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Abstract
Pure proportional voting rules can sometimes lead to highly suboptimal outcomes. We
introduce the Method of Equal Shares with Bounded Overspending (BOS Equal Shares), a
robust variant of the Method of Equal Shares that balances proportionality and efficiency.
BOS Equal Shares addresses inefficiencies implied by strict proportionality, yet still
provides fairness guarantees, similar to the original Equal Shares. Our extensive empirical
analysis shows excellent performance of BOS Equal Shares across several metrics. In the
course of the analysis, we also study a fractional variant of the Method of Equal Shares.

1 Introduction

We consider the participatory budgeting (PB) scenario, where a group of voters decides, through
voting, which subset of projects to fund. The projects have varying prices, and the total cost of
the selected projects cannot exceed a given budget. Voters express their preferences by casting
ballots—typically either by indicating sets of approved projects (i.e., they cast approval ballots)
or by assigning numerical scores to projects (so-called range voting). PB has been recently
adopted by many municipalities worldwide [3] but the model applies more broadly. It extends
the framework of committee elections [17, 14] and can be used even if the voters and candidates
are not humans but represent abstract objects, e.g., validators in proof-of-stake blockchains [12].

Proportionality is a critical requirement in the context of PB elections. Intuitively, it says that
each group of similar-minded voters should be entitled to decide about a proportional fraction of
the available funds (e.g., if 30% of voters like similar projects, then roughly 30% of funds should
be designated to the projects these voters support). Proportionality, among others, ensures
equal treatment of minorities, geographical regions, and various project categories [15, 24]. It
also ensures that groups of voters forming pluralities are not overrepresented, thus protecting
elections against certain strategies employed by coordinated voters or project owners. As a result,
several proportionality criteria and new voting rules have been proposed in the literature (cf. the
overview of Rey and Maly [24]). One voting method, the Method of Equal Shares [22, 23], stands
out by exhibiting particularly strong proportionality properties [18, 11] as well as robustness to
changes in the voter participation [7]. It has also been successfully used in real-life PB [2].

Informally speaking, the Method of Equal Shares first virtually distributes the budget equally
among the voters. Projects are then selected based on the vote count, but each time a project is
selected, its cost is split among its supporting voters. Thus, only the projects whose supporters
still have enough funds to cover their costs can be selected. Furthermore, the votes of those
who have run out of money are no longer counted. This way, in subsequent rounds, the votes of
minorities who have not yet influenced the decision are taken into account.

While this method offers strong proportionality guarantees, and largely exhibits desired behavior
in practice, it is not without its flaws. In this work, we begin by uncovering the following
drawbacks of Equal Shares (discussed in detail in Sections 3 and 6).

Underspending. As it has been already observed in the literature, the Method of Equal Shares
can significantly underspend the available funds [15]. Indicatively, on real instances of PB
elections it uses on average only 45% of the budget (see Section 6). Thus, in practice it heavily
depends on the completion method with which it is combined (cf. Section 2).
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Helenka Paradox. In Equal Shares, even a small group of voters can propose a modest project
which, if unanimously supported by that group, would likely be selected. However, due to strict
budget constraints, this could prevent a larger project—potentially benefiting the vast majority
of voters—from being funded. We observed this issue in the Helenka district of Zabrze, Poland,
where the Method of Equal Shares would have resulted in 97% of voters left with no project.

Tail Utilities. When there are large discrepancies in voters’ scores assigned to projects, Equal
Shares selects a project based on the score of the least satisfied voter who must cover its cost.
This mechanism is egalitarian in principle, and so, the method may not properly take into
account significant utility values in the decision process.

Based on these observations, we introduce and analyze a new voting rule, which we call the
Method of Equal Shares with Bounded Overspending (in short, BOS Equal Shares, or simply
BOS). The new method is a more robust variant of Equal Shares, remarkably effective in handling
scenarios akin to particularly challenging instances of PB elections.

Interestingly, we argue that the first two of the problems we identify are not solely due to
the Method of Equal Shares itself, but rather to the strict proportionality guarantees the
method aims to provide. Specifically, it appears that the appealing axiom of Extended Justified
Representation (EJR) [4, 23, 10] might enforce inefficiencies in certain scenarios. The same holds
for weaker notions as well, like JR [4]. Consequently, BOS Equal Shares is not meant to generally
satisfy EJR. Nevertheless, in most cases, our new method provides strong proportionality
guarantees, mirroring those of the original Method of Equal Shares. To confirm this we first
prove that BOS satisfies an approximate variant of EJR. This implies that even when its outcomes
violate EJR—something necessary to avoid the identified issues of Equal Shares—cannot diverge
significantly from it. This is an additional indicator that BOS tends to be proportional in practice.
The near-tight worst-case guarantees we establish depend on the cost of the most expensive
project in the instance, a dependency that is intuitive (as evident from by the Helenka case)
but otherwise difficult to formalize. Consequently, our result offers a theoretical justification for
placing upper bounds on project costs—a common practice in real-world PB implementations.

Our main argument for the advantages of BOS comes from our extensive empirical analysis on
real-world and synthetic instances, in which it shows very good and robust performance in a
number of metrics. In particular, it provides EJR+ up to one (a strong EJR-style axiom Brill
and Peters [10]) in more than 95% of cases, and, in comparison to the original Method of Equal
Shares, leaves less voters empty-handed. Furthermore, our rule has been recently proved to be
superior in the context of selecting a representative set of influential nodes in networks [21].

Noteworthy, in the course of designing BOS, we propose and analyze a fractional variant of
the Method of Equal Shares, the Fractional Equal Shares (FrES), which works in a model
where projects are allowed to be funded partially. It extends the Generalized Method of Equal
Shares [19], another rule recently proposed for the fractional model, but only for approval ballots.

2 Preliminaries

A PB election (in short, an election), is a tuple E = (C, V, b), where C = {c1, . . . , cm} is a set
of available candidates (also referred to as projects), V = {v1, . . . , vn} is a set of voters, and
b ∈ R is the budget value. Each candidate c ∈ C is associated with a cost, denoted as cost(c),
assumed to be upper bounded by b. We extend this notation to sets of candidates, setting
cost(W ) = ∑

c∈W cost(c) for all W ⊆ C. An outcome of an election is a subset of candidates; an
outcome W is feasible if cost(W ) ⩽ b. An election rule is a function that for each election returns
a nonempty collection of feasible outcomes. Typically, we are interested in a single outcome, yet
we allow for ties. Each voter vi ∈ V has a utility function ui : C → R⩾0 that assigns values to
the candidates. We assume the utilities are additive, and write ui(W ) = ∑

c∈W ui(c) for each
W ⊆ C. The voters’ utility functions and the candidates’ costs are integral parts of the election.
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cost v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Project A $300k ✓ ✓ ✓ ✓ ✓ ✓

Project B $400k ✓ ✓ ✓ ✓ ✓

Project C $300k ✓ ✓ ✓ ✓ ✓

Project D $240k ✓ ✓ ✓ ✓

Project E $170k ✓ ✓ ✓ ✓

Project F $100k ✓ ✓ ✓

Table 1: An example of a PB election with 10 voters and 6 projects of varying costs. Approvals of voters
towards projects are indicated by the ✓ symbol.

There are two special types of utility functions that are particularly interesting, and pivotal
for certain parts of our work. In some cases it is natural to assume that the utilities directly
correspond to the scores extracted from the voters’ ballots; then we speak about score utilities.
In case of approval ballots, where the voters only indicate subsets of supported candidates, we
simply assume that the voter assigns scores of one to the approved candidates, and scores of
zero to those she does not approve. On the other hand, the cost utility of a voter from a project
is its score utility multiplied by the projects’ cost. For example, if W ⊆ C and Ai is the set
of candidates that voter vi approves, then we have ui(W ) = |W ∩ Ai| for score utilities (the
utility is the number of selected projects the voter approves), and ui(W ) = cost(W ∩ Ai) for
cost utilities (thus, the utility is the amount of public funds allocated to projects she supports).

2.1 Method of Equal Shares

Arguably the simplest, and most commonly used voting rule in PB elections is the Utilitarian
Method. This method selects the candidates by their vote count, omitting those whose selection
would exceed the budget; it stops when no further candidate can be added. Since this approach
is highly suboptimal from the perspective of proportionality (see for instance Example 1 that
follows), we will be particularly interested in the Method of Equal Shares, a proportional election
rule recently introduced in the literature [23, 22]. The rule works as follows: Let bi be the
virtual budget of voter vi; initially bi := bini = b/n. In each round, we say that a not yet elected
project c is ρ-affordable for ρ ∈ R+, if cost(c) = ∑

vi∈V min (bi, ui(c) · ρ) . In a given round the
method selects the ρ-affordable candidate for the lowest possible value of ρ and updates the
voters’ accounts accordingly: bi := bi −min (bi, ui(c) · ρ); then it moves to the next round. The
rule stops if there is no ρ-affordable candidate for any value of ρ.

The concept of ρ-affordability is crucial to our work. Intuitively, voters supporting a ρ-affordable
candidate c can cover its cost in such a way that each of them pays ρ per unit of utility or all of
their remaining funds. In simpler terms, ρ represents the rate (price per unit of utility) at which
the least advantaged supporter of the project would “purchase” their satisfaction, if the project
is selected. Also, note that a situation in which a candidate is not ρ-affordable for all ρ ∈ R+
happens only if its supporters do not have enough money to cover its cost.

Example 1. Consider the PB election depicted in Table 1, and assume cost-utilities. The
Utilitarian Method would select projects solely based on their vote count, thus choosing Projects
A, B and C. This seems unfair since a large fraction of the voters (namely voters v7 to v9 making
up 30% of the electorate) would not approve any of the selected projects.

The Method of Equal Shares, on the other hand, would first assign $100k to each voter. Initially,
the method would select Project A, splitting its cost equally among voters v1 to v6 (ρ = 1/6).
As a result, these voters would spend half the money they are entitled to towards purchasing
Project A, so in the subsequent rounds, they would not be able to afford Project B. Furthermore,
funding Project C would only be affordable if voter v10 spent all their money on it, thus paying
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ρ = 1/3 of its price. The Method of Equal Shares would not select it, preferring Projects D and
E for which the whole cost can be equally spread among four supporters (ρ = 1/4). Regardless of
the choice, both Projects D and E would be bought in the last two rounds and the method would
stop. See Appendix B.1 for a step-by-step illustration of its execution. Clearly, the selection
made by the Method of Equal Shares is less discriminatory than the one by Utilitarian, as each
voter approves at least one of the selected projects. Note that the bundle purchased by the
Method of Equal Shares comes at a total cost of $710k, leaving as much as $250k in virtual
accounts of voters v1–v6. While it is possible to additionally fund Project F, its supporters do
not have enough money to fund it, so the project is not selected. ⌟
Example 1 shows that Equal Shares is non-exhaustive: an outcome W ⊆ C is exhaustive if it
utilizes the available funds in a way that no further project can be funded, in other words if
for each unelected candidate c /∈W it holds that cost(W ∪ {c}) > b. While non-exhaustiveness
itself may not be a critical flaw, a more concerning issue is that the method tends to significantly
underspend the available funds. In real instances of participatory budgeting elections, Equal
Shares allocates, on average, only 45% of the available budget (see Section 6).

To deal with this issue, Equal Shares is typically used together with a completion strategy. An
example of a well-performing strategy suggested in the literature is Add1U. According to it,
we gradually increment the initial endowment bini by one unit and rerun the Method of Equal
Shares from scratch, until it produces an outcome that exceeds the budget. Then we return the
outcome computed for the previous value of bini, hence the feasible outcome produced for the
highest tested value of bini. Since the result may still be non-exhaustive (though typically at this
point most of the funds are already spent), as the final step, we select affordable projects with
the highest vote count until no further candidate can be added [15].

3 Limitations of the Method of Equal Shares

In this section, we present concrete case studies which indicate that using the Method of Equal
Shares in its basic form may lead to intuitively suboptimal solutions.

3.1 Helenka Paradox

The instance that follows comes from the PB elections held in 2020 in the Polish city of Zabrze,
in district Helenka [1]. Two projects were proposed in this district, namely an expansion and
modernization of sports facilities (to be called project A), and a plant sculpture (project B).
Their costs and number of supporters are as follows.

cost 403 voters 11 voters
Project A $310k ✓

Project B $6k ✓

The budget is b = $310, 000 and assume cost utilities. The second group of 11 voters should
intuitively be entitled to $(11/414 · 310, 000) ≈ $8, 000. In fact, any rule that satisfies EJR must
select project B and so does Equal Shares. However, selecting project B precludes the inclusion
of project A within the budget constraint. This is highly counterintuitive since it leaves a
great majority of voters (over 97% of the electorate) empty handed, despite the fact that they
commonly approve an affordable project. Thus, the Helenka Paradox serves not only as a critique
of the Method of Equal Shares, but also of the prominent axiom of EJR itself. The same holds
for the issue of undespending which is evident in the presented example as well.

In order to solve the indicated problem, additional strategies could be employed. Cities may
compare the outcomes returned by the Method of Equal Shares and by the standard Utilitarian
Method. If ballots indicate that more voters prefer the outcome of the standard Utilitarian
Method, then it could be selected. An alternative solution is to put an upper bound on the
initial cost of the projects. Interestingly, while working on the experimental part of our work, we
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observed no evident paradoxes like the discussed one in data from elections where the cost of the
projects did not exceed 30% of the budget. While these two solutions can work well in practice,
neither is perfect. The runoff approach might potentially result in a utilitarian solution where
some groups of voters are underrepresented. Moreover, imposing an upper limit on project costs
might exclude some worthwhile and highly popular ideas, especially in small-scale elections.

3.2 Tail Utilities

Consider the following election with m = 2 candidates, and n = 100 voters casting ballots via
range voting, as follows (the values in the table indicate the assigned scores).

cost 99 voters 1 voter
Project A $1 100 1
Project B $1 2 2

Assume that the budget is b = $1. Under the Method of Equal Shares, all voters have to pay
all their virtual money to cover the cost of the one project that will be selected. As a result, if
project A is selected, 99 voters will pay $0.0001 per unit of utility and 1 voter will pay $0.01
per unit of utility. In turn, for project B, all voters will pay $0.005 per unit of utility. Thus,
project A is 1/100-affordable while project B is 1/200-affordable, and the rule selects project B,
even though 99% of voters consider project A as a much better option. This is because the
Method of Equal Shares is in some sense egalitarian: when assessing the quality of a candidate,
it essentially considers the utility assigned to the candidate by the least satisfied voter among
those covering its cost. Note that the presented problem does not appear in approval elections.
We observed this issue when applying Equal Shares to certain range voting committee elections.

Unlike the other issues presented, this one isn’t rooted in proportionality but rather in the rule’s
internal mechanics. Still, all three limitations ultimately arise from the indivisibility of projects
in PB. BOS addresses them simultaneously by relying on fractional allocations.

4 Method of Fractional Equal Shares

To develop intuitions required for the introduction of BOS Equal Shares, we first present
Fractional Equal Shares (FrES)—an adaptation of Equal Shares to fractional PB, where projects
can be partially funded. The idea is simple: a fraction α of a candidate c can be bought for
the corresponding fraction of its cost: α · cost(c). If such a purchase is made, each voter vi ∈ V
receives the utility of α · ui(c). Let us start by extending the notion of ρ-affordability to project
fractions. For α ∈ (0, 1], we say that a candidate c is (α, ρ)-affordable if its α fraction can be
bought with ratio ρ such that

α · cost(c) = ∑
vi∈V min(bi, α · ui(c) · ρ). (1)

The rule works as follows: Let bi be the virtual budget of voter vi, initially set to bi := b/n. In each
round, the method selects the candidate c which is (α, ρ)-affordable for the lowest possible value
of ρ and buys the largest possible fraction α for which the candidate remains (α, ρ)-affordable.
Then, the accounts of the supporters of c are updated accordingly: bi := bi−min(bi, α · ui(c) · ρ).
The method stops when no further fraction of a project can be selected within the budget.

Let us explain this method in more detail. Consider a partially funded candidate c and let
S be the set of its supporters who still have money. Note that as α increases, the ratio ρ
cannot decrease, meaning the minimum value of ρ occurs at small α. If α is small enough, the
candidate can be funded with all voters contributing proportionally to their utilities, since no one
exhausts their funds, i.e., in min(bi, α ·ui(c) · ρ), it is always α ·ui(c) · ρ that is smaller (or equal).
Then, from Eq. (1) we obtain that ρ = cost(c)/

∑
vi∈S

ui(c). Hence, Fractional Equal Shares selects
the project with the lowest such ρ value and covers the fraction of the candidate’s cost with
payments proportional to the voters’ utilities. This fraction is determined by the first moment
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a supporter exhausts their funds or the selected project is fully funded, whichever comes first.
Therefore it runs in polynomial time. Moreover, α = min (1−Wc, minvi∈S bi/ρ·ui(c)) , where Wc

is the fraction of the project c bought already. Since FrES may also not spend the whole budget
we can complete its outcomes in the utilitarian fashion, i.e., buying projects that maximize
total utility per cost until the budget is exhausted. A pseudo-code of the method is provided in
Appendix A.

In the discrete model, it is established that, unless P = NP, no election rule computable in
(strongly) polynomial time can satisfy EJR. This hardness result stems from a reduction from
the knapsack problem [23], and holds even for instances with a single voter. However, this does
not extend to the fractional setting as a simple greedy algorithm can solve fractional knapsack
optimally—in fact, FrES applied to an instance with a single voter is equivalent to such an
algorithm and returns the optimal solution. This opens the possibility that a polynomial-time
rule, like FrES, could indeed satisfy (the fractional analog of) EJR. This is indeed the case.

Definition 1 (Fractional EJR). A group of voters S ⊆ V is (T, β, γ)-cohesive for T ⊆ C,
β : C → [0, 1], and γ : C → R⩾0 if

1. ∑
c∈T cost(c) · β(c) ⩽ b · (|S|/n), and

2. ui(c) · β(c) ⩾ γ(c) for all c ∈ T and vi ∈ S.

A fractional outcome W satisfies Fractional EJR if for every (T, β, γ)-cohesive group of voters S
there is a voter vi ∈ S for which ∑

c∈C ui(c) ·Wc ⩾
∑

c∈T γ(c). ⌟

By fixing β(c) = 1 for all c ∈ C, and by admitting only the integral solutions (that is, assuming
Wc ∈ {0, 1}), we get the standard definition of EJR for the integral PB model and general
utilities [23]. If we also fix γ(c) = 1 and ui(c) ∈ {0, 1} for each voter vi and candidate c, we get
the classic definition of EJR for approval-based committee voting [4].

Additionally, if applied to approval ballots with cost utilities, Definition 1 is equivalent to Cake
EJR proposed by Bei et al. [6]. Fractional Equal Shares under approval ballots with cost utilities
is equivalent to Generalized Method of Equal Shares introduced by Lu et al. [19], who showed
that their rule satisfies Cake EJR. In the following theorem, we generalize this result and show
that FrES satisfies Fractional EJR under arbitrary additive utilities.1

Theorem 1. FrES satisfies Fractional EJR.

Aspects of fairness and proportionality in models related to our fractional setting have also been
examined by Fain et al. [13], Kroer and Peters [16], Aziz et al. [5], Bogomolnaia et al. [8], Brandl
et al. [9], Munagala et al. [20], Suzuki and Vollen [25].

5 Method of Equal Shares with Bounded Overspending

In this section we build upon the idea behind Fractional Equal Shares, and design a new method
for the standard (integral) model of participatory budgeting. The Method of Equal Shares with
Bounded Overspending, in short, BOS Equal Shares, or just BOS, can be viewed as a rounding
procedure for FrES, but also as a variant of Equal Shares, where voters may occasionally spend
more than their initial entitlement. Under the fractional rule, an α-fraction of a candidate can
be purchased for a corresponding fraction of its cost; then each voter receives a proportional
fraction of the utility. However, in the integral model, fractional purchases are not possible. In
BOS, we simulate buying an α-fraction of a candidate, still assuming the voters gain fractions of
utilities. However, the voters are now required to cover the full cost. The distribution of the
payments is proportional to the one computed for the α-fraction. Specifically, for ρ satisfying

1Proofs of our results are deferred to Appendix C.
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α · cost(c) =
∑

vi∈V

min(bi, α · ui(c) · ρ),

a voter vi supporting c has to pay pi(c) = min(bi, α · ui(c) · ρ)/α. Notice that we divide by α as
we now need to cover the entire cost of the project, not only its α fraction. Assuming α · ui(c) is
the utility from candidate c, the highest payment per unit of utility is then ρ/α. Observe that
pi(c) can be actually greater than bi, i.e., the remaining budget of voter vi. In such a case we
say that voter vi is overspending and we set its account to zero.

The rule works as follows: Let bi be the virtual budget of voter vi, initially set to bi := b/n. Each
round, among all candidates that fit within the remaining budget, BOS buys the (α, ρ)-affordable
candidate c with the lowest possible value of ρ/α. The accounts of the supporters of c are updated
accordingly: bi := max(0, bi − ui(c) · ρ). The method stops if no remaining candidate fitting
within the budget is (α, ρ)-affordable for some α ∈ (0, 1] and ρ ∈ R+. Voters without money
and those that overspent before, do not have an impact on the further decisions. We provide a
pseudo-code of the Method of Equal Shares with Bounded Overspending in Appendix A.

Continuation of Example 1. Each voter has initially the same amount of money ($100k) and the
cost of every project can be covered by its supporters. For every project, α = 1 is now optimal,
which corresponds to buying the project in full. Hence, BOS, as the Method of Equal Shares,
selects Project A, being the one with the highest number of votes and equally distributes its
cost among the supporters. As a result, voters v1 to v6 are left with $50k, while voters v7 to v10
still have $100k. The values of α and ρ for the second round follow:

A B C D E F
α = 1, ρ – +∞ 1/3 1/4 1/4 1/3
α = 5/6, ρ – +∞ 1/5 1/4 1/4 1/3
α = 5/8, ρ – 1/5 1/5 1/4 1/4 1/3

For instance, consider Project B. Since voters v1 to v6 have only $50k each, Project B cannot be
purchased in full. However, its supporters can cover α = 250/400 = 5/8 of its cost. This cost would
be equally spread among five voters, so ρ = 1/5 and the ratio ρ/α equals 8/25. Now, consider
Project C. This project can be bought in full, but only if voter v10 pays ρ = 1/3 of the cost. The
Method of Equal Shares rejects this option as imbalanced and selects a project with a smaller
ρ parameter. In turn, BOS considers also paying for a fraction of the project with balanced
payments. Specifically, to maintain equal payments, we can simulate buying a fraction α = 5/6
of the project. This would result in ρ = 1/5 and ratio ρ/α = 6/25. Since this ratio is smaller than
the ratio of Project B as well as the ratios of Projects D, E and F which remained unchanged,
BOS selects Project C with α = 5/6. To cover 5/6 of its cost, its supporters would have to pay
$50k each. Hence, in BOS, each supporter should pay 6/5 · $50k = $60k. The supporters who do
not have enough funds simply pay all their remaining money.

In the third round, BOS would buy Project D with α = 1 and ρ = 5/18. Finally, in the last
round, Project F would be bought for α = 5/6 and ρ = 3/5. We refer the reader to Appendix B.3
for the detailed explanation of the example. ⌟

As we have noted in the above example, we do not have to consider all values of α. In fact, it
can be shown that it is optimal to either consider α = 1 or a fraction α that, for some voter, is
the smallest amount for which she runs out of money, assuming proportional payments, i.e., in
which bi = ui(c) · ρ for some voter vi ∈ V . In such a case, it holds that ρ = bi/ui(c). Since there
are at most n such values, the outcome of BOS can be computed in polynomial time.

Theorem 2. BOS runs in polynomial time.
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5.1 Addressing the Limitations of the Method of Equal Shares

We now discuss how BOS addresses each of the limitations of Equal Shares that we have
identified (Section 3). For underspending, observe that BOS Equal Shares leads to a non-
exhaustive outcome only if all voters that still have remaining funds have all of their supported
projects selected (otherwise there is an (α, ρ)-affordable project for some, possibly very small,
α). Based on our empirical analysis (see Section 6) such a situation is extremely rare in practice.
As a result, BOS spends on average a similar fraction of a budget as the Utilitarian Method
and does not need to be combined with a completion mechanism, in contrast to the Method of
Equal Shares. However, if an exhaustive rule is required, a simple modification can be made to
BOS Equal Shares: whenever all projects supported by a voter are already selected, we remove
this voter from the election and redistribute her remaining funds equally among the remaining
voters. We note that similar modification for the original Method of Equal Shares would still
lead to a non-exhaustive rule.

Example 2: BOS on Helenka Paradox. Consider the Helenka Paradox election instance presented
in Section 3. The initial endowment is $(310,000/414) ≈ $750. Only the α = 403/414 fraction of the
project A can be paid for by its supporters. This gives ρ = 1/403, which results in ρ/α = 414/4032.
In turn, project B can be fully bought, thus we have α = 1 and ρ = 1/11 = ρ/α. Hence, BOS, in
contrast to the Method of Equal Shares, would select project A.

The reader may wonder what would happen if the support for project B was higher. Clearly,
as the support for project B that is affordable at full increases and that of project A taking
the whole budget decreases, at some point we should switch from selecting A to selecting B. At
what point would BOS start selecting project B? Assume that x voters support A and n− x
voters support B. Then, for A we have ρ = 1/x and α = x/n, thus ρ/α = n/x2. In turn, for
B we have ρ = 1/(n− x) and α = 1, thus ρ/α = 1/(n− x). Hence, we can select project B if
1/(n− x) ⩽ n/x2 or equivalently n2 − xn ⩾ x2. Solving the quadratic equation, we get that if
x > 0, then this is equivalent to x/n ⩽ (

√
5− 1)/2 = 1/φ. It turns out that the switching point

is when the supports of the projects are in the golden ratio to each other, i.e., the project using
the entire budget is supported by roughly 61.8% of the electorate. This is close to the value of
the thresholds required for a supermajority in many democratic systems (e.g., 3/5 or 2/3). ⌟

Example 3: BOS on Tail Utilities. Consider the Tail Utilities instance from Section 3. All voters
have the same utility from project B, hence, every fraction α of the project can be bought
with equal payments and ρ = cost(c)/ ∑

vi∈V ui(c) = 1/200. Therefore, we obtain the minimal
ratio ρ/α = 1/200, for α = 1. Let us focus now on project A. If the project is bought in full,
the last voter would have to pay $0.01 per unit of utility, giving ρ = 1/100. However, it is
also possible to simulate the purchase of the fraction of the project that ensures the payments
are proportional to utilities. This happens if 99 voters pay $0.01 and 1 voter pays $0.0001.
The voters pay for a fraction of α = 9901/10000 of the project, achieving a much better ratio:
ρ = cost(c)/ ∑

vi∈V ui(c) = 1/9901. Thus, ρ/α = 10000/99012, and so BOS would select project A. ⌟

5.2 Proportionality Guarantees of BOS Equal Shares

As previously noted, Extended Justified Representation (EJR) is a well-established axiom of
proportionality for participatory budgeting. In Example 2, we illustrate that BOS fails to satisfy
EJR under cost utilities in the PB setting. Importantly, this failure is not a deficiency but
an intended behavior. Nevertheless, BOS still provides strong proportionality guarantees. We
primarily demonstrate this through extensive experiments on real data (see Section 6), and we
additionally prove theoretically that the extent of violation of EJR is limited.

In line with the definition of EJR under cost utilities, given a subset of projects T ⊆ C, we say
that a group of voters S deserves the satisfaction of cost(T ) if |S| ⩾ cost(T )n

b and all voters in
S approve all projects in T , that is T ⊆

⋂
i∈S Ai.
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Definition 2. Assuming cost utilities and fixing a function from (E, S) to R⩾0, where E is an
election (C, V, b) and S ⊆ V, we say that a rule satisfies EJR up to t, if for every E such that W
is the outcome of the rule on E and every (S, T ) ⊆ V × C such that S deserves the satisfaction
of cost(T ), there is a voter vi such that ui(W ) ⩾ cost(T )− t− cost(c), for all c ∈ T \W . ⌟

The main theoretical contribution of our work follows. It reassures that BOS does not excessively
deviate from EJR, even when it violates it. Our guarantees are asymptotically tight.

Theorem 3. For cost utilities, BOS satisfies EJR up to n−|S|
2|S| · c

∗, where c∗ := maxc∈C cost(c).

Consequently, for approval-based committee elections, BOS satisfies EJR up to
⌈

k−ℓ
2ℓ

⌉
candidates,

where k is the size of the committee, and ℓ = |S| · k/n is the number of representatives that
voters in S deserve. To illustrate this, consider a group entitled to

√
k representatives. BOS

ensures that at least one voter in the group receives no fewer than
√

k/2 candidates she likes. As
the group size increases, this guarantee becomes stronger.

Proposition 4. For each ℓ there exists an approval-based committee election where a group of
voters deserves

⌈
k−ℓ
4ℓ

⌉
candidates, but they all get no representatives under BOS.

Cities employing PB often find the paradoxes associated with classic Equal Shares unacceptable.
Although it is rarely mentioned in the literature, all cities currently employing Equal Shares
include in their regulations a final step that compares its outcome with the utilitarian one.
If a majority of voters derive higher utility from the outcome of Equal Shares, it is accepted;
otherwise, the utilitarian prevails. This comparison renders the entire procedure essentially
majoritarian in the worst-case. Therefore, the solution used in practice has worse worst-case
proportionality guarantees than BOS. The comparison with the utilitarian outcome is only an
imperfect workaround and, in contrast, BOS provides a principled alternative.

5.3 Method of Equal Shares with Bounded Overspending Plus

While BOS solves multiple problems of Equal Shares, one can still argue that it is not always
evident that it produces the most desirable outcome.

Example 4: Selection of Unpopular Projects. Consider the following election with m = 310
unit-cost candidates, and n = 1000 voters. The budget is b = $10. Voters v1, . . . , v700 approve
ten projects A1 to A10, and each voter from v701 to v1000 approves a single project from B1 to
B300; each such project is approved by only one voter.

cost v1 . . . v700 v701 . . . v1000

Project A1 $1 ✓ ✓ ✓

. . . $1 ✓ ✓ ✓

Project A10 $1 ✓ ✓ ✓

Project B1 $1 ✓

. . . $1 ✓

Project B300 $1 ✓

Consider how BOS operates on this instance. First, it would buy seven A-projects. After that,
voters v1 to v700 would not have any money left, so BOS would additionally buy three B-projects,
which is arguably not the most effective allocation of the funds. On the other hand, the Method
of Equal Shares would buy only seven A-projects, but its Add1U variant would select all ten
A-projects, i.e., it would return the outcome for the initial endowment equal to bini = $(1− ε). ⌟

Motivated by this observation we introduce a rule combining the key ideas of BOS and Add1U
completion for Equal Shares, which works as follows: In each round we first find the (α, ρ)-
affordable candidate c that minimizes ρ/α, as in standard BOS. If buying candidate c requires

9



overspending, we do not buy it, but look for a better candidate that would not overspend more.
Specifically, we first compute the maximal overspending assuming all voters overspend equally:

∆b = cost(c)− αcost(c)
|{vi ∈ V : ρui(c) ⩾ bi > 0}| ,

we temporarily set bi := bi + ∆b and pick the (1, ρ)-affordable project that fits within the budget
and minimizes ρ. We charge the voters’, revoke the increase of their entitlements, and proceed.
The pseudo-code of BOS+ is given in Appendix A.

Observe that BOS+ would select ten A-projects in the instance from Example 4: every attempt
to buy a B-project would increase initial endowments of voters v1–v700 and allow them to
buy yet another A-project. Note also that this example highlights the fact that the optimal
outcome may depend on the specific situation it is used in. Indicatively, if the election method
is used for selecting validators in a blockchain protocol, there is particular concern about not
over-representing groups of voters or giving them too much voting power [12]. BOS seems better
suited for such applications. If the instance comes from PB elections conducted by municipalities,
the outcome produced by BOS+ appears to be much more aligned with expectations.

For BOS+ we obtain the same proportionality guarantee as for BOS. Moreover, the hard instance
from Proposition 4 also applies to BOS+.
Theorem 5. For cost utilities, BOS+ satisfies EJR up to n−|S|

2|S| · c
∗, where c∗ := maxc∈C cost(c).

6 Empirical Analysis

We now evaluate our rules on real-world PB data and on synthetic Euclidean elections.

6.1 Pabulib Instances

We computed the outcomes of the Utilitarian Method, Equal Shares (with Add1U completion),
FrES (with utilitarian completion), BOS, and BOS+ across all 1274 participatory budgeting
instances in Pabulib [15]. To compare performance, we analyzed six statistics: score satisfaction,
cost satisfaction, exclusion ratio, running time, EJR+ violations, and exhaustiveness. For the
first four, we observed that the behavior largely depends on the instance size, defined as the
number of projects within it. Thus, we partitioned the instances into four size ranges, aiming
for ranges with an almost equal number of instances. Figure 1 shows the average of each metric
by rule and size range; detailed values and statistical significance appear in Appendix D.

Score and Cost Satisfaction. These metrics assess the total utility from the selected projects based
on score and cost utility measures. In Figure 1, the values are normalized against Utilitarian. For
score satisfaction, in medium and large instances, Equal Shares, BOS, and BOS+ yield similar
and significantly higher results than FrES and Utilitarian; for small instances, the performance
of all is comparable. Regarding cost satisfaction, Utilitarian outperforms all others across all
instances. It can be considered a greedy method maximizing cost satisfaction objective. Yet, BOS
and FrES outperform Equal Shares in small and medium instances. Notably, BOS+ performs as
good as BOS for the smaller instances and slightly surpasses it for the larger.

Exclusion Ratio. This metric represents the fraction of voters who do not support any of the
selected projects. For medium and large instances Utilitarian excludes significantly more voters
on average than the other rules, which perform similarly. However, for the smallest instances,
Equal Shares performs considerably worse than the others. This is due to small instances often
resembling the Helenka Paradox. For FrES, the exclusion ratio is always zero.

Running Time. We observe that BOS and BOS+ are an order of magnitude faster than Equal
Shares. This is because Equal Shares with Add1U completion, requires computing the outcome
multiple times until the final value of voter endowments is established. Computations has been
conducted in Python on a MacBook Air laptop with an Apple M3 processor and 16 GB of RAM.
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Figure 1: Average score satisfaction (top-left), cost satisfaction (top-right), exclusion ratio (bottom-right),
and running time in seconds (bottom-left) of the outputs of the considered rules based on Pabulib data
by the number projects in an instance. Cost and score satisfactions are reported as fractions of the
respective satisfaction under utilitarian rule. Thin vertical lines mark 90% confidence intervals. Note that
the y-axis in the running time plot is in a logarithmic scale.

EJR+ Violations. EJR+ is one of the strongest satisfiable proportionality axioms, strictly
stronger than EJR [10]. Its satisfaction can be efficiently verified, making it a suitable metric
for empirical comparison of the proportionality of different rules. Unfortunately, to date, it is
defined only for approval ballots, thus we limit our analysis to such instances. On a high level,
for each unselected candidate in an election, we say that it violates EJR+ up to one (we actually
count violations of this established relaxation [10]), if it is approved by a sufficiently large group
of voters each of whom is inadequately satisfied by the outcome of a rule. For Equal Shares, it
is known that its outcome cannot have any violations. In contrast, Utilitarian averages 0.933
violations per instance, setting it apart from BOS and BOS+, averaging only 0.061 and 0.06,
respectively. This indicates that although our rules, in theory, do not guarantee EJR+ up to
one, they almost always yield proportional solutions according to this strong axiom.

Exhaustiveness Recall that the outcome of a rule is exhaustive, if there is no unselected project
with a cost not exceeding the remaining budget (for FrES, we require that it either spends
the whole budget or selects all projects fully). By definition, the Utilitarian Method is always
exhaustive. In contrast, if we run Equal Shares without any completion, then it is exhaustive in
only 7% of the instances and on average spends less than 45% of the available budget. On the
other hand, BOS is non-exhaustive in only 2 instances out of 1274 in the dataset. Moreover,
in both of these instances, it spends more than 99% of the budget (only very cheap additional
projects can fit the budget in both cases). BOS+ is non-exhaustive in a few more instances, but
spends similar fraction of the budget on average. Therefore, while Equal Shares should not be
used without a completion mechanism, BOS and BOS+ can safely be deployed without one.

6.2 Euclidean Instances

We further illustrate the differences between the examined rules using synthetic Euclidean
elections. Our results are presented in Figure 2. This analysis again highlights that BOS offers
more desirable results than Equal Shares.

In the examined setting, each voter and candidate is represented as a point in a 2D space. The
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Voters Utilitarian Equal Shares BOS BOS+ FrES

Figure 2: Results on Euclidean elections. The first column presents the superimposed positions of voters
in all generated elections and the following columns show positions of candidates selected by respective
rules (for FrES, the opacity reflects the selected fraction of candidates).

utility of the voter vi for candidate c is defined as ui(c) = (dist(vi, c) + λ)−1, where dist(vi, c) is
the Euclidean distance between them, and the denominator is shifted by the constant of λ to
bound the maximal utility. Here, we present the results for λ = 1; the results for λ = 1/2 and
λ = 2 (in Appendix D) lead to similar conclusion. For each election, we placed 150 candidates
uniformly at random in a unit square and considered three different voter distributions. In the
first, 100 voters were drawn uniformly from the rectangle (0.05, 0.05)− (0.4, 0.95) and 50 from
(0.6, 0.05)− (0.95, 0.95). The second and third used Gaussian distributions for x-coordinates:
100 voters centered at 0.25 and 50 centered at 0.75. In the second, y-coordinates were drawn
from a Gaussian centered at 0.5, while in the third, they were drawn from a beta distribution
with a = 1.5 and b = 3, pushing more voters to the bottom of the square. The candidates had
unit costs, and the budget was set to 10. We sampled 1000 elections per distribution.

The Utilitarian Method selects only candidates from the left-hand side of the square. Equal
Shares, BOS, BOS+, and FrES also select candidates from the right-hand side but less than 1/3
of the total, which is the proportion of the voters there. This is because the right-hand side
voters gain some utility from left-hand side candidates, thus spending part of their budget on
them. In the third distribution, Equal Shares selects candidates from the top-right part of the
square, which has fewer voters, while BOS and BOS+ choose candidates from the bottom-right,
where there is greater overall support. BOS+ and BOS output very similar sets of candidates,
with BOS+ giving a bit more concentrated outputs. FrES’ selection resembles that of BOS,
particularly in the last two distributions, reinforcing the view that BOS is a rounding of FrES.

7 Conclusion

We have introduced the Method of Equal Shares with Bounded Overspending (BOS), a robust
variant of the Method of Equal Shares, along with its refined version, BOS+. We have identified
inefficiencies in the original method, illustrated by simple well-structured examples and supported
by empirical analysis. Our new rule maintains strong fairness properties, which we have confirmed
both theoretically and in experiments. In the process of developing BOS, we have also introduced
and analyzed FrES, a fractional variant of Equal Shares for the PB model with additive utilities.

The practical relevance of our work is exemplified by the fact that the council of a medium-sized
city has already chosen BOS for the upcoming participatory budgeting vote. This will be the
largest MES-like allocated budget to date, amounting to approximately half a million euros.
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Appendix A. Pseudo-Codes of the Proposed Rules

ALGORITHM 1: Pseudo-code of Fractional Equal Shares.
Input: A PB election (C, V, b)
Wc ← 0 for each c ∈ C
bi ← b/n for each vi ∈ V
S ← V
while exists c such that Wc ̸= 1 and

∑
vi∈S ui(c) > 0 do

c← argminc∈C:Wc ̸=1
(
cost(c)/

∑
vi∈S ui(c)

)
ρ← cost(c)/

∑
vi∈S ui(c)

α← min(1−Wc, minvi∈S bi/(ρ · ui(c)))
Wc ←Wc + α
for vi ∈ S do

bi ← bi − α · ρ · ui(c)
if bi = 0 then

S ← S \ {vi}
return W

ALGORITHM 2: Pseudo-code of the Method of Equal Shares with Bounded Overspending.
Input: A PB election (C, V, b)
W ← ∅
bi ← b/n for each vi ∈ V
while C ′ = {c ∈ C \W : cost(c) ⩽ b− cost(W ) and

∑
vi∈V :ui(c)>0 bi > 0} is nonempty do

(α∗, ρ∗, c∗)← (1, +∞, c)
for c ∈ C ′ do

λ′ ← λ satisfying cost(c) =
∑n

i=1 min(bi, ui(c) · λ) or +∞ if there is no such λ, i.e.,
cost(c) >

∑
vi∈V :ui(c)>0 bi

for λ ∈ {bi/ui(c) : vi ∈ V, bi > 0, ui(c) > 0} ∪ {λ′} do
α← min((

∑n
i=1 min(bi, ui(c) · λ)) /cost(c), 1)

ρ← λ/α
if ρ/α < ρ∗/α∗ then

(α∗, ρ∗, c∗)← (α, ρ, c)
W ←W ∪ {c∗}
for vi ∈ V such that bi > 0 and ui(c∗) > 0 do

bi ← max(0, bi − ui(c∗) · ρ∗)
return W
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ALGORITHM 3: Pseudo-code of BOS Equal Shares Plus.
Input: A PB election (C, V, b)
W ← ∅, bi ← b/n for each vi ∈ V
overi ← 0 for each vi ∈ V /* Overspending for each voter */
while exists c ∈ C \W s.t. cost(c) ⩽ b− cost(W ) do

/* The part of computing the values α∗, ρ∗, c∗ is the same as in pure BOS. */
(α∗, ρ∗, c∗)← (1, +∞, c)
for c ∈ C \W s.t. cost(c) ⩽ b− cost(W ) do

λ′ ← λ satisfying cost(c) =
∑n

i=1 min(bi, ui(c) · λ) or +∞ if there is no such λ, i.e.,
cost(c) >

∑
vi∈V :ui(c)>0 bi

for λ ∈ {bi/ui(c) : vi ∈ V, bi > 0, ui(c) > 0} ∪ {λ′} do
α← min((

∑n
i=1 min(bi, ui(c) · λ)) /cost(c), 1)

ρ← λ/α
if ρ/α < ρ∗/α∗ then

(α∗, ρ∗, c∗)← (α, ρ, c)
/* Temporary increase of the budgets. */
∆b = cost(c∗)−α∗cost(c∗)

|{vi∈V : ρ∗ui(c∗)⩾bi>0}|
b∗

i = bi + max(0, ∆b− overi) for each vi ∈ V
/* Finding the optimal candidate is the same as in the Method of Equal Shares.

*/
for c ∈ C \W do

if
∑

vi∈V :ui(c)>0 b∗
i < cost(c) then

ρMES(c)←∞ /* Project not affordable */
else

Let vi1 , . . . , vit
be a list of all voters vij

∈ V with uij
(c) > 0, ordered so that

b∗
i1

/ui1(c) ⩽ · · · ⩽ b∗
it

/uit
(c).

for s = 1, . . . , t do
ρMES ← (cost(c)− (b∗

i1
+ · · ·+ b∗

is−1
))/(uis(c) + · · ·+ uit(c))

if ρMES(c) · uis
⩽ b∗

is
then

break /* we have found the optimal ρMES-value */
c∗ ← argminc∈C\W ρMES(c)
W ←W ∪ {c∗}
/* Updating budgets. */
for vi ∈ V do

payi ← min(b∗
i , ρMES(c∗) · ui(c∗))

if bi ⩾ payi then
bi ← bi − payi

else
overi ← overi + (payi − bi)
bi ← 0

return W
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Appendix B. Complete Examples Illustrating the Rules’ Execution

In this section, we provide detailed description of all steps in the runs of Equal Shares, FrES,
and BOS on the instance from Example 1. Let us repeat the table with the projects and voters
for convenience.

cost v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Project A $300k ✓ ✓ ✓ ✓ ✓ ✓

Project B $400k ✓ ✓ ✓ ✓ ✓

Project C $300k ✓ ✓ ✓ ✓ ✓

Project D $240k ✓ ✓ ✓ ✓

Project E $170k ✓ ✓ ✓ ✓

Project F $100k ✓ ✓ ✓

The Utilitarian Method would select projects solely based on their vote count, thus choosing
Projects A, B and C. This seems unfair since a large fraction of the voters (namely voters v7 to
v9 making up 30% of the electorate) would not approve any of the selected projects.

B.1 Method of Equal Shares

At the beginning, the Method of Equal Shares assigns $100k to each voter. The table that
appears below indicates the available (virtual) budget of each voter (in thousands of dollars).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 100 100 100 100 100 100 100 100 100 100

We first need to determine how affordable each project is. Project A is 1/6-affordable, as
it can be funded if each of its supporters pays $50k, which is 1/6 of its cost (recall that we
assumed cost-utilities for this example). Analogously, each other project that received x votes is
1/x-affordable.

A B C D E F
ρ 1/6 1/5 1/5 1/4 1/4 1/3

Thus, in the first round the rule simply selects the project with the highest vote count, namely
project A. After paying its cost, voters v1 to v6 are left with $(100k− 300k/6) = $50k. Voters’
remaining budget follows.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 50 50 50 50 50 100 100 100 100

In the second round, project B is no longer affordable, as its supporters do not have a total of at
least $400k to fund it. Project C is 1/3-affordable. Indeed, to fund it, voters v2, v3, v4, v5 and
v10 would have to use all their money. This means, in particular, that voter v10 would pay $100k
out of $300k which is 1/3 of the cost of the project. The rest of the projects remain ρ-affordable
for the same values of ρ, as their cost can still be spread equally among their supporters.

A B C D E F
ρ – – 1/3 1/4 1/4 1/3

Hence, projects D and E are both ρ-affordable for the smallest value of ρ = 1/4. Let us assume
the former project is selected, by breaking ties lexicographically. After paying its cost, voters v7
to v10 are left with $(100k− 240k/4) = $40k.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 50 50 50 50 50 40 40 40 40
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In the third round, project C is no longer affordable, as its supporters have together only $240k.
Project E is 5/17-affordable: voters v7, v8 and v9 have only $120k, which means that voter v2
needs to pay $50k to cover the cost of $170k. Project F remains 1/3-affordable.

A B C D E F
ρ – – – – 5/17 1/3

As a result, project E is selected and voters v2, v7, v8, and v9 run out of money.
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0 50 50 50 50 0 0 0 40

At this point, no project is affordable since the supporters of projects B, C and F have in total
$200k, $150k and $90k, respectively, therefore, the procedure stops having selected the outcome
{A, D, E}. Note that the purchased bundle comes at a total cost of $710k, which is $290k less
than the initially available budget. Thus, in principle, we could afford to additionally fund
project F. However, the supporters of this project do not have enough (virtual) money to fund
it, and so the project is not selected by the Method of Equal Shares.

Clearly, the selection made by the Method of Equal Shares is less discriminatory than the one
by Utilitarian, as each voter approves at least one of the selected projects.

B.2 Fractional Equal Shares

Note that for cost utilities, in each round Fractional Equal Shares selects the project with the
most supporters who still have money left. The method purchases the largest portion of the
project that can be covered with equal payments of the supporters.

In the first round, as in the Method of Equal Shares, project A is chosen. It is bought in full, as
its whole price can be split equally between supporters, each paying $50k. Voters’ remaining
funds appear below.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 50 50 50 50 50 100 100 100 100

In the second round, projects B or C can be selected. Let us assume project C is selected. Since
voters v2 to v5 have only $50k left, only 5/6 of it is bought and each voter pays $50k as the
following table indicates.

A B C D E F
ρ – 1/5 1/5 1/4 1/4 1/3

α 1 5/6

The following table depicts the remaining amount of money of each voter.
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0 0 0 0 50 100 100 100 50

Since voters v2 to v5 run out of money, in the third round project B has only one vote and
project E has 3 votes instead of 4. Hence, project D with 4 votes is selected.

A B C D E F
ρ – 1/1 1/1 1/4 1/3 1/2

α 1 5/6 5/6

For buying project D all voters pay the maximal equal price: $50k and their remaining budget
appears below:
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0 0 0 0 50 50 50 50 0

In the fourth round, project D lost one vote as v10 run out of money, but still has the highest
number of votes (ex aequo with project E). Hence, Fractional Equal Shares buys the remaining
1/6 of project D asking voters v7 to v9 to pay $13.3̄ each.

A B C D E F
ρ – 1/1 – 1/3 1/3 1/2

α 1 5/6 1
After the purchase, the remaining funds are as follows.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0 0 0 0 50 36.6̄ 36.6̄ 36.6̄ 0

Since the fourth round did not change the numbers of supporters as no new voters ran out of
budget, a fraction of 11/17 of project E is bought next.

A B C D E F
ρ – 1/1 – – 1/3 1/2

α 1 5/6 1 11/17

Regarding voters’ currently available budget, only v1 and v6 have a positive amount, each still
having $50k.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0 0 0 0 50 0 0 0 0

As a result, projects B and F have one supporter each whose money can be used to buy a portion
of one of these projects. Assume 1/2 of project F is bought and v6 pays for it.

A B C D E F
ρ – 1/1 – – – 1/1

α 1 5/6 1 11/17 1/2

Finally, the only voter with positive amount of money is v1 who is left with $50k. However, the
only project that v1 supports has already been bought. Thus, Fraction Equal Shares concludes.

As a result, in our example, FrES allocated $550k to projects A–C and $400k to projects D–F,
while the Method of Equal Shares allocated $300k to the former and $410k to the latter. In what
follows, we will propose a modification of Equal Shares that is more aligned with the outcomes
of FrES and in this example spends more funds on projects A–C than on D–F.

B.3 BOS Equal Shares

Consider the first round. At the beginning, each voter has the same amount of money:
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 100 100 100 100 100 100 100 100 100 100

Note that the cost of every project can be covered by its supporters. As observed in Example 2,
for every project, α = 1 is optimal, which corresponds to buying the project in full.

A B C D E F
α = 1, ρ 1/6 1/5 1/5 1/4 1/4 1/3
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Hence, BOS, as the Method of Equal Shares, selects project A, being the one with the highest
number of votes and equally distributes its cost among the supporters. After the purchase,
voters have the following amount of money:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 50 50 50 50 50 100 100 100 100

In the second round the remaining budget is $700k. Reasonable values of α and the corresponding
ρ are as follows:

A B C D E F
α = 1, ρ – – 1/3 1/4 1/4 1/3
α = 5/6, ρ – – 1/5 1/4 1/4 1/3
α = 5/8, ρ – 1/5 1/5 1/4 1/4 1/3

Since voters v1 to v6 have only $50k each, project B cannot be purchased in full. However, its
supporters can cover α = 250/400 = 5/8 of its cost. This cost would be equally spread among five
voters, so ρ = 1/5 and the ratio (ρ scaled by α) equals ρ/α = 8/25.

Now, let us consider project C. This project can be bought in full, but only if voter v10 pays
ρ = 1/3 of the cost. The Method of Equal Shares rejects this option as imbalanced and selects
a project with a smaller ρ parameter. In turn, Bounded Overspending considers also buying
a fraction of the project with balanced payments. Specifically, to maintain equal payments,
α = 5/6 of the project can be bought. This would result in ρ = 1/5 and ratio ρ/α = 6/25. Since
this ratio is smaller than the ratio of project B and the ratio of projects D, E and F which
remain unchanged, Bounded Overspending selects project C with α = 5/6. To cover 5/6 of its
cost, its supporters would have to pay $50k each. Hence, in Bounded Overspending, each voter
pays 6/5 · $50k = $60k (or their whole budget).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0
(−10)

0
(−10)

0
(−10)

0
(−10)

50 100 100 100 40

In the third round, the remaining budget is $400k. Consider the following α and ρ values:
A B C D E F

α = 1, ρ – – – 5/18 1/3 1/3
α = 2/3, ρ – – – 1/4 1/3 1/3
α = 1/8, ρ – 1/1 – 1/4 1/3 1/3

Note that only 1/8 of the project B can be bought (with ρ = 1). Project E and F can still be
bough in full, but since voter v2 run out of money, the value of ρ for project E dropped to 1/3.
Now, project D can either be bought in full (with unequal payments (66.6̄, 66.6̄, 66.6̄, 40) and
ρ = 66.6̄/240 = 5

18) or in part: for α = 2/3 with equal payments (40, 40, 40, 40) and ρ = 1
4 . Since

the ratio ρ/α for the former option is lower and it is also lower than the ratio for other projects,
Bounded Overspending selects project D with unequal payments.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

bi 50 0
(−10)

0
(−10)

0
(−10)

0
(−10)

50 33.3̄ 33.3̄ 33.3̄ 0

In the fifth round, the remaining budget is $160k. Consider the following values of α and ρ:
A B C D E F

α = 1, ρ – – – – – –
α = 5/6, ρ – – – – – 3/5
α = 2/3, ρ – – – – – 1/2
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Hence, only project F can be bought which is done for α = 5/6, ρ = 3/5 (voter v6 pays 50 out of
83.3̄ that supporters can cover) and ratio ρ/α = 18

25 . As a result, the remaining budget is $60k,
no project can be added and BOS terminates.
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Appendix C. Proofs Omitted from the Main Text

Theorem 1. FrES satisfies Fractional EJR.

Proof. Consider an (T, β, γ)−cohesive set of voters S. We will prove that there exists a voter in S
for which the outcome of FrES results in the satisfaction of at least γ̃ = ∑

c∈T minvi∈S ui(c)β(c) ⩾∑
c∈T γ(c). Without loss of generality, let us assume that γ(c) > 0 for every c ∈ T . Our proof

follows a similar strategy to the proof that MES satisfies EJR up-to-one [23]. We examine runs
of the following variants of FrES:

(A) FrES in the original instance and formulated as in Algorithm 1.

(B) FrES where voters from S can go with their money bi below zero when paying for projects
in T (so they do not have a budget constraint when they pay for these projects, but they
do have when paying for the rest), and each project c ∈ T can be bought up to an amount
of β(c).

(C) FrES in the instance truncated to the voters from S and projects from T . The utility of
a voter vi from a project c is set to ui(c) = minj∈S uj(c). Additionally, each voter from
S can go with their money bi below zero and each project c ∈ T can be bought up to an
amount of β(c).

For each variant of the rule R and each iteration t, we denote the value of the variables from
Algorithm 1 after t by putting R and t as superscripts; for example, bA,t

i or W B,t
c . The initial

values are indicated with t = 0, while the final values are written without an iteration number.

Observe that in variants (B) and (C) the utility of all voters from S towards projects in T is
strictly positive and no voters from S have budget constraint for these projects. Thus, at the
end of those procedures each project c from T will be bought up to β(c). If at the end of (B)
no voter vi from S has negative bi, then the solution of (B) coincides with the solution of (A).
Thus, in such a case, for every project c ∈ T , at least β(c) of this project will be bought in W A.
Therefore, every voter vi in S would have a total satisfaction of at least∑

c∈T

ui(c)β(c) ⩾
∑
c∈T

min
i∈S

ui(c)β(c) = γ̃.

Hence, in the remainder of the proof, we will consider the case in which a voter from S overspent
in (B) and denote the first such a voter by vi.

Let fA(x) be the total amount of money spent by vi during the execution of variant (A) at the
point when vi has exactly the utility of x. Formally, for every x ∈ (0, ui(W A)],

fA(x) = (b/n−bA,t−1
i )+ρA,t(x−ui(W A,t−1)), where t is such that x ∈ (ui(W A,t−1), ui(W A,t)].

Here, (b/n − bA,t−1
i ) is the money spent in the first t − 1 rounds and ρA,t(x − ui(W A,t−1)) is

the money spent in the t-th round just to the point of obtaining utility x. Let us analogously
define fB(x) and fC(x). In what follows we will prove that (1) fC(γ̃) ⩽ b/n, (2) fB(x) ⩽ fC(x)
for every x ⩽ γ̃, and (3) fB(x) = fA(x) for x such that fB(x) = b/n. Together, these three
statements will imply the thesis.

(1) Since in (C) the voters do not have budget constraints we buy all candidates from T , up to
the level of β in increasing order of ρ. In every iteration t ∈ [|T |], we buy candidate cC,t with
ρC,t equal to :

ρC,t = cost(cC,t)∑
vj∈S minvj∈S uj(c) = cost(cC,t)

|S|minvj∈S uj(c) .
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As we buy β(cC,t) fraction of this candidate, we have

bC,t
i − bC,t−1

i = β(cC,t) · min
vj∈S

uj(c) · ρ = β(cC,t) · cost(cC,t)
|S|

.

Summing this up for all t ∈ [|T |], we have

b
C,|T |
i − bC,0

i = 1
|S|

∑
c∈T

β(c) · cost(c),

which by the first assumption of Definition 1, is not greater than b/n. Since at the end of
iteration |T | in (C), the utility of voter vi is exactly γ̃, we have that indeed, fC(γ̃) ⩽ b/n.

(2) To show that fB(x) ⩽ fC(x) for every x ⩽ γ̃, we will show that the left derivative of fB(x)
is not greater than that of fC(x), for every such x. Intuitively, this means that under (B) the
money of voter vi is spent at least as effectively as under (C). Observe that the left derivative of
fB(x) is just ρB,t for t such that x ∈ (ui(W B,t−1), ui(W B,t)] and analogously for fC(x). Thus,
for a contradiction, assume that there is x ⩽ γ̃, t, and t′ such that x ∈ (ui(W B,t−1), ui(W B,t)],
x ∈ (ui(W C,t′−1), ui(W C,t′)], and ρB,t > ρC,t′ . Observe that for each candidate c ∈ T , its ρ
in variant (B) is not greater than in variant (C) as utilities for c of voters in S can only be
larger than in (C) and additionally, other voters can also pay for it. Thus, since ρB,t > ρC,t′ ,
this means that at iteration t in (B) candidate cC,t′ is already bought up to β(cC,t′) (otherwise
we should buy candidate cC,t′ as it has better ρ). Moreover, for every t′′ < t′ we have that
ρB,t > ρC,t′

> ρC,t′′ , thus candidate cC,t′′ is also already bought up to β(cC,t′′) at the start of
the iteration t in (B). However, this allows us to bound the utility of vi in iteration t in (B) as
follows

x >
∑

t′′∈[t′]
β(cC,t′′) · ui(cC,t′′) ⩾

∑
t′′∈[t′]

β(cC,t′′) · min
vj∈S

uj(cC,t′′) ⩾ x,

where the last inequality holds as vi obtains utility x during iteration t′ in (C). But this is a
contradiction.

(3) Finally, let t be the first iteration in which the money of voter vi crossed 0, and let p ∈ T be
a project that was selected in this iteration. Observe that in all iterations up to t, the executions
of (A) and (B) coincided. Moreover, unless bB,t−1

i is exactly zero, in iteration t project p was
also selected by (A) as its ρ and ρs of all other projects were the same. The difference is that
in (A) the smaller fraction of p was bought so as to leave vi with exactly zero money. Thus,
fB(x) = fA(x) for x such that fB(x) = b/n. Moreover, if such x would be smaller than γ̃, then
from the fact that fB is strictly increasing we would have that fB(x) < fB(γ̃) ⩽ fC(γ̃) ⩽ b/n,
which is a contradiction. Therefore, the utility of vi at the end of iteration t in (A) is at least γ̃
and at the end of the algorithm it cannot be smaller, which concludes the proof. □

Theorem 2. BOS runs in polynomial time.

Proof. It is enough to argue that in each round, the next project can be selected in polynomial
time, or equivalently, that we can find parameters ρ and α that minimize ρ/α in polynomial
time.

Consider a fixed round of BOS, and assume each voter has a budget bi. Let S be the set
of voters who still have money left. Fix a not-yet-elected candidate c that has supporters in
S (otherwise, it is not (α, ρ)-affordable for any finite ρ). If c can be fully funded by voters
from S with payments proportional to their utilities, then clearly, the optimal α equals 1, and
ρ = cost(c)/ ∑

vi∈S ui(c).

Assume otherwise. Consider a sequence (vi1 , . . . , viℓ
) of supporters of c who still have money

left, sorted in the ascending order by bi/ui(c). Note that if we gradually increase the fraction α
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of the project that we fund, and for each such value of α minimize the value of ρ, then the first
voter to run out of money would be vi1 , the second (or possibly ex-aequo first) would be vi2 ,
and so on. Let αj be the fraction of the project for which voter vij runs out of money (or αj = 1
if they do not). Assume α0 = 0 and consider buying a fraction α ∈ [αj , αj+1] of the project for
some j ∈ {0, . . . , ℓ− 1}. We argue that α equal to αj or αj+1 minimizes the ratio ρ/α on this
interval.

For α ∈ [αj , αj+1], we know that each voter vi ∈ {vi1 , . . . , vij} would pay bi, and each voter vi ∈
{vij+1 , . . . , viℓ

} would pay α ·ui(c) ·ρ. Hence, we have α ·cost(c) = ∑j
h=1 bih

+∑ℓ
h=j+1 α ·uih

(c) ·ρ,
and, therefore

ρ/α = α · cost(c)−∑j
h=1 bih

α2 ·
∑ℓ

h=j+1 uih
(c)

.

Taking the derivative with respect to α, we get that

d

dα
(ρ/α) = 2 ∑j

h=1 bih
− αcost(c)

α3 ∑ℓ
h=j+1 uih

(c)
.

Since cost(c) > 0, this function has only one zero at α∗ = 2 ∑j
h=1 bih

/cost(c), and it is positive for
α < α∗ and negative for α > α∗. This implies that ρ/α is increasing for α < α∗ and decreasing
for α > α∗. Hence, for any interval, the minimum value is at one of its ends, and so ρ/α is
minimal for α ∈ {αj , αj+1}. Note that for the interval [α0, α1] all payments are proportional to
their utilities, hence ρ is a constant and ρ/α is maximized for α = α1.

This shows that the fraction α that minimizes ρ/α belongs to the set {α1, . . . , αℓ} ∪ {1}. If
α = αj < 1 for some ij ∈ {1, . . . , ℓ}, then we get ρ = bij /uij (c). On the other hand, if α = 1,
then ρ can be computed as in the Method of Equal Shares. □

Theorem 3. For cost utilities, BOS satisfies EJR up to n−|S|
2|S| · c

∗, where c∗ := maxc∈C cost(c).

Proof. Consider a subset of voters S ⊆ V and a subset of candidates T ⊆ C such that S deserves
the satisfaction of cost(T ). Towards a contradiction, assume that there exists a candidate
ĉ ∈ T \W such that for all voters vi ∈ S it holds that ui(W ) < cost(T )− n−|S|

2|S| · c
∗ − cost(ĉ).

Claim 6. If there is a candidate ĉ ∈ T \W such that for all vi ∈ S it holds that ui(W ) <

cost(T )− n−|S|
2|S| · c

∗ − cost(ĉ), then, in every step of the execution of BOS, it holds ρ
α ⩽ 1

|S| .

Proof. Towards a contradiction, suppose that in some round r the rule selected a candidate c
with ρ/α > 1/|S|. Assume that r was the first round when this happened. Thus, all previous
candidates were bought with ρ/α ⩽ 1/|S|. Consider a candidate ĉ ∈ T \W . At the time c was
bought, there was a voter from S, say vi who had spent strictly more than b/n − cost(ĉ)/|S|, as
otherwise the voters from S would altogether have at least |S| · (cost(ĉ)/|S|) money left, and
so ĉ could have been bought for α = 1 and ρ = 1/|S|, i.e., for ρ/α = 1/|S|. We now compute the
satisfaction of voter vi with respect to W . By the fact that any purchase prior to c was done for
ρ ⩽ 1/|S|, which is due to the fact that α is upper bounded by 1, we have that the satisfaction of
vi whenever paying p was increasing by at least |S| · p. Therefore, the satisfaction of vi at the
considered step was

ui(W ) ⩾ |S|
(

b

n
− cost(ĉ)
|S|

)
⩾ cost(T )− cost(ĉ),

which contradicts the fact that there are no such voters. □

Claim 7. Consider a round when some voters overspend. The number of voters that exhaust
their budgets in this round is strictly larger than half of the number of all voters who paid for a
candidate in this round.
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Proof. Consider a round of the BOS procedure in which a candidate c is selected with certain
α and ρ. Let R be the set of all voters that paid for c. The voters from R can be partitioned
into two subsets: those who either overspent their budget or spent all of their available funds on
c, i.e., they exhausted their budgets in this round, and the remaining voters—those who will
still have money to spend in future rounds. Let us denote the first subset by R− and the second
by R+. Clearly R = R− ∪R+ and both subsets are disjoint. In what follows, we will show that
|R−| > |R|/2.

If R+ = ∅, the thesis holds trivially, thus let us assume that |R+| > 0. Observe that every voter
in R+ pays exactly the same amount in this round (as we assumed cost utilities and their budgets
are not finished). Let us denote the amount each of them pays for an α fraction of c by p, i.e.,
they pay p/α altogether. Since the voters in R+ pay the highest price, we get ρ = p

αcost(c) and
ρ
α = p

α2cost(c) .

Now, consider buying candidate c with alternative ᾱ and ρ̄ which we obtain by making voters in
R+ pay p + β instead of p for a fraction of c, where β > 0 is small enough that each vi ∈ R+

has at least (p + β)/α money (since after paying p/α they still had a positive amount of money,
there is such β). This means that ᾱ ⩾ α + β · |R+|/cost(c), as we account for the additional
payments. Also, ρ̄ = p+β

ᾱcost(c) . Since BOS has chosen to buy project c with α and ρ, we get

p

α2cost(c) = ρ

α
⩽

ρ̄

ᾱ
= p + β

ᾱ2cost(c) ⩽
p + β

(α + β · |R+|/cost(c))2cost(c) .

After rearrangement we obtain

(αcost(c) + β|R+|)2 ⩽ α2cost(c)2 (p + β)
p

= α2cost(c)2(1 + β/p).

Observe that the equal payments in R would result in every voter paying αcost(c)/|R| for the α
fraction of c. As voters in R+ pay the largest share, we get p ⩾ αcost(c)/|R|. Thus, we have
that 1 + β

p ⩽ |R|β+αcost(c)
αcost(c) . Therefore,

α2cost(c)2 + 2αcost(c)β|R+|+ β2|R+|2 = (αcost(c) + β|R+|)2 ⩽ αcost(c)(|R|β + αcost(c)).

As αcost(c) > 0 and β > 0, we divide by αcost(c), subtract αcost(c), and divide by β, which
yields

2|R+|+
β|R+|2

αcost(c) ⩽ |R| ⇔ β|R+|2

αcost(c) ⩽ |R| − 2|R+| = 2|R−| − |R|.

Since the left-hand side is strictly positive, we get that |R−| > |R|/2, which concludes the proof.
□

For every voter vi ∈ V , let us denote the overspending of vi by δi = −min(0, bi − ui(c∗) · ρ∗),
where c∗ is the candidate chosen in the last round in which vi was paying, ρ∗ is ρ in that round,
and bi is the remaining budget of vi at the beginning of that round.

Claim 8. If there is a candidate ĉ ∈ T \W such that for all vi ∈ S it holds that ui(W ) <

cost(T )− n−|S|
2|S| · c

∗ − cost(ĉ), then, the total overspending is bounded by
∑

vj∈V δj ⩽ n−|S|
2|S| · c

∗.

Proof. First, observe that the voters from S will never overspend, i.e., δi = 0, for every vi ∈ S.
Indeed, from Claim 6 we know that ρ ⩽ 1/|S| in every round, which combined with the fact
that ui(W ) < cost(T ), bounds the total amount of money that voter vi spends by

ui(W )ρ < cost(T )ρ ⩽ cost(T ) · (1/|S|) ⩽ b/n.
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Now, consider a subset of voters, R ⊆ V , that pay for candidate c selected with α and ρ in a
certain round of BOS. In what follows, we will bound the overspending in this round. From the
proof of Claim 7 and using the notation from there we know that ρ

α = p
α2cost(c) and p ⩾ αcost(c)

|R| .

Then, Claim 6 yields |S| ⩽ α
ρ = α2cost(c)

p ⩽ α|R|. Hence, α ⩾ |S|/|R|. On the other hand,
observe that the overspending of voters in R− (so all voters that exhaust their funds in this
round) cannot be greater than what remains after buying α fraction of c, i.e.,∑

vi∈R−

δi ⩽ (1− α)cost(c) ⩽ c∗(
1− |S|/|R|

)
.

Then, by Claim 7, the average overspending of voters in R− is at most

∑
vi∈R−

δi

|R−|
⩽

c∗(|R| − |S|)/|R|
|R|/2 = 2c∗(|R| − |S|)

|R|2
⩽

c∗

2|S| ,

where the last inequality follows from the fact that |R|2 − 4|S|·|R|+ 4|S|2 = (|R| − 2|S|)2 ⩾ 0.
Thus, the average overspending in V \S is also bounded by c∗/(2|S|), which concludes the proof.
□

Recall that ĉ ∈ T \W is such that ui(W ) < cost(T ) − n−|S|
2|S| · c

∗ − cost(ĉ), for every vi ∈ S.
Observe that the voters in V \ S can spend in total at most (n − |S|) · b/n from their initial
budgets and, by Claim 8, n−|S|

2|S| c∗ from overspending. Thus, voters from S must have spent at
least

b−
(

n− |S|
n

b + n− |S|
2|S| c∗

)
−cost(ĉ) = |S|

n
b−n− |S|

2|S| c∗−cost(ĉ) ⩾ cost(T )− (n− |S|)c∗

2|S| −cost(ĉ)

as otherwise they could afford to buy ĉ.

From Claim 6, we know that any payment of p for a voter in S results in a satisfaction of at
least |S| · p. Thus, there must exist a voter in S with a satisfaction of at least

1
|S|
·
(

cost(T )− n− |S|
2|S| c∗ − cost(ĉ)

)
· 1

ρ
⩾ cost(T )− n− |S|

2|S| c∗ − cost(ĉ).

This gives a contradiction and concludes the proof of the theorem. □

Proposition 4. For each ℓ there exists an approval-based committee election where a group of
voters deserves

⌈
k−ℓ
4ℓ

⌉
candidates, but they all get no representatives under BOS.

Proof. Fix ℓ ⩾ 1 and consider the following instance of approval-based committee elections with
|V | = 4ℓ2 + ℓ voters and |C| = 4ℓ2 + 2ℓ candidates; the available budget is equal to b = 4ℓ2 + ℓ.
The preferences of the voters are as follows:

• The first ℓ voters, referred to as group V1, approve all ℓ candidates from C1 = {c1, c2, . . . , cℓ}.

• The remaining 4ℓ2 voters, referred to as group V2, all approve 4ℓ2 − ℓ common candidates
from C2 = {cℓ+1, cℓ+2, . . . , c4ℓ2}. These 4ℓ2 voters are further divided into 2ℓ subgroups,
V

(1)
2 , V

(2)
2 , . . . , V

(2ℓ)
2 , each consisting of 2ℓ voters who each approve one of the remaining 2ℓ

candidates. Let us denote the set of these candidates as C3 = {c4ℓ2+1, c4ℓ2+2, . . . , c4ℓ2+2ℓ}.

According to the EJR, the voters in V1 are entitled to ℓ candidates, since they all approve
the same set of ℓ candidates and |V1| ⩾ ℓ · |V |/b = ℓ. Further, ℓ =

⌈
b−ℓ
4ℓ

⌉
. However, we will

demonstrate that the outcome of BOS will not include any candidates from C1.
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Each voter starts with a unit budget. A candidate from C1 can be purchased with ρ = 1/ℓ and
α = 1. Similarly, a candidate from C2 can be bought with ρ = 1/4ℓ2 and α = 1, and a candidate
from C3 with ρ = 1/2ℓ and α = 1. Selecting all 4ℓ2 − ℓ candidates from C2 leaves each voter in
V2 with a remaining budget of:

1− (4ℓ2 − ℓ) · 1
4ℓ2 = 1

4ℓ
.

At this stage, a candidate from C3 can be purchased with ρ = 1/2ℓ and α = 1/2, which results in
ρ/α = 1/ℓ. Therefore, BOS may choose any candidate from C1 or C3. If we break ties in favor of
C3, then ultimately, BOS will select all candidates from C2 and C3. □

Theorem 5. For cost utilities, BOS+ satisfies EJR up to n−|S|
2|S| · c

∗, where c∗ := maxc∈C cost(c).

Proof. The proof follows a similar strategy to that of Theorem 3. Note that both BOS and
BOS+ initially identify the best-affordable project c in the same way. The key difference is that
BOS+ includes an additional step in which the budget is temporarily increased. As a result, the
part of the proof concerning the identification of the best-affordable project c can be directly
reused. In particular, this applies to Claims 6 and 7. Additionally, a significant portion of the
proof of Claim 8 remains applicable. Specifically, as in the proof of Claim 8, we obtain that

α ⩾
|S|
|R|

.

Now, we can bound the temporary increase in the voters’ budgets, as
∆b = cost(c)− αcost(c)

|{vi ∈ V : ρui(c) ⩾ bi > 0}| = cost(c)(1− α)
|R−|

.

By Claim 7 we further get that |R−| > |R|/2 and thus

∆b ⩽
2cost(c)(1− α)

|R|
⩽

2cost(c)(1− |S|
|R|)

|R|
= 2cost(c)(|R| − |S|)

|R|2
⩽

c∗

2|S| ,

where the inequality follows simply by the fact that |R|2 − 4|S|·|R|+ 4|S|2 ⩾ 0.

As with BOS, we came to the conclusion that the overall overspending of the voters is upper-
bounded by n−|S|

2|S| c∗. From there the proof follows the same way as the proof of Theorem 3.
□
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Appendix D. Additional Empirical Results

In Table 2, we report the aggregated statistics for each of our rules based on their performance
in the Pabulib real-world instances. Additionally, we present the values of these statistics when
limited to the instances with a particular type of ballots used for voting. Pabulib distinguishes
four such ballot types: approval ballots, where a voter indicates a subset of project he or she
approves, choose-1 ballots, in which a voter must select exactly one project, cumulative ballots—a
voter distributes a number of points between the projects, and ordinal ballots, where a voter
provides an ordering of (a subset of) projects—we use Borda scores to transform them to utilities.

In Table 3, we report the mean values of statistics presented in the first three plots of Figure 1
in Section 6 together with standard deviations and five quantiles. In the same table, we also
present the p-values for the significance of the differences between the average values of statistics
for each pair of rules. We note that they are very small, rarely exceeding 0.05, which means that
almost all the observed differences between the behavior of the rules are statistically significant.
In particular, we note that BOS has a lower average exclusion ratio than the original Method of
Equal Shares for every instance size and the difference is significant at the 0.01 level.

Finally, in Figure 3, we present the full results of the experiment on the Euclidean elections.
Recall that we have defined the utility of voter vi for candidate c as ui(c) = (dist(vi, c) + λ)−1,
where dist(vi, c) is the Euclidean distance between them, and the denominator is shifted by the
constant of λ to bound the maximal utility. In the main body of the paper, we presented results
for λ = 1. Here, we also include results for λ = 2 and λ = 0.5. Note that taking λ = 2 instead of
λ = 1 leads to exactly the same outcomes as multiplying all distances by 0.5 since all of the
considered rules are invariant towards scaling all the utilities by a constant. Similarly, taking
λ = 0.5 instead of λ = 1 is equivalent to doubling the distances.
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Metric Util. Eq. Shares BOS BOS+ FrES
Avg. rel. cost satisfaction 1.000 0.836 0.903 0.909 0.921

instances with approval ballots 1.000 0.846 0.890 0.900 0.960
instances with choose-1 ballots 1.000 0.908 0.984 0.984 0.825

instances with cumulative ballots 1.000 0.751 0.890 0.887 0.885
instances with ordinal ballots 1.000 0.821 0.896 0.902 0.885

Avg. rel. score satisfaction 1.000 1.201 1.160 1.169 1.029
instances with approval ballots 1.000 1.286 1.201 1.215 1.052
instances with choose-1 ballots 1.000 0.964 1.004 1.004 0.855

instances with cumulative ballots 1.000 1.099 1.138 1.140 1.070
instances with ordinal ballots 1.000 1.187 1.164 1.171 1.060

Avg. exclusion ratio 19.85% 17.62% 16.16% 16.50% 0.00%
instances with approval ballots 13.92% 11.86% 10.36% 10.88% 0.00%
instances with choose-1 ballots 41.36% 43.37% 41.19% 41.19% 0.00%

instances with cumulative ballots 29.57% 27.12% 24.90% 24.89% 0.00%
instances with ordinal ballots 12.38% 5.10% 5.54% 5.85% 0.00%

Avg. running time in sec. 0.001 6.822 0.086 0.263 2.151
instances with approval ballots 0.001 10.585 0.120 0.382 3.296
instances with choose-1 ballots 0.000 1.087 0.044 0.116 0.028

instances with cumulative ballots 0.000 0.751 0.014 0.031 0.060
instances with ordinal ballots 0.000 2.914 0.060 0.151 1.676

Avg. EJR+ violations 0.953 0.000 0.061 0.060 0.000
instances with approval ballots 1.138 0.000 0.059 0.058 0.000
instances with choose-1 ballots 0.141 0.000 0.071 0.071 0.000

EJR+ violation instances 26.20% 0.00% 4.59% 4.48% 0.00%
instances with approval ballots 29.62% 0.00% 4.29% 4.16% 0.00%
instances with choose-1 ballots 11.18% 0.00% 5.88% 5.88% 0.00%

Avg. budget spending 96.47% 44.84%† 93.98% 93.95% 93.40%†

instances with approval ballots 96.09% 53.86%† 93.20% 93.16% 92.51%†

instances with choose-1 ballots 97.40% 14.98%† 96.35% 96.35% 95.94%†

instances with cumulative ballots 95.79% 27.08%† 92.77% 92.77% 90.90%†

instances with ordinal ballots 98.16% 56.85%† 96.64% 96.59% 98.02%†

Exhausted budgets 100.00% 6.99%† 99.84% 99.69% 24.65%†

instances with approval ballots 100.00% 8.31%† 99.73% 99.60% 17.29%†

instances with choose-1 ballots 100.00% 4.12%† 100.00% 100.00% 65.88%†

instances with cumulative ballots 100.00% 4.00%† 100.00% 99.50% 16.00%†

instances with ordinal ballots 100.00% 7.59%† 100.00% 100.00% 25.95%†

Table 2: Aggregated statistics from running our rules on instances from Pabulib. The values for Equal
Shares assume Add1U completion, except for the average budget spending and exhausted budgets.
Similarly, FrES is completed in a utilitarian fashion except for these two cases. The usage of a completion
method is denoted by †.
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Statistics Score satisfaction Cost satisfaction Exclusion ratio
No. projects 1–8 9–16 17–28 29+ 1–8 9–16 17–28 29+ 1–8 9–16 17–28 29+

mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.206 0.209 0.178 0.199
std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.201 0.201 0.185 0.166
q10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.013 0.006 0.050

Util. q25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.025 0.051 0.040 0.086
q50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.148 0.145 0.121 0.147
q75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.324 0.304 0.239 0.252
q90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.526 0.523 0.457 0.414

mean 1.061 1.148 1.265 1.350 0.820 0.845 0.834 0.848 0.229 0.200 0.134 0.135
std 0.463 0.620 0.625 0.635 0.302 0.230 0.177 0.123 0.227 0.204 0.155 0.155
q10 0.860 0.955 0.996 1.038 0.264 0.429 0.575 0.671 0.000 0.005 0.002 0.019

MES q25 1.000 1.000 1.000 1.114 0.770 0.777 0.735 0.816 0.022 0.047 0.019 0.041
q50 1.000 1.000 1.115 1.257 1.000 0.970 0.890 0.886 0.164 0.136 0.072 0.081
q75 1.000 1.075 1.281 1.475 1.000 1.000 0.970 0.927 0.395 0.291 0.190 0.159
q90 1.114 1.324 1.573 1.682 1.000 1.000 1.000 0.960 0.573 0.500 0.398 0.302

mean 1.024 1.085 1.240 1.314 0.941 0.924 0.878 0.866 0.201 0.186 0.126 0.127
std 0.148 0.300 0.579 0.632 0.162 0.146 0.145 0.103 0.200 0.191 0.149 0.155
q10 0.996 0.987 0.999 1.005 0.793 0.739 0.678 0.755 0.000 0.005 0.002 0.018

BOS q25 1.000 1.000 1.000 1.086 1.000 0.908 0.830 0.813 0.018 0.046 0.020 0.035
q50 1.000 1.000 1.095 1.224 1.000 1.000 0.920 0.883 0.147 0.122 0.072 0.069
q75 1.000 1.033 1.261 1.411 1.000 1.000 0.992 0.941 0.319 0.267 0.171 0.150
q90 1.007 1.265 1.538 1.612 1.000 1.000 1.000 0.978 0.525 0.476 0.366 0.283

mean 1.025 1.088 1.249 1.337 0.941 0.926 0.881 0.885 0.201 0.187 0.129 0.137
std 0.148 0.300 0.590 0.634 0.163 0.146 0.147 0.103 0.199 0.191 0.149 0.153
q10 1.000 0.999 1.000 1.023 0.793 0.731 0.678 0.781 0.000 0.007 0.002 0.022

BOS+ q25 1.000 1.000 1.000 1.101 1.000 0.912 0.831 0.849 0.021 0.047 0.022 0.042
q50 1.000 1.000 1.104 1.239 1.000 1.000 0.923 0.905 0.147 0.124 0.073 0.081
q75 1.000 1.038 1.268 1.433 1.000 1.000 1.000 0.956 0.319 0.267 0.174 0.164
q90 1.007 1.265 1.549 1.667 1.000 1.000 1.000 0.985 0.525 0.476 0.372 0.304

mean 1.037 0.996 1.048 1.038 0.973 0.943 0.904 0.857 0.000 0.000 0.000 0.000
std 0.255 0.272 0.442 0.378 0.150 0.162 0.144 0.104 0.000 0.000 0.000 0.000
q10 0.812 0.790 0.802 0.772 0.781 0.731 0.749 0.713 0.000 0.000 0.000 0.000

FrES q25 0.943 0.886 0.894 0.902 0.910 0.875 0.837 0.814 0.000 0.000 0.000 0.000
q50 1.000 0.970 0.977 1.014 0.990 0.966 0.920 0.881 0.000 0.000 0.000 0.000
q75 1.074 1.027 1.084 1.126 1.006 1.011 0.982 0.933 0.000 0.000 0.000 0.000
q90 1.236 1.222 1.282 1.296 1.127 1.071 1.016 0.960 0.000 0.000 0.000 0.000

Util. vs. MES 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000
Util. vs. BOS 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000

Util. vs. BOS+ 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000
Util. vs. FrES 0.004 0.385 0.029 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MES vs. BOS 0.064 0.019 0.024 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

MES vs. BOS+ 0.066 0.024 0.107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.072
MES vs. FrES 0.133 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.000
BOS vs. BOS+ 0.224 0.000 0.000 0.000 0.441 0.076 0.010 0.000 0.032 0.000 0.000 0.000
BOS vs. FrES 0.139 0.000 0.000 0.000 0.004 0.036 0.003 0.115 0.000 0.000 0.000 0.000

BOS+ vs. FrES 0.148 0.000 0.000 0.000 0.004 0.053 0.008 0.000 0.000 0.000 0.000 0.000

Table 3: Detailed values of statistics from running our rules on instances from Pabulib. In the first 35
rows, for each rule, statistic, and size range, we provide the average, standard deviation, median, 1st and
3rd quartile, as well as 10th and 90th centile of the observed values of the statistic. In the last 10 rows, we
present p-values for the significance of the difference between the average values for a given pair of rules.
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Figure 3: Results of the experiment on Euclidean elections. The first column presents the superimposed
positions of voters in all 1000 generated elections. The following columns show positions of candidates
selected by respective rules (for FrES, the opacity of each point is proportional to the selected fraction of
the respective candidate).
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