At+1 is TEF1.

B.5 Proof of Theorem 3.10

Consider the following greedy algorithm (Algorithm 5). Note that the same algorithm works for both
settings for goods when valuations are single-peaked, and for chores when valuations are single-dipped.

Algorithm 5 Returns a TEF1 allocation for goods when valuations are single-peaked and chores when
valuations are single-dipped

Input: Set of agents N = {1, . . . , n}, set of items O = {o1, . . . , om}, and valuation profile
v = (v1, . . . , vn)
Output: TEF1 allocation A of items in O to agents in N

1: Initialize A0 ← (∅, . . . ,∅)
2: for t = 1, 2, . . . ,m do
3: Let i := argmini∈N |At−1

i |, with ties broken lexicographically
4: At

i ← At−1
i ∪ {gt} and At

i ← At−1
i

5: end for
6: return A = (Am

1 , . . . , Am
n )

22



The polynomial runtime of the Algorithm 5 is easy to verify: there is only one for loop which runs in
O(m) time, and the other operations within run in O(n) time. Thus, we focus on proving correctness.

We first prove the case for goods, when valuations are single-peaked.

For each i ∈ [m], let gi = oi, and thus O = {g1, . . . , gm}. We can assume that m = αn for some
α ∈ Z>0; otherwise we can simply add dummy goods to O until that condition is fulfilled. Then,
Algorithm 5 will return A, where for each i ∈ N , Ai = {gi, gi+n, . . . , gi+(α−1)n}.

For each i ∈ N and j ∈ [α], let

• Tj := {g(j−1)n+1, g(j−1)n+2, . . . , gjn},

• g′i,j ∈ Ai ∩ Tj be the unique good in Tj that was allocated to agent i

• g∗ := argmaxg∈O vi(g) (with ties broken arbitrarily), and g∗ ∈ Ti∗ for some i∗ ∈ [α].

Then, we will show that for all r ∈ [α], vi(Ar
i ) ≥ vi(A

r
j \ {g}) for some g ∈ Ar

j . We split our analysis
into two cases.

Case 1: i < j. If r < i∗, then since agent i’s valuation for each subsequent good up to round Tr is
non-decreasing, we have that for all k ∈ {2, . . . , r},

vi(g
′
i,k) ≥ vi(g

′
j,k−1).

Consequently, we get that

vi(A
r
i ) ≥

r∑
k=2

vi(g
′
i,k) ≥

r∑
k=2

vi(g
′
j,k−1) = vi(A

r
j \ {g′j,r}).

If r ≥ i∗, then we split our analysis into two further cases.

Case 1(a): g′i,i∗ appears before g
∗. Then, for all k ∈ {2, . . . , i∗},

vi(g
′
i,k) ≥ vi(g

′
j,k−1),

and for all k ∈ {i∗ + 1, . . . , r},

vi(g
′
i,k) ≥ vi(g

′
j,k).

Consequently, we get that

vi(A
r
i ) ≥

i∗∑
k=2

vi(g
′
i,k)+

r∑
k=i∗+1

vi(g
′
i,k) ≥

i∗∑
k=2

vi(g
′
j,k−1)+

r∑
k=i∗+1

vi(g
′
j,k) = vi(A

r
j\{g′j,i∗}).

Case 1(b): g′i,i∗ appears after (or is) g
∗. Then, for all k ∈ {2, . . . , i∗ − 1},

vi(g
′
i,k) ≥ vi(g

′
j,k−1),

and for all k ∈ {i∗, . . . , r},
vi(g

′
i,k) ≥ vi(g

′
j,k).

Consequently, we get that

vi(A
r
i ) ≥

i∗−1∑
k=2

vi(g
′
i,k) +

r∑
k=i∗

vi(g
′
i,k) ≥

i∗−1∑
k=2

vi(g
′
j,k−1) +

r∑
k=i∗

vi(g
′
j,k) = vi(A

r
j \ {g′j,i∗−1}).

23



Case 2: i > j. If r ≤ i∗, then since agent i’s valuation for each subsequent good up to round Tr is
nondecreasing, we have that for all k ∈ [r],

vi(g
′
i,k) ≥ vi(g

′
j,k). (11)

Consequently, we get that

vi(A
r
i ) ≥

∑
k∈[r−1]

vi(g
′
i,k) ≥

∑
k∈[r−1]

vi(g
′
j,k) (by (11)) = vi(A

r
j \ {g′j,r}).

If r > i∗, then we split our analysis into two further cases.

Case 2(a): g′i,i∗ appears before (or is) g
∗. Then for all k ∈ [i∗],

vi(g
′
i,k) ≥ vi(g

′
j,k),

and for all k ∈ {i∗ + 1, . . . , r − 1},

vi(g
′
i,k) ≥ vi(g

′
j,k+1).

Consequently, we get that

vi(A
r
i ) ≥

∑
k∈[i∗]

vi(g
′
i,k)+

r−1∑
k=i∗+1

vi(g
′
i,k) ≥

∑
k∈[i∗]

vi(g
′
j,k)+

r−1∑
k=i∗+1

vi(g
′
j,k+1) = vi(A

r
j\{g′j,i∗+1}).

Case 2(b): g′i,i∗ appears after g
∗. Then, for all k ∈ [i∗ − 1],

vi(g
′
i,k) ≥ vi(g

′
j,k),

and for all k ∈ {i∗, . . . , r − 1},

vi(g
′
i,k) ≥ vi(g

′
j,k+1).

Consequently, we get that

vi(A
r
i ) ≥

∑
k∈[i∗−1]

vi(g
′
i,k)+

r−1∑
k=i∗

vi(g
′
i,k) ≥

∑
k∈[i∗−1]

vi(g
′
j,k)+

r−1∑
k=i∗

vi(g
′
j,k+1) = vi(A

r
j\{g′j,i∗}).

Thus, our result follows.

Next, we prove the case for chores, when valuations are single-dipped.

For each j ∈ [m], let oi = ci, and thus O = {c1, . . . , cm}. We can assume that m = αn for some
α ∈ Z>0; otherwise we can simply add dummy chores to O until that condition is fulfilled. Then,
Algorithm 5 will return A, where for each i ∈ N , Ai = {ci, ci+n, . . . , ci+(α−1)n}.

For each i ∈ N and j ∈ [α], let

• Tj := {c(j−1)n+1, c(j−1)n+2, . . . , cjn},

• c′i,j ∈ Ai ∩ Tj be the unique chore in Tj that was allocated to agent i

• c∗ := argminc∈O vi(c) (with ties broken arbitrarily), and c∗ ∈ Ti∗ for some i∗ ∈ [α].

24



Case 1: i < j. If r ≤ j∗, then since agent i’s valuation for each subsequent chore up to round Tr−1 is
nonincreasing, we have that for all k ∈ [r − 1],

vi(c
′
i,k) ≥ vi(c

′
j,k).

Consequently, we get that

vi(A
r
i \ {c′i,r}) =

∑
k∈[r−1]

vi(c
′
i,k) ≥

∑
k∈[r−1]

vi(c
′
j,k) ≥ vi(A

r
j).

If r > j∗, then we split our analysis into two further cases.

Case 1(a): c′j,j∗ appears before (or is) c
∗. Then for all k ∈ [j∗],

vi(c
′
i,k) ≥ vi(c

′
j,k)

and for all k ∈ {j∗ + 2, . . . , r},

vi(c
′
i,k) ≥ vi(c

′
j,k−1).

Consequently, we get that

vi(A
r
i \{c′i,j∗+1}) =

∑
k∈[j∗]

vi(c
′
i,k)+

r∑
k=j∗+2

vi(c
′
i,k) ≥

∑
k∈[j∗]

vi(c
′
j,k)+

r∑
k=j∗+2

vi(c
′
j,k−1) ≥ vi(A

r
j).

Case 1(b): c′j,j∗ appears after c
∗. Then for all k ∈ [j∗ − 1],

vi(c
′
i,k) ≥ vi(c

′
j,k)

and for all k ∈ {j∗ + 1, . . . , r},

vi(c
′
i,k) ≥ vi(c

′
j,k−1).

Consequently, we get that

vi(A
r
i \{c′i,j∗) =

∑
k∈[1,j∗−1]

vi(c
′
i,k)+

r∑
k=j∗+1

vi(c
′
i,k) ≥

∑
k∈[j∗−1]

vi(c
′
j,k)+

r∑
k=j∗+1

vi(c
′
j,k−1) ≥ vi(A

r
j).

Case 2: j < i. If r < j∗, then since agent i’s valuation for each subsequent chore up to round Tr is
nondecreasing, we have that for all k ∈ [r − 1],

vi(c
′
i,k) ≥ vi(c

′
j,k+1).

Consequently, we get that

vi(A
r
i \ {c′i,r}) =

∑
k∈[r−1]

vi(c
′
i,k) ≥

∑
k∈[r−1]

vi(c
′
j,k+1) ≥ vi(A

r
j).

If r ≥ j∗, then we split our analysis into two further cases.

Case 2(a): cj,j∗ appears before (or is) c∗. Then for all k ∈ [j∗ − 1],

vi(c
′
i,k) ≥ vi(c

′
j,k+1)

and for all k ∈ {j∗ + 1, . . . , r},

vi(c
′
i,k) ≥ vi(c

′
j,k).

Consequently, we get

vi(A
r
i \{c′i,j∗}) =

∑
k∈[j∗−1]

vi(c
′
i,k)+

r∑
k=j∗+1

vi(c
′
i,k) ≥

∑
k∈[j∗−1]

vi(c
′
j,k+1)+

r∑
k=j∗+1

vi(c
′
k,j) ≥ vi(A

r
j).

25



Case 2(b): cj,j∗ appears after c∗. Then for all k ∈ [j∗ − 2],

vi(c
′
i,k) ≥ vi(c

′
j,k+1

and for all k ∈ {j∗, . . . , r},
vi(c

′
i,k) ≥ vi(c

′
j,k).

Consequently, we get that

vi(A
r
i \{c′i,j∗−1}) =

∑
k∈[j∗−2]

vi(c
′
i,k)+

r∑
k=j∗

vi(c
′
i,k) ≥

∑
k∈[j∗−2]

vi(c
′
j,k+1)+

r∑
k=j∗

vi(c
′
j,k) ≥ vi(A

r
j).

Thus, our result follows.

B.6 Proof of Lemma 3.13

1 from itertools import combinations
2 from copy import deepcopy
3

4 # If there exists a partial allocation for first 2n+2 rounds such that bundle
valuations are equal

5 if_some_envy_exists = False
6

7 def is_ef1(allocation , agents , valuations , if_some_envy_exists ,
partial_alloc_envy_from , partial_alloc_envy_to):

8 """
9 Check if the current allocation is EF1.
10

11 Parameters:
12 - allocation: List of lists , where allocation[i] is the list of goods

allocated to agent i.
13 - agents: List of agent identifiers.
14 - valuations: Dictionary where valuations[agent][good] gives the value of a

good for an agent.
15 - if_some_envy_exists: If the partial allocation for the first 2n+2 rounds

is EF (i.e., equal bundle values)
16 - partial_alloc_envy_from: If if_some_envy_exists is True , then which agent

envies
17 - partial_alloc_envy_to: If if_some_envy_exists is True , then which agent

is being envied
18

19 Returns:
20 - True if allocation is EF1 , False otherwise.
21 """
22 num_agents = len(agents)
23

24 # Compute the value each agent has for their own bundle
25 agent_own_values = []
26 for agent_idx in range(num_agents):
27 agent = agents[agent_idx]
28 total = sum(valuations[agent][good] for good in allocation[agent_idx ])
29 agent_own_values.append(total)
30

31 # Check EF1 condition for every pair of agents (i, j)
32 for i in range(num_agents):
33 for j in range(num_agents):
34 if i == j:
35 continue
36 agent_i = agents[i]
37 agent_j_bundle = allocation[j]

26



38 # Agent i’s value for agent j’s bundle
39 lst = [valuations[agent_i ][good] for good in agent_j_bundle]
40 if lst:
41 max_value = max(lst)
42 else:
43 max_value = 0
44 value_i_for_j_less_one = sum(lst) - max_value
45 # Agent i’s own value
46 value_i_own = agent_own_values[i]
47

48 if if_some_envy_exists:
49 if i == partial_alloc_envy_from:
50 if j == partial_alloc_envy_to:
51 value_i_for_j_less_one += 1
52

53 if value_i_own < value_i_for_j_less_one:
54 return False
55 return True
56

57 def find_ef1_allocations(agents , goods , valuations , if_some_envy_exists ,
partial_alloc_envy_from =0, partial_alloc_envy_to =0):

58 """
59 Find all allocations that are EF1 at each step of allocating goods one by

one.
60

61 Parameters:
62 - agents: List of agent identifiers.
63 - goods: List of goods to be allocated.
64 - valuations: Dictionary where valuations[agent][good] gives the value of a

good for an agent.
65 - if_some_envy_exists: If the partial allocation for the first 2n+2 rounds

is EF (i.e., equal bundle values)
66 - partial_alloc_envy_from: If if_some_envy_exists is True , then which agent

envies
67 - partial_alloc_envy_to: If if_some_envy_exists is True , then which agent

is being envied
68

69 Returns:
70 - List of allocations. Each allocation is a list of lists , where allocation

[i] is the list of goods for agent i.
71 """
72 num_agents = len(agents)
73 all_allocations = []
74

75 def backtrack(current_allocation , index):
76 """
77 Recursive helper function to perform backtracking.
78

79 Parameters:
80 - current_allocation: Current allocation state.
81 - index: Index of the next good to allocate.
82 """
83 if index == len(goods):
84 # All goods allocated , add to results
85 all_allocations.append(deepcopy(current_allocation))
86 return
87

88 current_good = goods[index]
89

90 for agent_idx in range(num_agents):
91 # Assign current_good to agent_idx
92 current_allocation[agent_idx ]. append(current_good)
93

27



94 # Check EF1 condition at this step
95 if is_ef1(current_allocation , agents , valuations ,

if_some_envy_exists , partial_alloc_envy_from ,
partial_alloc_envy_to):

96 # Continue to allocate the next good
97 backtrack(current_allocation , index + 1)
98

99 # Backtrack: remove the good from the agent ’s allocation
100 current_allocation[agent_idx ].pop()
101

102 # Initialize allocation: list of empty lists for each agent
103 initial_allocation = [[] for _ in agents]
104 backtrack(initial_allocation , 0)
105

106 return all_allocations
107

108 # Example Usage
109 if __name__ == "__main__":
110 # Define agents and goods
111 agents = [’A’, ’B’,’C’]
112 goods = [’g1’, ’g2’, ’g3’,’g4’, ’g5’,’g6’, ’g7’,’g8’, ’g9’,’g10’, ’g11’,’

g12’, ’g13’,’g14’, ’g15’,’g16’, ’g17’,’g18’, ’g19’,’g20’,’g21’]
113

114 # Define valuations for each agent
115 valuations = {
116 ’A’: {’g1’: 90, ’g2’: 80, ’g3’: 70, ’g4’ : 100, ’g5’ : 100,’g6’: 100, ’

g7’:15,’g8’:10000 , ’g9’:11000 ,’g10’:12000 , ’g11’:20000 ,’g12’:20000 ,
’g13’:20000 ,’g14’:20000 , ’g15’:20000 ,’g16’:20000 , ’g17’:20000 ,’g18’
:20000 , ’g19’:20000 ,’g20’:19010 , ’g21’ :18005} ,

117 ’B’: {’g1’: 90, ’g2’: 70, ’g3’: 80, ’g4’ : 100, ’g5’ : 100,’g6’: 100, ’g7
’:95,’g8’:10000 , ’g9’:11000 ,’g10’:12000 , ’g11’:20000 ,’g12’:20000 , ’g13
’:20000 ,’g14’:20000 , ’g15’:20000 ,’g16’:20000 , ’g17’:20000 ,’g18’:12000 ,
’g19’:12000 ,’g20’:19085 , ’g21’ :14106} ,

118 ’C’: {’g1’: 80, ’g2’: 90, ’g3’: 70, ’g4’ : 100, ’g5’ : 100,’g6’: 100, ’g7
’:25,’g8’:10000 , ’g9’:11000 ,’g10’:12000 , ’g11’:20000 ,’g12’:20000 , ’g13
’:18500 ,’g14’:20000 , ’g15’:20000 ,’g16’:20000 , ’g17’:20000 ,’g18’:20000 ,
’g19’:20000 ,’g20’:19010 , ’g21’ :19496}

119 }
120

121 # Find all EF1 allocations
122 if if_some_envy_exists:
123 for partial_alloc_envy_from in range (3):
124 for partial_alloc_envy_to in range (3):
125 if partial_alloc_envy_from != partial_alloc_envy_to:
126 ef1_allocations = find_ef1_allocations(agents , goods ,

valuations ,True , partial_alloc_envy_from ,
partial_alloc_envy_to)

127 # Each iteration considers different combinations of envy
that exists in the partial allocation for the first 2n+2
rounds

128

129 # Print the allocations
130 print(f"Total EF1 allocations: {len(ef1_allocations)}\n")
131 else:
132 ef1_allocations = find_ef1_allocations(agents , goods , valuations , False

)
133 # Print the allocations
134 print(f"Total EF1 allocations: {len(ef1_allocations)}\n")
135 for idx , alloc in enumerate(ef1_allocations , 1):
136 print(f"Allocation {idx}:")
137 for agent_idx , agent in enumerate(agents):
138 print(f" {agent }: {alloc[agent_idx ]}")

28



139 print(f" {sum(valuations[’A ’][good] for good in alloc [0]) - sum(
valuations[’A ’][good] for good in alloc [1])},{sum(valuations[’A ’][
good] for good in alloc [0]) - sum(valuations[’A ’][good] for good in
alloc [2])}")

140 print(f" {sum(valuations[’B ’][good] for good in alloc [1]) - sum(
valuations[’B ’][good] for good in alloc [0])},{sum(valuations[’B ’][
good] for good in alloc [1]) - sum(valuations[’B ’][good] for good in
alloc [2])}")

141 print(f" {sum(valuations[’C ’][good] for good in alloc [2]) - sum(
valuations[’C ’][good] for good in alloc [0])},{sum(valuations[’C ’][
good] for good in alloc [2]) - sum(valuations[’C ’][good] for good in
alloc [1])}")

142 print()

B.7 Proof of Theorem 3.14

We reduce from the NP-hard problem Partition. An instance of this problem consists of a multiset S
of positive integers; it is a yes-instance if S can be partitioned into two subsets S1 and S2 such that the
sum of the numbers in S1 equals the sum of the numbers in S2, and a no-instance otherwise.

Consider an instance of Partition given by a multiset set S = {s1, . . . , sm} of m positive integers.
Then, we construct a set S′ = {s′1, . . . s′m} such that for each j ∈ [m], s′j = sm − K where K :=
max{s1, . . . , sm}+ ε for some small ε > 0. We then scale members of S′ such that they sum to −2,
i.e.,

∑
s′∈S′ s′ = −2.

Next, we construct an instance with four agents and m + 4 chores O = {b1, b2, b3, b4, c1, . . . , cm},
where agents have the following valuation profile v for j ∈ {1, . . . ,m}:

v b1 b2 b3 b4 c1 . . . cj . . . cm

1 −1 0 0 0 −1 . . . −1 . . . −1

2 −1 −1 −1 −1 s′1 . . . s′j . . . s′m

3 −1 −1 −1 −1 s′1 . . . s′j . . . s′m

4 0 0 0 −1 −1 . . . −1 . . . −1

Also, suppose we are given the partial allocationA4 where for each i ∈ {1, 2, 3, 4}, chore bi is allocated
to agent i, as illustrated in the table above. Note that the partial allocation A4 is TEF1.

We first establish the following two lemmas. The first lemma states that after chores b1, b2, b3, b4 are
allocated, in order to maintain TEF1, each remaining chore in {c1, . . . , cm} cannot be allocated to either
agent 1 or agent 4. The result is as follows.

Lemma B.1. In any TEF1 allocation, agents 1 and 4 cannot be allocated any chore in {c1, . . . , cm}.

The second lemma states that in any TEF1 allocation, the sum of values that agents 2 and 3 obtain from
the chores in {c1, . . . , cm} that are allocated to them must be equal. We formalize it as follows.

Lemma B.2. In any TEF1 allocation, let C2, C3 be the subsets of {c1, . . . , cm} that were allocated to
agents 2 and 3 respectively. Then, v2(C2) = v3(C3).

We will now prove that there exists an allocation A satisfying TEF1 if and only if the set S can be
partitioned into two subsets of equal sum.

29



For the ‘if’ direction, suppose S = {s1, . . . , sm} can be partitioned into two subsets S1, S2 of equal
sum. This means that S′ = {s′1, . . . , s′m} can be correspondingly partitioned into two subsets S′

1, S
′
2 of

equal sum (of−1 each). Let C1, C2 be the partition of chores in {c1, . . . , cm}with values corresponding
to the partitions S′

1, S
′
2 respectively. Then we allocate all chores in C1 to agent 2 and all chores in C2 to

agent 3. By Lemma B.1, we have that agents 1 and 4 cannot envy any other agent at any round. Also, for
any round t ∈ [T ] and i, j ∈ {2, 3} where i ̸= j, vi(At

i \ {bi}) ≥ −1 ≥ vi(A
t
j), and for all i ∈ {2, 3}

and k ∈ {1, 4}, vi(At
i \ {bi}) ≥ −1 = vi(A

t
k). Thus, the allocation A that, for each i ∈ {1, 2, 3, 4},

allocates bi to agent i and for each j ∈ {2, 3}, allocates Cj to agent j, is TEF1.

For the ‘only if’ direction, suppose we have an allocation A satisfying TEF1. By Lemma B.1, it must be
that any chore in {c1, . . . , cm} is allocated to either agent 2 or 3. Let C2, C3 be the subsets of chores in
{c1, . . . , cm} that are allocated to agents 2 and 3 respectively, under A. Then, by Lemma B.2, we have
that v2(C2) = v3(C3). By replacing the chores with their corresponding values, we get a partition of S′

into two subsets of equal sums, which in turn gives us a partition of S into two subsets of equal sum.

B.8 Proof of Lemma B.1

Consider any TEF1 allocation A. Suppose for a contradiction that at least one of agent 1 and 4 is
allocated a chore in {c1, . . . , cm}. Assume without loss of generality that agent 1 was the first (if not
only) agent that received such a chore.

Consider the first round j + 4 (for some j ∈ [m]) whereby agent 1 is allocated some chore cj ∈
{c1, . . . , cm}. Then,

v1(A
j+4
1 \ {b1}) = −1 < 0 = v1(A

j+4
4 ),

a contradiction to A being TEF1.

B.9 Proof of Lemma B.2

Consider any TEF1 allocation A. Suppose for a contradiction that v2(C2) ̸= v3(C3). Since v2(C2) +
v3(C3) =

∑
s′∈S′ s′ = −2, it means one of {v2(C2), v3(C3)} is strictly less than −1, and the other is

strictly more than −1. Without loss of generality, assume v2(C2) > v3(C3), i.e., v3(C3) < −1. We get
that

v3(A3 \ {b3}) = v3(C3) < −1 = v3(A1),

contradicting the fact that A is a TEF1 allocation.

C Omitted Proofs from Section 4

C.1 Proof of Proposition 4.2

We first prove the result for goods. Consider an instance with two agents and four goods O =
{g1, g2, g3, g4}, with the following valuation profile:

v g1 g2 g3 g4

1 1.1 1.1 2 2
2 2 2 1.1 1.1

Observe that the first two goods must be allocated to different agents, otherwise TEF1 will be violated
after the second good is allocated. Without loss of generality, suppose that agent 1 receives g1 and
agent 2 receives g2. We have v1(g1) < v1({g2, g3, g4})−v1(g3) and v2(g2) < v2({g1, g3, g4})−v2(g1),
thereby showing that EF1 will be violated if g3 and g4 are allocated to the same agent.

30



Thus, in any TEF1 allocation A, agent 1 must receive one good from {g1, g2} and one good from
{g3, g4}. However, observe that every such allocation A is Pareto-dominated by the allocation where
agent 2 receives bundle {g1, g2} and agent 1 receives bundle {g3, g4}. This proof can be extended to
the case of n ≥ 3 simply by adding dummy agents who have zero value for each good, and observing
that they cannot receive any item in a PO allocation. As such, a TEF1 and PO allocation cannot be
guaranteed to exist, even when when there are two types of chores.

Next, we prove the result for chores. Consider an instance with n ≥ 2 agents and 2n chores O =
{c1, . . . , c2n}, with the following valuation profile:

v c1 . . . cn cn+1 . . . c2n

1 −1.1 . . . −1.1 −2 . . . −2
2 −2 . . . −2 −1.1 . . . −1.1
3 −2 . . . −2 −2 . . . −2
...

...
...

...
...

n −2 . . . −2 −2 . . . −2

In this instance, agent 1 has value−1.1 for each of the first n chores, and value−2 for the last n chores.
Agent 2 has value −2 for the first n chores, and value −1.1 for the last n chores. If n ≥ 3, then agents
3, . . . , n have value −2 for all chores.

Observe that each agent must receive one of the first n chores to avoid violating TEF1 within the first n
rounds. We now show that each agent must also receive one of the final n chores, otherwise TEF1 will
be violated. Suppose for contradiction that in the final allocation A, some agent i ∈ N is allocated at
least two chores from {cn+1, . . . , c2n}. Then for each i ∈ N , let c′i := argminc∈Ai

vi(c). We get that

vi(Ai \ {c′i}) ≤


−5.1 + 2 = −3.1 if i = 1,

−4.2 + 2 = −2.2 if i = 2,

−6 + 2 = −4 if i ∈ {3, . . . , n}.
(12)

By the pigeonhole principle, there exists some other j ∈ N \ {i} that receives no chore from
{cn+1, . . . , c2n}, giving us

vi(Aj) =


−1.1 if i = 1,

−2 if i = 2,

−2 if i ∈ {3, . . . , n}.
(13)

Consequently, agent iwould envy agent j even after removing one chore from her own bundle, and TEF1
is violated. Thus, in any TEF1 allocation, each agent must receive exactly one chore from {c1, . . . , cn}
and exactly one chore out of {cn+1, . . . , c2n}.

However, any such allocation is Pareto-dominated by another allocation where agent 1 receives exactly
two chores from {c1, . . . , cn} and no chores from {cn+1, . . . , c2n}, and agent 2 receives no chores from
{c1, . . . , cn} and exactly two chores from {cn+1, . . . , c2n}. As such, a TEF1 and PO allocation cannot
be guaranteed to exist, even when there are two types of chores.

C.2 Proof of Theorem 4.3

We reduce from the NP-hard problem 1-in-3-SAT. An instance of this problem consists of conjunctive
normal form F with three literals per clause; it is a yes-instance if there exists a truth assignment to
the variables such that each clause has exactly one True literal, and a no-instance otherwise.

Consider an instance of 1-in-3-SAT given by the CNF F which contains n variables {x1, . . . , xn} and
m clauses {C1, . . . , Cm}.

31



We construct an instance I with two agents and 2n + 1 goods. For each i ∈ [n], we introduce two
goods ti, fi. We also introduce an additional good r. Let agents’ (identical) valuations be defined as
follows:

v(g) =


5m+n−i +

∑
j :xi∈Cj

5m−j , if g = ti,

5m+n−i +
∑

j :¬xi∈Cj
5m−j , if g = fi,∑

j∈[m] 5
j−1, if g = r.

Intuitively, for each variable index i ∈ [n], we associate with it a unique value 5m+n−i. For each clause
index j ∈ [m], we also associate with it a unique value 5m−j . Note that no two indices (regardless
of whether its a variable or clause index) share the same value, hence the uniqueness of the values.
Then, the value for each good ti comprises of the unique value associated with i, and the sum over all
unique values of clauses Cj which xi appears as a positive literal in; whereas the value for each good
fi comprises of the unique value associated with i, and the sum over all unique values of clauses Cj

which xi appears as a negative literal in. We will utilize this in our analysis later.

Then, we have the set of goods O = {t1, f1, t2, f2, . . . , tn, fn, r}. Note that

v(O) = v(r) +
∑
i∈[n]

v(ti) +
∑
i∈[n]

v(fi).

Also observe that ∑
i∈[n]

5m+n−i =
∑
i∈[n]

5m+i−1.

Now, as each clause contains exactly three literals,∑
i∈[n]

∑
j:xi∈Cj

5m−j +
∑
i∈[n]

∑
j:¬xi∈Cj

5m−j = 3×
∑
j∈[m]

5j−1.

Then, combining the equations above, we get that

v(O) = 2×
∑
i∈[n]

5m+i−1 + 4×
∑
j∈[m]

5j−1. (14)

Let the goods appear in the following order:

t1, f1, t2, f2, . . . , tn, fn, r.

We first prove the following result.

Lemma C.1. There exists a truth assignment α such that each clause in F has exactly one True literal if
and only if there exists an allocation A = (A1, A2) such that v(A1) = v(A2) for instance I .

Proof. For the ‘if’ direction, consider an allocation A such that v(A1) = v(A2). Since agents have
identical valuations, without loss of generality, let r ∈ A1. Since O = A1 ∪A2 and v(A1) = v(A2) =
1
2v(O), we have that

v(A1 \ {r}) =

∑
i∈[n]

5m+i−1 + 2×
∑
j∈[m]

5j−1

− ∑
j∈[m]

5j−1 =
∑
i∈[n]

5m+i−1 +
∑
j∈[m]

5j−1.

Note that this is only possible if for each i ∈ [m], ti and fi are allocated to different agents. The reason
is because the only way agent 1 can obtain the

∑
i∈[n] 5

m+i−1 term of the above bundle value is if he is
allocated exactly one good from each of {ti, fi} for all i ∈ [n].

32



Then, from the goods that exist in bundle A1, we can construct an assignment α: for each i ∈ [n], let
xi = True if ti ∈ A1 and xi = False if fi ∈ A1. Then, from the second term in the expression of
v(A1 \ {r}) above, we can observe that each clause must have exactly one True literal.

For the ‘only if’ direction, consider a truth assignment α such that each clause in F has exactly one
True literal. Then, for each i ∈ [n], let

ℓi =

{
ti if xi = True under α,
fi if xi = False under α.

We construct the allocation A = (A1, A2) where

A1 = {ℓ1, . . . , ℓn, r} and A2 = O \A1.

Again, observe that ∑
i∈[n]

5m+n−i =
∑
i∈[n]

5m+i−1.

Then, as each clause has exactly one True literal,

v(A1) =
∑
i∈[n]

5m+i−1 + 2×
∑
j∈[m]

5j−1,

and together with (14), we get that

v(A2) = v(O)− v(A1) = v(A1),

as desired.

Note that for all values ofm,n ≥ 1, and some ε < 1
3 ,

5m+n − 2ε > 5m+n−1 +
5m − 1

4
= 5m+n−1 +

∑
j∈[m]

5j−1 ≥ max
g∈O

v(g). (15)

Now consider another instance I ′ that is similar to I , but with an additional four goods o1, o2, o3, o4.
Let the agents’ valuations over these four new goods be defined as follows, for some ε < 1

3 :

v o1 o2 o3 o4

1 5m+n 5m+n − ε 5m+n − ε 5m+n

2 5m+n − ε 5m+n 5m+n 5m+n − ε

Then, we have the set of goods O′ = O ∪ {o1, o2, o3, o4}.

Let the goods be in the following order:

t1, f1, t2, f2, . . . , tn, fn, r, o1, o2, o3, o4.

If there is a partial allocation A2n+1 over the first 2n+ 1 goods such that v(A2n+1
1 ) = v(A2n+1

2 ), then
by giving o1, o4 to agent 1 and o2, o3 to agent 2, we obtain an allocation that is TEF1 and PO (note that
any allocation for the first 2n+ 1 goods will be PO, since agents have identical valuations over them).

However, if there does not exist a partial allocation A2n+1 over the first 2n + 1 goods such that
v(A2n+1

1 ) = v(A2n+1
2 ), then let A2n+1 be any partial allocation of the first 2n+ 1 goods that is TEF1

but v(A2n+1
1 ) ̸= v(A2n+1

2 ). We will show that if v(A2n+1
1 ) ̸= v(A2n+1

2 ), any TEF1 allocation of O′

cannot be PO.

33



Note that in order for A2n+1 to be TEF1, we must have that for any agent i ∈ {1, 2},

v(A2n+1
i ) ≥

v(O)−maxg∈O v(g)

2
. (16)

This also means that for any agent i ∈ {1, 2},

v(A2n+1
i ) ≤ v(O)−

v(O)−maxg∈O v(g)

2
=

v(O) + maxg∈O v(g)

2
. (17)

Also observe that since ming∈O v(g) > ε and v(A2n+1
1 ) ̸= v(A2n+1

2 ),∣∣v(A2n+1
1 )− v(A2n+1

2 )
∣∣ > ε. (18)

We split our analysis into two cases.

Case 1: v(A2n+1
1 ) > v(A2n+1

2 ). If we give o1 to agent 1, since by (15), v2(o1) > maxg∈A2n+1
1

v(g),
we get that

v2(A
2n+2
2 ) = v(A2n+1

2 ) < v(A2n+1
1 ) = v2(A

2n+2
1 \ {o1}),

and agent 2 will still envy agent 1 after dropping o1 from agent 1’s bundle. Thus, we must give o1 to
agent 2.

Next, if we give o2 to agent 2, then since v1(o1) > maxg∈O v(g) and v1(o1) > v1(o2), we have that

v1(A
2n+3
1 ) = v(A2n+1

1 )

≤
v(O) + maxg∈O v(g)

2
(by (17))

<
v(O)−maxg∈O v(g)

2
+ v1(o2) (by (15))

≤ v(A2n+1
2 ) + v1(o2) (by (16))

= v1(A
2n+3
2 \ {o1}),

and agent 1 will still envy agent 2 after dropping o1 from agent 2’s bundle. Thus, we must give o2 to
agent 1. However, such a partial allocation (and thus A) will fail to be PO, as giving o1 to agent 1 and
o2 to agent 2 instead will strictly increase the utility of both agents.

Case 2: v(A2n+1
1 ) < v(A2n+1

2 ). If we give o1 to agent 2, since by (15), v1(o1) > maxg∈A2n+1
2

v(g),
we get that

v1(A
2n+2
1 ) = v(A2n+1

1 ) < v(A2n+1
2 ) = v1(A

2n+2 \ {o1}),

and agent 1 will still envy agent 2 after dropping o1 from agent 2’s bundle. Thus, we must give o1 to
agent 1.

Next, if we give o2 to agent 1, then since v2(o2) > maxg∈O v(g) and v2(o2) > v2(o1), we have that

v2(A
2n+3
2 ) = v(A2n+1

2 )

≤
v(O) + maxg∈O v(g)

2
(by (17))

<
v(O)−maxg∈O v(g)

2
+ v1(o1) (by (15))

≤ v(A2n+1
1 ) + v1(o1) (by (16))

= v2(A
2n+3
1 \ {o2}),

34



and agent 2 will still envy agent 1 after dropping o2 from agent 1’s bundle. Thus, we must give o2 to
agent 2.

Now, if we give o3 to agent 2, then since v1(o3) > maxg∈O v(g) and v1(o3) = v1(o2), we have that

v1(A
2n+4
1 ) = v(A2n+1

1 ) + v1(o1)

< v(A2n+1
2 )− ε+ v1(o1) (by (18))

= v(A2n+1
2 ) + v1(o2)

= v1(A
2n+4
2 \ {o3}),

and agent 1 will still envy agent 2 after dropping o3 from agent 2’s bundle. Thus, we must give o3 to
agent 1.

Finally, if we give o4 to agent 1, then since v2(o3) > maxg∈O v(g) and v2(o3) > v2(o1) = v2(o4), we
have that

v2(A2) = v(A2n+1
2 ) + v2(o2)

= v(A2n+1
2 ) + 5m+n

≤
v(O) + maxg∈O v(g)

2
+ 5m+n (by (17))

<
v(O)−maxg∈O v(g)

2
+ 2× 5m+n − 2ε (by (15))

≤ v(A2n+1
1 ) + 2× 5m+n − 2ε (by (16))

= v(A2n+1
1 ) + v2({o1, o4})

= v2(A1 \ {o3}),

and agent 2 will still envy agent 1 after dropping o3 from agent 1’s bundle. Thus, we must give o4 to
agent 2. However, again, this is not PO as giving o3 to agent 2 and o4 to agent 1 will strictly increase
the utility of both agents.

By exhaustion of cases, we have shown that if v(A2n+1
1 ) ̸= v(A2n+1

2 ), there does not exist a TEF1 and PO
allocation over O′. Thus, a TEF1 and PO allocation over O′ exists if and only if v(A2n+1

1 ) ̸= v(A2n+1
2 ).

By Lemma C.1, this implies that a TEF1 and PO allocation over O′ exists if and only if there is a truth
assignment α such that each clause in F has exactly one True literal.

C.3 Proof of Theorem 4.4

We reduce from the NP-hard problem 1-in-3-SAT. An instance of this problem consists of conjunctive
normal form F with three literals per clause; it is a yes-instance if there exists a truth assignment to
the variables such that each clause has exactly one True literal, and a no-instance otherwise.

Consider an instance of 1-in-3-SAT given by the CNF F which contains n variables {x1, . . . , xn} and
m clauses {C1, . . . , Cm}.

We construct an instance I with two agents and 2n + 1 chores. For each i ∈ [n], we introduce two
chores ti, fi. We also introduce an additional chore r. Let agents’ (identical) valuations be defined as
follows:

v(c) =


−5m+n−i −

∑
j :xi∈Cj

−5m−j , if c = ti,

−5m+n−i −
∑

j :¬xi∈Cj
5m−j , if c = fi,

−
∑

j∈[m] 5
j−1, if c = r.

Intuitively, for each variable index i ∈ [n], we associate with it a unique value −5m+n−i. For each
clause index j ∈ [m], we also associate it with a unique number −5m−j . Note that no two indices

35



(regardless of whether its a variable or clause index) share the same value, hence the term unique value.
Then, the value for each chore ti comprises of the unique value associated with i, and the sum over all
unique values of clauses Cj which xi appears as a positive literal in; whereas the value for each chore
fi comprises of the unique value associated with i, and the sum over all unique values of clauses Cj

which xi appears as a negative literal in. We will utilize this in our analysis later.

Then, we have that the set of chores O = {t1, f1, t2, f2, . . . , tn, fn, r}. Note that

v(O) = v(r) +
∑
i∈[n]

v(ti) +
∑
i∈[n]

v(fi).

Also observe that
−

∑
i∈[n]

5m+n−i = −
∑
i∈[n]

5m+i−1.

Now, as each clause contains exactly three literals,

−
∑
i∈[n]

∑
j:xi∈Cj

5m−j −
∑
i∈[n]

∑
j:¬xi∈Cj

5m−j = 3×−
∑
j∈[m]

5j−1.

Then, combining the equations above, we get that

v(O) = 2×−
∑
i∈[n]

5m+i−1 + 4×−
∑
j∈[m]

5j−1. (19)

Let the chores appear in the following order:

t1, f1, t2, f2, . . . , tn, fn, r.

We first prove the following result.

Lemma C.2. There exists a truth assignment α such that each clause in F has exactly one True literal if
and only if there exists an allocation A = (A1, A2) such that v(A1) = v(A2) for instance I .

Proof. For the ‘if’ direction, consider an allocation A such that v(A1) = v(A2). Since agents have
identical valuations, without loss of generality, let r ∈ A1. Since O = A1 ∪A2 and v(A1) = v(A2) =
1
2v(O), we have that

v(A1 \ {r}) =

−∑
i∈[n]

5m+i−1 + 2×−
∑
j∈[m]

5j−1

+
∑
j∈[m]

5j−1 = −
∑
i∈[n]

5m+i−1 −
∑
j∈[m]

5j−1.

Note that this is only possible if for each I ∈ [m], ti and fi are allocated to different agents. The reason
is because the only way agent 1 can obtain the first term of the above bundle value (less chore r) is if
she is allocated exactly one chore from each of {ti, fi} for each i ∈ [n].

Then, from the chores that exists in bundle A1, we can construct an assignment α: for each i ∈ [n],
let xi = True if ti ∈ A1 and xi = False if fi ∈ A1. Then, from the second term in the expression of
v(A1 \ {r}) above, we can observe that each clause has exactly one True literal (because the sum is
only obtainable if exactly one literal appears in each clause, and our assignment will cause each these
literals to evaluate True.

For the ‘only if’ direction, consider a truth assignment α such that each clause in F has exactly one
True literal. Then, for each i ∈ [n], let

ℓi =

{
ti if xi = True under α,
fi if xi = False under α.

36



We construct the allocation A = (A1, A2) where

A1 = {ℓ1, . . . , ℓn, r} and A2 = O \A1.

Again, observe that
−

∑
i∈[n]

5m+n−i = −
∑
i∈[n]

5m+i−1.

Then, as each clause has exactly one True literal,

v(A1) = −
∑
i∈[n]

5m+i−1 + 2×−
∑
j∈[m]

5j−1,

and together with (14), we get that

v(A2) = v(O)− v(A1) = v(A1),

as desired.

Note that for all values ofm,n ≥ 1, and some ε < 1
3 ,

−5m+n + 2ε

2
< −5m+n−1 − 5m − 1

4
= −5m+n−1 −

∑
j∈[m]

5j−1 ≤ min
c∈O

v(c). (20)

Now, consider another instance I ′ that is similar to I , but with an additional four chores o1, o2, o3, o4.
Let agents’ valuations over these four new chores be defined as follows, for some ε < 1

3 :

v o1 o2 o3 o4

1 −5m+n −5m+n + ε −5m+n + ε −5m+n

2 −5m+n + ε −5m+n −5m+n −5m+n + ε

Then, we have the set of chores O′ = O ∪ {o1, o2, o3, o4}.

Let the chores be in the following order:

t1, f1, t2, f2, . . . , tn, fn, r, o1, o2, o3, o4.

If there is a partial allocation A2n+1 over the first 2n+ 1 chores such that v(A2n+1
1 ) = v(A2n+1

2 ), then
by giving o1, o4 to agent 1 and o2, o3 to agent 2, we obtain an allocation that is TEF1 and PO (note that
any allocation for the first 2n+ 1 chores will be PO, since agents have identical valuations over them).

However, if there does not exist a partial allocation A2n+1 over the first 2n + 1 goods such that
v(A2n+1

1 ) = v(A2n+1
2 ), then let A2n+1 be any partial allocation of the first 2n+ 1 goods that is TEF1

but v(A2n+1
1 ) ̸= v(A2n+1

2 ).

Note that in order for A2n+1 to be TEF1, we must have that for any agent i ∈ {1, 2},

v(A2n+1
i )−min

c∈O
v(c) ≥ v(O)

2
. (21)

This also means that for any agent i ∈ {1, 2},

v(A2n+1
i ) ≤ v(O)−

(
v(O)

2
+ min

c∈O
v(c)

)
=

v(O)

2
−min

c∈O
v(c). (22)

Also observe that since ming∈O v(g) > ε and v(A2n+1
1 ) ̸= v(A2n+1

2 ),∣∣v(A2n+1
1 )− v(A2n+1

2 )
∣∣ > ε. (23)

We split our analysis into two cases.

37



Case 1: v(A2n+1
1 ) > v(A2n+1

2 ). If we give o1 to agent 2, since by (20), v2(o1) < minc∈A2n+1
2

v(c), we
get that

v2(A
2n+2
2 \ {o1}) = v(A2n+1

2 ) < v(A2n+1
1 ) = v2(A

2n+2
1 ),

and agent 2 will still envy agent 1 after dropping o1 from his own bundle. Thus, we must give o1 to
agent 1.

Next, if we give o2 to agent 1, then since v1(o1) < maxc∈O v(c) and v1(o1) < v1(o2), we have that

v1(A
2n+3
1 \ {o1}) = v(A2n+1

1 ) + v1(o2)

≤ v(O)

2
−min

c∈O
v(c) + v1(o2) (by (22))

<
v(O)

2
+ min

c∈O
v(c) (by (20))

≤ v(A2n+1
2 ) (by (21))

= v1(A
2n+3
2 ),

and agent 1 will still envy agent 2 after dropping o2 from her own bundle. Thus, we must give o2 to
agent 2. However, such a partial allocation (and thus A) will fail to be PO, as giving o1 to agent 2 and
o2 to agent 1 will strictly increase the utility of both agents.

Case 2: v(A2n+1
1 ) < v(A2n+1

2 ). If we give o1 to agent 1, since by (20), v1(o1)minc∈A2n+1
1

v(c), we
get that

v1(A
2n+2
1 \ {o1}) = v(A2n+1

1 ) < v(A2n+1
2 ) = v1(A

2n+2),

and agent 1 will still envy agent 2 after dropping o1 from her own bundle. Thus, we must give o1 to
agent 2.

Next, if we give o2 to agent 2, then since v2(o2) < minc∈O v(c) and v2(o2) < v2(o1), we have that

v2(A
2n+3
2 \ {o2}) = v(A2n+1

2 ) + v2(o1)

≤ v(O)

2
−min

c∈O
v(c) + v2(o1) (by (22))

<
v(O)

2
+ min

c∈O
v(c) (by (20))

≤ v(A2n+1
1 ) (by (21))

= v2(A
2n+3
1 ),

and agent 2 will still envy agent 1 after dropping o2 from his own bundle. Thus, we must give o2 to
agent 1.

Now, if we give o3 to agent 1, then since v1(o3) < minc∈O v(c) and v1(o3) = v1(o2), we have that

v1(A
2n+4
1 \ {o3}) = v(A2n+1

1 ) + v1(o2)

< v(A2n+1
2 )− ε+ v1(o2) (by (23))

= v(A2n+1
2 ) + v1(o1)

= v1(A
2n+4
2 ),

and agent 1 will still envy agent 2 after dropping o3 from her own bundle. Thus, we must give o3 to
agent 2.

38



Finally, if we give o4 to agent 2, then since v2(o3) < minc∈O v(c) and v2(o3) < v2(o1) = v2(o4), we
have that

v2(A2 \ {o3}) = v(A2n+1
2 ) + v2({o1, o4})

= v(A2n+1
2 )− 2× 5m+n + 2ε

≤ v(O)

2
−min

c∈O
v(c)− 2× 5m+n + 2ε (by (22))

<
v(O)

2
+ min

c∈O
v(c)− 5m+n + ε (by (20))

≤ v(A2n+1
1 ) + v2(o1) (by (21))

= v(A2n+1
1 ) + v2(o1)

= v2(A1),

and agent 2 will still envy agent 1 after dropping o3 from his own bundle. Thus, we must give o4 to
agent 1. However, again, this is not PO as giving o3 to agent 1 and o4 to agent 2 will strictly increase
the utility of both agents.

By exhaustion of cases, we have shown that if v(A2n+1
1 ) ̸= v(A2n+1

2 ), there does not exist a TEF1 and PO
allocation over O′. Thus, a TEF1 and PO allocation over O′ exists if and only if v(A2n+1

1 ) ̸= v(A2n+1
2 ).

By Lemma C.2, this implies that a TEF1 and PO allocation over O′ exists if and only if there is a truth
assignment α such that each clause in F has exactly one True literal.

D Omitted Proofs from Section 5

D.1 Proof of Theorem 5.1

Let A1 and B = A2 \ A1 be the allocations of item sets O1 and O2 respectively. Note that while we are
in the setting whereby O1 = O2, we can simply relabel item.

We first address a special case. When allocating chores, for each t ∈ {1, 2} such that |Ot| < n (i.e.,
there are less chores than agents in either round), add n− |Ot| zero-valued dummy chores to Ot.

To obtain A1, we allocate the items in the first round in a round-robin fashion, with picking sequence
(1, . . . , n)∗. That is, agent 1 picks their most preferred item, followed by agent 2, and so on until agent
n, after which the sequence restarts. The items arriving in the second round are also allocated in a
round-robin fashion to obtain B, but with picking sequence (n, . . . , 1)∗. The round-robin algorithm is
well-known to satisfy EF1 for both the goods and chores settings [9], so we know that A1 and B are
EF1. It remains to show that A2 = A1 ∪ B is EF1.

Consider an arbitrary pair of agents i, j. If i < j, then

vi(A
1
i ) ≥ vi(A

1
j ),

because i precedes j in the picking sequence for allocation A. Similarly, if i > j, then

vi(Bi) ≥ vi(Bj).

Note that these inequalities hold for both goods and chores.

We now prove our result for goods. Consider an arbitrary agent i. Since A1 and B are EF1, we know
that for any agent j ̸= i, there exists a good ga ∈ A1

j such that vi(A1
i ) ≥ vi(A

1
j \ {ga}), and there exists

a good gb ∈ Bj such that vi(Bi) ≥ vi(Bj \ {gb}). Therefore for any agent j < i, there exists ga ∈ A1
j

such that

vi(A
2
i ) = vi(A

1
i ∪Bi) ≥ vi(A

1
j )− vi(ga) + vi(Bj) = vi(A

2
j )− vi(ga) = vi(A

2
j \ {ga}).

39



Similarly, for any j > i, there exists gb ∈ Bj such that vi(A2
i ) ≥ vi(A

2
j \ {gb}).

We next prove our result for chores. Again consider an arbitrary agent i. Due to A1 and B satisfying
EF1, for any agent j ̸= i, there exists a chore ca ∈ A1

i such that vi(A1
i \ {ca}) ≥ vi(A

1
j ), and there

exists a chore cb ∈ Bj such that vi(Bi \ {cb}) ≥ vi(Bj). Therefore for any j < i, there exists ca ∈ A1
i

such that
vi(A

2
i \ {ca}) = vi(A

1
i \ {ca}) + vi(Bi) ≥ vi(A

1
j ) + vi(Bj) = vi(A

2
j ).

Similarly, for any j > i, there exists cb ∈ Bi such that vi(A2
i \ {cb}) ≥ vi(A

2
j ). This concludes the

proof.

D.2 Proof of Theorem 5.2 (continued)

We now prove the result for the case of chores. We construct a set S′ = {s′1, . . . , s′m} such that for
each j ∈ [m], s′j = −K + sj where K := max{s1, . . . , sm}. Observe that S′ contains non-positive
integers. LetW ′ := 1

κ

∑
j∈[m] s

′
j

Then, we construct an instance with κ+1 agents andm+1 chores in each round: O1 = {c1, . . . , cm+1}
and O2 = {c′1, . . . , c′m+1}, where agents have an identical valuation function v defined as follows:

v(cj) = v(c′j) =

{
s′j , if j ≤ m,

2W ′, if j = m+ 1.

We will now prove that there exists a repetitive TEF1 allocation A if and only if the set S can be
partitioned into κ subsets with equal sums (ofW each).

For the ‘if’ direction, consider a κ-way partition P = {P1, . . . , Pκ} of S with equal sums (of W each).
This means that S′ can also be partitioned into κ subsets of equal sums (with the same partition P ; let
the sum be W ′). We construct allocations A1 and A2 such that the chores in both rounds are allocated
identically, and show that A2 satisfies TEF1.

For each i ∈ {1, . . . , κ}, allocate the chores corresponding to the elements of subset Pi to agent i, and
the chore cm+1 to agent κ + 1. Then, in A1, for each agent i ∈ [κ], v(A1

i ) =
∑

c∈Pi
c = W ′, and

v(A1
κ+1) = v({cm+1}) = 2W ′. It is easy to verify that A1 is TEF1: every pair of agents i, j ∈ [κ] has

the same bundle value, and each agent i ∈ [κ] has a higher bundle value than agent κ+ 1. Also, agent
κ+ 1 will not envy any agent i ∈ [κ] after removing chore cm+1 ∈ A1

κ+1.

Next, we consider A2. For each agent i ∈ [κ], v(A2
i ) = 2W ′, and v(A2

κ+1) = 4W ′. We verify that A2

is TEF1: again, each pair of agents i, j ∈ [κ] has the same bundle value, and each agent i ∈ [κ] has a
higher bundle value than agent κ+ 1. Also, agent κ+ 1 will not envy any agent i ∈ [κ] after removing
chore cm+1 ∈ A2

κ+1.

For the ‘only if’ direction, suppose we have a repetitive allocationA2 which satisfies TEF1. Since agents
have identical valuation functions, without loss of generality, suppose that agent κ+ 1 receives chore
cm+1 under A1. Then, v(A2

κ+1 \ {cm+1}) ≤ 2W ′. In order for A2 to be TEF1, we must have that
v(A2

i ) ≤ 2W ′ for each i ∈ [κ] (so that agent κ+ 1 will not envy any agent i ∈ [κ]). This means that
for each i ∈ [κ], v(A1

i ) ≤ W ′, but since
∑

j∈[m] s
′
j = κW ′, this is only possible if there is a κ-way

partition of S′ such that each subset has a sum ofW ′ (i.e. there is a κ-way partition of S such that each
subset has a sum ofW ).

E TEF1 for Mixed Manna

We first define TEF1 for mixed manna.

40



Definition E.1 (Temporal EF1 for mixed manna). In the case of with both goods and chores, an
allocation At = (At

1, . . . , A
t
n) is said to be temporal envy-free up to one item (TEF1) if for all t′ ≤ t and

i, j ∈ N , there exists an item o ∈ At′
i ∪At′

j such that vi(At′
i \ {o}) ≥ vi(A

t′
j \ {o}).

Then, we can extend the result of Theorem 3.2 to the more general mixed manna setting, with the
following result.

Theorem E.2. When n = 2, a TEF1 allocation exists in the mixed manna setting, and can be computed
in polynomial time.

Proof. For an agent i ∈ {1, 2} and round t ∈ [T ], we define St
i ⊆ Ot as the set of items that have

arrived up to round t which only agent i has a positive value for. Then, for any t ∈ [t] and i, j ∈ {1, 2}
where i ̸= j, vi(St

i ) ≥ 0 and vi(St
j) ≤ 0. Clearly, if some allocationAt is TEF1 overOt \ (St

1∪St
2), then

Bt = (St
1 ∪At

1, S
t
2 ∪At

2) is a TEF1 allocation over Ot. Furthermore, for any t ∈ [T ] and i, j ∈ {1, 2}
where i ̸= j, if there exists an item o ∈ At

i ∪At
j such that vi(At

i \ {o}) ≥ vi(A
t
j \ {o}), then

vi(B
t
i \ {o}) = vi(A

t
i \ {o}) + vi(S

t
i )

≥ vi(A
t
i \ {o})

≥ vi(A
t
j \ {o})

≥ vi(A
t
j \ {o}) + vi(S

t
j)

= vi(B
t
j \ {o}),

where the first and third inequalities are due to the fact that vi(St
i ) ≥ 0 and vi(S

t
j) ≤ 0. It therefore

suffices to assume that for each item o ∈ O, either v1(o) ≤ 0 and v2(o) ≤ 0, or v1(o) ≥ 0 and v2(o) ≥ 0,
and we make this assumption for the remainder of the proof.

Let v′i(o) = |vi(o)| for all i ∈ {1, 2} and o ∈ O. Note that v′i(o) ≥ 0 for all i ∈ {1, 2} and o ∈ O and
thus, with respect to the augmented valuations, each o ∈ O is a good. We use Algorithm 2 in He et al.
[46], which returns a TEF1 allocation for goods in polynomial time, to compute an allocation B which
is TEF1 with respect to the augmented valuations v′.

For a round t ∈ [T ], let Gt, Ct ⊆ Ot be, respectively, the subsets of goods and chores (with respect to
the original valuation profile v = (v1, v2)) that have arrived up to round t. Then, for each t ∈ [T ] and
i ∈ {1, 2}, let Gt

i = Gt ∩ Bt
i and Ct

i = Ct ∩ Bt
i . We construct allocation A = (GT

1 ∪ CT
2 , G

T
2 ∪ CT

1 )
from B by swapping the agents’ bundles of chores. We now show that A is TEF1.

Recall that all items are goods with respect to v′. Since B is TEF1, we know that for any t ∈ [T ] and
i, j ∈ {1, 2} where i ̸= j, there exists an item o ∈ Bt

j such that

v′i(B
t
i) ≥ v′i(B

t
j \ {o})

=⇒ vi(G
t
i)− |vi(Ct

i )| ≥ vi(G
t
j)− |vi(Ct

j)| − |vi(o)|
=⇒ vi(G

t
i) + vi(C

t
j) ≥ vi(G

t
j) + vi(C

t
i )− |vi(o)|

=⇒

{
vi(G

t
i) + vi(C

t
j) ≥ vi(G

t
j \ {o}) + vi(C

t
i ) if o ∈ Gt

j

vi(G
t
i) + vi(C

t
j \ {o}) ≥ vi(G

t
j) + vi(C

t
i ) if o ∈ Ct

j

=⇒ vi(G
t
i ∪ Ct

j \ {o}) ≥ vi(G
t
i ∪ Ct

j \ {o})
=⇒ vi(A

t
i \ {o}) ≥ vi(A

t
j \ {o}).

Thus, A is TEF1.

41



Edith Elkind
Northwestern University
Evanston, Illinois, USA
Email: edith.elkind@northwestern.edu

Alexander Lam
Hong Kong Polytechnic University
Hong Kong, Hong Kong SAR
Email: alexander-a.lam@polyu.edu.hk

Mohamad Latifian
University of Edinburgh
Edinburgh, UK
Email: mohamad.latifian@ed.ac.uk

Tzeh Yuan Neoh
Harvard University
Cambridge, Massachusetts, USA
Email: tzehyuan_neoh@g.harvard.edu

Nicholas Teh
University of Oxford
Oxford, UK
Email: nicholas.teh@cs.ox.ac.uk

42

edith.elkind@northwestern.edu
alexander-a.lam@polyu.edu.hk
mohamad.latifian@ed.ac.uk
tzehyuan_neoh@g.harvard.edu
nicholas.teh@cs.ox.ac.uk

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	On the Existence of TEF1 Allocations
	Two Agents
	Other Restricted Settings
	Hardness Results for TEF1 Allocations

	Compatibility of TEF1 and Efficiency
	Multiple Items per Round
	Conclusion
	Counterexample for Goods when n 3
	Omitted Proofs from Section 3
	Proof of thm:2agents
	Proof of prop:tefxn=2notexist
	Proof of thm:twotypes
	Proof of thm:generalizedbinary
	Proof of thm:singlepeakedgoods
	Proof of lemma-code
	Proof of thm:choresTEF1hard
	Proof of lem:choresef1hardagents14
	Proof of lem:choresef1hardagents23

	Omitted Proofs from Section 4
	Proof of proptef1po
	Proof of thm:tef1ponphardgoods
	Proof of thm:tef1ponphardchores

	Omitted Proofs from Section 5
	Proof of thm:multiT=2
	Proof of Theorem 5.2 (continued)

	TEF1 for Mixed Manna

