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Abstract

Liquid democracy is a voting scheme in which individuals either vote directly or delegate their
vote to others. A common critique is that delegation cycles can occur, seemingly resulting in
unused voting power. Yet, practitioners argue that delegation cycles are not only unproblematic
but are even intentionally formed by participants. This divergent view stems from differing
interpretations of delegations: in practice, delegations serve as backup options that can be
overridden at any time by direct voting, whereas the literature often treats voting and delegating
as mutually exclusive. Bringing theory closer to reality, we introduce a probabilistic model
that captures strategic behavior under uncertainty. Within this model, we study the existence
and structure of Nash equilibria, revealing that delegation cycles naturally emerge. We further
examine the quality of equilibria via a Price-of-Anarchy approach. To complement these
findings, we perform computational experiments using best-response dynamics.

1 Introduction

Liquid democracy is a flexible voting system that allows voters to vote directly or delegate their vote to
another participant, who can vote on their behalf. Delegations are transitive, meaning that delegated
votes can be delegated further, creating delegation chains. The voter at the end of a chain casts ballots
on behalf of everyone in the chain. This system combines the advantages of direct democracy and
representative democracy by giving voters the freedom to choose their own mode of participation [8].

Over the past decade, academic interest in liquid democracy has grown rapidly [26]. However, prac-
titioners have noted that some parts of this literature overlook or misinterpret key aspects of liquid
democracy as it is implemented in practice (see 3 and 4, Sec. 2.4.1). While liquid democracy is often
applied over an extended period of time to an ongoing stream of decisions, much of the literature
models it as a one-time event. Specifically, this divergence has led to differing views on the issue of
delegation cycles. In the literature delegating and voting are frequently modeled as mutually exclu-
sive options. Consequently, delegation cycles (i.e., a situation where a voter i delegates to j, and this
delegation eventually returns to i through a chain of delegations) are viewed as problematic because
none of the voters in the cycle eventually cast a vote, leaving their collective voting weight unused. In
contrast, Behrens et al. [5] propose an alternative interpretation (informed by their experience with the
LiquidFeedback platform): voters specify default delegations that remain fixed across multiple decisions.
These default delegations serve as a fallback whenever voters do not cast a vote; if a voter casts a vote,
their default delegation is ignored. Under this interpretation, like-minded voters who trust one another
may intentionally form delegation cycles with their default delegations. These cycles rarely result in
lost votes for actual decisions, since all the voting weight in the cycle is used as long as at least one of
the involved voters casts a vote.

To bridge theory and practice, we introduce the default delegation model. Voters declare delegations for
a future election, which will be used only if they do not participate themselves. To model uncertainty
about who will participate in this election, each voter has a fixed probability of participating in the
election. A voter’s utility thus depends on both (i) other voters’ delegation choices and (ii) who actually
turns out to vote. We assume that participants live in a (one-dimensional) metric space and prefer to



be represented by those who are close to them. Moreover, voters can have different tolerance levels
towards being represented by far-away voters. While the model is not explicitly temporal, analyzing
strategic behavior in this probabilistic setting can shed light on long-term delegation dynamics. In a
world with a stream of similar elections, where each voter participates in only a fraction of them and
participation is not highly correlated, equilibrium states in our model can serve as proxies for long-term
behavior across the election stream.

We provide theoretical evidence supporting the practical observation that delegation cycles naturally
arise among rational users of liquid democracy platforms. More concretely, within the default delegation
model, we provide a game-theoretic analysis of how voters can strategically set their default delegations
to ensure that their voting power ends up with casting voters whose preferences closely align with their
own. We study the (i) existence, (ii) structure, and (iii) quality of (pure) Nash equilibria and demonstrate
that, under mild assumptions, delegation cycles are necessarily being formed. Our theoretical findings
are complemented by computational experiments, providing additional insights into best-response
dynamics in our model.

1.1 Related Work

Recent research in (computational) social choice and beyond shows a growing interest in liquid democ-
racy, with various models and methodologies emerging. We focus on studies that are related to ours in
terms of these two aspects.

The Role of Cyclic Delegations. A key branch of the literature addresses delegation cycles, typically
viewing them as undesirable and proposing solutions to eliminate them [9, 11, 14, 15, 19, 21, 22, 24,
27, 28]. Importantly, all of these works distinguish between delegating and casting voters and focus
on axiomatic and algorithmic aspects, rather than strategic behavior. Notably, the work by Markakis
and Papasotiropoulos [24], like ours, was directly motivated by the study of Behrens et al. [5]. They
study a temporal model with delegation updates over discrete time-steps. By contrast, in our paper, the
temporal aspect is captured through the probabilistic model for ballot casting. Other approaches prevent
cycles by design: Abramowitz and Mattei [1] disallow transitive delegations; Kahng et al. [20] only
allow delegations to voters with higher competence; Caragiannis and Micha [10] assume the existence
of a mechanism preventing cyclic delegations.

One-Dimensional SpatialModels. Tomodel voters’ preferences over potential delegates, we assume
that voters are positioned in a one-dimensional metric space. This is a common modeling choice (often
representing ideological alignment) that has been employed in delegative voting settings by Yamakawa
et al. [29], Green-Armytage [18], Cohensius et al. [12], Escoffier et al. [17], and Anshelevich et al. [2].

Strategic Delegation Behavior. A prominent line of research in liquid democracy employs a game-
theoretic perspective. Indicatively, this includes works that analyze Nash equilibria of delegation games
[6, 7, 16, 17], provide worst-case guarantees [25], or study voting power [30, 13]. However, the games
these works consider are significantly different from the one we analyze. None of them model the
strategic choice of delegates under probabilistic voter participation. For instance, prior utility models
are based on the effort of voting [7] or are analyzed in purely deterministic settings [16, 17].

1.2 Our Contribution

A central contribution of our work is conceptual: we introduce the novel default delegation model
for liquid democracy, which captures and explains strategic delegation behavior under uncertain
participation— a feature inherent in real-world liquid democracy systems.

We analyze the following aspects of the model:



Existence of Nash Equilibria. Our extensive computational experiments suggest that Nash equilibria
are prevalent across a broad range of synthetic instances. On the negative side, we identify instances
where a Nash equilibrium does not exist, even in simple settings with only three voters, or where all
voters have identical tolerance levels. On the positive side, we establish the existence of Nash equilibria
in several special cases or slight variants of our original model.

Structure of Nash Equilibria. We prove that, under mild assumptions, strategic voters form delega-
tion cycles in equilibrium. More precisely, every non-trivial component of an equilibrium delegation
graph contains exactly one cycle. Furthermore, we show that relaxing any of the assumptions invali-
dates the result, and we provide additional insights into the structure of delegations at equilibrium. In
more general settings, computational experiments reveal that the vast majority of components contain
cycles. The width of these cycles appears to be proportional to voters’ tolerance levels and inversely
proportional to the number of voters.

Quality of Nash Equilibria. We evaluate the quality of Nash equilibria primarily in terms of their
social welfare, i.e., the total utility they achieve, and we measure the Price of Anarchy (PoA), i.e., the
ratio between the best possible social welfare and the social welfare of equilibria. While we prove that
the PoA is generally unbounded, we also provide strong positive results: for non-degenerate instances,
the difference between the two quantities is bounded, and as voting probabilities increase or tolerance
levels decrease, the welfare in equilibrium approaches the optimal social welfare. Moreover, notably,
our experiments show that Nash equilibria often achieve close-to-optimal social welfare.

Omitted proofs and further details can be found in the full version of this paper.

2 The Default Delegation Model

We consider a finite set V of voters using a liquid democracy platform. Each voter nominates a default
delegate for a future election, in which any voter may choose to vote or abstain. If a voter i ∈ V does
not vote, their voting power is passed to their default delegate, continuing transitively until a voter
who casts a vote is reached— this voter is called i’s ultimate delegate. If no one in the delegation chain
votes, i has no ultimate delegate and their voting power is lost.

Default Delegations. For each voter i, we let d(i) ∈ V denote their default delegate. Self-nominations
(d(i) = i) are allowed and interpreted as abstentions from nominating a default delegate. Each delegation
profile d = (d(i))i∈V naturally corresponds to a (directed) delegation graph Gd = (V, {(i, d(i)) | i ∈
V }) whose edges correspond to default delegations. Thus, each vertex of Gd has out-degree exactly 1
and self-nominations correspond to self-loops.

Ultimate Delegates. Assume that the set of voters casting a vote is known, and let X ⊆ V denote
this set. The default delegations of voters in X are irrelevant. Therefore, to resolve delegations for
this election— that is, to determine which voters in V \X are ultimately represented by which casting
voters in X under d— it suffices to consider the subgraph of Gd that only contains delegations from
non-casting voters. For each non-casting voter i ∈ V \X , we can identify their ultimate delegate by
following the (unique) directed walk in this graph starting from i. If this walk leads to a casting voter
j ∈ X , then j is the ultimate delegate of i. If the walk leads to a cycle or a self-loop,1 then i has no
ultimate delegate. Each casting voter has a voting weight in the examined election equal to the number
of voters they are the ultimate delegate for, themselves included.

Probabilistic Participation. A crucial ingredient of our model is the assumption that voters do not
know which other voters are casting a vote in the future election. Rather, when choosing a default

1We use the term “cycle” exclusively for closed paths involving at least two vertices, excluding self-loops from this definition.



delegate, they need to consider different possibilities of where their vote “ends up”. To capture this
uncertainty, we use a simple probabilistic model. Namely, we assume that each voter i ∈ V casts
a vote with a fixed probability pi ∈ [0, 1]. We let p = (pi)i∈V denote the profile of vote-casting
probabilities. A voter i with pi ∈ {0, 1} is called deterministic. This modeling choice reflects the
idea that, in practice, many elections occur, and voters are not aware of or engaged in every single
one of them. The probability pi then can be thought of as the fraction of elections in which voter i
typically participates. This probabilistic approach provides a simple way to model varying voting
behavior without requiring complex assumptions about individual awareness or decision-making for
each election.

For a given delegation profile d and a voter i ∈ V , we can now derive the probability distribution over
i’s ultimate delegates. Let π(d, i) denote the longest simple path in Gd starting at i. Formally, π(d, i) is
the unique sequence (y0, y1, · · · , yk) of distinct voters starting with y0 = i and satisfying the following:

(i) d(yℓ−1) = yℓ and yℓ /∈ {y0, y1, y2, · · · , yℓ−1} for ℓ ⩽ k,

(ii) d(yk) ∈ {y0, y1, y2, · · · , yk}.

Voter i’s ultimate delegate is the first casting voter along the path π(d, i). Therefore, for ℓ ∈
{0, 1, · · · , k}, the probability that voter yℓ is the ultimate delegate of i is given by

pyℓ ·
ℓ−1∏
r=0

(1− pyr). (1)

The ultimate delegate of i is undefined with probability
∏k

r=0(1− pyr), which we interpret as i’s ballot
being lost.

Distance and Tolerance. To evaluate and compare different delegation options, we assume that each
voter’s utility depends on the alignment between their preferences and those of their ultimate delegate.
Alignment is defined in terms of the Euclidean distance between voters along a one-dimensional
ideological space, represented as the interval [0, 1]. Each voter i ∈ V is associated with a fixed position
xi ∈ [0, 1], reflecting their ideological stance, which remains constant throughout all elections. Let
x = (xi)i∈V denote positions. The utility of a voter decreases as the distance between their position and
that of their ultimate delegate increases, capturing the notion that voters prefer representatives who
are ideologically closer to themselves. Furthermore, each voter i ∈ V is associated with a tolerance
parameter τi ⩾ 0. This parameter represents the maximum distance the voter is willing to accept
between their own position and that of their ultimate delegate, while still deriving positive utility from
delegating. Let dist(i, j) = |xi − xj | denote the distance between voters i and j, and let τ = (τi)i∈V .
The acceptability set of voter i is given by: Ai(x, τ ) = {j ∈ V | dist(i, j) ⩽ τi}.

Instances. Given the voters’ positions x, their voting probabilities p, and their tolerance parameters
τ , we define an instance as the triple I = ⟨x,p, τ ⟩. To avoid ties, we will always assume that our
instances are in general position, meaning that no two voters share the same position and that no voter
j ̸= i is at distance exactly τi from voter i.2 Further, we will sometimes assume that j belongs to
Ai(x, τ ) if and only if i belongs to Aj(x, τ ). If this holds for all pairs of voters, then we say that the
instance satisfies mutual acceptance. A special case of mutual acceptance instances are those where
all voters have identical tolerance parameters (τi = τj for all i, j ∈ V ); we will refer to such instances
as symmetric. We often assume that voters are ordered by increasing xi, and then specify p and τ as
vectors corresponding to that order.

Voter Utility. The utility of a voter from a realization of the random election is defined as their
tolerance minus the distance to their ultimate delegate, or 0 if the ultimate delegate is undefined. In

2If an instance is not in general position, then slightly perturbing entries of x will bring the instance into general position.



other words, voters rank potential ultimate delegates by proximity and prefer abstaining over delegating
to a voter outside their acceptability set. Formally, given positions x, tolerances τ , and the set X of
casting voters, the utility of voter i under a delegation profile d is τi − dist(i, j), where j ∈ X is the
ultimate delegate of i, or 0 if no ultimate delegate is defined. Due to probabilistic participation, the
ultimate delegate of the voter i is a random variable (distributed according to Expression (1)). To account
for this randomness, we define the expected utility of voter i as the weighted sum of their utilities over
all possible ultimate delegates. Specifically, the expected utility of voter i (henceforth, simply utility) in
an instance I can be expressed as

ui(d, I) =
k∑

ℓ=0

(τi − dist(i, yℓ)) · pyℓ ·
ℓ−1∏
r=0

(1− pyr), (2)

where (y0, y1, · · · , yk) are the voters along the path π(d, i). When the instance I is clear from the
context, we will refer to ui(d, I) simply as ui(d).

The social welfare of a delegation profile d in an instance I is the sum over voter utilities, SW (d, I) =∑
i∈V ui(d, I). The profile maximizing the social welfare among all possible delegation profiles for I

will be called optimal and denoted by dSW (I), or simply dSW .

Example 1. Consider an instance with six voters, V = {A,B,C,D,E, F}. The positions x and voting
probabilities p are depicted in the figure below, together with delegation graph Gd of the delegation profile
d with d(A) = B, d(B) = C , d(C) = A, d(D) = E, d(E) = D, d(F ) = F .

0.2 0.3 0.4 0.5 0.6 0.8

A B C D E Fd :

x :

p : 0.8 0.3 0.2 0.3 0.1 0.3

Suppose that for a given election, the set of casting voters is {A,F}. This situation happens with probability
pA · pF ·Πi∈{B,C,D,E}(1− pi) = 0.8 · 0.3 · 0.7 · 0.8 · 0.7 · 0.9 ≈ 0.085. In this scenario, A has a voting
weight of 3 and F has a voting weight of 1. The voting weights ofD and E cannot be allocated to a casting
voter and are lost.

Assume that τi = 0.25 for all i ∈ V . Then the acceptability set of voter D is AD(x, τ ) = {B,C,D,E}.
The expected utility of voters A and F w.r.t. the delegation profile d is uA(d) = 0.8 · 0.25 + 0.2 · 0.3 ·
(0.25− 0.1) + 0.2 · 0.7 · 0.2 · (0.25− 0.2) ≈ 0.21 and uF (d) = 0.3 · 0.25 = 0.075.

3 Existence of Nash Equilibria

We start our game-theoretic analysis of the default delegation model. Using the utility model described
by Expression (2), we define the concept of best responses and profitable deviations in a standard way.
We denote by d−i the profile d not including the choice of i, and by (d−i, d

′(i)) the delegation profile
in which all voters except i delegate according to d, whereas i delegates to d′(i).

Definition 1. For a voter i ∈ V, d′(i) is a best response to delegation profile d if and only if it maximizes
ui(d−i, ·). We say that d′(i) is a profitable deviation from d for voter i if ui(d−i, d

′(i)) > ui(d).

Building upon the concept of profitable deviations, we are ready to define (pure) Nash equilbria.

Definition 2. A delegation profile d is a Nash equilibrium (NE) if no voter i ∈ V has a profitable
deviation from d.

We illustrate Nash equilibria in the default delegation model with the help of our initial example, which
highlights that equilibria are not necessarily unique and that different equilibria may have different
graph-theoretic structures.



Example 1 Continued. The delegation profile d from Example 1 is a Nash equilibrium, since each voter
chooses a best response, as shown in Table 1. Note that equilibrium delegations need not go to the closest
voter.

A B C D E F

A 0.200 0.210 0.202 0.195 0.194 0.179
B 0.159 0.075 0.163 0.083 0.081 0.023
C 0.089 0.086 0.050 0.089 0.086 0.014
D 0.052 0.086 0.075 0.075 0.085 0.064
E -0.084 -0.043 -0.055 0.066 0.025 0.039
F -0.134 -0.102 -0.111 0.067 0.069 0.075

Table 1: Expected utility for deviations from d in Example 1. The entry in cell (i, j) corresponds to ui(d−i, j)
and the entries corresponding to best responses are indicated in bold.

Interestingly, d is not the only NE of this instance. It can be verified that d′, the delegation graph Gd′ of
which follows, is also a NE.

A B C D E Fd′:

We highlight that two equilibria might significantly differ. Indicatively, Gd′ has two (weakly) connected
components, in contrast to Gd. Moreover, d and d′ differ in terms of social welfare, casting voters’ weights
and expected number of votes that are lost.

Experimental Analysis. To get a first impression on whether Nash equilibria exist in general, we
carried out computational experiments using a best-response dynamic. That is, the process starts with
some delegation profile (e.g., a random one) and then iterates over the voters, updating their delegation
whenever there is a profitable deviation. The process stops when no voter can make a profitable
deviation, which results in a Nash equilibrium by definition. Interestingly, running our best-response
dynamic on 20,000 different (mutual acceptance) instances for various values of n, x, p, and τ , and
starting profiles, has always led to the identification of a Nash equilibrium.

Non-Existence of Equilibria. In contrast to what we observed in our computational experiments
sketched above, Nash equilibria do not always exist in the default delegation model. To showcase this,
we provide the following example and later strengthen the result in Theorem 2.

Example 2. The instance I with V = {A,B,C,D}, x = (0, 0.05, 0.1, 0.5), p = (0.4, 0.05, 0.2, 0.4) ,
τ = (1, 0, 0.2, 0) does not admit a Nash equilibrium. For the contrary, assume d is a Nash equilibrium
in I . Then in d the voters B and D must delegate to themselves as τB = τD = 0, i.e., delegating to any
other voter lowers their utility compared to self-delegation. Further, since τC = 0.2, dist(C,D) = 0.4 and
d(D) = D, voter C does not delegate to D. Both A and C do not delegate to themselves. This is because
τA − dist(A,B) > 0, τC − dist(C,B) > 0, and d(B) = B, implying that choosing to delegate to B
provides better utility than self-delegation. In the table appearing in Figure 1, we show the utilities of A
and C in all profiles that were not ruled out by the previous reasoning. It is routine to check that none of
the possible delegation profiles d is a Nash equilibrium.

Given this impossibility result, we focus on subclasses of the default delegation model or slight variations
towards obtaining positive results on the existence of Nash equilibria.
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Figure 1: The normal form representation of the game induced by the instance I, described in Example 2. The
rows correspond to the possible choices of voter C and the columns to the choices of voter A, for specifying d.

3.1 Special Cases

We discuss three special cases of the default delegation model and draw a complete picture of whether
these restrictions suffice to guarantee the existence of equilibria. More precisely, we study (i) deterministic
instances, i.e., those instances where pi ∈ {0, 1} for all i ∈ V , (ii) mutual acceptance instances, i.e.,
those instances where j ∈ Ai(x, τ ) if and only if i ∈ Aj(x, τ ) for all i, j ∈ V , and (iii) instances with
few voters, i.e., those instances where |V | is upper bounded by a constant. On the positive side, such
restrictions can guarantee the existence of a Nash equilibrium.

Theorem 1. For each of the following restrictions, any instance I is guaranteed to contain a Nash
equilibrium:

(i) I is deterministic,

(ii) I has two voters, i.e., |V | = 2, or

(iii) I satisfies mutual acceptance and |V | ⩽ 3.

In the case of deterministic instances, the profile where every non-casting voter (i.e., with pi = 0)
delegates to their closest casting voter (i.e., with pj = 1) in their acceptability set is a Nash equilibrium.
For two-voter instances, we show that the expected utility of a voter is not influenced by the delegation
choice of the other. For mutual acceptance instances with three voters, we propose a greedy algorithm
for finding an equilibrium. While these restrictions are strong, we complement Theorem 1 by showing
that relaxing them even slightly invalidates the result.

Theorem 2. There exists an instance I for which no Nash equilibrium exists if:

(i) I has three voters, i.e., |V | = 3, or

(ii) I satisfies mutual acceptance and |V | = 4.

We remark that statement (ii) of Theorem 2 holds even for symmetric instances, i.e., with voters of equal
tolerance.

3.2 Variants of the Model

In response to the negative results of Example 2 and Theorem 2, we discuss two variants of our model
that guarantee the existence of Nash equilibria.



Leftists and Rightists. In the default delegation model, a voter accepts representation by voters
positioned both to their left and to their right, only dependent on their distance. We introduce a variant
of the model, where each voter selects a direction and accepts only representation by voters in that
direction, in which case, the utility is still determined by the distance, in line with Expression (2).
Depending on the direction selected, we refer to a voter as leftist or rightist.

In Example 2, voter A can (trivially) be considered a rightist and voter C can be considered a leftist
as AC(I) only includes voters to their left. Thus, on a profile with both leftists and rightists, a Nash
equilibrium is not guaranteed to exist. In contrast, Theorem 3 shows that any instance with only leftists
or only rightists contains a Nash equilibrium.

For the sake of concreteness, we define an example of a utility function that induces leftist voters.
Namely, replace (τi−dist(i, yℓ)) in Expression (2) (intuitively, the utility of voter i for being represented
by yℓ in a specific election) by:{

τi − dist(i, yℓ), if yℓ is left of i, i.e., xyℓ < xi,

−dist(i, yℓ), if yℓ is right of i, i.e., xyℓ > xi.

We remark that Theorem 3 holds for any utility model that assigns negative utility to representation on
the one side and utility equal to τi − dist(i, yℓ) to the other.

Theorem 3. Every instance in which the voters are all leftists or all rightists admits a Nash equilibrium.

The proof of Theorem 3 constructs a Nash equilibrium by starting from a profile where everyone
delegates to themselves, and then finding best responses for all voters sequentially in order of their
position.

Proxy Voting. We now move to another variant of the model in which Nash equilibria are guaranteed
to exist. In the proxy voting setting, we restrict the number of voters on any path π(d, i) that leads to a
casting voter. Specifically, no such path is allowed to contain more than two voters (including voter
i themselves). Hence, we effectively restrict the strategy space of the voters based on the actions of
the other voters. This restriction is reminiscent3 of the well-established framework of proxy voting
[12, 2], a variant of liquid democracy in which voters are divided into delegating and casting voters and
delegation chains may contain at most 2 voters.

In Example 2, delegation chains of three voters arose. By forbidding such chains, we effectively eliminate
the issue that leads to the non-existence of equilibria. In the proxy voting setting, we guarantee the
existence of Nash equilibria, leading to a dichotomy in the maximum allowable delegation chain length
to ensure the existence of Nash equilibria.

Theorem 4. In the proxy voting setting, every instance admits a Nash equilibrium.

4 Structure of Nash Equilibria

We now focus on the structural properties of equilibria. In particular, we are interested in the existence of
cycles in delegation graphs corresponding to Nash equilibria. Our first result establishes that delegation
cycles are the rule, rather than the exception. This aims to provide a game-theoretical justification for
the behavior of voters observed in practice.

Theorem 5. Consider a mutual acceptance instance I without deterministic voters. Then, for every Nash
Equilibrium d of I , it holds that every weakly connected component of Gd with more than a single vertex
has exactly one cycle.

3The settings are not identical as we allow for length 2 cycles.



Proof Sketch. For contradiction, assume there is an acyclic weakly connected componentW ofGd with
at least two voters. In this case, W would form a tree with a “sink” voter i such that d(i) = i. By
analyzing the incentives of voter i, we derive that j /∈ Ai(x, τ ) for any j such that d(j) = i. However,
by the mutual acceptance assumption, it must also hold that i /∈ Aj(x, τ ), which contradicts d being an
equilibrium. Uniqueness follows from the fact that each vertex in the component has out-degree 1.

When the assumptions of Theorem 5 do not hold, cycles do not necessarily exist in every equilibrium.

Observation 6. Cycles are not guaranteed to exist in Gd, where d is a Nash equilibrium of an instance
that is not of mutual acceptance or where deterministic voters exist.

Yet, in mutual acceptance instances, at least one equilibrium with a cyclic structure is guaranteed to
exist, even with some deterministic voters. The proof is similar to that of Theorem 5 and includes the
observation that deterministic voters may be indifferent towards delegation options.

Theorem 7. Consider a mutual acceptance instance I admitting a NE. Then, there exists a NE d of I in
which every weakly connected component of Gd with more than a single vertex has exactly one cycle.

Without mutual acceptance, the existence of equilibria exhibiting cycles is not guaranteed. For instance,
consider an instance with two non-deterministic voters such that A accepts B, but B does not accept
A. Then, there is a unique equilibrium in which A delegates to B and B self-loops.

Returning to the case where the assumptions of Theorem 5 hold, we now aim to further analyze
the structure of equilibria by turning our attention to delegations “entering” a cycle. Specifically,
for a weakly connected component W , let C(W ) denote the set of voters forming the cycle within
that component, and let L(W ) and R(W ) denote the sets of voters of W positioned to the left and
right of the cycle, respectively. Formally, L(W ) = {i ∈ W : xi < xj for all j ∈ C(W )} and
R(W ) = {i ∈ W : xi > xj for all j ∈ C(W )}.

Theorem 8. Consider a mutual acceptance instance I without deterministic voters and a Nash equilibrium
d of I . Consider a weakly connected componentW of Gd that consists of more than a single vertex, and
let C(W ) denote the cycle inW . There is at most one vertex vL ∈ L(W ) with d(vL) ∈ C(W ) and at most
one vertex vR ∈ R(W ) with d(vR) ∈ C(W ). Moreover, in Gd, L(W ) and R(W ) form in-trees rooted at
vL and vR, respectively.

Thus, the cycle C(W ) has a unique “entry point” vL for voters in L(W ), and all voters in L(W ) have
delegation paths to vL (analogously for vR andR(W )). It might be tempting to conjecture that these
entry points vL and vR delegate to the leftmost and rightmost voters in C(W ), respectively, or that all
voters in L(W ) (respectively, R(W )) form a simple delegation path. However, in the extended version
of this paper we show that this is not generally the case. Therefore, a significant strengthening of the
structural description offered by Theorem 8 is unlikely.

Experimental Analysis. Our theoretical results do not specify how large delegation cycles are, or
how often they occur in instances not satisfying the assumptions of Theorem 5. To shed light on
these questions, we conducted computational simulations. In particular, we examined the size (i.e.,
number of vertices) and width (i.e., maximum distance between two vertices) of cycles and weakly
connected components and we observe that, as tolerance levels decrease, cycle size and width, as well as
component width, decline gradually. Moreover, as n increases, the average cycle and component width
decreases, with voters in the same component— especially cycles—having closely aligned positions.
The proportion of voters with self-loops remains stable at around 5%. The average cycle size stays
around 4.9 across instances and grows as n increases. Notably, nearly all weakly connected components
with more than one vertex contain a cycle, indicating that the pattern identified theoretically for
mutual acceptance instances (see Theorem 5) also appears in general, randomly generated instances.



5 Quality of Nash Equilibria

We next focus on evaluating the quality of equilibria. We use a Price-of-Anarchy approach to compare
the social welfare of Nash equilibria to the optimal social welfare [23]. Before that, we compare the
structure of social-welfare-maximizing delegation graphs to Nash equilibria, observing an interesting
contrast.

Observation 9. There exist mutual acceptance instances without deterministic voters in which social
welfare maximising delegations do not induce cycles; e.g., in the symmetric instance with V = {A,B,C},
x = (0.12, 0.5, 0.88), p = (0.1, 0.9, 0.1), and τi = 0.4 for all i ∈ V , social welfare is maximized if A
and C delegate to B, who self-loops.

Recall that dSW(I) is a profile maximizing social welfare and let dNE(I) be a Nash equilibrium of I
achieving the lowest social welfare among all NE. We define the Price of Anarchy (PoA) of an instance I
in the standard way,

PoA(I) = SW (dSW(I))
SW (dNE(I))

,

and show that this ratio can be arbitrarily large.

Theorem 10. The Price of Anarchy of default delegation instances is unbounded.

Proof sketch. We prove the statement by describing a family of instances parametrized by ε and n. In
the limit for ε → 0 and n → ∞, the worst Nash equilibrium d satisfies SW (d) → 0. Further, we
show there is a parameterized profile d′ such that the social-welfare-maximizing delegation profile dSW
satisfies SW (dSW) ⩾ SW (d′) → e−1

e λ, where λ > 0 corresponds to some fixed value and e is Euler’s
number.

Fix a value λ > 0 as well as values ε ∈ (0, 1) and n ∈ N such that λ > ε/n. Define Iε,n as the instance
with voters {1, 2, . . . , n+ 1} and x,p, τ as specified in Figure 2. Note that voters are equidistant:
dist(i, i+ 1) = ε/n, for all i ∈ [n].

The profile d with d(1) = 2 and d(i) = i for all i ⩾ 2 is a Nash equilibrium. Since ui(d) = 0 for all
i ⩾ 2, we get

SW (d) = u1(d) = λε+ (1− ε)(λ− ε

n
)
1

n

n→∞−−−→
ε→0

0.

For profile d′ with d′(n+ 1) = n+ 1 and d′(i) = i+ 1 for i ⩽ n, we get ui(d′)
n→∞−−−→ 0 for all i ⩾ 2

and

1

x1 = 0

p1 = ε
τ1 = λ

2

x2 = ε/n

p2 = 1/n

τ2 = 0

3

x3 = 2ε/n

p3 = 1/n

τ3 = 0

. . .

. . .

. . .

. . .

1 2 3 n n+ 1
. . .

n

xn = (n−1)ε/n

pn = 1/n

τn = 0

n+ 1

xn+1 = ε
pn+1 = 1

τn+1 = 0

d :

d′ :

Figure 2: Illustration of the instance Iε,n from the proof of Theorem 10.



u1(d
′) =λε+ (1− ε)(λ− ε

n
)
1

n
+ (1− ε)(λ− 2ε

n
)(1− 1

n
)
1

n
+ · · ·

+ (1− ε)(λ− (n)ε

n
)(1− 1

n
)n−1 1

n
−−−→
ε→0

λ
1

n

n−1∑
i=0

(1− 1

n
)i.

Computing the limit of this expression for n → ∞, we get

SW (d′) =

n+1∑
i=1

ui(d
′)

n→∞−−−→
ε→0

e− 1

e
λ.

At first glance, Theorem 10 is a negative result concerning the quality of NE. However, the constructed
instances have certain characteristics, such as a voter with a very low voting probability and all but
one voter having acceptability sets limited to themselves, while voter 1 has Ai(x, τ ) = V . Moreover,
the social welfare of the two delegation profiles in the proof of Theorem 10 exhibit a relatively small
absolute difference ( e

e−1λ ≈ 0.632λ = 0.632
∑

i∈V τi). This suggests that measuring the difference
rather than the ratio may yield better conclusions about the quality of equilibria.

We define the additive Price of Anarchy of an instance I as PoA+(I) = SW (dSW(I))− SW (dNE(I)),
and proceed with the following positive results on both the multiplicative and the additive Price of
Anarchy.4

Theorem 11. For every instance I , PoA(I) ⩽ 1/pmin and PoA+(I) ⩽ (1−pmin)
∑

i∈V τi, where
pmin=mini∈V {pi}.

Theorem 11 asserts that higher voting probabilities correlate with better Nash equilibria in terms of
social welfare. Furthermore, and perhaps surprisingly, the smaller the tolerance levels, the better the
additive PoA bound.

In the extended version of this paper, we also assess the expected number of votes cast in equilibria,
demonstrating that, unlike in other liquid democracy frameworks where cycles are criticized for resulting
in ballot loss, in our setting, they effectively help mitigate lost voting power. Moreover, results on the
structure of optimal delegation profiles, which complement Observation 9, can be found in the extended
version of the paper, highlighting further differences in their structure compared to Nash equilibria and
the profiles minimizing vote loss.

Experimental Analysis. To complement our worst-case bounds, we examined how the social welfare
achieved by Nash equilibria compares to the optimal social welfare in randomly generated instances.
Since identifying dSW is computationally infeasible when n is large, we approximate it by the sum
of each voter’s expected utility under their optimal delegation profile, denoted by ODP(I). Formally,
ODP(I) =

∑
i∈V ui(d

i∗), where di∗ is a delegation profile maximizing the utility of voter i. In the
extended version of the paper, we show that Gdi∗ contains a path that starts in i and passes through
all vertices in Ai(x, τ ) in increasing order of distance to i. This value serves as an upper bound,
SW (dSW ) ⩽ ODP(I).

We generated 100 instances for each n ∈ {20, 50, 100, 200}, with values for x,p, τ chosen uniformly at
random. For n = 50, we furthermore tested 5 tolerance vectors τ , scaling each by 0.75 and 0.5 to assess
the effect of different tolerance levels. For each instance, we computed ODP(I) as an upper bound on
the social welfare and a Nash equilibrium dBR via best-response dynamics. Table 2 shows the average
ratios SW (dBR)/ODP (I). As a baseline, we also include the social welfare achieved by the delegation
profile ddir (“direct voting”) in which every voter self-loops.

4While PoA+ is not explicitly normalized by utility, the bound in Theorem 11 implicitly is, since
∑

i∈[n] τi is a trivial
upper bound for social welfare.



Number of Voters τi ∈ [0, τmax] with τmax =

20 50 100 200 1 0.75 0.5

dBR 97.6% 98.8% 99.4% 99.7% 98.9% 98.9% 98.6%
ddir 53.6% 49.6% 50.4% 50.5% 51.2% 51.6% 52.3%

Table 2: The average social welfare achieved by dBR and ddir in our experiments, as a percentage of ODP(I).

As expected, the Nash equilibrium profiles outperform the direct voting profiles, which consistently
reach only around 50% of ODP(I). The average social welfare achieved by dBR is remarkably high
(⩾98% of ODP(I)) and gets closer to ODP(I) as n increases. Given that ODP(I) upper bounds the optimal
social welfare, we conclude that the Nash equilibria in our model have an almost optimal social welfare.

6 Conclusion

In this paper, we introduced the default delegation model and used it to provide a novel game-theoretic
perspective on strategic delegation decisions in liquid democracy. We revealed how delegation cycles
naturally emerge among rational participants, offering a justification for their existence.

Our model leads to several avenues for future research. One immediate direction is to explore the
computational complexity of finding Nash equilibria or delegation profiles maximizing social welfare.
In our experiments, we use best-response dynamics to find equilibria; however, these algorithms are
not guaranteed to converge. It would also be interesting to define voters’ alignment based on more
general metric spaces; e.g., a two-dimensional Euclidean space. Preliminary experiments reveal that the
structure of Nash equilibria becomes more complicated in that setting. Considering alternative utility
functions— such as normalized ones, non-linear functions of distance, or those incorporating voting
costs — could yield further insights. Ballot casting probability could also be part of the strategy space of
a voter. Finally, while we primarily focused on cycles, long delegation paths remain an important and
underexplored aspect of liquid democracy, as they may be associated with eroding trust in ultimate
delegates. Potentially, this could be explored with a model similar to ours.
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