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Abstract

We investigate the Pareto e�ciency of ordinal multiwinner voting rules. De�ning the Pareto-
optimality of a committee requires relating the voters’ rankings over individual candidates to
their preferences over committees. We consider two well-known extension principles that extend
rankings over candidates to preferences over committees: responsive and lexicographic. As
the responsive extension outputs partial orders, we consider two associated Pareto-optimality
notions: a committee is possibly (respectively, necessary) Pareto-optimal if it is Pareto-optimal for
some (respectively, every) completion of these partial orders. We de�ne several Pareto-e�ciency
notions for multiwinner rules, depending on whether some (respectively, all) committees in
the output are Pareto-optimal for one of the latter notions. We review what we believe to be a
complete list of ordinal multiwinner rules that have been studied in the literature, and identify
which Pareto-e�ciency notions they satisfy. We �nd that, somewhat surprisingly, these rules
show a huge diversity: some satisfy the strongest notion, some do not even satisfy the weakest
one, with many other rules at various intermediate levels.

1 Introduction

Multiwinner voting rules (or committee rules) are natural generalizations of single-winner voting rules.
They are useful in a variety of situations, from shortlisting to proportional representation and group
recommendation. See [14] for a survey. A multiwinner voting rule outputs a set of k candidates, also
called a committee, for some integer k. The literature distinguishes two important families of such rules,
depending on the format of the input: those based on approval votes, and those based on ordinal votes
(each voter ranking the candidates). We focus on the latter family.

The recent literature extensively discusses axiomatic and computational properties of multiwinner
voting rules. We focus on Pareto-e�ciency. For de�ning Pareto-e�ciency we �rst need to de�ne the
satisfaction of a voter by a committee. If the input of the rule consists of approval ballots, a way doing
so is to count how many approved candidates it contains: this is the path followed by Lackner and
Skowron [21], who show that most well-studied approval-based committee rules are Pareto-e�cient
in this sense, with the noticeable exception of sequential rules. If the input of the rule is ordinal, then
things are more di�cult: while the input allows to say how each voter ranks single candidates, it does
not generally allow to say how they rank committees.2

We could think of going around this di�culty by saying that a committee S is Pareto-optimal if whenever
candidate x Pareto-dominates candidate y, then y is in S only if x is there too. Although this is a
plausible necessary condition for Pareto-optimality to hold, as a de�nition it is too weak: consider the
pro�le P with candidates a, b, x, y and four votes a � x � b � y, b � x � a � y, a � y � b � x and
b � y � a � x. All four candidates are Pareto-e�cient, yet {a, b} should clearly dominate {x, y}.

Another way consists in considering a preference extension principle mapping a ranking over candidates
to a partial order over committees, and then applying classical Pareto dominance directly on committees.
Such extension principles have been frequently used in various subdomains of social choice, including
irresolute rules, fair division of indivisible items, many-to-one matching, and hedonic games. Three

1This is an abridged version of a paper with the same title that has been accepted for publication in the Review of Economic
Design (special issue in the honour of Arkadii Slinko).

2As there are exponentially many committees if k is variable, asking voters to rank committees explicitly is not usually
considered an option.
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di�erent interpretations of sets of candidates have been considered [6]: �nal outcomes (all elements in
the set are jointly obtained), complete uncertainty (only one of the elements in the set is obtained in the
end, nature will decide which one), or opportunities (only one of the elements in the set is obtained
in the end, and the concerned agent can choose which one). The �rst of these three interpretations is
conjunctive while the other two are disjunctive. In the committee election setting (as in fair division,
matching and hedonic games), the interpretation that prevails is the conjunctive one: a subset of
candidates S is seen as a joint set of candidates (as opposed to the choice, by nature or by the agent, of
one alternative within S).

Aziz et al. [3, 1] consider several extension principles. For each of them, they study the computational
complexity of determining whether a committee is Pareto-optimal, of computing some Pareto-optimal
committee, and when possible, they give simple characterizations of Pareto-optimal committees. They
do not, however, consider the following question: given a multiwinner rule f and a preference extension
E, does f always output committees that are Pareto-optimal with respect to E?

Some of the common preference extension principles extend rankings over singletons to partial orders
over committees. In such a case, we are sometimes not able to say whether a committee is preferred by a
voter to another one. It is however possible to consider, for such extension principles, two modal notions:
possible and necessary Pareto-optimality and e�ciency.3 A committee is possibly Pareto-optimal (PPO) if
it is Pareto-optimal for some completion of these partial preferences, and necessarily Pareto-optimal
(NPO) if it is Pareto-optimal for all completions of these partial preferences. (Obviously, when an
extension principle outputs a complete preference relation then both notions coincide.) These PPO
and NPO notions with respect to an extension principle carry on to multiwinner voting rules: a voting
rule is necessarily (respectively, possibly) Pareto-e�cient if all the committees it outputs are NPO
(respectively, PPO). As the rules we consider are irresolute, we also introduce a weaker notion: a rule if
weakly PPE if at least one of its output committees is PPO.

Our aim is to study the Pareto-e�ciency of most well-studied ordinal multiwinner voting rules under
two classical preference extension principles that are especially relevant for our setting.

The central preference extension principle we consider is the responsive extension, which is particularly
suitable for the context of multiwinner elections, since it assumes that voters have additively decom-
posable preferences over committees. The responsive extension can be seen as the ordinal counterpart
of additivity. It has been introduced for the �rst time by [27], in the context of one-to-many matching,
and studied further in [26, 8]. It is arguably the most suitable preference extension principle under
the conjunctive interpretation, and has been used several times in this context, especially in matching
[19, 7], fair division [2, 9, 5, 28], committee selection [3, 1] and coalition formation [25, 18] As it produces
a partial order, we will consider its “possible” and “necessary” versions, de�ned by quantifying over
complete extensions of these partial preferences.

On the pro�le P introduced above, {a, b} necessarily Pareto-dominates {x, y}: if every voter has an
additively decomposable preference consistent with their ordinal preferences over single candidates,
then whatever the choice of the utility values, {a, b} Pareto-dominates {x, y}. If we replace the fourth
vote by x � y � b � a, then {b, y} is not necessarily Pareto-optimal; however, it is possibly Pareto-
optimal (see details in the long version).

Beyond the responsive extension, we also consider the lexicographic (or leximax) extension principle,
introduced in [8], and used in voting contexts in [20, 22, 5, 3, 1]. As it is complete, Pareto-e�ciency is
directly applicable (we do not need to distinguish between possible and necessary Pareto-optimality)
and as it is a re�nement of the responsive extension, Pareto-e�ciency for the lexicographic extension
is stronger than possible Pareto-e�ciency and weaker than necessary Pareto-e�ciency.

We do not consider other extension principles; we explain how below.
3We use the term optimality for committees and the term e�ciency for rules.
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The lexicographic extension principle is a re�nement of the ‘best’ extension principle [3], which orders
committees only according to their best element. This extension principle is rougher, less sensitive
to voters’ preferences, than the lexicographic extension principle. As it is a coarsening of it, Pareto-
e�ciency for the lexicographic extension implies Pareto-e�ciency for the ‘best’ extension, so all our
positive results about lexicographic extension implies Pareto-e�ciency for the ‘best’ extension.

Instead of focusing on the best element we could focus on the worst element and de�ne a leximin
extension principle, de�ned exactly as the (or leximax) principle, but starting from the worst committee
members instead of the best ones; this is a re�nement of the ‘worst’ extension principle [3]. It has been
argued in several places (see, e.g., [30] and the references therein) that in multiwinner voting, focusing
on the best element (the best representative of a voter in a committee, her best item or nearest facility
in a set) generally makes more sense than focusing on the worst element. Also, beyond focusing on the
best or the worst elements, there’s a continuum of possibilities ([30]; see in particular the discussion in
Section 3); as they are less common we will not consider them here.

Finally, we do not consider extension principles that make sense for the disjunctive interpretation of
sets (used, for instance, for studying the axiomatic properties of irresolute rules), but that make little or
no sense for the “sets of �nal outcomes” interpretation: Fishburn’s, Gärdenfors’ and Kelly’s [6].

Our results allow us to classify rules into six classes, according to their level of Pareto-e�ciency:

• Class 6: those for which all winning committees are necessarily Pareto-optimal for the responsive
extension (from now on we will simply say “necessarily Pareto-optimal”): they are said to be
necessarily Pareto e�cient (NPE). Such rules are rare; still, the perfectionist rule [15] is NPE.

• Class 5: those for which winning committees are lexicographically Pareto-optimal (they are said to
be lexicographically Pareto e�cient, or LPE) but not always necessarily Pareto-optimal. This is the
case for some committee scoring rules, as well as for sequential rules such as Single Transferable
Vote (STV), sequential plurality and sequential Chamberlin-Courant.

• Class 4: those that may output committees that are not lexicographically Pareto-optimal, but
ensure that for any input pro�le, at least one of the committees in the output is lexicographically
Pareto-optimal (these rules are said to be weakly lexicographically Pareto-e�cient, WLPE).

• Class 3: those that are not LPE, but for which all winning committees are possibly Pareto-optimal
for the responsive extension (from now on we will simply say “possibly Pareto-optimal”); they
are said to be possibly Pareto e�cient (PPE). This class contains compromise rules, all committee
scoring rules with a strictly decreasing scoring function that fail LPE, and more generally a large
fraction of committee scoring rules.

• Class 2: those that may output committees that are not possibly Pareto-optimal, but ensure that
for any input pro�le, at least one of the committees in the output is possibly Pareto-optimal; these
rules are said to be weakly possibly Pareto-e�cient (WPPE). This is notably the case for committee
scoring rules that are not PPE, including Single Non-Transferable Vote (SNTV), Bloc, and most
variants of Chamberlin-Courant rules.

• Class 1: �nally, some rules are not even WPPE. This class includes, typically, Condorcetian rules
such as Number of External Defeats (NED) or Minimum Size of External Opposition (SEO).

Section 2 gives the necessary background on ordinal multiwinner voting rules and preference extensions.
Section 3 de�nes possible, lexicographic and necessary Pareto-optimality (respectively e�ciency) of
committees (respectively rules). Section 4 identi�es the “level of Pareto-e�ciency” of all our (families
of) rules. The Appendix contains further results, examples, as well as all proofs that are not included in
the 12-page extended abstract.
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2 Background

2.1 Basic notions and notation

Let N be a set of voters with |N | = n ≥ 2 and A a set of candidates with |A| = m ≥ 3. L(A) is the
set of linear orders (or rankings) over A. A pro�le P is a collection of votes, each vote being a linear
order over candidates: P = (�1, . . . ,�n) ∈ L(A)n. To avoid overloaded notation, when writing votes
we often omit the � symbol: for instance, the vote a � b � c � d is simply written abcd. Also, when
several votes in a pro�le are identical, we use the following notation: P = (2× abcd, 3× dcba) is the
pro�le containing 3 votes a � b � c � d and 2 votes d � c � b � a.

If k ∈ {1, ..., m− 1} then Sk(A) = {X ⊂ A : |X| = k}. A member of Sk(A) is called a committee of
size k, or k-committee. We generally omit curly brackets when writing committees: for A = {a, b, c, d}
we write S2(A) = {ab, ac, ad, bc, bd, cd} instead of {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

W (Sk(A)) is the set of weak orders over Sk(A) and Π(Sk(A)) is the set of strict partial orders over
Sk(A). The strict partial order associated with wi∈W (Sk(A)) is de�ned as usual by x Ai y if x wi y
and not y wi x. If w1, . . . ,wn are weak orders over Sk(A), Q = (w1, . . . ,wn) is called a weak order
pro�le over Sk(A). Given a strict partial order Ai over Sk(A), a completion of Ai is a complete weak
order wi over Sk(A) such that for all x, y ∈ A, if x Ai y then x wi y.

2.2 Ordinal multi-winner rules

An (ordinal) multiwinner rule is a function f that, given a pro�le P and an integer k ≤ m, outputs a
nonempty subset of Sk(A). We list below several (most?) prominent ordinal multiwinner rules that
have been well-studied in the literature. The most recent survey on ordinal multiwinner rules is [14].
See the Appendix for a detailed description of the rules and detailed examples.

Committee scoring rules (CSR) [13] Given a vote�i and S ∈ Sk(A), we denote by pos(S,�i) the
sequence of positions of the members of S sorted increasingly: for example, pos({b, d}, abcd) = (2, 4).
A committee scoring function γ maps every such sequence of positions into a number, and satis�es a
monotonicity condition. Each vote �i gives a score γ(pos(S,�i)) to each committee S. The winning
committee(s) is (are) the one(s) maximizing the sum of scores for all votes

∑n
i=1 γ(pos(S,�i)). Some

particular CSRs: best-k rules (such as k-Borda and Single Nontransferrable Vote) correspond to additively
decomposable soring functions; the Bloc rule, with γ(pos(S,�i)) being the number of candidates in S
ranked in the �rst k positions of �i; the perfectionist rule, that outputs the set S of k candidates with
the largest number of voters whose set of preferred k candidates is exactly S (in any order); and the
family of Chamberlin-Courant rules, where γ(S,�i) is the score of the best candidate in S for �i.

Condorcetian rules Two common ways of extending the Condorcet criterion from single candidates
to committees: Gehrlein stability (a committee S is Gehrlein stable if every x ∈ S majority defeats
every y ∈ A \ S) [16, 17], and local stability for quota q (S is locally stable for q if for any y ∈ A \ S,
at least qn voters prefer some candidate in X to y [12]). A rule is Gehrlein-consistent if it elects the
Gehrlein stable committee whenever there exists one. Two speci�c Gehrlein-consistent rules are NED
(for “number of external defeats”) and SEO (for “size of external opposition”) [11], that can be seen
as respective multiwinner counterparts of the Copeland and maximin single-winner rules. We also
consider the locally stable extension of maximin (LSE-maximin) [4]: it outputs the sets S that are locally
stable for the maximal possible quota q.

Compromise rules Let α ∈ [0, 1). For a pro�le P and a cadidate x, λ(α, P, x), is the smallest integer
j such that x appears in the �rst j positions in more than αn votes. The compromise ruleMCαk [29, 31]
identi�es the smallest integer j such that there exist at least k alternatives with λ(α, P, x) ≤ j, and
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then outputs the k alternatives with the smallest values of λ(α, P, x); ties are broken according to
the number of voters who rank them in the �rst j positions. Note that MC

1/2
k , called majoritarian

compromise, is a multiwinner version of the Bucklin rule.

Sequential rules There are several variants of multiwinner single transferable vote (STV). We present
the most common one: let q = dnk e (quota). If some candidate x has a plurality score S(x) ≥ q, then x
is elected, and each of the votes for x becomes a fractional vote with weight 1− q

S(x) , with x removed;
otherwise the candidate with the lowest plurality score is eliminated from all votes. This operation
is repeated until k candidates have been elected. Sequential plurality elects �rst the plurality winner,
removes it from the list of candidates, then elects the plurality winner from the obtained pro�le, and
so on until k candidates have been elected. Greedy s-Chamberlin-Courant rules select candidates in
sequence according to their marginal contribution to the Chamberlin-Courant score of the committee
with respect to a scoring vector s.

2.3 Preference extensions

An extension principle is a function E : L(A)→ Π(Sk(A)): E maps a linear order over candidates to
a strict order over k-committees. We note �Ei for E(�i). The implicit assumption is that i’s actual
preferencewi is compatible with�Ei , i.e., that it is one of its completions. We write, for each�i∈ L(A),

κE(�i) = {wi ∈ W (Sk(A)) : wi is a completion of �Ei }
and, by a slight abuse of notation, for each pro�le P = (�1, . . . ,�n),

κE(P ) = κE(�1)× . . .× κE(�n).

The responsive extension principle ρ [27] says that for any subset A of candidates containing x and not
containing y, if B is obtained from A by replacing x by y, then B is preferred to A if and only if y is
preferred to x. Formally, given any X , Y ∈ Sk(A) and any �i∈ L(A), we say that Y is an elementary
improvement for X at �i if and only if Y = (X \ {x}) ∪ {y} for some x ∈ X and y ∈ A \X with y
�i x. The responsive extension ρ of �i is then de�ned as the inclusion-wise smallest transitive relation
satisfying Y �ρi X whenever Y is an elementary improvement for X at �i.

The responsive extension �ρi can be characterised equivalently by stochastic dominance. For any
h ∈ {1, ..., |X|}, we write rh(X;�i) ∈ X for the hth ranked alternative in X ⊆ A at �i∈ L(A). At
each�i∈ L(A) and for any distinct X,Y ∈ Sk(A), we de�ne the stochastic dominance relation σk(�i)
over Sk(A) asX σk(�i) Y i� rh(X;�i) = rh(Y ;�i) or rh(X;�i)�i rh(Y ;�i) for all h ∈ {1, ..., k} .

The lexicographic extension principle lex maps every �i∈ L(A) to the linear order lex(�i) =�lexi in
L(Sk(A)) de�ned by: forX ∈ Sk(A) and Y ∈ Sk(A),X �lexi Y if and only if for some h∗ ∈ {1, ..., k},
the following two conditions hold: (1) rh∗(X;�i) < rh∗(Y ;�i), and (2) rh(X;�i) = rh(Y ;�i) for all
h ∈ {1, ..., h∗ − 1}.

Unlike the responsive extension, the lexicographic extension outputs a total order on Sk(A), which is
one of the completions of the responsive extension. Therefore, X �lexi Y implies X �ρi Y .
Example 2.1. Let A = {a, b, c, d}, k = 2, and a �1 b �1 c �1 d. The responsive extension κρ(�1) is
the partial order on S2(A) and the lexicographic extension �lexi of �1 on the �gure below.

{a, b} {a, c}

{a, d}

{b, c}

{b, d} {c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

Responsive (left) and lexicographic (right) extensions of a �1 b �1 c �1 d.
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3 Pareto-optimality and Pareto-e�ciency

As already mentioned, Pareto-optimality is a property conditional to the choice of an extension principle.

As the lexicographic extension principle generates a linear order over Sk(A), Pareto-optimality is
de�ned in a natural way.

De�nition 3.1. Given a pro�le P = (�i)i∈N ∈ L(A)n, and two committees X,Y ∈ Sk(A), Y
lexicographically Pareto-dominatesX at P if Y �lexi X holds for every i ∈ N , andX is lexicographically
Pareto optimal at P if it is not lexicographically Pareto-dominated by any other committee in Sk(A).

As the responsive extension generates only a partial order over committees, we cannot directly apply
Pareto-optimality. One classical way of extending to collections of partial orders a notion that usually
applies to collections of total orders consists in quantifying over completions. Possible and necessary
Pareto-e�ciency correspond respectively to existential and universal quanti�cation (see [10, 9, 2, 5]).

We start by de�ning Pareto-dominance. We recall that ρ is the responsive extension principle.

De�nition 3.2. Let X,Y ∈ Sk(A).

• Y Pareto-dominates X at Q = (w1, . . . ,wn) ∈ W (Sk(A))N if Y wj X for all j ∈ N and
Y Ai X for some j ∈ N .

• Y possibly Pareto-dominates X at P ∈ L(A)N for ρ if Y Pareto-dominates X at Q for some
Q ∈ ρ(P ).

• Y necessarily Pareto-dominates X at P ∈ L(A)N for ρ if Y Pareto-dominates X at Q for every
Q ∈ ρ(P ).

We now de�ne Pareto optimality.

De�nition 3.3. Let X ∈ Sk(A).

• X is Pareto optimal at Q ∈ W (Sk(A))N if and only if there is no Y ∈ Sk(A) such that Y
Pareto-dominates X at Q.

• X is necessarily Pareto optimal at P ∈ L(A)N for ρ if and only if X is Pareto optimal at every
Q ∈ ρ(P ).

• X is possibly Pareto optimal at P ∈ L(A)N for ρ if and only if X is Pareto optimal at some
Q ∈ ρ(P ).

The following is immediate:

Proposition 3.1.

1. if X is necessarily Pareto at P for ρ then X is lexicographically Pareto optimal at P .

2. if X is lexicographically Pareto optimal at P then X is possibly Pareto at P for ρ.

Proposition 3.2. For any X ∈ Sk(A) and P ∈ L(A)N :

1. X is necessarily Pareto optimal at P for ρ if and only if there is no Y ∈ Sk(A) that possibly
Pareto-dominates X at P for ρ

2. X is possibly Pareto optimal at P for ρ if and only if there is no Y ∈ Sk(A) that necessarily
Pareto-dominates X at P for ρ.
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Example 3.1. Let P = (efbdca, abcdef). At this pro�le,

• {a, b} is LPO, because it is the most preferred committee for voter 2.

• {a, e} is LPO: voter 1 lexicographically prefers {a, e} to any committee that does not contain e,
and voter 2 lexicographically prefers {a, e} to any committee that does not contain a.

• {b, e} is LPO: the only committee that voter 1 lexicographically prefers to {b, e} is {e, f}, but
voter 2 lexicographically prefers {b, e} to {e, f}.

• {c, e} is not LPO, as it is lexicographically Pareto-dominated by {b, e}.

• {b, f} and {b, d} are not LPO at P , as they are lexicographically Pareto-dominated by {a, e}.

• {a, b} is NPO, because it is the most preferred committee for voter 2.

• {e, b} is NPO: because of voter 1, the only committee that can possibly Pareto-dominate it is
{e, f}; but voter 2 necessarily prefers {e, b} to {e, f};

• {a, e} is not NPO, as it is possibly Pareto-dominated by {b, c}. As it is lexicographically Pareto
optimal it is a fortiori possibly Pareto optimal.

• {b, d} is not LPO, because it is lexicographically Pareto-dominated by {a, e}. It is PPO: if it was
necessarily Pareto-dominated by another committee, this would be {b, e}, {b, f}, {d, e}, {d, f}
or {e, f} because of voter 1; but voter 2 necessarily prefers {b, d} to all of these.

• {d, f} is not PPO, as it is necessarily Pareto-dominated by {b, e}.

We have de�ned so far possible and necessary Pareto optimality of a committee with respect to some
extension principle. For multiwinner rules, we have to take irresoluteness into account. We de�ne the
following �ve levels of e�ciency:4

De�nition 3.4. Given an extension principle E, and a multiwinner voting rule f , we say that

• f is necessarily (resp. possibly, lexicographically) Pareto-e�cient for E if for any pro�le P over
A, every S ∈ f(P ) is necessarily (resp. possibly, lexicographically) Pareto-optimal for E.

• f is weakly possibly Pareto-e�cient for E if for any pro�le P , some S ∈ f(P ) is possibly Pareto-
optimal for E.

• f is lexicographically Pareto-e�cient if for any pro�le P , every S ∈ f(P ) is lexicographically
Pareto-optimal.

• f is weakly lexicographically Pareto-e�cient if for any pro�le P , some S ∈ f(P ) is lexicographi-
cally Pareto-optimal.

Figure 1 shows the logical relations between the �ve levels of Pareto-e�ciency.

As we see further, for some rules, weak possible Pareto-e�ciency serves to guarantee possible Pareto-
e�ciency even for pathological pro�les.

When k = 1, f becomes a single-winner rule. Then possible and necessary Pareto-e�ciency reduce
to standard Pareto-e�ciency: if f is an irresolute single-winner voting rule f with ordinal input, f is
Pareto-e�cient if for every pro�le P , every x ∈ f(P ) is Pareto-optimal. Let us say that f is weakly

4We do not de�ne a weak version of necessary Pareto-e�ciency, which would have little interest: we do not know any
interesting rule that is guaranteed to output some necessarily Pareto-optimal committee, but that fails necessary Pareto-
e�ciency. (Of course, such rules exist: for instance, the rule that outputs all possible committees.)
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necessary Pareto-e�ciency (NPE)

lexicographic Pareto-e�ciency (LPE)

weak possible Pareto-e�ciency (WPPE)

possible Pareto-e�ciency (PPE) weak lexicographic Pareto-e�ciency (WLPE)

Figure 1: Relations between the �ve levels of Pareto-e�ciency

Pareto-e�cient if for every pro�le P , some x ∈ f(P ) is Pareto-optimal. As far as we can tell, all
irresolute single-winner rules that have received some attention in the literature satisfy at least weak
Pareto-e�ciency. Most of them satisfy the stronger Pareto-e�ciency property; a few exceptions are
some positional scoring rules with a scoring vector that is not strictly decreasing (such as k-approval
for k ≥ 2),5 as well as maximin, and tournament solutions such as the Top Cycle and the Banks set [23].

4 Detailed analysis of rules

Now we proceed and identify the Pareto-e�ciency levels of all the rules we introduced in Section 2.
The presentation structure of the results di�ers from that in the journal paper.

4.1 Committee scoring rules

Now we proceed and identify the Pareto-e�ciency levels of all the rules we introduced in Section 2.

Proposition 4.1. Every CSR fγ is WPPE. If γ is strict then fγ is PPE.

When γ is not strict, PPE can fail indeed: for instance, for SNTV, k = 2, P = (abc, abc), SNTV outputs
{{a, b}, {a, c}}; the latter is not PPO. This failure of PPE, however, occurs only in the case where at
least k alternatives are ranked �rst by some voter is LPE.

The question of identifying nonstrict CSRs that are PPE is nontrivial, even for best-k rules. (See a
discussion in the Appendix.)

We can say something stronger about SNTV.

Proposition 4.2. SNTV is WLPE but not LPE. Its restriction to pro�les where at least k alternatives are
ranked �rst by some voter is LPE.

Proposition 4.3. Bloc fails PPE and WLPE.

Proof. For PPE, consider the pro�le P = (zyxuv, zyxuv, xuzyv, xvzyu): {x, y} is winning but nec-
essarily Pareto-dominated by {x, z}, therefore not PPO. For WLPE, let k = 3, m = 6, and P =
(axyzbc, byzxca, czxyab). The winning committee {x, y, z} is lexicographically Pareto-dominated by
{a, b, c}. �

Proposition 4.4. β-CC is WLPE and not PPE.

Proof. If S ∈ β-CC(P ) is lexicographically Pareto-dominated, then some S′ lexicographically dominates
S: then, for each voter i, her best candidate in S′ is at least as good as her best candidate in S, therefore

5For an exact characterization of Pareto-e�cient positional scoring rules see [24].
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the β-CC score of S′ is no smaller than the β-CC score of S. We iterate this process until we reach a
lexicographically optimal committee S∗, which is also in β-CC(P ). This implies that β-CC is WLPE.

It fails PPE: take any pro�le such that the top alternative is the same (x∗) in all votes, and take two
alternatives z, y such that y � z in all votes. Any committee containing x∗ and z, but not y, is a winning
committee although it is necessarily Pareto-dominated. �

In the Appendix we de�ne a lexicographic re�nement of β-CC, called β-CC∗, and prove that it is LPE.

k-Borda is PPE, as it is based on a strict γ, but fails WLPE: for the pro�le (abcde−, ebcda−), the
unique winning committee for k = 2 is {b, c}, which is lexicographically Pareto-dominated by {a, e}.6
However, the failure of PPE for k-Borda, occurs only for pathological pro�les for which the number of
candidates appearing in top position in some votes is less than k.

Proposition 4.5. The perfectionist rule is NPE.

Proof. For any committee S output by the perfectionist rule there is at least one voter i such that the
set of i’s top k candidates is S. Therefore i necessarily prefers S any other committee S′, and S is
necessarily Pareto-optimal. �

On the negative side, we have this general result (whose proof is rather long):

Proposition 4.6. For any k ≥ 2 andm ≥ 2k + 1, no best-k rule satis�es necessary Pareto-e�ciency.

Characterizing LPE and WLPE committee scoring rules appears to be di�cult in the general case.
As we already observed in Section 3, when k = 1, LPE coincides with standard Pareto-e�ciency,
and characterizing Pareto-e�cient single-winner positional scoring rules is already not trivial [24].
Therefore, we should not expect to obtain an easy characterization of lexicographic Pareto-e�ciency of
multiwinner CSRs in the general case. But somewhat surprisingly, obtaining such a characterization is
di�cult even for the simple case of k = 2 and “best-k” committee scoring rules.

To give an idea of the di�culty, let us restrict to additive CSRs and consider the case k = 2,m = 4. An
additive CSR for k = 2 is associated with an additive scoring function γm,2: there exists a non-increasing
scoring vector (s1, . . . , sm), with s1 > sm, such that γm,2(i, j) = si + sj . Without loss of generality,
we assume sm = 0. Given pro�le �= (�1, . . . ,�n), recall that Score(x,�) =

∑n
i=1 spos(x,�i). We

denote by fs2 the corresponding additive CSR.

Proposition 4.7. Ifm = 4 and k = 2, then fs2 is LPE if and only if s1 > s2 + s3 and s2 > s3.

4.2 Sequential rules

Given any Pi ∈ L(A) together with B ⊆ A, de�ne 1(�i, B) as the top candidate in B for �i. We
introduce below a property of multiwinner rules which has its own interest: top-sequentiality expresses
that candidates are selected in a sequence, and at each step, the selected candidate is the most preferred
candidate, among those that have not been selected yet, for at least one voter. For instance, sequential
dictatorship — where a voter picks her preferred candidate, then a second voter (who can be the same
one) picks her preferred candidate among those who remain, etc. — is obviously top-sequential. As we
see below, many more interesting rules are top-sequential as well.

De�nition 4.1. A multiwinner rule f is top-sequential if for all P ∈ L(A)n, S = {a1, ..., ak} ∈ f(P ),
one can order candidates a1, ..., ak so that ∀h ∈ {1, ..., k}, ah = 1(�ih , A\{a1, ..., ah−1}) for some
ih ∈ N .

6k-Borda is however WLPE for m = 4 and k = 2.
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Lemma 4.1. Sequential plurality and STV are top-sequential.

Proof. For Sequential plurality: at each step, the selected candidate maximizes the plurality score among
the remaining candidates; therefore it is ranked �rst by at least one voter. For STV: at each step where
a candidate is selected, it reaches the quota, therefore it is ranked �rst by at least one voter. �

Proposition 4.8. Every top-sequential rule is LPE.

Proof. Let f be top-sequential and pick P ∈ L(A)n and X ∈ f(P ). Writing S = {a1, ..., ak), and
assuming elements of S are selected w.r.t. order a1 > ... > ak, the de�nition of top-sequentiality
implies that for all h ∈ {1, ..., k}, ah = 1(�ih , A\{a1, ..., ah−1}) for some ih ∈ N . If S′ �lexi S for all
i ∈ N , one must have a1 ∈ S′ (otherwise, by de�nition of ρlex, S �lexi1 S′). Replicating this argument
for a2, ..., ak shows that S = S′, which is impossible. Hence, S is lex-Pareto optimal at P , which shows
that f satis�es LPE. �

As an immediate consequence of Proposition 4.8 and Lemma 4.1 we have
Proposition 4.9. Sequential plurality and STV are LPE.

Proposition 4.8 can also be used to prove that sequential dictatorships are LPE, which can also be
obtained as a by-product of Theorem 2 in [1].
Proposition 4.10. STV and sequential plurality fail necessary Pareto-e�ciency.

The last remaining sequential rule is greedy β-CC, for which we have a negative result.
Proposition 4.11. Greedy β-CC is not WLPE.

4.3 Compromise rules

We have these general results, one positive and one negative (proofs in Appendix).
Proposition 4.12.

1. For any α ∈ [0, 1),MCαk is PPE.

2. For any α ∈ (0, 1) and k ≥ 2,MCαk is not WLPE.

4.4 Condorcetian rules

When k = 1, SEO is the maximin rule, known to fail Pareto-e�ciency, but to satisfy weak Pareto-
e�ciency. It turns out that for k > 1, SEO does not even satisfy weak possible Pareto-e�ciency.
Proposition 4.13. SEO is not WPPE.

Proof. We give a counterexample for n = 20, k = 2, m = 12, C = {b, d} ∪ A∗ ∪ C∗ where A∗ =
{a1, . . . , a5} and C∗ = {c1, . . . , c5}.

P is the following pro�le with 20
voters grouped in four types:

5 A∗ � b � C∗ � d
5 A∗ � d � C∗ � b
5 C∗ � b � A∗ � d
5 C∗ � d � A∗ � b

The 5 voters of a given type have cyclic preferences over the clone
sets A∗ and C∗: for instance, those of type A∗ � b � C∗ � d are

a1 � a2 � a3 � a4 � a5 � b � c1 � c2 � c3 � c4 � c5 � d
a2 � a3 � a4 � a5 � a1 � b � c2 � c3 � c4 � c5 � c1 � d
a3 � a4 � a5 � a1 � a2 � b � c3 � c4 � c5 � c1 � c2 � d
a4 � a5 � a1 � a2 � a3 � b � c4 � c5 � c1 � c2 � c3 � d
a5 � a1 � a2 � a3 � a4 � b � c5 � c1 � c2 � c3 � c4 � d
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For S ∈ S2(C), let SEO(S) = minx∈S,y∈C\S |{i : x �i y}|. For each i ∈ {1, . . . , 5}, 16 voters out
of 20 prefer ai to ai+1[5], therefore, if S ∩ A∗ 6= ∅ then SEO(S) ≤ 4. Similarly, if S ∩ C∗ 6= ∅ then
SEO(S) ≤ 4. Finally, for each i, 15 voters out of 20 prefer the ai’s to b, 15 prefer the ai’s to d, 15 prefer
the ci’s to b, and 15 prefer the ci’s to b; therefore, SEO({b, d} = 5. The only winning committee is
{b, d}; however, it is necessarily Pareto-dominated by {a1, c1}. �

We do not have any better news with NED. While, for k = 1, NED is the Copeland rule, which is
Pareto-e�cient, for k > 1 we do not even have weak possible Pareto-e�ciency.

Proposition 4.14. NED is not WPPE.

The proof is in the Appendix.

Given that NED ans SEO are Gehrlein-consistent but fail possible Pareto-e�ciency, we may wonder
whether Gehrlein-consistency and possible Pareto-e�ciency are compatible. The answer is positive.
We even have this more general result:

Proposition 4.15. A Gehrlein stable committee is possibly Pareto-optimal.

Proof. For any pro�le P and x, y ∈ C , let W (x, y, P ) = |{i : x �i y}. For any commit-
tees S, S′ ∈ Sk(A), de�ne G(S, S′, P ) =

∑
x∈S

∑
y∈S′W (x, y, P ). Assume S′ ∈ Sk(A) nec-

essarily Pareto-dominates S ∈ Sk(A). Then S′ \ S necessarily Pareto-dominates S \ S′. Let
|S′ \ S| = |S \ S′| = r. For every voter i, let S′ \ S = {xi1, . . . , xir}, with xi1 �i xi2 �i . . . �i xir.
Then, for each j = 1, . . . , r, i prefers xij to at most r − j + 1 candidates in S \ S′. This implies
G(S \S′, S′ \S, P ) ≤ n(1 + . . .+ (r− 1)) = r(r−1)

2 n < r2 n2 . Now, assume S is Gehrlein stable for P ;
then for each x ∈ S \ S′ and y ∈ S′ \ S, W (x, y, P ) > n

2 , therefore G(S \ S′, S′ \ S, P ) > r2 n2 . The
contradiction between the two inequalities imply that S cannot be both Gehrlein stable and necessarily
Pareto-dominated. �

It is easy to construct a rule that is both Gehrlein-consistent and PPE: given any PPE rule f , the rule
that outputs the unique Gehrlein stable k-committee if there is one, and the winner of f otherwise, is
Gehrlein stable and PPE.

Proposition 4.16. LSE-maximin fails possible Pareto-e�ciency, but satis�es weak possible Pareto-
e�ciency.

The failure of LPE, and even WLPE, for Condorcetian rule, is a consequence of their failing possible
Pareto-e�ciency. We give here a stronger result:

Proposition 4.17. When k ≥ 3, no Gehrlein-consistent rule is weakly lexicographically Pareto-e�cient.

Proof. Let k ≥ 3 and P = (axyzbc−, byzxca−, czxyab−). This pro�le has a Gehrlein-stable commit-
tee {x, y, z}, which however is lexicographically Pareto-dominated by {a, b, c}. �

For k = 2, however, lexicographically Pareto-e�ciency and Gehrlein-consistency are compatible. (See
the Appendix.)

5 Discussion

Table 1 summarizes all results.

At one extreme, we have a class (Class 1) of rules that fail even the weakest notion of Pareto-e�ciency
(WLPE): two Gehrlein-consistent rules (SEO and NED), and Greedy β-CC. Failing such a weak property
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WPPE PPE WLPE LPE NPE class
CSRs + some some some some 2, 3, 4, 5, 6

strict CSRs + + some some some 3, 5, 6
best-k + some some some - 2,3,4,5
SNTV + - + - - 4
k-Borda + + - - - 3
β-CC + - + - - 4
β-CC∗ + + + + - 5

perfectionist + + + + + 6
Bloc + - - - - 2
MCαk + + - - - 3
STV + + + + - 5

sequential plurality + + + + - 5
greedy β-CC - - - - - 1
LSE-maximin + - - - - 2

Gehrlein-consistent rules some some - - - 1,2,3
SEO, NED - - - - - 1

Table 1: Multiwinner rules and degrees of Pareto-e�ciency

sends a negative signal about these rules: they should be selected with care, and for good reasons that
counterbalance this failure.

Just above, we �nd Class 2, containing LSE-Maximin and Bloc, who satisfy WPPE but nothing above.
LSE-Maximin, SEO and NED are the three Condorcetian rules (extending Condorcet-consistent rules)
we considered: the message is that Gehrlein stability does not �t well with Pareto (which perhaps does
not come as a surprise). As for Bloc, this is one more slightly negative signal, which should contribute
to be cautious about using it.

Two classes of rules are above this class. Class 3 contains compromise rules, and some committee
scoring rules, including k-Borda, that satisfy PPE, but fail WLPE. WLPE is rather strong, so we can
consider that some safety test is passed as to what concerns Pareto-e�ciency, in the sense that this
should not be a reason to exclude these rules.

The other class above Class 2 is Class 4, which is incomparable with Class 3. It contains some committee
scoring rules, including β-CC and SNTV: they satisfy WPPE and WLPE but fail PPE, but this is mostly
because of pathological pro�les, so again they should probably not be excluded on this ground.

Now we move towards classes of rules that behave very well regarding Pareto-e�ciency. Class 5
contains rules that satisfy LPE (but fail NPE). It contains some CSRs, including the new rule β-CC∗, as
well as STV and sequential plurality. Satisfying LPE is a good arguments to choose one of these rules in
any context where the lexicographic extension makes sense, that is, when an agent pays more attention
to her preferred alternative in a committee than on the other ones.

Finally, Class 6 is composed of rules that satisfy the strongest property (NPE). We have identi�ed only
one known rule that satis�es it (the perfectionist rule); on the other hand, this rule has so many other
drawbacks that it should be chosen with extreme care. These rather negative �nding about NPE sends
the signal that this property is too strong, rather than the signal that we should select rules that satisfy
it.
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Appendix

A1. A zoo of ordinal multiwinner rules

A multiwinner rule is a function f that, given a pro�le P and an integer k ≤ m, outputs a nonempty
subset of Sk(A). We list here a few prominent multiwinner rules that have been well-studied in the
literature.

Committee scoring rules (CSR)

Committee scoring rules were �rst de�ned in [13]. Given a vote �i and a candidate c, we denote by
pos(c,�i) the position of c in �i (the top-ranked candidate has position 1, the one ranked last has
position m). Given S ∈ Sk(A), the position of S in �i, denoted by pos(S,�i) is the sequence of
positions of the members of S sorted increasingly. We denote by [m]k the set of all size-k increasing
sequences of elements from {1, . . . ,m}. For I = (i1, . . . , ik) and J = (j1, . . . , jk) in [m]k , we say that
I � J if for each t = 1, . . . , k we have it ≤ jt. We write I � J for I � J and not J � I .

A committee scoring function γm,k : [m]k → R associates each committee position with a score and
satis�es monotonicity: if I � J then γm,k(I) ≥ γm,k(J). Moreover, γm,k is strict if γm,k(I) > γm,k(J)
whenever I, J ∈ [m]k are such that I � J .

Given γm,k and pro�le P , the committee scoring rule (CSR) fγm,k
, which we will write simply fγ by

abuse of notation, outputs committees S maximising

score(S, P ) =

n∑
i=1

γm,k(pos(S,�i))

A CSR fγ is strict if γ is strict. A few well-known particular CSRs are listed below:

• A committee scoring function γ is additively decomposable if

γm,k(i1, . . . , ik) =
k∑
j=1

γm(ij)

for some function γm = {1, . . . ,m} → R. If γ is additively decomposable then fγ outputs
the k candidates x maximizing score(x, P ) =

∑n
i=1 γm(pos�i(x)). Such a CSR is the natural

multiwinner extension of a single-winner positional scoring rule; it is called a best-k CSR. Well-
known examples of best-k CSR are Single Non-Transferable Vote (SNTV), de�ned by γm(1) = 1
and γm(j) = 0 for each j > 1, and k-Borda, de�ned by γm(j) = m− j for all j = 1, . . . ,m.

• if γm,k(i1, . . . , ik) = |{j : ij ≤ k}| then fγ is the Bloc rule. In words, the Bloc rule outputs the
candidates listed most often in the top k candidates of the votes. Note that, although γm,k is
additively decomposable, Bloc is not a best-k rule, because γm,k depends on k.

• if γm,k(1, . . . , k) = 1 and γm,k(I) = 0 for all I 6= (1, . . . , k) then fγ is called the perfectionist
rule [15].

• let s = (s1, . . . , sm) with s1 ≥ . . . ≥ sm and s1 > sm. The Chamberlin-Courant k-multiwinner
rule associated with scoring vector s, denoted by s-CC, is the CSR de�ned by γm,k(i1, . . . , ik) =
si1 . If s is the Borda vector, de�ned by si = m− i+1 for every i then fγ is the Borda-Chamberlin-
Courant rule (β-CC for short).
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• A family of rules, which contains both Chamberlin-Courant and best-k rules, is obtained by using
an ordered weighted average (OWA) to compute the satisfaction of an agent: the score of her
jth best candidate in the selection is weighted by wj [30]. For a reason that will become clear in
Section ??, we consider a speci�c rule in this family, a lexicographic re�nement of β-CC, which
we denote by β-CC∗: let ε < 1

nm , then

γm,k(i1, . . . , ik) =

k∑
j=1

εj−1(m− ij).

It can be checked easily that the winning committees do not depend on ε and that β-CC∗ is a
re�nement of β-CC.

Example 5.1. Let A = {a, b, c, d, e, f}, n = 10, k = 2, and P = (4 × fedbca, 3 × abcdef, 2 ×
bcaedf, 1× dcabef).

• SNTV (P ) = {af}: f and a, in this order, are the two candidates ranked �rst in the largest
number of votes.

• 2−Borda(P ) = {bc, bd}: b has the highest Borda score, followed by c and d (tied).

• Bloc(P ) = {be, bf}: b is ranked in the top 2 positions in 5 votes; e and f , in 4 votes (and other
candidates, in at most 3 votes).

• β-CC(P ) = {af, bf}: 7 votes have a or f in �rst position, and for the other 3, the better candidate
among a and f is in third position: the β-CC score of {a, f} is 7× 5 + 3× 3 = 44. Next, 6 votes
have b or f in �rst position, 3 in second position, in one on fourth position: the β-CC score of
{b, f} is 6 × 5 + 3 × 4 + 2 = 44. It can be checked that all other committees of size 2 have a
smaller β-CC score.

• β-CC∗(P ) = {bf}: the tie between the tied winning committees for β-CC is resolved by looking
at the position of the second best (that is: worst!) committee member in all votes. For {a, f}, this
second best candidate appears in the last position in all votes, while for {b, f}, it appears in the
last position in 6 votes and in position 4 in 4 votes.

• the perfectionist rule applied to P outputs {ef}: 4 votes have {e, f} as their top two elements,
and no set of two candidates does better.

Condorcetian rules

Two ways of extending the Condorcet criterion from single winners to candidates are discussed in [4]:
Gehrlein stability (a committee S is Gehrlein stable if every x ∈ S majority defeats every y ∈ A \ S)
[16, 17], and local stability for quota q (S is locally stable for quota q if for any y ∈ A \ S, at least qn
voters prefer some candidate in X to y [12]).

A rule is Gehrlein-consistent if it elects the (unique) Gehrlein stable committee whenever there exists
one. Two speci�c Gehrlein-consistent rules are NED (for “number of external defeats”) and SEO (for
“size of external opposition”) [11], that can be seen as the respective multiwinner counterparts of the
Copeland and maximin single-winner rules. The NED rule outputs committees S that maximize the
number of pairs (x, y) ∈ S×A\S such that xmajority-beats y in P . The SEO rule outputs committees
S that maximise minx∈S,y∈A\S |{i : x �i y}|. We give only one locally stable rule: the maximal
θ-winning sets rule [12], also called the locally stable extension of maximin (LSE-maximin) in [4]: it
outputs the sets S that are locally stable for the maximal possible quota q.

Continuing Example 5.1:
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• there is no Gehrlein-stable committee; there is however a unique weak Gehrlein stable committee:
each of b and c defeats a, e and f , and weakly defeats d. This leads to NED(P ) = SEO(P ) = {bc}:

• LSE-maximin(P ) = {af}: {a, f} is locally stable for q = 7
10 , because 8 voters prefer either a or

f to b, 7 voters prefer either a or f to c, 9 voters prefer either a or f to d, and all voters prefer
either a or f to e; and no committee does better or equally good.

Compromise rules

Let α ∈ [0, 1). For a given pro�le P , for each alternative x, the compromise index of x with respect
to α and P , λ(α, P, x), is the smallest integer j such that x appears in the �rst j positions in more
than αn votes: that is, x appears in the �rst λ(α, P, x) positions in more than αn votes but in the �rst
λ(α, P, x)− 1 positions in at most αn votes.

The compromise rule MCαk [29, 31] identi�es the smallest integer j such that there exist at least
k alternatives with λ(α, P, x) ≤ j, and then outputs the k alternatives with the smallest values of
λ(α, P, x); in case of a tie, meaning that there are more alternatives with λ(α, P, x) = j than necessary,
the tie is broken according to the number of voters who rank them in the �rst j positions.

Note that MC
1/2
k , called majoritarian compromise, is a multiwinner version of the Bucklin rule.

Continuing Example 5.1: let us �rst take α = 1/3. We have

λ(1/3, P, a) = 3 λ(1/3, P, b) = 2 λ(1/3, P, c) = 3
λ(1/3, P, d) = 3 λ(1/3, P, e) = 2 λ(1/3, P, f) = 1

We have j = 2. There is a tie between b and e, resolved in favour of b, since b and e are ranked in the
�rst 3 positions by respectively 5 and 4 voters. Therefore, MC

1/3
k (P ) = {bf}.

Let us now take α = 1/2. We have j = 3 and MC
1/2
k (P ) = {ac} (no tie-breaking is needed).

Sequential rules

There are several variants of the multiwinner version of single transferable vote (STV). We present the
most common one: let q = dnk e (quota). If some candidate x has a plurality score S(x) ≥ q, then x is
elected, and each of the votes for x becomes a fractional vote with weight 1− q

S(x) , with x removed;
otherwise the candidate with the lowest plurality score is eliminated from all votes (using tie-breaking
if necessary). This operation is repeated until k candidates have been elected.

Sequential plurality elects �rst the plurality winner (using tie-breaking if necessary), removes it from the
list of candidates, then elects the plurality winner from the obtained pro�le, and so on until k candidates
have been elected.

Given a scoring vector s = (s1, . . . , sm) with s1 ≥ . . . ≥ sm and s1 > sm, and a subset of candidates
T with |T | ≤ k, let

scoresCC(T,�) =
n∑
i=1

max
y∈T

spos�i
(y).

If |T | < k and x /∈ T , scoresCC(x|T,�) = scoresCC(x ∪ T,�)− scoresCC(T,�) is the marginal score
of x with respect to T and �. Greedy s-Chamberlin-Courant (s-GCC) elects the k winning candidates
in sequence, including at each step the candidate with the largest marginal score with respect to the
candidates already included.

• it �rst elects y1 maximising scoresCC({y1},�)
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• then, for each j ∈ {2, . . . , k}, it elects yj maximising

scoresCC({yj |{y1, . . . , yj−1},�).

Note that sequential plurality coincides with s-GCC for s = (1, 0, . . . , 0).

For all these sequential rules, if ties occur, then all possibilities for resolving them are taken into account
(which is sometimes called the “parallel universe” assumption).

Continuing Example 5.1:

• STV (P ) = {af}: the quota is 5, no candidate reaches it; c and e are eliminated, still no candidate
reaches the quota; d is eliminated, then b.

• SeqPlu(P ) = {ef}: f is elected �rst, then e.

• β−GCC(P ) = {be}: the Borda winner b is selected �rst, and e gives the highest marginal score
given that b has been selected.

A2. Missing proofs

The following Theorem implies point 1 of Proposition 3.2.

Theorem A2.3 Let X ∈ Sk(A) and P ∈ L(A)N . The following statements are equivalent:

1. X is necessarily Pareto optimal at P for ρ.

2. There is no Y ∈ Sk(A) that possibly Pareto-dominates X at P for ρ.

3. For every Y ∈ Sk(A) \ {X}, there exists i ∈ N such that X �ρi Y holds.

Proof. Let X ∈ Sk(A) and P ∈ L(A)N .

• We �rst show that 1 implies 2. Assume there exists Y ∈ Sk(A) which possibly Pareto-dominates
X at P for ρ. By de�nition, this means that there exists Q̃ = (w̃1, . . . , w̃n) ∈ κρ(P ) at which Y
Pareto-dominates X . Hence, X is not Pareto optimal at every Q ∈ κρ(P ), which shows that X
is not necessarily Pareto optimal at P for ρ.

• We show that 2 implies 3. Assume there exists Y ∈ Sk(A)\{X} such that X �ρi Y fails for
all i ∈ N . This implies the existence of Q = (w1, . . . ,wn) ∈ κρ(P ) such that Y wi X for all
i ∈ N . By Remark 3.1, this is equivalent to saying that there exists Q = (A1, . . . ,An) ∈ κρ(P )
such that Y Ai X for all i. Thus, Y Pareto-dominates X at some Q ∈ κρ(P ), hence Y possibly
Pareto-dominates X .

• Finally, we show that 3 implies 1. Assume that for every Y ∈ Sk(A)\{X} there exists i(Y ) ∈ N
such thatX �ρi(Y ) Y . By Remark 3.1, for every Y ∈ Sk(A)\{X} there exists i(Y ) ∈ N such that
X Ai(Y ) Y for every wi(Y )∈ κρ(�i(Y )). Pick any Y ∈ Sk(A)\{X} and any Q = (w1, . . . ,wn
) ∈ κρ(P ). Since X Ai(Y ) Y for some i(Y ) ∈ N , Y does not Pareto-dominates X at Q. As this
holds for any Y ∈ Sk(A)\{X}, X is Pareto optimal at Q for ρ. Finally, as the argument applies
to any Q ∈ κρ(P ), X is necessarily Pareto optimal at P for ρ.

�

18



Now, the following Theorem implies point 2 of Proposition 3.2

Theorem A2.4 Let X ∈ Sk(A) and P ∈ L(A)N . The following statements are equivalent:

1. X is possibly Pareto optimal at P for ρ.

2. There is no Y ∈ Sk(A) that necessarily Pareto-dominates X at P for ρ.

3. For every Y ∈ Sk(A), there exists i ∈ N such that Y �ρi X fails.

Before proving Theorem A2.4, we introduce a de�nition and several simple lemmas. Given �i∈ L(A),
X ∈ Sk(A), andwi∈ κ(�ρi )), we say thatwX+

i is an X-best completion of�ρi if for any Y ∈ Sk(A), if
Y �ρi X does not hold then X wX+

i Y . Moreover, we say that QX+ = (wX+
1 , . . . ,wX+

n ) is an X-best
completion of P ρ = (�ρ1, . . . ,�

ρ
n) if for every i, wX+

i is an X-best completion of �ρi .

Lemma A2.5 There exists an X-best completion of ρ(P ).

Proof. For each i, consider the relation Bi=�ρi ∪{(X,Y )|Y �ρi X does not hold }. Bi is acyclic: if it
had a cycle, since �ρi is acyclic, the cycle would be contain a pair (X,Y ) such that Y �ρi X does not
hold, and thus would contain a path from X to Y in �ρi ; because �ρi is transitive, this would contradict
the fact that Y �ρi X does not hold. Therefore the transitive closure Bi is a strict partial order, and
any of its completions is a X-best completion of �ρi . This being true for every i, there exists an X-best
completion of ρ(P ). �

Lemma A2.6 For any i ∈ N and X,Y ∈ Sk(A), Y wX+
i X holds for some X-best completion of �ρi if

and only if Y wi X for all completions wi of �ρi .

Proof. The right-to-left direction is trivial. From left to right, assume that Y wi X fails in some
completion wi of �ρi . Then X wi Y , which implies that Y �ρi X does not hold; by de�nition of an
X-best completion wX+

i , we have X AX+
i Y , and therefore Y wX+

i X does not hold. �

Lemma A2.7 For any i ∈ N and X,Y ∈ Sk(A), X wi Y holds for some completion of �ρi if and only if
X wX+

i Y holds for some X-best completion of �ρi .

Proof. The right-to-left direction is trivial. From left to right, assume that for some X-best completion
of �ρi , X w

X+
i Y does not hold. Then, by de�nition of an X-best completion, we have Y �ρi X ,

therefore X wi Y does not hold in any completion of �ρi . �

Lemma A2.8X ∈ Sk(A) is Pareto-dominated at someX-best completion QX+ of ρ(P ) if and only ifX
is not possibly Pareto-optimal.

Proof. The right-to-left direction is a direct consequence of Lemma A2.5. From left to right, assume
X ∈ Sk(A) is Pareto-dominated at some X-best completion Q = (wX+

1 , . . . ,wX+
n ) of ρ(P ). Then

there is an Y ∈ Sk(A) such that Y wX+
i X for all i, and Y AX+

i X for some i. By Lemma A2.6,
Y wX+

i X implies Y wi X for all completions wi of �ρi . Y AX+
i X implies that X wX+

i Y does not
hold, and by Lemma A2.7, X wi Y holds for no completion of �ρi , therefore Y wi X holds for any
completion of �ρi . This allows us to conclude that if X is Pareto-dominated at all Q ∈ κρ(P ), which is
equivalent to saying that is not possibly Pareto-optimal. �

Now we are ready to prove Theorem A2.4.

Proof.
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• We show by contradiction that 1 implies 2. Assume there is an Y ∈ Sk(A) that necessarily
Pareto-dominates X at P for ρ. Then for any completion Q of ρ(P ), Y Pareto-dominates X at
Q, which implies that X is not Pareto-optimal at Q. This being true for all Q, X is not possibly
Pareto-optimal at P .

• We show by contradiction that 2 implies 3. Assume there is Y ∈ Sk(A) such that Y �ρi X holds
for all i: then for all i, and for any extension wi of �ρi , we have Y wi X . By Remark A2.1, this is
equivalent to saying that for all i, and for any extension wi of �ρi , we have Y Ai X . Therefore
X is necessarily Pareto-dominated by Y .

• We show by contradiction that 3 implies 1. Assume X is not possibly Pareto-optimal: then by
Lemma A2.8, X is Pareto-dominated by some Y ∈ Sk(A) at some X-best completion QX+ =
(wX+

1 , . . . ,wX+
n ) of P ρ, which implies that for all i we have Y wX+

i X . By Lemmas A2.7 and
A2.8, for all i we have Y wi X and all completions wi of �ρi , which implies that Y �ρi X holds.

�

Proposition A2.9 Given any P ∈ L(A)N and any i ∈ N :

1. top(k,�i) is necessarily Pareto optimal at P ;

2. letX = top(k+ 1,�i)\{x} for some x = {rt(A;�i)} with t ∈ {1, . . . , k}. ThenX is necessarily
Pareto optimal at P if and only if y �j x for some j ∈ N and y ∈ top(k + 1,�i) \ top(t,�i).

Proof. For 1, observe that top(k,�i) is the most preferred committee by i: there is no Y ∈ Sk(A) such
that Y 6= X and Y wi X : top(k,�i) cannot be possibly Pareto-dominated, and is therefore necessarily
Pareto optimal at P .

For 2, let X = top(k + 1,�i) \ {x} for some x = {rt(A;�i)} with t ∈ {1, . . . , k}. Assume X is
necessarily Pareto optimal atP : in particular, for any i, it is not possibly Pareto-dominated by top(k,�i),
which means that there is a j such that X wj top(k,�i). Since X is obtained from top(k,�i) by
replacing {rt(A;�i)} by {rk+1(A;�i)}, this means that {rt(A;�i)} �j x for some t ∈ {1, . . . , k}. �

Proposition 4.1 Every CSR fγ is WPPE. If γ is strict then fγ is PPE.

Proof. The monotonicity of γ implies that if S necessarily Pareto-dominates S′ for some pro�le P , then
score(S′, P ) ≥ score(S, P ), therefore fγ is WPPE.

Assume γ is strict. Let S ∈ fγ(P ) and let S′ ∈ Sk(A) such that S′ necessarily Pareto-dominates S.
Then pos(S,�i) � pos(S′,�i) for each i, which implies score(S′, P ) > score(S, P ), contradicting
S ∈ fγ(P ). �

Proposition 4.2 SNTV is WLPE but not LPE. Its restriction to pro�les where at least k alternatives are
ranked �rst by some voter is LPE.

Proof. For any pro�le P let Top(P ) be the set of candidates that are ranked on top by at least one
voter. Let q = |Top(P )|. If q ≥ k, then SNTV is equivalent to the top-sequential rule that selects the
candidates with the highest k plurality scores, and therefore, by Proposition 4.8, the restriction of SNTV
to such pro�les is LPE. If q < k, consider the following top-sequential rule: all q candidates with strictly
positive plurality score are selected, and then the remaining k − q candidates are voters 1’s top k − q
candidates among those remaining. This rule is top-sequential by de�nition, and its outcome belongs to
SNTV (P ), therefore SNTV is WLPE. SNTV is however not LPE, because of pathological pro�les with
less than k alternatives ranked �rst by some voter. For instance, if k = 2 and P = (abcd, acdb), then
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SNTV outputs {ab, ac, ad}; while ab and ac are lexicographically Pareto-optimal, ad is lexicographically
Pareto-dominated. �

Proposition 4.6

For any k ≥ 2 andm ≥ 2k + 1, no best-k rule satis�es necessary Pareto-e�ciency.

Proof. Let k ≥ 2 and m ≥ 2k + 1. Consider the following m-candidate, k-voter pro�le:

x1z1 . . . zk —— x2 . . . xk
x2z2 . . . z1 —— x3 . . . x2
x3z3 . . . z2 —— x4 . . . x3
. . .
xkzk . . . zk−1 —— x1 . . . xk−1

Let X = {x1, . . . , xk}, Z = {z1, . . . , zk} and Y = A \ (X ∪ Z). Every candidate in Y is Pareto-
dominated by every candidate in Z , therefore a necessarily Pareto optimal committee must be contained
in X ∪ Z .

Let s = (s1, . . . , sm) and consider the best-k rule fs. The score of each x ∈ X is s1 + sm−k+2 +
. . .+ sm; the score of each z ∈ Z is s2 + . . .+ sk+1. The score of every y ∈ Y candidates is at most
sk+2 + . . .+ s2k+1. Therefore:

• If s1 + sm−k+2 + . . .+ sm > s2 + . . .+ sk+1 then X is the only winning committee. It is not
necessarily Pareto optimal , as it is possibly Pareto-dominated by Z .

• If s2 + . . .+ sk+1 > s1 + sm−k+2 + . . .+ sm then Z is the only winning committee contained in
X ∪Z (recall that all other committees cannot be necessarily Pareto optimal). It is not necessarily
Pareto optimal, as it is possibly Pareto-dominated by X .

The only remaining cases are when s1 + sm−k+2 + . . .+ sm = s2 + . . .+ sk+1, which we now assume.

• Assume s1 + sm−k+2 + . . . + sm = s2 + . . . + sk+1 and sk+2 > 0. Assume also k ≥ 3. We
consider the following pro�le:

x1z1 . . . zkx2 . . . xk ——
x2z2 . . . z1x3 . . . x2 ——
x3z3 . . . z2x4 . . . x3 ——
. . .
xkzk . . . zk−1x1 . . . xk−1 ——

The only winning committee is X (which is not necessarily Pareto optimal).

• Assume k ≥ 3, s1 + sm−k+2 + . . . + sm = s2 + . . . + sk+1 and sk+2 = 0, which means that
s = (s1, s2, . . . , sk+1, 0, . . . , 0) with s1 = s2+. . .+sk+1. This also implies that s2 > 0. Consider
this pro�le:

x1x2z1 . . . zk−1 zk ——
x2x3z2 . . . zk z1 ——
. . .
xkx1zk . . . zk−2 zk−1 ——

The score of every xi is s1 + s2 and that of every zi is s3 + . . .+ sk+1. Since s2 > 0, s1 + s2 >
s3 + . . .+ sk+1, therefore the winning committee is X , which is not necessarily Pareto optimal
because it is possible Pareto-dominated by Z .
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• The only remaining case is k = 2 and s = (s1, s2, s3, 0, . . . , 0) with s1 = s2 + s3. Assume �rst
s3 > 0. Consider the pro�le

x1z1z3 —— x2
x2z2z3 —— x1

The winning committee is {x1, x2}; it is not necessarily Pareto optimal. Finally, assume s3 = 0,
that is, s = (s1, s1, 0, . . . , 0). Consider the pro�le

x1z1 —— x2
x1z2 —— x2
x1z3 —— x2
x2z1 —— x1
x2z2 —— x1
x2z3 —— x1

The only winning committee is {x1, x2}; it is not necessarily Pareto optimal.

�

We note that in all of our pro�les we needed at least 2k candidates, except in the last one where we
needed at least 2k + 1. Therefore, if m ≤ 2k, some best-k rules may be NPE.7

Proposition 4.7 Ifm = 4 and k = 2, then fs2 is LPE if and only if s1 > s2 + s3 and s2 > s3.

Proof. If s1 ≤ s2+s3, take�= (abcd, dcba). We have Score(a,�) = Score(d,�) = s1 ≤ Score(b,�
) = Score(c,�) = s2 + s3, therefore {b, c} is a winning committee, which is lexicographically Pareto-
dominated by {a, d}. If s2 = s3, then the single-voter pro�le (abcd) has {a, c} as a winning committee
although it is dominated by {a, b}. This shows the necessary part.

For the su�ciency part, assume that s1 > s2 + s3 and s2 > s3, and let a pro�le � such that {y1, y2} is
lexicographically Pareto-dominated by {x1, x2}.

If {y1, y2} ∩ {x1, x2} 6= ∅ then without loss of generality, {y1, y2} = {x1, y2} with y2 6= x1. Since
{x1, y2} is lexicographically Pareto-dominated by {x1, x2}, y2 is Pareto-dominated by x2. If x2 is ranked
at least once in position 1 or 2, then s1 > s2 +s3 and s2 > s3 imply that Score(x2,�) > Score(y2,�).
If x2 is always ranked in position 3, then y2 is always ranked in position 4 and the single winning
committee consists of the other two candidates. In both cases, {y1, y2} cannot be a winning committee.

Now, assume {y1, y2} ∩ {x1, x2} = ∅. Because {y1, y2} is lexicographically Pareto-dominated by
{x1, x2}, each vote�i has the form xyy′x′ or xyx′y′ or xx′yy′, where {x, x′} = {x1, x2} and {y, y′} =
{y1, y2}. Then, s1 > s2+s3 implies that Score(x1,�)+Score(x2,�) > Score(y1,�)+Score(y2,�).
Thus, {y1, y2} cannot be a winning committee. �

Replacing strict inequalities by weak inequalities in the proof of Proposition 4.8 leads to the characteri-
zation of WLPE best-k rules form = 4 and k = 2: ifm = 4, then fs2 is WLPE if and only if s1 ≥ s2 +s3
and s2 ≥ s3.

When m becomes larger, generalizing such a characterization becomes di�cult.
7This is actually the case: take k = 2, m = 3, A = {x, y, z}, s = (s1, s2, 0). Assume that for some pro�le P , {x, y}

is a winning committee but is not necessarily Pareto optimal; without loss of generality, assume {x, y} is possibly Pareto-
dominated by {x, z}. Because {x, y} is possibly Pareto-dominated by {x, z} P contains no vote where z is ranked last and
no vote yzx. Therefore, P consists of α votes xzy, β votes zxy, and γ votes zyx. But now, the score of z is (β + γ)s1 + αs2
and the score of y is γs2, so {x, y} cannot be a winning committee unless (β + γ)s1 + αs2 = γs2, that is, α = β = 0 and
s1 = s2; but then P contains only votes zyx and the winning committee is {y, z}.
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As a corollary of Proposition 4.8, k-Borda is not LPE. It is WLPE for m = 4 and k = 2, but no longer if
m ≥ 5, as witnessed by the pro�le (abcde−, ebcda−), for which the unique winning committee for
k = 2 is {b, c}, which is lexicographically Pareto-dominated by {a, e}.

On the other hand, k-Harmonic, de�ned by the scoring vector (1 − 1
4 ,

1
2 −

1
4 ,

1
3 −

1
4 , 0), is LPE

for k = 2 and m = 4. But it is not WLPE in the general case: let k = 3, m = 14, and
P = (atuv . . . bc, buvt . . . ca, ctuv . . . ab): the winning committee {u, u, v} is lexicographically Pareto-
dominated by {a, b, c}.

Proposition 4.10 STV and sequential plurality fail necessary Pareto-e�ciency.

Proof. Consider the pro�le P = (axyb, bxya), and k = 2. The winning STV, and sequential plurality,
committee is {a, b}; it is not necessarily Pareto optimal. �

Proposition 4.11 Greedy β-CC is not WLPE.

Proof. Let k = 2 and P = (axztyub, ayutxzb, bxztyua, byztxua). At �rst step, β-CC selects x or
y, both with optimal Borda scores. Suppose it selects x (respectively y), then at step 2 it selects
y (respectively x) with maximal marginal contribution. Therefore, the output is {x, y}, which is
lexicographically Pareto-dominated by {a, b}. �

Proposition 4.12 For any α ∈ (0, 1) and k ≥ 2,MCαk is not WLPE.

Proof. Assume 1
2 ≤ α < 1. Let P be the following two-voter pro�le:

1 : z1 . . . zk−2 a u v b . . .
1 : z1 . . . zk−2 b v u a . . .

We have λ(zi, α, P ) = i for all i = 1, . . . , k − 2; λ(u, α, P ) = λ(v, α, P ) = k + 1; and λ(a, α, P ) =
λ(b, α, P ) = k + 2.

So MCαk (P ) = {z1 . . . zk−2uv} although z1 . . . zk−2ab lexicographically dominates z1 . . . zk−2uv.

Now assume 0 < α < 1
2 . Let n be the smallest integer such that n ≥ 1

α . (For instance, if 1
3 ≤ α < 1

2
then n = 3.) From α < 1

2 we have 2
α −

1
α = 1

α > 2, therefore n < 2
α , so that 1

n < α < 2
n . Let P be the

following n-voter pro�le:

1 : z1 . . . zk−2 a u v × . . .
1 : z1 . . . zk−2 b v u × . . .

n− 2 : z1 . . . zk−2 × × × a . . .

such that

1. in each of the last n− 2 votes, none of the candidates ranked between z1, . . . , zk−2 and a is b, u
or v

2. no candidate appears more than once above a in the last n − 2 votes (note that for this to be
possible we must have at least 3(n− 2) + 4 candidates).

We have λ(zi, α, P ) = i for all i = 1, . . . , k− 2; λ(u, α, P ) = λ(v, α, P ) = k+ 1; λ(a, α, P ) = k+ 2;
and λ(b, α, P ) > k + 2.

So MCαk (P ) = {z1, . . . , zk−2, u, v}, although {z1, . . . , zk−2, a, b} lexicographically dominates
{z1, . . . , zk−2, u, v}. �
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Proposition 4.14 NED is not WPPE.

Proof. We give a counterexample with n = 5, k = 2, m = 14, and C = {a, b, c, d} ∪ E∗ ∪ F ∗ with
E∗ = {e1, e2, e3, e4, e5} and F ∗ = {f1, f2, f3, f4, f5}. The �ve candidates e1, . . . , e5 are clones and
are ranked in the �ve votes in such a way that they form a cycle e1 → e2 → e3 → e4 → e5 → e1 (see
the proof of 4.13 for an explanation), and similarly for f1, . . . , f5. P is a �ve-voter pro�le for whose
votes are:

a � b � F ∗ � c � d � E∗
c � b � E∗ � a � d � F ∗
E∗ � a � d � F ∗ � c � b
a � b � c � d � E∗ � F ∗
F ∗ � c � d � E∗ � a � b

where a � b � F ∗ � c � d � E∗ means that a and b are preferred to all the fi’s, all of them being
preferred to c, d and all the ei’s, and so on. The majority graph is as follows:

a→ b, c, d, F ∗

b→ d,E∗, F ∗

c→ b, d, E∗

d→ E∗, F ∗

E∗ → a, F ∗

F ∗ → c

b and d are the only candidates that beat the 10 candidates in E ∪ F : the NED score of {b, d} is 20 (as b
and d both beat 10 candidates in C \ {b, d}). Any other candidate beats at most 8 candidates, therefore,
any 2-committee di�erent from {b, d} has a NED score at most 11+8 = 19. Therefore the only winning
committee is {b, d}, and it is necessarily Pareto-dominated by {a, c}. �

Proposition 4.17 LSE-maximin fails possible Pareto-e�ciency, but satis�es weak possible Pareto-
e�ciency.

Proof. For the failure of PPE, just consider the single-voter pro�le (abc): LSE-maximin outputs {a, b}
and {a, c}, the latter being necessarily Pareto-dominated.

For the satisfaction of WPPE, assume (1) S′ necessarily dominates S and (2) S is locally stable for quota
q. (1) implies that there is a bijection σi from S to S′ such that for all x ∈ S, σi(x) �i x. (2) means
that for all y ∈ A \ S, at least qn voters prefer some candidate in S to y. Let I(S, y) ⊆ N be the set of
voters who prefer some candidate c(i, S, y) ∈ S to y.

We now show that S′ is locally stable for quota q. Let y ∈ A \ S′; we have to show that at least qn
voters prefer some candidate in S′ to y.

Assume �rst that y ∈ A \ S. Let i ∈ I(S, y). Therefore, σi(c(i, S, y)) �i c(i, S, y) �i y, and so
i ∈ I(S′, y). This implies that I(S′, y) ⊇ I(S, y) and so that |I(S′, y)| ≥ qn.

Assume now that y ∈ S. Because y /∈ S′, (1) implies that σi(x) �i x for all i ∈ N . This implies that
I(S′, y) = N and a fortiori that |I(S′, y)| ≥ qn. �
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