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Abstract

We present a peer assessment model grounded in computational social choice, aimed at mitigating

grade inflation and strategic behavior in the evaluation of in-class project presentations. The

model elicits individual evaluations through a structured rating process, augmentedwith pairwise

comparison queries, to produce complete and tie-free rankings for each student. Aggregation

proceeds in two stages: first, computing the median score for each project; second, applying a

ranking-based voting rule to resolve ties. This hybrid approach combines the interpretability

of score-based methods with the robustness of ordinal social choice mechanisms. Deployed in

a university course, the model significantly reduced both grade inflation and cognitive load,

demonstrating the value of integrating elicitation design with voting-based aggregation in peer

assessment contexts.

1 Introduction

Peer assessment is a structured procedure where individuals in a group evaluate the performance of their

peers who share a similar status within that group [44]. This study concentrates on peer assessment in

an academic classroom [45], and specifically on the quantitative peer assessment (or peer grading) of

oral class presentations [17, 51]. In this educational setting, students present their projects during class

and have the opportunity to evaluate their peers’ work and receive assessments themselves. During the

assessment activity, students are organized into distinct sessions; in each session, students take turns

presenting their work. Peer assessment is done with the understanding that students’ performance as

assessors and presenters contributes to their final grades.

Even though some studies have described peer assessment systems, and there exists a survey of tools

(albeit a nearly 15-year-old one) [24], little attention has been paid to the methodologies used for

collecting and aggregating peer assessment data. These methodologies are the focus of this research.

They are needed since several challenges emerge when students are requested to assign scores (ratings)

to projects. The first two may also arise in other rating scenarios, and the latter is specific to peer

assessment settings:

(a) Calibration and standardization. Rating on a wide range numerical scale (e.g., 0− 100) is not
always meaningful for students, who might have difficulty in choosing between several close scores

(e.g., between 86 and 87). To solve this issue, ratings are typically conducted on a 5-point or 7-point

Likert scale. The scale alone is insufficient, as there is no standard agreement on the meaning of the

numbers on these scales. One student may perceive a rating of 5 as another perceives a 4. To reach a

common understanding, some calibration or elimination of bias must be performed (e.g., [34, 40, 38]).

Thus, in this research, a grading language [4] or scoring rubric [2] is employed on top of the scale.

Specifically, “Outstanding" is mapped to the grade 5, and “Very Good" to 4.

(b) Strategization. Students have been reported to employ subjective underscoring as a strategy,

particularly under rivalry and competitive circumstances [5, 25]. Consider, for example, three student

projects: c1, c2, and c3. An assessor who favors c1 will assign it the highest possible score, but to ensure

that c1 ends up in the first place, the assessor might also assign c2 and c3 the lowest possible score. A
partial solution adopted in this research is to compute the median rating instead of the average rating,

as it is not hard to see that the median is more immune to this sort of manipulation.
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(c) Generosity. Students struggle to be critical towards their peers [22] and often assign generous

grades, while teachers are more strict [28, 32]. This student tendency to over-mark has been seen to

occur when students have no anonymity since they do not want to be seen as penalizing their peers [47].

We found this also occurs in anonymous settings; Figure 1 illustrates the grades that 27 students gave to
10 projects their peers presented in class. The median score for all projects on a rubric of five was either

“Outstanding” or “Very Good”; none of the projects received a median grade of “Good” or lower. This is

not an irregularity. Peer grading data from ten different class sessions all exhibited similar performances

(see Appendix
1
). This does not mean that students think all projects are equally outstanding. As we

show later, when prompted, students are indeed able to state which projects they prefer over others.

To address these challenges, some peer assessment systems have suggested collecting ordinal pref-

erences [36] or assigning distinct scores to each project ( effectively translating into ranking the

alternatives). However, experts and non-experts alike are limited in the number of preferences they can

meaningfully order — sometimes, they simply do not hold a rank over the alternatives (see, e.g. Chapter

15 in Balinski and Laraki [4]), and oftentimes they find it hard to rank more than seven items from best

to worst [26]. Pairwise comparison queries such as “Do you prefer this alternative over that alternative?”

may assist people in forming a ranking [12, 23]. However, this can be perceived as a tiresome task

for voters, as the required number of comparison queries is large (e.g., 45 queries for ten projects, 105

queries for 15 projects). In summary, limiting students to rating projects results in the issues detailed

above, while limiting students to ranking alternatives requires a cognitive and communication effort

that may burden them.

Contributions: We study peer assessment from an algorithmic perspective. We integrate both cardinal

preferences, expressed through ratings or grades, and ordinal preferences, expressed through pairwise

comparisons. Our contribution is a novel hybrid peer assessment model, R2R, comprising (a) an

algorithm that elicits student ratings and conducts pairwise comparison queries as needed and (b) a

method for combining grades to create one overall ranking. The class instructor can then utilize this

ranking to evaluate the projects and select the top projects in the class. The full paper was presented at

ECAI 2024 [10].

Figure 1: Grade distribution for ten projects. The y-axis lists project numbers; the x-axis shows the cumulative

percentage of students assigning each grade (see legend). The vertical black line marks the median score.

2 Related work

The importance of peer assessment transcends mere grading by students and is an integral component

of the learning process, commonly referred to as “assessment for learning” rather than “assessment

1https://doi.org/10.17605/OSF.IO/K4YMA
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of learning” [46]. There exists a large body of literature on the benefits of peer assessment (e.g.,

[1, 6, 7, 13, 20, 21, 37, 50]).

Ranking-based systems have better reliability [39], and assessors using these systems have been found

to be 10% more reliable than rating-based systems [41]. Some systems allocate varying weights to

reviewers based on their credibility (e.g., [43]). Others implement controls on who reviews whom or

incorporate AI-based methods [9]. Walsh [48] proposes a peer-rank rule in which the grade a user

assigns to another user is weighted by the assigning user’s own grade. The user’s grade is the weighted

average of the grades of the users evaluating that user. This approach shares similarities with the

PageRank algorithm [31]. However, a prevailing perspective in peer assessment is that all assessors

(students) should be considered equally credible. Consequently, most peer assessment systems aggregate

ratings using either the average or the median rating (e.g., [33, 35, 49]).

Simply computing the average rating is not a good solution, as it is easily manipulable [42]. This

is especially true in peer assessment systems, as the users of the system are also the candidates (or

friends of the candidates) and may attempt to strategize, as explained in the previous section. While

averaging is commonly used in sports performance evaluations, entities like the Olympic Committee

and international federations often eliminate the highest and lowest ratings received by a candidate. In

the specific context of sports performance evaluation, Osório [30] introduces a bias correction procedure

that addresses deviations from the mean score and individual users’ grading patterns. However, these

methods do not perform well in the context of peer assessment, because there is typically little variance

in peer assessment ratings, and the evaluators are often students without an extensive voting history.

Computing the median rating offers a less manipulable solution that works in peer assessment context,

however, it can lead to numerous ties between alternatives. The Majority judgment voting protocol [4]

addresses the issue of tie-breaking the median, with recent methods proposed for this purpose by Fabre

[14]. Nevertheless, these methods still result in ties when applied to student peer rating grades. In

this research, the median is initially computed, but to overcome the limitations associated with ties,

rankings are also integrated into the assessment process.

Peer assessment has extended to applications that involve a large number of items, where obtaining

evaluations from each user on every item becomes impractical. These applications include massive

online courses (MOOCs) [19, 34], freelancing platforms [18], and academic conference reviews( [42]).

However, the primary algorithmic focus of these applications lies in determining who reviews what

and in aggregating incomplete sets of reviews. In our case, we assume that all students evaluate all

projects, resulting in complete preference sets.

Herein, we assume that all students are equal and all students rate all projects. Possible bias in evaluations

is mitigated by employing a common grading language as done by Balinski and Laraki [4] and by using

ordinal as well as cardinal evaluations.

2.1 Median-based voting rules

We provide a short summary of state-of-the-art median-based voting methods, as our model builds

upon them.

Let there be n voters (students) V = {v1, v2, . . . , vn} andm candidates (projects)C = {c1, c2, . . . , cm}.
Let sji denote the score assigned by voter vi to candidate cj . The score is assigned from a predefined

domain of discrete valuesD = {dmin . . . dmax}where dmin and dmax are the lowest and highest values

respectively (dmin ≤ sji ≤ dmax). The ordered set of all scores assigned to candidate cj is S
j
. The

median of Sj
is the score in the middle-most position when n is odd, and the score in position n/2

when n is even. As illustrated in Figure 1, the median score of most projects is “Outstanding” or “Very

Good” (these scores translate into the numerical scores of “5” and “4”). Therefore, projects cannot be

ranked solely according to the median, and a tie-breaking mechanism is required.
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A few mechanisms exist for tie-breaking the median between projects. They are all based on the same

idea: first, compute the projects’s median score. Then add a quantity based on what Fabre [14] terms as

proponents (p) and opponents(q). The proponent p is the share of scores higher than the median α:
pj =

∑
i|sji>α

sji . The opponent q is the share of scores lower than the median α: qj =
∑

i|sji<α

sji .

The mechanisms differ in their use of p and q: a candidate’s score is the sum of its median grade α
and a tie-breaking rule. Fabre [14] defines three rules: Typical judgment, Central judgment, and Usual

judgment.

Definition 1 (Typical judgement). Typical judgment is based on the difference between non-median
groups: c∆ = α+ p− q.

Definition 2 (Central judgement). Central judgment is based on the relative share of proponents: cσ =
α+ 0.5 · p−q

p+q . When p = q = 0 we set cσ = α.

Definition 3 (Usual judgement). Usual judgment is based on the normalized difference between non-
median groups: cv = α+ 0.5 · p−q

1−p−q .

Fabre [14] shows that majority judgment [4] can also be defined using just α, p and q :

Definition 4 (Majority judgement). cmj = α+ 1p>q − 1p≤q . 2 If ties remain, the median of the tied
candidates is dropped, and thenmj is recomputed for the tied candidates. This procedure is repeated until
all ties are resolved. Note that for ties Fabre [14] suggest an alternative method that results in the same
output.

Example 1. Let us consider the set of scores assigned to candidate cj by ten voters:

Sj = {5, 5, 5, 4, 4, 4, 3, 3, 3, 2}

The calculated median for these scores is α = 4. Among the voters, three assigned scores above the median,
while four assigned scores below the median. This leads us to define the proponent and opponent fractions
as p = 3

10 and q = 4
10 , respectively.

For the candidate cj , the scores according to Typical, Central, Usual, and Majority judgments can be
determined as follows:

c∆j = 4 +
3

10
− 4

10
= 3.9

cσj = 4 + 0.5 · −0.1
0.7

≈ 3.92

cvj = 4 + 0.5 · −0.1
1.1

≈ 3.83

cmj
j = 4− 1 = 3

Project scores can be computed using the rules outlined above. A ranking of the projects can be obtained

by simply ordering them according to their scores.

3 The model

Our proposed model has two key components: R2R Elicitation and R2R Aggregation. Together, these

components create a hybrid model that incorporates both rankings and ratings.

2

1f(x) is an indicator function of f(x). E.g., if p > q then 1p>q = 1
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3.1 R2R elicitation

The R2R Elicitation phase aims to gather voter preferences while minimizing cognitive and communi-

cation overload. Voters are requested to provide ratings for each candidate, with pairwise comparison

queries employed only when necessary. We introduce the concept of a Ranked Rating Set to capture
both scores and rankings.

Definition 5 (Rating Set). A rating set Si contains the scores that voter vi assigned to candidates c1 . . . cm.

Definition 6 (Preference profile). A preference profile πi ∈ Π is a tuple < c, p > containing candidates
(c) and their ranked position (p) according to vi. We write ci ≻ cj when ci is preferred over cj . For k < l
the preference profile is thus: {. . . (ci, pk), (cj , pl) . . .}.

When vi assigns a different score to each candidate, then the preference profile can be constructed

directly from these scores. For example, when Si = {s1i = 4, s2i = 5, s3i = 3} then the preference

profile πi is: {(c2, 1), (c1, 2), (c3, 3)} or equivalently c2 ≻ c1 ≻ c3.

It is usually assumed that we can elicit the voter’s rating set or the voter’s preference profile. Here,

we deviate from the standard literature and define a ranked rating set. A ranked rating set contains

attributes of both a rating set and a preference profile, thus allowing us to save more information about

voters’ preferences.

Definition 7 (Ranked Rating Set). A ranked rating set ψ ∈ Ψ is a tuple< c, s, p > containing candidates
(c), their scores (s) and their position (p). As in the ranking set, the position is determined by the ranking.
The rating set of voter vi is denoted ψi.

If vi assigns the same score to two or more candidates, a pairwise comparison query q(vi, cj , ck) ∈ Q
is executed. We assume that a voter can always respond to a query, i.e., a pairwise comparison query

q(vi, cj , ck) has only two possible responses: cj ≻ ck or ck ≻ cj .

We present a method, Rating to Ranking, R2R, which builds a ranked rating set while eliciting the

needed information from the voters. A pseudo-code is provided in Algorithm 1. The algorithm receives

as input a set ofm alternatives, n voters, and a score domain D. Each voter is sequentially asked to

provide scores for all candidates (lines 2-5). Note that this process can also be done the other way

around: for each candidate, all voters must submit their scores. In either case, voter vi assigns a score s
j
i

to candidate cj (line 5). Subsequently, the algorithm counts how many times this particular score (sji )
has been previously submitted by the voter (line 6). If the voter has not submitted this score before, it is

inserted to ψ (lines 7-8) while ensuring its ordered placement (lines 7-8), utilizing the insert function.
If the score sji already exists within ψ, the algorithm retrieves the index of the last position where it

is found (line 10) and identifies the candidate cp at that position (line 12). A pairwise query is then

executed to determine the relative ranking between the two candidates (line 13). If cj is ranked higher

than cp (cj ≻ cp) the algorithm proceeds to the next position and repeats the query process (lines 14-16,

followed by line 11). Otherwise, the algorithm proceeds to insert cj at the identified position p (lines
19). Finally, the output is a ranked rating set (line 20).

It is important to note that this pairwise comparison approach prevents the elicitation of Condorcet

cycles.

Example 2. Consider one voter v1 and four candidates: c1, c2, c3, c4. Scores are given in domain D =
1, 2 . . . 5. Assume that the voter’s rating set is: S1 = {s11 = 5, s21 = 4, s31 = 5, s41 = 5} and the voter’s
preference profile is: π1 = {c3 ≻ c4 ≻ c1 ≻ c2}. The rating set and the preference profile are initially
unknown. The goal is to determine the ranked rating set.

At first, v1 declares her score for c1: s11 = 5. Since this is the first score declared, the ranked rating set
is updated to ψ1 = {(c1, 5, 0)}. Then, the next score is declared: s21 = 4. Since ψ does not contain this
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score, ψ1 is updated without any queries: ψ1 = {(c1, 5, 0), (c2, 4, 1)}. The next score declared is s31 = 5.
Since this score is already in ψ1, a query is issued: q(v1, c1, c3). The voter responds by stating: c3 ≻ c1.
Thus c3 is now added and ψ1 positions of candidates is updated: ψ1 = {(c3,5,0), (c1, 5,1), (c2, 4,2)}
(changes to ψ1 are marked in bold). Lastly, v1 declares her score for c4: s41 = 5. This causes a query to be
issued: q(v1, c1, c4). The voter responds with: c4 ≻ c1, so yet another query is issued: q(v1, c3, c4). The
voter responds with: c3 ≻ c4 and ψ1 is finalized: ψ1 = {(c3, 5, 0), (c4,5,1), (c1, 5,2), (c2, 4,3)} (again,
changes to ψ1 are marked in bold).

Algorithm 1 Rating to Ranking (R2R) elicitation

1: Input: A set of candidates c1, c2, . . . , cm; a set of voters v1, v2, . . . , vn; score domain D =
{dmin, . . . , dmax}

2: Output: For each voter vi, a ranked rating set ψi

3: for vi ∈ V do
4: ψi ← []
5: for cj ∈ C do
6: Voter declares sji ∈ D
7: count← count(ψi, s

j
i )

8: if count = 0 then
9: insert(ψi, cj)
10: else
11: p← lastIndex(ψi, s

j
i )

12: while count ≥ 1 do
13: cp ← candAtIndex(ψi, p)
14: Execute query q(vi, cj , cp)
15: if cj ≻ cp then
16: p← p− 1
17: count← count− 1
18: else
19: break
20: end if
21: end while
22: insert(ψi, cj , p)
23: end if
24: end for
25: end for

3.2 R2R aggregation

The R2R Aggregation phase combines voter preferences obtained through the R2R Elicitation phase.

Initially, the median α is calculated from the scores in the Ranked Rating Sets Ψ. The projects are

grouped into buckets according to their medians. For all projects that share the same median, some

voting rule is used to define their order. We herein employ two simple, well-known methods. Let

N(cj , ck) denote the number of voters who prefer cj ≻ ck. In Borda voting, the candidate’s score is

based on its ranking in the voters’ preference order. Formally:

Definition 8 (Borda voting rule). The score of candidate cj is the the total number of voters who prefer
cj over each other candidate ck: cbordaj =

∑m
k=1,∀k ̸=j N(cj , ck)

Copeland [8] suggested a voting system based on pairwise comparisons. The method finds a Condorcet

winner when such a winner exists. Each candidate is compared to every other candidate. The candidate
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obtains one point when it is preferred over another candidate by the majority of the voters. Adding up

the points results is the Copeland score of each candidate. A family of Copeland methods, Copelandα,
was suggested by Faliszewski et al. [15]. The difference is in tie-breaking the alternatives. The fraction

of points each candidate receives in case of a tie between two candidates can be set to any rational

number: 0 ≤ α ≤ 1. The Copeland score of a candidate is thus the number of points it obtained plus

the number of ties times α. 3 Formally:

Definition 9 (Copelandα voting rule). The score of candidate ci is its sum of victories in pairwise
comparisons:

ccopeland
α

j =
∑m

k=1,∀k ̸=j [N(cj , ck) > n/2] + α ·
∑m

k=1,∀k ̸=j [N(cj , ck) ≡ N(ck, cj)]

R2R_b and R2R_c represent instances of R2R that utilize Borda and Copeland voting, respectively, in

the aggregation phase. While there are numerous ranking-based voting methods, we chose to begin

with these methods since they are well-known and relatively easy to explain. Nonetheless, other voting

methods are also applicable.

4 User Study - R2R System

We implemented a peer-rating system according to the R2R model.
4
. Interested parties can utilize the

system upon request. To initialize the system, project names and numbers were fed into the system

beforehand by a system admin. A link to the system was then distributed to the students. Figures 2-4

present screenshots from the R2R system interface as seen on a smartphone. Students are met with

the main screen after logging into the R2R system (Figure 2). This screen displays project numbers

and names. Grey boxes indicate that evaluations for those projects have been successfully completed,

while blue boxes signal that evaluations are still pending and can be submitted. Additional projects

become visible as students scroll down the screen.

After each presentation, students were asked to use the system to assess the quality of the project. Upon

selecting a box to initiate input, a project-specific evaluation screen emerges. Within this interface,

students are presented with a set of five radio buttons, each corresponding to different evaluation levels.

We adopted a grading scale consisting of five grades (D = 1, 2 . . . 5), based on the research of Miller

[26], which suggested that people can distinguish between seven plus or minus two levels of intensity.

To minimize bias in the ratings, we utilized a standardized grading language proposed by Balinski and

Laraki [4] that maps to the following five grades: Outstanding (5), Very Good (4), Good (3), Fair (2), and

Needs improvement (1). Students were instructed to evaluate each project holistically and in accordance

with the specified project requirements. A project graded as “Outstanding” met the requirements in an

exceptional manner.

While an option for providing written feedback is available, it remained non-mandatory (Figure 3). In

the event that a student assigned the same grade to more than one project, pairwise comparison queries

were executed following Algorithm 1 (Figure 4). Finally, the system produced ranked rating sets, one

set for each participating student.

4.1 Data collection

The system was deployed as part of a three-credit course on Data Analysis at Ariel University. Students

presented their final projects in front of the class as part of the course. The other students present were

instructed to input their evaluations into the R2R system following each project presentation.

3

The Copeland α differs from the median α. To maintain consistency with prior research and to aid readers familiar with

the literature, we use the same symbol, α, for both quantities and specify which α is being referenced.

4

The code is readily available at https://github.com/nlihin/R2R. The online system is at https://rate2rank-0d
561bf6674a.herokuapp.com/
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Figure 2: The main screen a student views after log-

ging on to the R2R system using a smartphone.

Figure 3: The evaluation screen of a specific project.

Figure 4: R2R Pairwise comparison question dis-

played to a student after they assigned the same evalu-

ation to two projects.

The full data collection statistics are presented in Table 1. Each student participated in one class

presentation session. In each session, 8-12 projects were evaluated. We held 10 different sessions. The

study received ethical approval from the institutional review board of the university. To maintain

the participants’ privacy, data was anonymized during the analysis, storage, and reporting stage, i.e.,

session dates, student identification numbers, and project names were concealed. In total, 288 students

participated in the experiments. We removed 13 students who did not rate all the projects in their session.

Another 31 students did not report their preferences iteratively, according to the project presentation

order. These students were also removed, as they might have reported arbitrary preferences. Thus, the

responses of a total of 244 students were included in the data analysis.

Most projects received a median grade of either “Outstanding” or “Very Good”. For example, in Session

I (the first row in Table 1), 27 students were asked to rate ten projects. Six projects received the median

grade of “Outstanding”, four received the median grade of “Very Good”. All data and the Python

notebook code written for the evaluation are available upon request.

5 Evaluation

The evaluation focused on two key aspects:

• Methodological bias: The project presentation order is predetermined. Students evaluate

the projects iteratively after each presentation. While this is inherent to the problem setting

and cannot be altered, it may influence student evaluations and, consequently, the final project

rankings. We examined two potential biases: one related to grading and the other to comparing.

In Section 5.1, we analyzed the presentation order bias, where students might assign higher (or

lower) grades to the projects presented at the beginning. In Section 5.2, we investigated primacy
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Table 1: Data collection statistics.

Session

Number of

participants

Number of

projects

Number of median grades

(Outstanding, Very Good,

Good, Fair, Needs improvement)

I 27 10 6,4,0,0,0

II 24 10 5,4,1,0,0

III 29 10 4,6,0,0,0

IV 22 9 2,7,0,0,0

V 27 10 3,5,2,0,0

VI 34 12 0,8,4,0,0

VII 18 8 1,4,3,0,0

VIII 21 9 3,6,0,0,0

IX 20 9 4,5,0,0,0

X 22 10 2,6,2,0,0

and recency bias, wherein students, when asked to choose between two projects to which they

assigned the same grade, may preferentially select the first or latter project.

• R2R effectiveness: We compared the effectiveness of R2R to other peer assessment methods.

In Section 5.3, we quantified the reduction in communication load when using R2R compared

to methods requiring pairwise comparisons. In Section 5.4, we measured the extent to which

R2R reduces ties compared to other median-based voting rules and to the computation of the

average. In Section 5.5, we compared the rankings produced by R2R with those derived from

other methods.

5.1 Presentation order bias

We explored the potential influence of presentation bias on project grading. We hypothesized that

students might assign higher grades to the first projects presented. Subsequently, as more projects are

presented and students engage in pairwise comparison prompts, they may distribute their scores more

evenly, possibly as a strategy to circumvent the prompts. However, Figure 5 dispelled these notions.

The y-axis is the percentage of voters that assigned a score of “Outstanding” (left figure) and “Very

Good” (right figure). On the x-axis, projects are arranged according to their grading order, from the

first project (numbered as project 1) to the last (either project 8, 9, 10, or 12, depending on the session).

In the sole session featuring 12 projects, “Very Good” was assigned by few to the 12th project. However,

this outcome may be attributed to the project’s inherent qualities. We randomly shuffled project orders

100 times to compute an average “Outstanding” score distribution. Comparing it with the distribution

in 5, a chi-square test could not reject the null hypothesis that both distributions are the same(p = 0.23).
We repeated this for “Very Good” scores, yielding similar results (p = 0.26).

5.2 Primacy and recency bias

Next, we examined whether users are prone to primacy or recency bias during pairwise comparisons.

In other words, when prompted with a pairwise query, do users tend to select the first or last projects

they see? To evaluate this, we analyzed instances where projects received the same score within a

session. Subsequently, we computed the percentage of cases where projects were ranked in ascending or

descending order. For example, if a student saw projects in this order of presentations: c1, c2 . . . c10, and
rated projects c2, c3, c8 as “Outstanding”, and after answering pairwise comparisons, their preference

profile is revealed as: c2 ≻ c3 ≻ c8, it suggests a potential preference for the first projects seen — a
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Table 2: Primacy and recency bias proportions.

Evaluation Primacy bias Recency bias

Outstanding 0.19 0.16

Very Good 0.17 0.1

Good 0.19 0.3

Fair 0.32 0.42

Needs improvement 0.14 0.43

primacy bias. Conversely, if a student rated projects c1 and c5 as “Very Good” and preferred c5 to c1, it
suggested a preference for the last projects seen — a recency bias. Importantly, students might display

a recency bias in some evaluations and a primacy bias in others. The results are reported in Table 2.

In a simulation study, we randomly shuffled the ordering of the projects that received a similar grade

from each student. This process was iterated 100 times, from which the average primacy and recency

bias proportions were derived. Subsequently, we utilized a two-sided t-test to compare the simulated

primacy proportions with those presented in Table 2. The test could not reject the null hypothesis

that the proportion means are the same (p = 0.39). The same test was conducted for the recency bias,

yielding similar results (p = 0.91).

5.3 Communication load

Table 3 summarizes the communication load findings. For 8,9,10, and 12 projects, the maximum pairwise

queries are 28,36,45, and 66, respectively. In the ten sessions, the average number of issued pairwise

queries lay in the range of 6.5-14.6 (the standard deviation is displayed in parentheses). Thus, R2R
reduces the communication load by 62%− 77%. In other words, on average, students had to respond

to less than 30% of the total number of possible pairwise queries.

Table 3: Communication load statistics

Session Pairwise comparison queries Communication reduction

I 13.9(5.7) 69%

II 10.8(2.7) 75%

III 13.2(5.0) 71%

IV 11.8(3.9) 67%

V 10.6(2.5) 75%

VI 14.6(5.9) 77%

VII 6.5(2.5) 76%

VIII 10.4(2.5) 71%

IX 13.5(6.8) 62%

X 10.6(3.1) 76%

5.4 Ties in rankings

We studied two instances of the proposed R2R method: R2R_b and R2R_c. They use Borda and

Copland voting, respectively, in the aggregation phase (see Section 3.2). These instances were compared

to existing methods: Majority ranking [4], Typical ranking, Central ranking, and Usual ranking.

The three latter are the rankings retrieved from the Typical judgment, Central judgment, and Usual
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Table 4: Average (and standard deviation) of Kendall distance between different methods.

R2R_b R2R_c

Typical

ranking

Central

ranking

Usual

ranking

Majority

ranking

R2R_c 1.3 (0.4)

Typical ranking 2.3 (2.1) 2.9 (1.5)

Central ranking 3.4 (1.4) 4.0 (1.3) 2.4 (1.3)

Usual ranking 2.4 (2.1) 2.9 (1.7) 0.6 (0.5) 3.1 (1.1)

Majority ranking 2.8 (2.0) 2.9 (2.4) 1.3 (0.9) 3.9 (1.5) 0.8 (0.7)

Mean 2.6 (2.1) 3.2 (1.4) 0.6 (0.4) 2.4 (1.2) 1.1 (0.7) 1.6 (1.1)

Figure 5: Percentage of voters that assigned a score

of “Outstanding” (left) and “Very Good” (right).

Figure 6: Ties in rankings in Session I.

judgment methods [14] (see Section 2). We also compared these methods to a simple Mean method

that computed the average rating of each alternative and ranked the alternatives accordingly.

Experiments were conducted with a varying number of voters (students in the user study), ranging

from 2 to 20 (18 for Session VII), which were sampled without replacement. Each experiment ran 50
times. The α in Copelandα was set to α = 1

3 , as it provided better results than α = {0, 12 , 1} (setting
α to values smaller than

1
3 did not yield an improvement).

The unique number of rankings in each method was computed, which refers to the number of projects

not tied in their order. Figure 6 compares all methods in Session I. Axis y is the fraction of unique

rankings (with 1 meaning there are no ties in the final ranking). All sessions display a similar trend; as

the number of voters increased, the methods exhibited better performance with fewer ties and more

unique rankings. Note that even the Mean method has ties in rankings. Employing R2R_b or R2R_c
results in the fewest ties in the final ranking. In all sessions, R2R_b exhibited better performance than

the other methods, especially when the number of voters was small. For an odd number of voters,

R2R_c outperforms the other methods in some sessions. This advantage stems from the fact underlying

the Copeland voting rule. Consequently, the observed increase in performance may not exhibit a smooth

progression. Comparisons for the rest of the sessions demonstrate similar results (Appendix
5
).

To statistically compare the seven methods, we followed the robust non-parametric procedure described

in [16]. The Friedman Aligned Ranks test with a confidence level of 95% rejected the null hypothesis

that all seven methods perform the same. Further applying the Conover post hoc test supported our

findings; R2R_b significantly outperformed all methods (except R2R_c) with a confidence level of 95%.

R2R_c significantly outperformed all methods but Usual ranking with a confidence level of 95%. No

statistical difference was found between R2R_b and R2R_c.

5https://doi.org/10.17605/OSF.IO/K4YMA
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5.5 Consistency and tie-breaking impact

In line with the findings of Fabre [14], our investigation focused on assessing the degree to which

different methods yield consistent outcomes while considering the impact of tie-breaking on these

results. To quantify this impact, we calculated the Kendall-tau distance between the various rankings.

The computed distances are presented in Table 4. A Kendall distance of 5 indicates that, on average,

there is a 5% likelihood that the relative order of two items will be reversed. Our results align with

those of Fabre [14], showing that in more than 95% of instances, the methods yield equivalent results.

For the remaining cases, tie-breaking rules determine the outcome.

6 Discussion

R2R originated from one of the authors’ needs for a method to conduct peer assessment during oral

presentations in the classroom, driven by the inadequacy of existing options. It provides a hybrid

approach combining rating-based evaluations with pairwise comparison queries when necessary. R2R
offers a structured methodology for eliciting voter preferences through cardinal evaluations, such as

scores or grades, while also accommodating ordinal preferences through pairwise comparisons. By

aggregating these preferences, the R2R method generates a ranked list of alternatives that reflects

students’ collective opinions. While the R2R model may be considered naive in its structure and

implementation, its effectiveness stems from its ease of understanding, use, and minimal assumptions,

echoing the principles of Occam’s razor. This simplicity enhances its potential for widespread adoption.

In a user study involving nearly 300 students, we did not identify anymethodological bias in presentation

order or primacy-recency bias. Furthermore, the effectiveness of the R2R became evident through

several key findings. Firstly, we found that R2R outperformed existing methods by reducing the

number of ties in the ranked output, particularly notable for small groups of voters, as often happens in

in-class presentations. Moreover, R2R imposes a lower communication load on students compared

to pairwise comparison methods, as students only need to evaluate each alternative once instead of

repeatedly comparing pairs of alternatives. The cognitive load is also diminished compared to models

that necessitate students to rank all alternatives, as students only need to assign a score or grade to

each alternative. One of the by-products of the user study is the acquisition of both project ratings and

rankings, resulting in a unique dataset that may be utilized for further studies.

We presented two variations of theR2Rmodel, each employing a distinct tie-breaking method. The first

variation utilizes the Borda voting rule for tie-breaking (R2R_b), while the second variation employs

the Copeland voting rule (R2R_c). R2R_b excelled in its tie-breaking capabilities and exhibited greater

consistency with the outcomes of all other methods. Thus, we recommend its use. It is also feasible

to utilize other voting rules. Although the R2R system was initially designed and implemented for a

classroom setting, its potential applications extend beyond academia. In the workplace, for instance,

group or team leaders often need to evaluate the performance of their employees, as noted by [3]. This

is a sensitive task since an employee’s position on the final performance list usually determines the

bonus they will receive. Managers can use the R2R to establish their personal ranked list of employees

while minimizing communication and cognitive overload.

Limitations and future work. The current implementation uses a 5-point Likert scale. Expanding

to a 7- or 9-point scale may reduce communication load but increase cognitive burden and bias—an

open question for future research. The model also assumes truthful responses to pairwise queries,

though strategic behavior remains a concern [27, 11] and was not addressed here. Additionally, students

cannot express indifference, ensuring tie-free rankings but potentially distorting true preferences.

Future work should assess the effects of relaxing this constraint and investigate how it influences both

individual rankings and their aggregation. Another direction is to incorporate multiple types of pairwise

comparisons, as proposed by Newman [29].
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Figure 7: The grade distribution in Sessions I-X (from left to right, top to bottom).

17



18



Figure 8: Unique rankings in Sessions I-X (from left to right, top to bottom).
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