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Abstract

We study a two-sided matching model where one side of the market (hospitals) has combinatorial
preferences over the other side (doctors). Specifically, we consider the setting where hospitals
have matroid rank valuations over the doctors, and doctors have either ordinal or cardinal
unit-demand valuations over the hospitals. While this setting has been extensively studied in
the context of one-sided markets, it remains unexplored in the context of two-sided markets.
When doctors have ordinal preferences over hospitals, we present simple sequential allocation
algorithms that guarantee stability, strategyproofness for doctors, and approximate strategyproof-
ness for hospitals. When doctors have cardinal utilities over hospitals, we present an algorithm
that finds a stable allocation maximizing doctor welfare; subject to that, we show how one can
maximize either the hospital utilitarian or hospital Nash welfare. Moreover, we show that it is
NP-hard to compute stable allocations that approximately maximize hospital Nash welfare.

1 Introduction

Stable matching is a fundamental problem in the EconCS community. In the classical version, we have
a set of n doctors and n hospitals, each with ordinal preferences over the other side. The goal is to
find a stable matching of doctors to hospitals; informally, a matching is stable if no doctor-hospital
pair prefers each other to their assigned match. This problem has been studied since the 1950s and is
well understood today. There exists a polynomial time algorithm (the Gale-Shapley algorithm) [14]
that outputs a stable matching. Moreover, the set of stable matchings have a lattice structure [23]; as a
consequence, there exists a stable matching that provides all doctors their best possible outcome among
all the stable matchings.

Moving beyond the classical problem, several natural generalizations have been studied in the literature.
One line of generalizations has been the many-to-one matching problem where a hospital can be
matched with (or allocated to) multiple doctors; this is the model used by National Residency Matching
Program [31]. Gale and Shapley [14] propose a model motivated by college admissions where each
hospital has a cardinality constraint upper bounding the number of doctors they can be matched with.
However, if we assume that each hospital recruits several doctors, it is reasonable to assume that
hospitals would want residents trained in a diverse set of specialties; therefore, typically, hospitals
have preferences over sets of doctors. Indeed, recent work builds on this model by adding structure
to the acceptable sets of doctors for each hospital. In the CS community, Fleiner [12] studies a model
where each hospital has a matroid constraint dictating the set of doctors they can be allocated. In the
economics community, Hatfield and Milgrom [16] present a similar constraint based on the assumption
that doctors are substitutes. For all these models, Gale-Shapley-style algorithms have been shown to
output stable allocations. Moreover, these problems admit a similar lattice structure over the set of
stable allocations, under the assumption that the preferences of each side over the other forms a total
order; that is, there are no ties in the preferences.

A second line of generalization considers ordinal preferences with ties and incompleteness. In most
cases, a stable matching can be trivially computed by breaking ties arbitrarily. The goal of this line of
research is instead to compute a stable matching that maximizes the matching size [27, 10, 30]. This
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problem is surprisingly NP-hard even in the classical one-to-one matching setting [15, 26, 19]. More
generally, when preferences have ties and can be incomplete, stable matchings are no longer guaranteed
to have a lattice structure.

In this paper, we present and study a natural problem at the intersection of these two lines of research.
Following the model of Fleiner [12], we assume there is a matroid constraint for each hospital that
their allocated set of doctors must satisfy. However, we assume that there is no preference order that
hospitals have over the doctors, and that the goal of each hospital is simply to maximize the number
of doctors they are allocated subject to the matroid constraint. In more technical terms, we assume
hospitals have matroid rank valuations. This class of preferences has recently gained popularity in
the one-sided markets literature due to its expressivity and the fact that the matroid structure can be
leveraged to design fair, efficient and strategyproof mechanisms [2, 3, 4, 39, 5]. This paper is the first to
extensively study matroid rank valuations in two-sided markets.

Mathematically, the class of matroid rank valuations is simple enough that the existing impossibility
results for hospital strategyproofness do not apply [34]. However, this class of preferences does not
admit the lattice structure that previous models exploited to understand stable matchings. This makes
it an interesting class of preferences to study with many open questions. We focus on the design of
strategyproof mechanisms that output stable matchings with high market efficiency. We study two
variants of doctor utilities, resulting in two fundamental research questions.

(Q1) Canwe design strategyproofmechanisms that output stablematchingswith highmarket efficiency,
when doctors have ordinal preferences?

(Q2) Can we compute stable allocations that maximize various welfare objectives for either side of the
market (or both simultaneously), when doctors have cardinal preferences?

Both questions have been studied in most many-to-one matching models. Roth [34] shows that it is
impossible to guarantee hospital strategyproofness when hospitals have ordinal preferences over the
doctors along with a cardinality constraint. Hatfield and Milgrom [16] present a doctor-strategyproof
algorithm for a general class of preferences which outputs the optimal stable allocation for all the
doctors1; given the earlier impossibility result, this is the best result possible.

When the set of stable matchings has a lattice structure, the best outcome for one side is well-defined
and can be computed by a variant of the Gale-Shapley algorithm (see [16] and [12] for examples).
Moreover, this is the worst outcome for the other side. However, with no clear lattice structure, as
in our model, it is unclear what objectives can be maximized subject to stability. Addressing these
questions with respect to matroid rank valuations offers useful insight into stable allocations in the
absence of a clear lattice structure, as well as provides tools to design mechanisms in these settings.

1.1 Our Contributions and Techniques

Addressing (Q1) We present two mechanisms. Our first mechanism, called the high welfare serial
dictatorship (HWSD), outputs a stable allocation that maximizes hospital utilitarian welfare and is
strategyproof for the doctors. Moreover, when hospitals have binary OXS valuations, a subclass
of matroid rank valuations [29], the mechanism is 2-approximately strategyproof for the hospitals
(Theorem 3.1). Note that in our setting, hospital utilitarian welfare is equal to matching size, a notion of
efficiency studied in prior work [27, 10].

HWSD works as follows: doctors take turns picking a hospital. Each doctor picks the highest-ranked
hospital that is willing to accept them, i.e., accepting a doctor will not violate the hospital’s matroid
constraint; however, this match is allowed only if there exists a completion of the resulting partial

1In the many-to-one matching model, when there is a lattice structure over the set of stable matchings, the optimal stable
allocation for the set of doctors trivially maximizes the size of the matching.
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allocation that maximizes hospital utilitarian welfare.

Stability, doctor strategyproofness and max hospital utilitarian welfare follow straightforwardly from
the description of the algorithm. The main non-trivial result we show for HWSD is the hospital strate-
gyproofness guarantee. To show approximate hospital strategyproofness, we characterize the optimal
misreport that any hospital can make. We use this to show that no hospital can gain significantly by
misreporting. This broad proof structure has been used to show exact strategyproofness in both fair
division [2] and many-to-one matching [16]. However, to show approximate strategyproofness, we
analyze allocations via reversible path augmentations (Lemmas B.7 and B.8). Reversible path augmenta-
tions build on the technique of path augmentations used in prior work [2] to show strategyproofness
with matroid rank valuations in the one-sided setting. The key difference in our proof is that we need
to take doctor preferences into account in the two-sided setting; this makes our analysis quite intricate.

We also show that the same analysis can be used to prove exact hospital strategyproofness of the HWSD
mechanism when hospitals have binary capped additive valuations.

The second mechanism we study is the popular serial dictatorship (SD) mechanism. Here, doctors may
pick any hospital that is willing to admit them, regardless of whether the resulting partial assignment
can be completed to a utilitarian welfare optimal assignment. SD is strategyproof for doctors, 2-
approximately strategyproof for hospitals for general matroid rank valuations, and 2-approximately
maximizes hospital utilitarian welfare (Theorem 3.3). Here again, the most non-trivial result is showing
approximate hospital strategyproofness. To prove this, we use the simplicity of the serial dictatorship
mechanism to upper bound the change in the doctors hospitals are assigned due to misreports. The
analysis involves a careful accounting of the set of hospitals who were denied a match with doctors due
to some hospital misreporting, and the set of doctors whose allocation changed due to misreporting.

Addressing (Q2). We focus on both the utilitarian and the Nash welfare objectives for both hospitals
and doctors. The HWSD mechanism described above efficiently finds a stable outcome that maximizes
hospital (unconstrained) utilitarianwelfare. We complement this result by showing, rather unfortunately,
that finding a stable allocation that maximizes Nash welfare for hospitals is NP-hard for any finite
approximation factor (Theorem 4.4).

Moving to cardinal doctor utilities, we present an efficient algorithm that outputs a stable allocation
maximizing doctor utilitarian welfare (Lemma 4.1) or doctor Nash welfare. Moreover, we show that
subject to maximizing doctor utilitarian welfare (or doctor Nash welfare), we can efficiently maximize
hospital Nash welfare (Theorem 4.3). This is the most technically involved result of the paper.

Maximizing doctor utilitarianwelfare can be reduced to the problem of finding amaxweight independent
set at the intersection of two matroids. Maximizing hospital Nash welfare subject to maximizing doctor
utilitarian welfare can be done via a local search algorithm. Most algorithms for matroid intersection
use path augmentations in the matroid exchange graph [7, 8]. The proof for our local search algorithm’s
correctness also follows from an analysis of the matroid exchange graph. Specifically, we show that we
can find set of cycles in the exchange graph where at least one such cycle is an augmenting path with
some desirable properties. We then show that repeatedly finding these desirable cycles and augmenting
along them eventually increases the hospital Nash welfare without reducing doctor utilitarian welfare.
This analysis generalizes existing results in the fair division literature2, and may be of independent
interest.

Main open question. The main open question left by our work is “Does there exist a hospital-
strategyproof mechanism that outputs a stable allocation when hospitals have matroid rank valuations?”

2Specifically, we generalize the computational result of Babaioff et al. [2] who show that a max Nash welfare allocation
can be computed in the one-sided setting when agents have matroid rank valuations.
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1.2 Additional Related Work

Variants of the many-to-one matching problem have been studied in the literature, both by the computer
science and the economics community. In the economics literature, the college admissions problem [14]
was generalized to the job matching problem [22, 21, 32], and later generalized to the stable contract
matching problem [16]. Both the job matching and the contract matching problem use some natural
definitions of substitutes to constrain hospital preferences. For all three problems, Gale-Shapley style
algorithms compute a stable matching. The college admissions and the job matching problems have
also been generalized to the many-to-many matching setting, with similar results on the existence
and computability of stable allocations [33, 35]. Existing results on hospital strategyproofness (or lack
thereof) and manipulability of the college admissions problem [34, 37, 36] carry over to all the models
described above.

The computer science community studies similar generalizations. The key difference being that the
class of preferences used are described by mathematical objects (like matroids) rather than economic
principles (like substitutability). Fleiner [12] generalizes the classical stable matching problem to the
matroid kernel problem. The matroid kernel problem is a many-to-many matching problem where each
hospital (resp. doctor) has ordinal preferences and a matroid constraint over the set of doctors (resp.
hospitals). A Gale-Shapley style algorithm outputs stable allocations for this problem as well. This
model has been further generalized to handle lower quotas on each hospital’s bundle [17, 40, 13], as
well as ties in the preferences [10, 20].

The problem of matching with ties in preferences has also received considerable attention. Irving [18]
introduces the problem and provides definitions for stability in the presence of ties. Manlove [25]
and Roth [32] present examples where one-to-one matching instances do not have a hospital-optimal
(weakly) stable matching; this provides evidence of the loss of structure in the problem when ties are
introduced. Manlove et al. [26] show that generalizing beyond ties to incomplete preferences with ties
renders many previously easy problems NP-hard, even in the one-to-one matching setting. A specific
problem of interest is finding the maximum size stable matching, with the best known approximation
ratio being 1.5 [30, 15, 27].

Our problem can be seen as a special case of the matroid kernel with ties problem. Two papers study
the matroid kernel with ties problem. Csáji et al. [10] present a 1.5-approximation algorithm for the
maximum size stable matching problem in this model, generalizing the 1.5-approximation of McDermid
[27], and show a matching lower bound. Kamiyama [20] studies the existence and computation of
super-stable allocations in this model. Allocations are super-stable if moving any doctor to some
hospital does not weakly improve both agents’ outcomes; that is, it strictly worsens the outcome of one
of the agents involved. Our focus is instead on weak stability (as defined by Irving [18]). Since hospitals
do not have a preference order over doctors in our model, we believe this to be a more meaningful
stability notion.

In recent independent work, Aziz et al. [1] consider the many-to-one matching setting, and show that it
is possible to compute a stable matching which maximizes the matching size and is strategyproof for
all agents involved when hospitals have binary capped additive valuations. In Corollary 3.2, we present
a similar result. However, we note that their result is a little more general since they show that their
algorithm satisfies additional properties like non-bossiness and Pareto optimality.

2 Preliminaries

We use [k] to denote the set {1, 2, . . . , k}. Given a set S and an element d, we use S + d and S − d to
denote S ∪ {d} and S \ {d} respectively.

We have a set of n hospitals H = [n], and a set ofm doctors D = {d1, . . . , dm}. Each hospital h ∈ H
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has a matroid rank valuation function vh : 2D → Z over the set of doctors; for any set of doctors
S ⊆ D, vh(S) denotes the value of the set of doctors S ⊆ D according to the hospital h. We use
∆h(S, d) = vh(S+d)−vh(S) to denote themarginal gain of adding the doctor d to the set S according
to hospital h. A valuation function vh is a matroid rank function (MRF) if it satisfies the following three
properties: (a) vh(∅) = 0, (b) for each S ⊆ D, d ∈ D \ S, we have ∆h(S, d) ∈ {0, 1}, and (c) for each
S ⊆ T ⊆ D, d ∈ D \ T , ∆h(S, d) ≥ ∆h(T, d). MRFs have the following useful property.

Observation 2.1 (Matroid augmentation property [28]). Let vh be a matroid rank function over a set
D of elements. For every S, T ⊆ D such that vh(S) < vh(T ), there exists an element d ∈ T \ S such
that∆h(S, d) = 1.

We assume every doctor d ∈ D has a strict and complete preference order ≻d over the set of hospitals
H ; we write h1 ≻d h2 if the doctor d prefers the hospital h1 to h2. We define cardinal preferences for
doctors in Section 4.

An allocation X = (X0;X1, . . . , Xn) is an (n+ 1)-partition of the set of doctors D. Each hospital h
is allocated Xh and X0 denotes the set of unallocated doctors. We use X(d) to denote the hospital
that doctor d was allocated to in the allocation X . We use the term allocation instead of matching to
differentiate our setting from the one-to-one matching setting. Given an allocation X , the utility of
hospital h is the value vh(Xh).

When analyzing the time complexity of our mechanisms, we assume we can efficiently make value
queries to the hospital valuation functions. That is, we assume we can compute the value vh(S) for any
hospital h and set of doctors S in polynomial time.

As described in the introduction, we assume each hospital’s matroid rank valuation function enforces a
constraint over the set of doctors the hospital can be allocated. Specifically, we assume each hospital h
can only be allocated sets of doctors which correspond to independent sets in the matroid defined by
the rank function vh. This is equivalent to the notion of non-redundancy used in fair division [4].

Definition 2.2 (Non-redundancy). An allocation X is said to be non-redundant if for all h ∈ H ,
vh(Xh) = |Xh|. A bundle S ⊆ D is said to be non-redundant with respect to vh (for some hospital h)
if vh(S) = |S|.

The main desideratum we require of our allocations is stability. To define stability, we first define a
blocking pair. We use the same definition of blocking pair as Hatfield and Milgrom [16] and Csáji et al.
[10].

Definition 2.3 (Blocking Pair). Given an allocation X , a pair consisting of a set of doctors S and
hospital h (denoted (h, S)) form a blocking pair if:

(a) S is non-redundant with respect of vh and vh(S) > vh(Xh), and

(b) for all d ∈ S, h ⪰d X(d) with equality holding only if h = X(d).

In other words, the hospital h strictly prefers the set of doctors S to their assigned bundle Xh, and the
doctors in S all weakly prefer h to their assigned hospital under X . This definition naturally extends
to preference orders with ties as well. When doctors’ preference orders have ties in them, the above
definition requires the set of doctors in S not already allocated to h to strictly prefer h to their current
allocation X(h).

Definition 2.4 (Stability). An allocation X is stable if it is non-redundant and has no blocking pair.

When agents have matroid rank functions, this condition can be simplified. We repeatedly use the
following observation when proving stability guarantees (proof in Appendix A).
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Observation 2.5. Given a non-redundant allocationX , a blocking pair exists if and only if there exists
some doctor d and hospital h such that∆h(Xh, d) = 1 and h ≻d X(d).

We are interested in stable allocations with welfare guarantees. An allocationX maximizes hospital util-
itarian welfare (hospital-USW for short) if it maximizes USW(X) =

∑
h∈H vh(Xh). An allocationX maxi-

mizes hospitalNash welfare (hospital-NSW for short) if it maximizes NSW(X) =
∏

h∈H vh(Xh). An alloca-
tion X is an α approximation to hospital utilitarian welfare for α ≥ 1 if USW(X) ≥ maxX′ USW(X ′)/α.
We can define these welfare functions for doctors similarly, assuming doctors have cardinal utility func-
tions. When hospitals have matroid rank valuations, every stable allocation approximately maximizes
hospital-USW (proof in Appendix A).
Lemma 2.6. When hospitals have matroid rank valuations, every stable allocation is a 2-approximation
of the maximum hospital-USW.

Strategyproofness is a key desideratum in mechanism design. We assume that agent valuations are
private information, and they report them to the mechanism. We say that agent i has an incentive to
misreport their preferences if there exists a valuation v̂ such that if agent i reports v̂ instead of their
true valuation vi the mechanism outputs an outcome that agent i strictly prefers. A mechanism is
strategyproof if no agent has an incentive to misreport their preferences.

We distinguish between hospital and doctor strategyproofness. A mechanism is hospital (resp. doctor)
strategyproof (in short, hospital-SP/doctor-SP) if no hospital (resp. doctor) has an incentive to misreport
their preferences.

While we present several doctor-SP mechanisms that yield a stable allocation, identifying mechanisms
that are hospital-SP and output stable allocations turns out to be a more demanding task. We devise
mechanisms to compute stable allocations that are only approximately hospital-SP. More formally, a
mechanism is α-approximate hospital-SP for α ≥ 1, if for any hospital h, misreporting preferences
results in a utility of at most α times the utility received under a truthful report. This notion is sometimes
called approximate incentive compatability [38].

2.1 Preference Classes

We also present some results for subclasses of matroid rank valuations. A valuation function vh is said
to be binary OXS if there is an unweighted bipartite graphG = (D∪R,E) for some set R such that for
every S ⊆ D, vh(S) is equal to the size of the maximum size matching in the subgraph of G induced
by the set of vertices S ∪R. The set R is sometimes called the set of slots for valuation function vh.

A valuation function vh is said to be binary capped additive if for some positive integer bh and all S ⊆ D,
vh(S) = min{bh,

∑
d∈S vh({d})}. The following hierarchy relates the three valuation classes studied

in this paper:

binary capped additive ⊂ binary OXS ⊂ matroid rank.

2.2 Impossibility for Hospital-USWMaximizing Hospital-SP mechanisms

The first result we present is a simple impossibility result. We show that no hospital-SP mechanism
that outputs a stable allocation can be hospital-USW maximizing. This example also highlights the fact
that there may be no hospital-optimal (or doctor-optimal) stable allocation in our setting.
Example 2.7. The instance consists of two hospitals {h1, h2} and three doctors {d1, d2, d3}. The
matroid rank valuation functions for the hospitals are given as follows:

vh1(S) = |S ∩ {d2}|+min{|S ∩ {d1, d3}|, 1}
vh2(S) = |S ∩ {d3}|+min{|S ∩ {d1, d2}|, 1}.
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The preferences of the doctors are given as follows: d1 and d3 prefer h1 to h2, and d2 prefers h2 to h1.
There are only two hospital-USW maximizing stable allocations in this instance denoted by X and Y :

Xh1 = {d2, d3} Xh2 = {d1}
Yh1 = {d1} Yh2 = {d2, d3}

Note that if h2 were to report the valuation v′h2
(S) = |S ∩ {d2, d3}|, then the only hospital-USW

maximizing stable allocation is Y . This is because (a) any stable allocation must allocate d2 to h2, and
(b) h1 accepts d1 or d3 but not both. Using a similar argument, we can show that if h1 were to report the
valuation function v′h1

(S) = |S ∩ {d2, d3}|, then the only hospital-USW maximizing stable allocation is
X .

LetA be a mechanism that always outputs a hospital-USWmaximizing stable allocation. On the instance
described above, it must either output X or Y . If it outputs X , then h2 can deviate and become strictly
better off. If it outputs Y , then h1 can deviate and become strictly better off. Therefore, A cannot be
strategyproof.

While this example does not completely rule out the possibility of hospital-SP mechanisms, it highlights
the difficulty in the problem. The only other stable allocation for the instance above which is notX or Y
is Z where Zh1 = {d3} and Zh2 = {d2}. In order to guarantee hospital strategyproofness, a mechanism
must deliberately output the low hospital-USW allocation Z either when h1 reports truthfully or when
h1 misreports.

3 Doctors with Ordinal Preferences

Our objective is to identify doctor/hospital strategyproof mechanisms that output stable allocations,
with additional hospital-USW guarantees. However, the counterexample in Section 2.2 shows that
the ideal version of this result cannot be achieved. Instead, we seek mechanisms that achieve these
guarantees approximately. We present two such mechanisms, each providing a different trade-off
between hospital-USW and hospital strategyproofness.

3.1 High Welfare Serial Dictatorship (HWSD)

We present a mechanism that outputs a stable allocation, is doctor-SP and obtains optimal hospital-
USW. The HWSD mechanism operates in a sequential fashion, where at each iteration, we finalize
the allocation of one doctor. More specifically, at each iteration, we pick a doctor d and allocate it to
its highest ranked hospital h that satisfies the following two conditions: (a) the utility of hospital h
increases after it receives doctor d, and (b) the current allocation can be augmented to a hospital-USW
maximizing allocation. The mechanism is presented in Algorithm 1. Missing proofs of this section
appear in Appendix B.

Theorem 3.1. The high welfare Serial Dictatorship (HWSD) mechanism has the following properties:

(i) The mechanism is doctor-SP.

(ii) The algorithm runs in polynomial time.

(iii) The output allocation maximizes hospital-USW.

(iv) The output allocation is stable.

(v) The mechanism is 2-approximately hospital-SP when hospitals have binary OXS valuations.

Note that our strategyproofness analysis is tight since Example 2.7 describes an instance where all
hospitals have binary OXS valuations; therefore, any mechanism that outputs hospital-USW maximizing
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ALGORITHM 1: High Welfare Serial Dictatorship (HWSD) Mechanism
X = (X0, X1, . . . , Xn)← (D, ∅, . . . , ∅)
for i in 1 to m do

for j in 1 to n do
Let h be the j-th highest ranked hospital for doctor di
if ∆h(Xh, di) = 1 then

if there exists a Max hospital-USW allocation Y such that Xh′ ⊆ Yh′ for all h′ ̸= h and
Xh + d ⊆ Yh then

Xh ← Xh + d
X0 ← X0 \ d
Break

return X

allocations can only be at most 2-approximately hospital-SP. Restricting hospital preferences further
to binary capped additive valuations, we show that the HWSD mechanism is exact strategyproof for
hospitals.

Lemma 3.2. When hospitals have binary capped additive valuations, the HWSD mechanism is hospital-SP.

3.2 Serial Dictatorship

Let us next explore the Serial Dictatorship mechanism (Algorithm 2). This is another simple mechanism
which offers (weaker) approximate welfare and (stronger) strategyproofness guarantees.

We start with all hospitals having an empty bundle, i.e., Xh = ∅ for all h ∈ H . We order the doctors
from d1 to dm. Each doctor di goes down their ranking list, and proposes to hospitals in decreasing
order of preferences. When di proposes to the hospital h, if∆h(Xh, di) = 1, then the hospital accepts.
Else the hospital rejects and the doctor moves on to the next hospital.

ALGORITHM 2: Doctor Serial Dictatorship
X = (X0, X1, . . . , Xn)← (D, ∅, . . . , ∅)
for i in 1 to m do

for j in 1 to n do
Let h be the j-th highest ranked hospital for doctor di
// Doctor di proposes to hospital h
if ∆h(Xh, di) = 1 then

// Hospital h accepts
Xh ← Xh + di
X0 ← X0 \ di
Break

if ∆h(Xh, di) = 0 then
// Hospital h rejects
Continue

return X

Theorem 3.3. The doctor serial dictatorship mechanism has the following properties:

(i) The mechanism is doctor strategyproof

(ii) The output allocation is stable

(iii) The algorithm runs in polynomial time
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(iv) The output allocation is 2-approximately max hospital-USW.

(v) The mechanism is 2-approximately hospital strategyproof.

This strategyproofness analysis is tight, once again due to Example 2.7. The same misreport described
in the example shows that we cannot beat 2-approximate hospital-SP with the serial dictatorship
mechanism.

4 Doctors with Cardinal Utilities

We now turn our attention to a more general problem where hospitals still have matroid rank valuations
but doctors have cardinal valuations over the doctors. These valuations are denoted by the function
cd : H → R; cd(h) denotes the utility that doctor d derives from being assigned to the hospital h. Note
that cardinal preferences can encode both ties and incomplete orders in doctors preferences; we assume
setting cd(h) < 0 implies that the doctor d prefers to be unallocated than allocated to hospital h.

In this section, we continue to define stability using Definition 2.4. Specifically, we note that Defini-
tion 2.3 continues to be well-defined and Observation 2.5 holds in the presence of ties.

4.1 Maximizing Doctor Welfare

We first show that the problem of maximizing doctor-USW is an instance of the weighted matroid
intersection problem which admits polynomial time algorithms. The maximum doctor-USW allocation
among all non-redundant allocations is guaranteed to be stable, so this offers us an efficient algorithm to
compute a stable, doctor-USW maximizing allocation. We can in fact make a slightly stronger statement
(proof in Appendix D).

Lemma 4.1. There exists a polynomial time algorithm that computes a stable, max doctor-USW allocation.
Moreover, the output allocation has the highest possible hospital-USW among all stable, max doctor-USW
allocations.

By setting cd(h) values appropriately, the above result can be used to compute both the outputs of
Algorithms 1 and 2. If doctors have ordinal preferences, we use ud(h) to denote the Borda score of
hospital h according to doctor d, i.e., if d ranks h at the k-th position, then ud(h) = n − k. If we
instantiate Lemma 4.1 with cd(h) = (2n + 1)n−dud(h), we recover the output of the doctor Serial
Dictatorship mechanism (Algorithm 2). If we set cd(h) = M + (2n+ 1)n−dud(h), where M is a very
large number, we recover Algorithm 1.

Assuming we receive cardinal valuations for each doctor cd, we can compute a doctor-USW maximizing
non-redundant allocation. Moreover, since each doctor gets allocated to at most one hospital, by
instantiating Lemma 4.1 with valuations c′d(h) = log cd(h), we compute a non-redundant doctor-NSW
maximizing allocation. Both these allocations are stable because, if either allocation is not stable, there
is a hospital h and a doctor d such that we can move the doctor d to hospital h to increase its utility
while not affecting any other doctor’s utilities (Observation 2.5). This contradicts the fact that we picked
the doctor-USW (or doctor-NSW) maximizing allocation.

4.2 Doctor-Optimal and Hospital Nash Optimal Allocations

In Lemma 4.1, we showed that subject to maximizing doctor-USW, we can maximize hospital-USW as
well. In this section we show that subject to maximizing doctor-USW, we can maximize hospital-NSW.
By appropriately setting doctor valuations, we can prove a similar result with doctor-NSW maximizing
allocations.

9



ALGORITHM 3: Maximizing Hospital Nash Welfare subject to Maximizing Doctor Welfare
for k in 1 to m do

X = (X0, X1, . . . , Xn)← a k-MDW allocation
ci ← |Xi| for each i ∈ H
while 1 do

for i in 1 to n do
for j in 1 to n do

if |Xi| ≥ |Xj |+ 2 or |Xi| = |Xj |+ 1 and j < i then

c′p =


ci − 1 p = i

cj + 1 p = j

cp p ̸= i, j

X ′ ← a k-MDW allocation with respect to the capped valuations
if X ′ is a k-MDW allocation with respect to the original valuations then

X ← X ′

c⃗← c⃗′

if X = X ′ then
Set Xk ← X
Break out of the while loop

Return the allocation Xk with the highest doctor-USW and subject to that, the one that maximizes∏
h∈H

(
vh

(
Xk

h

))

We say that an allocation X is k-maximal doctor-USW (k-MDW) if it maximizes doctor-USW, subject to
hospitals having a USW of exactly k. Such an allocation can be computed in polynomial time (using a
variant of Lemma 4.1).

Our algorithm is based on utility capping and local search. Given a hospital h ∈ H with a valuation
function vh and an integer c > 0, we define the capped valuation function of h as vch(S) = min{vh(S), c}.
We note that if vh is a matroid rank function, so is vch. The valuation vch limits hospital h to a maximum
of c doctors.

Our algorithm works as follows: for each value of k, we find a k-MDW allocation X . Next, we cap the
utility of every hospital h at ch = |Xh|.

We utilize a local search technique to find a doctor-USW optimal/hospital-NSW optimal allocation, subject
to maintaining total hospital welfare at k. We identify two hospitals i and j such that |Xi| ≥ |Xj |+ 2
or |Xi| = |Xj |+ 1 and j < i, and there is a k-MDW allocation X ′ such that

(i) |X ′
i| = |Xi| − 1,

(ii) |X ′
j | = |Xj |+ 1, and

(iii) |X ′
p| = |Xp| for all p ̸= i, j.

We can efficiently check whether such an allocation X ′ exists by increasing the cap of hospital j, cj , by
1 and decreasing the cap of hospital i, ci, by 1 before computing a k-MDW allocation. We check if this
cap change reduces the doctors’ welfare; if so, we reject the new allocation and try a different pair of
candidate hospitals i, j ∈ H .

If there exists an allocation X ′ where hospitals i and j’s caps can be adjusted, we replace X with X ′

and repeat the process. We stop when an update is no longer possible. We do this for each value of
k ∈ [m] to generatem allocations X1, . . . , Xm; we then simply pick one that maximizes doctor-USW,
and subject to that maximizes the hospital-NSW. The steps are described in Algorithm 3.

The proof of Algorithm 3’s correctness (Theorem 4.3) relies on the following key lemma (proof in
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Appendix D.1).

Lemma 4.2. LetX and Y be two k-MDW allocations. Then, for any hospital i ∈ H such that |Xi| < |Yi|,
there exists a hospital j ∈ H such that |Xj | > |Yj | and a k-MDW allocation X ′ such that

(i) |X ′
i| = |Xi|+ 1,

(ii) |X ′
j | = |Xj | − 1, and

(iii) |X ′
p| = |Xp| for all p ̸= i, j.

This lemma almost immediately gives us the main proof of this section (proof in Appendix D).

Theorem 4.3. Algorithm 3 terminates in polynomial time and outputs an allocation X that maximizes
doctor welfare and subject to that maximizes hospital Nash welfare.

When the allocation that maximizes doctor-USW is unique, then the above theorem is not meaningful.
However, when there are many ties in the optimal doctor-USW allocation, the above theorem suggests
that we can find a fair one.

4.3 Hardness of Maximizing Hospital-NSW subject to Stability

We show that finding an approximately max hospital-NSW allocation subject to stability is computation-
ally intractable. The statement we show is in fact stronger than that (proof in Appendix D):

Theorem 4.4. The problem of deciding whether there exists a stable allocation where all hospitals are
allocated at least one doctor is NP-complete when hospitals have capped binary additive valuations.

This result implies the intractability of other forms of individual fairness. For example, it implies that
computing a stable egalitarian allocation, i.e., one that maximizes minh vh(Xh) subject to stability, is
intractable.

5 Conclusions and Future Work

In this work we offer a comprehensive analysis of two-sided matchings where one side has MRF
valuations over the other. We offer both sequential and optimization based approaches to computing
stable, approximately efficient and approximately strategyproof allocations. The problem of computing
stable, hospital strategyproof allocations remains open. Expanding these results to superclasses of MRF
valuations is an important direction as well.
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A Missing Proofs from Section 2

Observation 2.5. Given a non-redundant allocationX , a blocking pair exists if and only if there exists
some doctor d and hospital h such that∆h(Xh, d) = 1 and h ≻d X(d).

Proof. (=⇒) If a blocking pair (h, S) exists, then since vh(S) > vh(Xh), there is some doctor d ∈ S
such that∆h(Xh, d) = 1; this follows from the matroid augmentation property (Observation 2.1). For
this doctor d ∈ S, from the definition of a blocking pair, h ≻d X(d).

(⇐=) if there exists some doctor d and hospital h such that ∆h(Xh, d) = 1 and h ≻d X(d), then it
is easy to see that (h,Xh + d) forms a blocking pair: vh(Xh + d) > vh(Xh), and for all d′ ∈ Xh + d
h ⪰d′ X(d′).

Lemma 2.6. When hospitals have matroid rank valuations, every stable allocation is a 2-approximation
of the maximum hospital-USW.

Proof. Since doctors have a strict and complete preference ordering over hospitals, for an allocation to
be stable, it has to be maximal — no unmatched doctor can have a non-zero marginal value for any
hospital given the current assignment. It is well known that when hospitals have submodular valuations,
maximal allocations give a 2-approximation to the optimal hospital-USW [24].

B Missing Proofs for the HWSD Mechanism

Since the hospital-SP guarantees are the most non-trivial, we first show all the other guarantees,
relegating the hospital-SP guarantees to Section B.1.

Theorem B.1. The high welfare Serial Dictatorship (HWSD) mechanism has the following properties:

(i) The mechanism is doctor-SP.

(ii) The algorithm runs in polynomial time.

(iii) The output allocation maximizes hospital-USW.

(iv) The output allocation is stable.

Proof. We divide this proof into a series of claims.

Claim B.2. Algorithm 1 outputs an allocation that maximizes hospital-USW.

Proof. At every round, we maintain the invariant that there exists a socially optimal allocation Y so that
each hospital h’s assigned bundle of doctorsXh is contained in Yh. Thus, when the algorithm terminates,
no additional doctors can be assigned, and the resulting allocation maximizes hospital-USW.

Claim B.3. The mechanism is doctor-SP.

Proof. The mechanism is doctor-SP since each doctor d’s preferences are only used to assign them to
their highest ranked hospital that maintains non-redundancy and satisfies the max USW invariant. Since
the max USW invariant and non-redundancy do not depend on the doctor d’s preferences, misreporting
preferences can only lead to a worse assignment for d (and any doctor by extension).

Claim B.4. Algorithm 1 computes a stable allocation.
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Proof. A new doctor only gets added to a hospital’s allocation if it does not violate non-redundancy.
Therefore, the final allocation must be non-redundant.

Assume for contradiction that the output allocation (say X) has a blocking pair. By Observation 2.5,
there must be some doctor d and some hospital h such that ∆h(Xh, d) = 1 and h ≻d X(d). If d is
not allocated in X , then we get that d can be added to Xh, and the social welfare strictly increases,
contradicting the fact that the algorithm finds a hospital-USW maximizing allocation. Therefore, assume
that hd = X(d) is the hospital d was assigned by Algorithm 1. Suppose that we move the doctor d from
Xhd

toXh. This creates a new non-redundant allocationX ′ whereX ′
hd

= Xhd
− d andX ′

h = Xh + d,
and the remaining bundles are the same. Since the output of Algorithm 1 is non-redundant and
∆h(Xh, d) = 1, we have that X ′ is also hospital-USW maximizing: hospital hd lost a utility point and
hospital h gained one.

Let Xt be the interim allocation at the beginning of the t-th iteration of Algorithm 1. Since doctors
are never unassigned from hospitals, we have that for every hospital h ∈ H , Xt

h ⊆ Xt+1
h . Consider

the iteration t where d was allocated and let Xt be the allocation at the start of this iteration. Since
Xt

h is a subset of the final allocation Xh to h and ∆h(Xh, d) = 1, we must have ∆h(X
t
h, d) = 1 by

submodularity. By construction there exists a max hospital-USW allocation X ′ with Xh′ ⊆ X ′
h′ for all

h′ ̸= h, and Xt
h + d ⊆ X ′

h. This implies that the hospital hd allocated by Algorithm 1 must satisfy
hd ≻d h contradicting the definition of a blocking pair. So, no such blocking pair exists, and the
allocation is stable.

Claim B.5. Algorithm 1 runs in polynomial time.

Proof. Algorithm 1 runs a for loop over the doctors and then examines hospitals in decreasing order
of doctor prefernece in another for loop, for a maximum of nm iterations. In each iteration, we test
whether there exists some hospital-USW maximizing allocation Y such that Xh ⊆ Yh for all h ∈ H .
Thus, to prove our claim we need to show that it is possible to compute the maximum hospital-USW
possible given a partial allocation X . Computing the maximum hospital-USW allocation can be done
in polynomial time using value queries, see e.g., Benabbou et al. [4], who reduce the problem to the
matroid intersection problem [11].

We also note that for any T ⊆ D, if vh is a matroid rank function, v′h defined as v′h(S) = vh(T ∪ S)−
vh(T ) is also a matroid rank function. Therefore, we can compute the maximum hospital-USW possible
with hospital valuations v′h defined as v′h(S) = vh(Xh∪S)−vh(Xh) for each h ∈ H . We can therefore
efficiently determine if there exists a max hospital-USW Y such that for each h, Xh ⊆ Yh. We conclude
that Algorithm 1 runs in polynomial time.

B.1 Proof of Hospital-SP Guarantees

Our hospital-SP guarantees only apply when hospital valuations are defined by binary OXS functions.
This means each hospital’s valuations vh is defined by a bipartite graph Gh with doctors on one side
and an arbitrary number of nodes (called slots) on the other. The value of any set of doctors S ⊆ D is
the maximum cardinality matching in the subgraph of Gh induced by the doctors in S and all the slots
sharing edges with S. In other words, the value vh(S) is the number of slots that can be filled by the
set of doctors S, where each doctor d can only take up neighboring slots in the graph Gh.

Algorithm 1 is 2-approximately hospital-SP when hospitals have binary OXS valuations. That is, for
any hospital, misreporting their valuation can increase a hospital’s bundle size by no more than a factor
of 2.
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To prove this property, we begin with a few definitions. Given a subset of doctors T ⊆ D, we define
the valuation fT as fT (S) = |S ∩ T |; that is, each doctor in T adds a value of 1. Given an allocation
X and a set of doctors D′, we define the allocation X \ D′ as the allocation where each hospital h
receives the set Xh \D′. Similarly, given an allocation X and a set of doctors D′, we define X ∩D′ as
the allocation where each hospital h receives the set Xh ∩D′.

We define the following ordering over allocations: given two non-redundant allocations X and Y ,
we say that X ≻ Y if (a) USW(X) > USW(Y ), or (b) USW(X) = USW(Y ), and there is some doctor dj
such that X(dj) ≻dj Y (dj) and for all doctors dk where k < j we have X(dk) = Y (dk). We call this
ordering the HWSD ordering. Let X be the output of Algorithm 1; then for any other non-redundant
allocation Y , we must have X ≻ Y . Since this observation is used several times in our proofs, we state
it formally.

Observation B.6. LetX be the output of Algorithm 1, and letX ′ be any other non-redundant allocation.
Then X ≻ X ′ according to the HWSD ordering.

To prove our result, we first show that it suffices to consider simple misreports, of the form fT , when
considering hospital deviations. Then we show that the outcome from reporting fT and the outcome
from reporting vh cannot differ significantly in size. While the proof follows the broad structure of
Babaioff et al. [2], our proofs of Lemma B.7 and B.8 are more technically involved due to the two-sided
nature of our problem.

Lemma B.7. Let X be the output of Algorithm 1. If hospital h reports fT instead of vh where T ⊆ Xh

and all the other hospitals report the same valuations, then Algorithm 1 outputs an allocation Y where
Yh = T .

Proof. When representing the valuation function fT , we assume the graph GfT used is a subgraph
of Gh (used for representing vh). Indeed, it is always possible to represent fT using an appropriate
subgraph of Gh by keeping the edges of the bipartite graph representing Gh that are in a maximum
cardinality matching of doctors in T to slots. For both allocations X and Y , fix a matching of the
allocated bundle for each hospital to the slots in their valuation graph; specifically for the hospital h,
ensure the matching under fT is a subset of the matching under vh. Essentially, this means each doctor
is not only associated with a hospital but also with a specific slot in the hospital’s preference graph
Gh. To make notation easier, we call the preference profile where every hospital h reports vh as the old
preferences, and the the profile where h reports fT the new preferences.

The proof is trivial for the case when T = Xh, since at each iteration, the algorithm makes the exact
same decision under both profiles. It suffices to consider the case where |T | = |Xh| − 1, since we can
then inductively assume vh = fT and apply the same argument to |T ′| = |T | − 1 to obtain an arbitrary
subset of Xh.

Let d be the doctor in Xh \ T . Assume for contradiction that |Yh| < |T |. We create an allocation X ′

from X by moving d from hospital h to the hospital it is allocated to in Y — hospital j where d is
matched to some slot q. If slot q is empty in the matching of allocation Xj in the graph Gj , we add d
to slot q of hospital j and we stop. Otherwise, we swap d with d′ in slot q of Xj . We then repeat this
process with d′. This transfer creates an alternating path of doctors and (hospital, slot) pairs; we call
this path P (see Figure 1 for an illustration). This path is finite because after every move, we strictly
increase the number of (hospital, slot) pairs which have the same doctor allocated in both X ′ and Y .
We denote this path as ((h1, q1), d1, (h2, q2), d2, . . . , dk, (hk+1, dk+1)); the interpretation being that
the doctor di was moved from the hospital slot pair (hi, qi) to (hi+1, qi+1) to create X ′. The resulting
assignmentX ′ is non-redundant with respect to the new preferences. Moreover,X ′ ̸= Y sinceX ′ = Y
implies that |Yh| = |X ′

h| = |T | which implies the lemma is satisfied. Therefore the allocation X ′

must be strictly worse according to the HWSD ordering than Y with respect to the new preferences
(Observation B.6). Let the doctors involved in the path P be denoted by DP . The set of doctors DP
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Figure 1: Illustration of the path transfer executed in the proof of Lemma B.7. Each hospital has availability slots
(gray squares) that can be matched to different doctors (denoted by blue edges). Full blue edges denote the actual
matching of doctors to slots, and dashed edges denote possible alternative slots. The doctor d1 is assigned to h
under Xh, but not under Y (where h receives T ). We transfer d1 to the slot+hospital it is assigned to under Y .
That slot is occupied by the doctor d2 who is moved to the spot of d3. Finally, d3 is assigned to their slot with h4

under Y , which is unoccupied under X . This same path is reversed later in the proof to create the allocation Y ′

from the allocation Y .

have the same allocation in both X ′ and Y . Therefore, if X ′ is worse than Y , it must be because of
the doctors not present in the path. That is, the allocation X ′ \DP is worse according to the HWSD
ordering than Y \DP . Since this set of doctors has the same allocation in bothX andX ′, we have that
X \DP is worse than Y \DP according to the HWSD ordering.

Now, we reverse the path and apply it to Y to get allocation Y ′ which is non-redundant with
respect to the old preferences. By reversing the path, we mean the following: if the path is
((h1, q1), d1, (h2, q2), d2, . . . , dk, (hk+1, dk+1)), we move dj from the hospital slot pair (hj+1, dj+1)
to (hj , dj) to create Y ′; note that this operation is well-defined. Reversing the path P results in a
non-redundant allocation (with respect to the old preferences) if no two doctors are matched to the
same slot for some hospital. This happens because at each step of this reversed path we either

(a) allocate d to some slot in Y ′
h,

(b) swap a doctor allocated to some slot in a hospital with another doctor, or

(c) remove a doctor from a hospital.

The second and third operations clearly preserve non-redundancy with respect to both the old and new
preferences. The first operation preserves non-redundancy since we assume the matching of Yh in Gh

is a subset of the matching of Xh in Gh. So, if the doctor d was allocated to slot q in Xh, then this slot
must remain unoccupied in Yh.

We observe that Y ′ ̸= X since |Y ′
h| ≤ |T | < |Xh|. Therefore, Y ′ must be strictly worse than X

according to the red jacket objective which implies that doctors not present in the path are worse off
in Y than in X according to the red jacket objective; that is, the allocation Y \DP is worse than the
allocationX \DP according to the HWSD ordering (Observation B.6). This gives us a contradiction.

Our next lemma shows that being honest does not significantly reduce the size of your bundle.

Lemma B.8. Consider some hospital h. Fixing the reports of all other hospitals, let X and Y be the
resulting allocation when h reports fT (for some T ) and vh, respectively. If vh(T ) = |T | and Xh = T ,
then |Yh| ≥ |T |

2 .

Proof. We call the preference profile where h reports fT and receives Xh = T the misreported prefer-
ences. For both allocations, fix a matching of the allocated bundle for each hospital to the slots in their
valuation graph. Like the proof of Lemma B.7, when representing the valuation function fT , we assume
the graph GfT used is a subgraph of Gh (used for representing vh).
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We also assume without loss of generality that the matching for the bundles Xh and Yh is chosen in a
manner that maximizes the number of slots that receive the same doctor under both matchings.

Suppose that there are k slots filled inXh which are not filled in Yh, with doctors {d1, . . . , dk} assigned
to them. For each of these k doctors we create a path as we did in Lemma B.7: we move the doctor
dj to the hospital-slot pair it is assigned to in Y ; if that slot is empty then we stop, otherwise we
transfer the doctor in that slot to the slot they were assigned to under Y . Doing this, we create k paths
P (1), . . . , P (k). These paths are disjoint, since we fixed the matching of doctors to slots for each hospital
in both X and Y .

Consider a path P (j) starting with a doctor dj . If the path P (j) only involves slots of the hospital h,
then transferring doctors along this path (as we did in Lemma B.7) increases the number of slots in Gh

which receive the same allocation in both Xh and Yh, without changing the hospital h’s utility. This
contradicts the assumption that the matchings we chose for h under Xh and Yh maximally intersect.
Therefore, all paths must contain one hospital-slot pair that is not the hospital h.

Assume that transferring doctors along the path P (j) creates a non-redundant allocation X ′ with
respect to the misreported preferences (when hospital h reported fT ). Using Observation B.6, it must
be the case that X ′ is worse than X according to the HWSD ordering. Since only doctors on the path
P (j) had their assignment changed, this meansX ′ ∩DP (j) is worse thanX ∩DP (j) whereDP (j) is the
set of doctors in the path P (j). This implies Y ∩DP (j) is worse than X ∩DP (j) . If this is true, we can
reverse the path and apply it to Y to improve the allocation according to the HWSD ordering, which is
a contradiction. This follows from arguments similar to the previous proof.

Therefore, for all of the paths, transferring along these paths creates an allocationX ′ that is not non-
redundant with respect to the misreported preferences. The only way this can happen is if we move
a doctor d ∈ Yh \ T to X ′

h; this follows from the fact that the only hospital with a different set of
preferences in both allocations is hospital h. Therefore, each of these paths has a doctor from Yh \Xh

and since the paths are disjoint, no two paths share a doctor.

Therefore, we have |Yh \Xh| ≥ k ≥ |Xh| − |Yh| or that |Yh| ≥ |Xh| − |Yh \Xh| ≥ |Xh| − |Yh|, which
implies that |Yh| ≥ |Xh|

2 .

Combining Lemmas B.7 and B.8 proves our claim.

Theorem B.9. Algorithm 1 is 2-approximately hospital-strategyproof when hospitals have binary OXS
valuations.

Proof. Suppose that when hospital h reports their valuation vh truthfully, the resulting output of
Algorithm 1 is X , and hospital h receives the bundle Xh. Suppose that hospital h reports the valuation
v′h instead of vh, and Algorithm 1 outputs the allocation Y . Let T ⊆ Yh be a subset of doctors such that
|T | = vh(T ) = vh(Yh); intuitively, T is the set of doctors in Yh that hospital h actually wants to receive.
Suppose that h reports fT instead of v′h, and let the resulting allocation be Z . From Lemma B.7 we
know that vh(Zh) = |T | = vh(Yh). If h reports vh and receives the bundle Xh, then from Lemma B.8
we get that

vh(Xh) ≥
1

2
vh(Zh) ≥

1

2
vh(Yh).

Therefore, Algorithm 1 is 2-approximately hospital strategyproof.

This guarantee can be strengthened when hospitals have binary capped additive valuations.

Lemma 3.2. When hospitals have binary capped additive valuations, the HWSD mechanism is hospital-SP.

Proof. To prove this, we prove the following improved version of Lemma B.8.
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Lemma B.10. Consider some hospital h. Fixing the reports of all other hospitals, let X and Y be the
resulting allocation when h reports fT and vh, respectively. When agents report capped additive valuations,
if vh(T ) = |T | and Xh = T , then |Yh| ≥ |T |.

Proof. Similar to Lemma B.8, we call the preference profile whereh reports fT themisreported preferences,
and the profile where h reports fT the true preferences. Assume for contradiction that |Yh| < |T |. Since
the allocation X is non-redundant with respect to the true preferences, it must be worse according to
the HWSD ordering than Y . This implies USW(Y ) ≥ USW(X).

Therefore, since |Yh| < |T | = |Xh|, there must be some hospital h′ such that |Yh′ | > |Xh′ |. Let d be
some doctor in Yh′ \Xh′ . We create a path starting from the doctor d just like we have done in the
previous lemmas. However, since all agents have capped additive valuations, we can be less rigorous
with how we define these paths. We move the doctor d to the hospital h1 it is allocated to in the
allocation X . If this transfer results in h1’s bundle exceeding its capacity, then there must be some
doctor d1 in Yh1 which is allocated to some other hospital (say h2) in X . We repeat this process with
d1 till we make a transfer that respects the capacity constraints of each hospital. This creates a path
P = (h0 = h′, d1 = d, h1, d2, . . . , dk, hk+1). We define a transfer along this path as moving the doctor
di from hospital hi−1 to hi. The transfer along the path P when applied to the allocation Y gives us an
allocation Y ′ which is non-redundant with respect to both the true preferences.

Since |Yh| < |Xh|, the only place that hospital h could appear in this path is right at the end (at hk+1),
since an addition of a single doctor to hospital h (under the allocation Y ) will not violate its capacity
constraints. This means if we reverse the path and apply it to the allocation X , the new allocation (say
X ′) will be non-redundant with respect to the misreported preferences.

Since X and X ′ are non-redundant with respect to the misreported preferences X must be better than
X ′ according to the HWSD ordering (Observation B.6). Since the only difference between the two
allocations are the agents on the path, the allocation X ′ ∩DP is worse than the allocation X ∩DP

according to the HWSD ordering. We now observe that X ′ ∩DP is equal to Y ∩DP and X ∩DP is
equal to Y ′ ∩DP . This implies Y ∩DP is worse than Y ′ ∩DP according to the HWSD ordering. Since
the allocations Y and Y ′ only differ in the assignments of the doctors in DP , this implies Y is worse
than Y ′ is worse according to the HWSD ordering. This contradicts the fact that Algorithm 1 outputs
Y under the true preferences.

Plugging this improvement into the proof of Theorem B.9 gives us the required result.

C Missing Proofs for the SD Algorithm

Since the hospital-SP guarantees are the most non-trivial, we first show all the other guarantees,
relegating the hospital-SP guarantees to Section C.1.

Theorem C.1. The doctor serial dictatorship mechanism has the following properties:

(i) The mechanism is doctor strategyproof

(ii) The output allocation is stable

(iii) The algorithm runs in polynomial time

(iv) The output allocation is 2-approximately max hospital-USW.

Proof. Again, we prove this using a series of claims. Note that (iv) follows from Lemma 2.6.

Claim C.2. Algorithm 2 runs in polynomial time.
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Proof. Algorithm 2 runs in polynomial time since we simply go down the doctors’ preference lists in
decreasing order, and run a poly-time procedure to check whether each hospital is willing to accept the
doctor.

Claim C.3. Algorithm 2 outputs a stable allocation.

Proof. A new doctor d only gets added to a bundle Xh if ∆h(Xh, d) = 1. Therefore the final allocation
is non-redundant.

If there is a blocking pair, there must be some d and h such that ∆h(Xh, d) = 1 and h ≻d X(d).
Assuming for contradiction that such a pair exists. Consider the iteration where d was allocated and
let Y be the allocation at the start of this iteration. By submodularity, we must have ∆h(Yh, d) = 1 as
well which implies that X(d) ≻d h contradicting the definition of a blocking pair. So, no such blocking
pair exists, and the allocation is stable.

Claim C.4. Algorithm 2 is doctor-SP.

Proof. The mechanism is doctor-SP since each doctor d has a fixed iteration where they are assigned,
and at this iteration they are assigned to their most preferred hospital who can accept them. As the
hospitals’ allocations at the iteration where the doctor d is allocated is independent of the doctor’s
preferences, the doctor d cannot obtain a strictly better hospital by misreporting their preferences.

C.1 Proof of Hospital-SP Guarantees

In this section, we show that Algorithm 2 is 2-approximately hospital-SP. We fix a hospital h. In this
proof, we will also assume for ease of analysis that the unallocated doctors go to hospital h0 who has
the valuation function v0(S) = |S|.

Assume the allocation when all hospitals report truthfully is X . Assume that the hospital h now
misreports and let the resulting allocation be Y . In order to prove our claim, we only need to show that
vh(Yh) ≤ 2|Xh| = 2vh(Xh).

We distinguish between two types of changes to the allocation between X and Y . Some changes are
due to doctors not proposing to hospitals that they originally proposed to, and some changes are due to
doctors being rejected by hospitals that previously accepted them.

We say that a hospital h′ ∈ H was denied a doctor d ∈ D if d was allocated to h′ inX , but the doctor d
was allocated to a hospital in Y that d prefers to h′. The set of doctors that h′ was denied is denoted
Dh′ , and the set of doctors accepted by h′ in the generation of Y that were denied from some other
hospital is Da

h′ . Intuitively, Dh′ is the set of doctors that would have proposed to h′ if h had truthfully
reported its preferences but now did not propose to h′, and Da

h′ is the set of doctors that h′ was able to
‘steal’ from other hospitals due to the misreport by h. Since doctors go down their preference lists when
proposing to hospitals, every doctor d ∈ Da

h′ prefers h′ to the hospital they were assigned to under X .

We also say that a doctor d was newly rejected by hospital h′ if d was allocated to h′ in X but d was
rejected by h′ in the generation of Y . Let Rh′ be the set of doctors newly rejected by the hospital h′,
and Ra

h′ be the set of doctors accepted by h′ under Y that were newly rejected by some other hospital.

In what follows, we upper bound |Da
h| and |Ra

h|. This will almost immediately imply our desired upper
bound. We first upper bound |Da

h|.

Lemma C.5. vh(Da
h ∪ (Xh ∩ Yh)) ≤ |Xh|.
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Proof. By definition, all doctors inDa
h propose to h in the generation ofX , and were rejected by h; this

is again because doctors propose to hospitals in decreasing order of preference. Recall that hospitals
have matroid rank valuations, therefore, by the matroid augmentation property (Observation 2.1), if
vh(S) < vh(T ) there is some doctor d ∈ T \ S such that∆h(S, d) > 0. Therefore, if vh(Da

h ∪ (Xh ∩
Yh)) > |Xh| = vh(Xh), there is some doctor d in Da

h such that ∆h(Xh, d) = 1. This contradicts the
definition ofDa

h since the doctor d would have been accepted by the hospital h during the construction
of the allocation X . Therefore, it must be the case that vh(Da

h ∪ (Yh ∩Xh)) ≤ |Xh|.

Next, we show that |Ra
h| ≤ |Xh \ Yh|. This proof is somewhat more involved, and requires the

construction of an auxiliary set of doctors.

Fix some h′ ∈ H \ {h}. We define Xt
h′ and Y t

h′ as the bundles Xh′ and Yh′ immediately after the
iteration where doctor dt was allocated in Algorithm 2. We construct a new sequence of bundlesW t

h′

for t ∈ [m] ∪ {0}. We initialize W 0
h′ = ∅; then, we iterate through t from 1 to m. For each t, we set

W t
h′ ←W t−1

h′ + dt if:

(R1) dt ∈ Xh′ ∩ Yh′ .

(R2) dt ∈ Xh′ \ Yh′ , and Y t−1
h′ + dt is redundant for h′, i.e.,∆h′(Y t−1

h′ , dt) = 0.

(R3) dt ∈ Da
h′ .

The final bundle Wm
h′ contains Xh′ ∩ Yh′ and Da

h′ , as well as any doctors in Xh′ \ Yh′ who would not
have been selected by h′ during the run of Algorithm 2 when h misreports its preferences.

Our basic proof strategy is to show that W t
h′ is non-redundant and all doctors in Xh′ \Wm

h′ are in Dh′ ,
i.e., they were denied from h′ due to the misreport of hospital h. We use this to obtain the required
upper bound on |Rh′ |. This proof will require the following useful matroid property.

Lemma C.6. Let A and B be two sets of doctors which are non-redundant with respect to some vh. Let
d /∈ A ∪ B be some doctor such that ∆h(A, d) = 1 and ∆h(B, d) = 0. Then there is some doctor
d′ ∈ B \A such that ∆h(A, d

′) = 1; that is A+ d′ is non-redundant with respect to vh.

Proof. If |B| > |A|, then this lemma trivially holds via the matroid augmentation property.

If |B| ≤ |A|, there must be some doctor d∗ ∈ (A + d) \ B such that ∆h(B, d∗) = 1, by the matroid
augmentation property applied to the sets B and A+ d. Note that d∗ ̸= d by our assumption in the
lemma. Set B′ = B + d∗ and repeat this process with B′ until |B′| = |A|+ 1.

There must be some element d′ ∈ B′ \ A such that ∆h(A, d
′) = 1, again by invoking the matroid

augmentation property with the setsB′ andA. This element d′ must also be inB\A by the construction
of B′.

We start by showing thatW t
h′ is non-redundant with respect to the valuation of hospital h′.

Lemma C.7. At any h′ ∈ H and any t ∈ [m] ∪ {0}, W t
h′ is non-redundant with respect to vh′ .

Proof. We prove this by induction. At t = 0, W 0
h′ = ∅ and the lemma trivially holds. Assume that W t′

h′

is non-redundant for all t′ < t. We show that it holds for t.

We first show that if Rule (R3) is applied, i.e., dt ∈ Da
h′ , then W t

h′ is non-redundant. Assume for
contradiction that W t−1

h′ + dt is redundant. Since dt ∈ Da
h′ ⊆ Yh′ and Y t−1

h′ ⊆ Yh′ we have that
Y t−1
h′ + dt is non-redundant. Therefore, there must be some doctor dj ∈ W t−1

h′ \ Y t−1
h′ such that

∆h′(Y t−1
h′ , dj) = 1 (by Lemma C.6).

Since dj is not in Y t−1
h′ , and Y j

h′ ⊆ Y t−1
h′ , we must have that dj was not added to Yh′ at the j-th iteration

and dj /∈ Yh′ . In particular, since Rules (R1) and (R3) only add doctors that are in Yh′ , they do not apply
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to dj . The only way that dj could have been added toW j−1
h′ is if Rule (R2) applies. Rule (R2) requires

that dj is redundant for Y j−1
h′ . Since vh′ is submodular and Y j−1

h′ ⊆ Y t−1
h′ ,∆h′(Y t−1

h′ , dj) = 0 as well.
Thus, dj cannot have been added to W j−1

h′ and is not in W t−1
h′ , a contradiction. Thus, W t−1

h′ + dt is
non-redundant if dt is added via Rule (R3).

Next, suppose that we add some doctor dt such that dt ∈ Xh′ . The only way that this can occur is if
dt is added by applying Rules (R1) and (R2). Assume for contradiction that W t−1

h′ + dt is redundant.
By Lemma C.6, there must be some doctor dj ∈ W t−1

h′ \ Xh′ such that j < t and Xh′ − dt + dj is
non-redundant. The doctor dj is not inXh′ and thus it was not added due to Rules (R1) or (R2). Thus, dj
was added due to Rule (R3) and is inDa

h′ . Therefore, dj must have proposed to h′ during the generation
of allocationX , and was rejected. Recall thatXj−1

h′ ⊆ Xh′ ; thus, ifXh′−dt+dj is non-redundant, then
Xj−1

h′ + dj is non-redundant by submodularity of vh′ , and h′ should have accepted dj in the generation
of X . This is a contradiction and therefore,W t

h′ must be non-redundant.

Lemma C.7 immediately implies an upper bound on the size ofWm
h′ .

Lemma C.8. |Wm
h′ | ≤ |Yh′ |

Proof. According to Lemma C.7, Wm
h′ is non-redundant with respect to vh′ . Therefore, if |Wm

h′ | > |Yh′ |,
there must be at least one doctor d ∈Wm

h′ \ Yh′ such that ∆h′(Yh′ , d) = 1. This doctor d has to satisfy
d /∈ Yh′ . The only way that a doctor not in Yh′ is added to Wm

h′ is via the application of Rule (R2).
However, Rule (R2) requires that ∆h′(Yh′ , d) = 0; thus, d should have never been added to Wm

h′ in the
first place.

Lemma C.9. For all h′ ̸= h, |Rh′ | ≤ |Ra
h′ |.

Proof. From the construction of Wm
h′ , every doctor in Xh′ that is not in Wm

h′ must be in Dh′ according
to Rule (R2). Therefore, Xh′ \Wm

h′ ⊆ Dh′ ; in particular, |Xh′ | − |Xh′ ∩Wm
h′ | ≤ |Dh′ |. Recall that

every doctor inDa
h′ is also inWm

h′ according to Rule (R3). In other words,Wm
h′ contains all doctors that

were denied from some other hospital when h misreports, and were assigned to h′ as a result. Thus,
Wm

h′ \Xh′ = Da
h′ ; in particular, |Wm

h′ | − |Xh′ ∩Wm
h′ | = |Da

h′ |.

Finally, by Lemma C.8, |Wm
h′ | ≤ |Yh′ |. Combining these observations we get:

|Xh′ | − |Yh′ | ≤ |Xh′ | − |Wm
h′ | = |Xh′ | − |Xh′ ∩Wm

h′ |+ |Xh′ ∩Wm
h′ | − |Wm

h′ |
= |Xh′ | − |Xh′ ∩Wm

h′ | − (|Wm
h′ | − |Xh′ ∩Wm

h′ |) ≤ |Dh′ | − |Da
h′ |. (1)

Thus, |Xh′ | − |Yh′ | ≤ |Dh′ | − |Da
h′ |. Consider the set of doctors Xh′ assigned to h′ when the hospital

h truthfully reports its valuation. It comprises of three disjoint sets of doctors: (a) doctors that are
assigned to h′ under both Xh′ and Yh′ , i.e., Xh′ ∩ Yh′ (b) doctors that were denied from h′, i.e. the set
Dh′ , and (c) doctors that were newly rejected by h′, i.e. the setRh′ . Thus,Xh′ = (Xh′∩Yh′)∪Dh′∪Rh′ .
Similarly, we can show that Yh′ = (Xh′ ∩ Yh′) ∪Da

h′ ∪Ra
h′ . Therefore,

|Xh′ | − |Yh′ | = |Xh′ ∩ Yh′ |+ |Dh′ |+ |Rh′ | −
(
|Xh′ ∩ Yh′ |+ |Da

h′ |+ |Ra
h′ |

)
= |Dh′ | − |Da

h′ |+ |Rh′ | − |Ra
h′ |. (2)

Plugging in the upper bound in Equation (1) into Equation (2) we get

|Dh′ | − |Da
h′ |+ |Rh′ | − |Ra

h′ | ≤ |Dh′ | − |Da
h′ | ⇒ |Rh′ | ≤ |Ra

h′ |

which concludes the proof.

We are now ready to prove the final lemma of the theorem.
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Lemma C.10. |Ra
h| ≤ |Xh \ Yh|.

Proof. This proof follows from Lemma C.9. For any h′ ̸= h, we note that each doctor in Ra
h′ is either

from Rh′′ for some h′′ or Xh \ Yh. Therefore, we have
⋃

h′ ̸=hR
a
h′ ⊆ (

⋃
h′ ̸=hRh′) ∪ (Xh \ Yh). By

re-arranging terms, we conclude that∑
h′ ̸=h

|Ra
h′ |

−

∣∣∣∣∣∣∣
 ⋃

h′ ̸=h

Ra
h′

 ∩
 ⋃

h′ ̸=h

Rh′


∣∣∣∣∣∣∣
 ≤ |Xh \ Yh| (3)

To prove the lemma, we first use the fact that Ra
h ⊆

⋃
h′ ̸=hRh′ \

⋃
h′ ̸=hR

a
h′ . This follows from the

definition of Ra
h as doctors which have been newly rejected by other hospitals but accepted by h. We

can therefore write,

|Ra
h| ≤

∑
h′ ̸=h

|Rh′ | −

∣∣∣∣∣∣∣
 ⋃

h′ ̸=h

Ra
h′

 ∩
 ⋃

h′ ̸=h

Rh′


∣∣∣∣∣∣∣ ≤

∑
h′ ̸=h

|Ra
h′ | −

∣∣∣∣∣∣∣
 ⋃

h′ ̸=h

Ra
h′

 ∩
 ⋃

h′ ̸=h

Rh′


∣∣∣∣∣∣∣ ≤ |Xh \ Yh|

The second inequality follows from the fact that |Rh′ | ≤ |Ra
h′ | for all h′ ̸= h, as per Lemma C.9. The

third inequality follows from (3).

Theorem C.11. Algorithm 2 is 2-approximately strategyproof for the hospitals.

Proof. Assume that hospital h ∈ H misreports its valuation, and that the resulting output of Algorithm 2
is now Y instead ofX . According to Lemma C.5, vh(Da

h∪(Xh∩Yh)) ≤ |Xh|. According to Lemma C.10,
|Ra

h| ≤ |Xh \ Yh|.

If a hospital h′ has a doctor d in Yh′ \ Xh′ , then d must either be denied from another hospital and
assigned to h′, i.e., it is in Ra

h′ ; alternatively, d is in Da
h′ , in which case d prefers h′ to whichever

hospital they were assigned to under X . We can partition h’s assignment when it misreports into
Yh = (Yh ∩Xh) ∪Da

h ∪Ra
h. Using this, we get

vh(Yh) = vh((Xh ∩ Yh) ∪Da
h ∪Ra

h) ≤ vh((Xh ∩ Yh) ∪Da
h) + |Ra

h| ≤ |Xh|+ |Xh \ Yh| ≤ 2|Xh|.

which concludes the proof.

D Missing Proofs from Section 4

Lemma 4.2 is highly non-trivial, and has therefore been assigned its own section (Section D.1) for
readability.

Lemma 4.1. There exists a polynomial time algorithm that computes a stable, max doctor-USW allocation.
Moreover, the output allocation has the highest possible hospital-USW among all stable, max doctor-USW
allocations.

Proof. The ground set of both matroids is the set of all doctor hospital pairs E = {(d, h) : d ∈ D,h ∈
H}. In the first matroid, a set S is independent if the allocationX whereXh = {d : (d, h) ∈ S} is non-
redundant. The second matroid is a partition matroid where each part is of the form {(d, h) : h ∈ H}
for each d ∈ D. This matroid ensures that each doctor is allocated at most once. Each element (d, h)
has weight cd(h).
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It is easy to see that the max weighted independent set at the intersection of these two matroids
corresponds to the non-redundant allocation with maximum doctor-USW. For this problem there exist
efficient algorithms to compute the max weighted independent set subject to the independent set having
size equal to some integer k [7]. The size of the independent set is equal to the hospital-USW of the
output allocation. Therefore, by trying all m possible values of k, we can find the max doctor-USW
allocation with the highest possible hospital-USW.

Theorem 4.3. Algorithm 3 terminates in polynomial time and outputs an allocation X that maximizes
doctor welfare and subject to that maximizes hospital Nash welfare.

Proof. We first show that the algorithm terminates in polynomial time. To do this, we show that the
while loop terminates in polynomial time. This is sufficient since we run thewhile loop form different
values of k.

We use a potential function argument to bound the number of while loop iterations. Every time we

change the allocation, we strictly reduce
∑

i∈H

(
|Xi|+ i

n2

)2
. Therefore, the while loop can only run

O(m2n2) times. We note that this exact potential function argument has been used before in Babaioff
et al. [2] and Cousins et al. [9]

Next, we prove the correctness of our algorithm. Each allocation Xk computed by the algorithm
maximizes doctor-USW subject to the constraint that total hospital-USW is k. Since we pick an allocation
Xk that maximizes doctor-USW, the allocation X output by Algorithm 3 maximizes doctor-USW. Next,
we show thatX maximizes hospital Nash welfare. Let Y be an allocation that (a) maximizes doctor-USW,
(b) hospital-NSW subject to (a), and (c) lexicographically dominates all other allocations that satisfy (a)
and (b). Furthermore, assume that Y has a hospital social welfare of k.

Let us consider the allocation Xk that Algorithm 3 computes. Assume for contradiction that Xk ̸= Y .
Since Xk ̸= Y , there is some hospital i such that |Xk

i | < |Yi|. If there are multiple such hospitals, we
break ties by choosing the i with lower |Xi|, and breaking further ties by choosing the lower i. Since
both Xk and Y have a total hospital-USW of k, there is some hospital j such that |Yj | < |Xk

j |; again, if
there are multiple such hospitals, we break ties by choosing the j with lower |Yj |, and breaking further
ties by choosing the lower j. .

We have four possible cases, each leading to a contradiction proving that Xk = Y .

Case 1: |Xk
i | = |Yj | and i < j. We apply Lemma 4.2 with the allocation Xk and hospital i to find a

hospital ℓ and a k-MDWallocationZ such that the hospital i gets onemore doctor, the hospital ℓ gets one
less doctor and all other hospitals have the same bundle size. We have |Xk

ℓ | − 1 ≥ |Yℓ| ≥ |Yj | = |Xk
i |.

If any of these inequalities is strict, then |Xk
ℓ | ≥ |Xk

i |+2; in this case, Algorithm 3 reduces the capacity
of ℓ by 1 and increases the capacity of i by 1, and moves from the allocationXk to Z , which contradicts
Xk being the resulting allocation. If equality holds throughout, then |Xk

ℓ | = |Xk
i |+ 1 and ℓ > j > i,

which again contradicts the logic of Algorithm 3.

Case 2: |Xk
i | < |Yj |. This case follows a similar argument to that of Case 1.

Case 3: |Xk
i | = |Yj | and j < i. In this case, we plug in Lemma 4.2 with allocation Y and hospital j to

find a hospital ℓ and a k-MDW allocation Z such that j gets one more doctor, ℓ gets one less doctor
and all other hospitals have the same bundle size. We have |Yℓ| − 1 ≥ |Xk

ℓ | ≥ |Xk
i | = |Yj |. If any of

these inequalities is strict, then |Yℓ| ≥ |Yj |+ 2 which means Z has a higher hospital Nash welfare than
Y , a contradiction to Y being hospital-NSW optimal. If equality holds throughout, then |Yℓ| = |Yj |+ 1
and ℓ > i > j, which implies that Z is hospital-NSW optimal as well but lexicographically dominates Y ,
which again violates our assumption on Y .

Case 4: |Xk
i | > |Yj |. The proof of this case follows a similar argument to that of Case 3.

Therefore, Xk = Y , and the Nash welfare of our output allocation X is at least that of Y .
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Theorem 4.4. The problem of deciding whether there exists a stable allocation where all hospitals are
allocated at least one doctor is NP-complete when hospitals have capped binary additive valuations.

Proof. We reduce from the NP-complete 2P2N-3SAT problem [6]. This class comprises of 3SAT instances
withm clauses over variables (x1, . . . , xn), such that each variable appears exactly two times in positive
form and two times in negative form. An instance is a “yes” instance if and only if it has a valid truth
assignment. Equation (4) is an example instance of 2P2N-3SAT with n = 3 variables andm = 4 clauses.

C1︷ ︸︸ ︷
(x1 ∨ x2 ∨ ¬x3)∧

C2︷ ︸︸ ︷
(¬x1 ∨ x2 ∨ x3)∧

C3︷ ︸︸ ︷
(¬x1 ∨ ¬x2¬x3)∧

C4︷ ︸︸ ︷
(x1 ∨ ¬x2 ∨ x3) (4)

Given a 2P2N-3SAT instance, our reduction is as follows: we havem+ 3n hospitals and 12n doctors.
We create for each variable xi, two copies of a doctor corresponding to the positive literal of the variable
(xi, x′i), and two copies of the doctor corresponding to the negative literal of the variable (¬xi,¬x′i).
We also create eight dummy doctors for each variable (a+i , a

−
i , b

+
i , b

−
i , c

+
i , c

−
i , d

+
i , d

−
i ).

We create one hospital hj corresponding to each clause Cj . The hospital hj has a capacity of 1 and
values each literal in the corresponding clause at 1, all copies included. We also create two hospitals
s+i , s

−
i for each variable xi who we call the positive sink and the negative sink respectively. These two

sink hospitals have a capacity of 4 each. The positive sink s+i values the doctors xi, x′i, a
+
i , b

+
i , c

+
i and

d+i at 1; similarly, the negative sink s−i values the doctors ¬xi,¬x′i, a
−
i , b

−
i , c

−
i and d−i at 1. We also

create a priority hospital pi for each variable xi; the priority hospital for variable xi values the doctors
a+i , a

−
i , b

+
i , b

−
i , c

+
i , and c−i at 1 and has a capacity of 3.

Coming to the preferences of the doctors, the four positive dummy doctors of each variable xi
(a+i , b

+
i , c

+
i , d

+
i ) rank their priority hospital pi highest, then their positive sink s+i , and then all other

hospitals. The four negative dummy doctors of each variable (a−i , b
−
i , c

−
i , d

−
i ) rank their priority hospital

pi highest, then their negative sink s−i , and then all other hospitals.

The positive literals of each variable prefer their corresponding positive sink s+i to any other hospital
and the negative literals of each variable prefer their corresponding negative sink s−i to any other
hospital.

Any ranking relation not mentioned in this construction can be filled up arbitrarily. This construction
can be done in polynomial time, and its size is polynomial in the size of the original 2P2N-3SAT instance.

The crucial property maintained by the construction is that for any stable allocation, if we restrict
ourselves to the allocations to the clause hospitals h1, . . . , hm, a variable can be allocated in positive
form or negative form but not both. This is because to allocate a positive (negative) literal of a variable
xi to a clause hospital hj , the positive (resp. negative) sink hospital of that variable must be filled up, i.e.,
the positive (resp. negative) sink must receive its capacity of four doctors to not create a blocking pair:
otherwise, since the positive (resp. negative) sink hospital values the positive (resp. negative) literal
doctor at 1, they form a blocking pair. To fill up either sink, the priority hospital pi for that variable
must be filled up; this is because all the doctors who are valued by the sink hospitals are also valued
by the priority hospitals, whom these doctors strongly prefer. The total capacity of s+i , s

−
i and pi is

11 (the positive and negative sinks have a capacity of 4 and the priority hospital has a capacity of 3);
however, they together value 12 doctors at 1 — the four literal doctors xi, x′i,¬xi,¬x′i and the eight
dummy doctors — filling them up means there is only one doctor (either a positive or negative literal)
corresponding to that variable that can be allocated to the clauses. Therefore, the allocation to the
clauses cannot have two different kinds of literals for the same variable. This gives us the consistency
needed to map stable allocations to SAT solutions.

The rest of the proof is straightforward: if there is a solution to the 2P2N-3SAT instance, then there is a
straightforward allocation where all hospitals get a utility of at least 1. If a variable xi is positive in the
original solution, we fill up the priority hospital with a−i , b

−
i , c

−
i , the positive sink with a+i , b

+
i , c

+
i and
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d+i , and then allocate the doctors corresponding to the positive literals to the clauses which have these
literals. We can do this for all the variables. If there are multiple literals which satisfy a clause, we can
pick one arbitrarily. Note that this allocation gives all the clauses a positive utility. The negative and
positive sinks have a positive utility in any stable allocation because of the doctors d+i and d−i who can
only be allocated to these hospitals.

Assume there is no solution to the 2P2N-3SAT instance. In any stable allocation, from our above
discussion, the set of hospitals corresponding to clauses must receive either the positive form of a
literal or the negative form of a literal but not both. This choice can be thought of as an assignment
to the variables. Since the 2P2N-3SAT instance is unsatisfiable, there is at least one clause that is not
satisfied by this assignment; this clause corresponds to a hospital which receives a utility of 0 in the
stable allocation. Since all assignments are unsatisfiable, all stable allocations give at least one hospital
a utility of 0.

D.1 Proof of Lemma 4.2

The problem of maximizing doctor-USW can be modeled as a weighted matroid intersection problem
over the ground set E = {(h, d)|d ∈ D,h ∈ H}3. Any assignment of doctors to hospitals can be
equivalently defined as a subset of the ground set E. Specifically, each allocation X can be denoted
by the set

⋃
d∈D(X(d), d), which is a subset of E. Similarly, any subset of E can be written as an

allocation, although this allocation might allocate a doctor multiple times.

Given an allocation X represented as a subset of the ground set E, we construct the matroid exchange
graph G(X). G(X) is a directed bipartite graph over the set of nodes E. The nodes of this graph are
hospital-doctor pairs, and there are two types of edges. An edge exists from the node (h, d) ∈ X to
(h′, d′) ∈ E \X if swapping (h, d)with (h′, d′) in the allocationX does not violate the non-redundancy
of the allocation. In other words, withholding d from h and assigning d′ to h′ instead results in a
non-redundant allocation. An edge exists from (h′, d′) ∈ E \X to (h, d) ∈ X if swapping the two in
the allocation X does not result in any doctor being allocated to multiple hospitals. Any edge from
(h, d) ∈ X to (h′, d′) ∈ E \X has a weight of cd(h)− cd′(h

′). All other edges have a weight of 0.

For any S ⊆ X and S′ ⊆ E \X such that |S′| = |S|, a matching M is a set of |S| edges in G(X) from
S to S′ such that every node in S ∪ S′ is connected to at least one edge in M . A back matching M ′ is
a set of |S| edges from S′ to S such that every node in S ∪ S′ is connected to at least one edge. We
say the set (S, S′) is a valid swap if (X \ S) ∪ S′ is a valid allocation — it is non-redundant and each
doctor is allocated at most once. We refer to the allocation (X \ S) ∪ S′ as the allocation generating by
performing the valid swap (S, S′) on the allocation X . We slightly abuse notation if the matching and
back matching form a cycle C : we say the cycle C is a valid swap if the nodes in the cycle form a valid
swap. We similarly define the act of performing the valid swap C on an allocation X .

We utilize the following results on exchange graphs from Brezovec et al. [7].

Theorem D.1 (Brezovec et al. [7]). Let X and Y be two k-MDW allocations

(a) There exists a matching and a back matching in the exchange graph G(X) between X \ Y and
Y \X .

(b) There is no negative weight cycle in the exchange graph G(X).

(c) Consider any sets S ⊆ X and S′ ⊆ E \ X such that |S| = |S′|. Assume there is a matching
and back-matching between these two sets in G(X). Then either (S, S′) is a valid swap, or there
is another matching and back matching between these two sets which are not identical to the first
matching and back matching respectively.

3An explanation for this statement can be found in the proof of Lemma 4.1 in Appendix D.
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(d) Let there be two matchings and back matchings between two sets S ⊆ X and S′ ⊆ E \X such that
each matching and back matching corresponds to a single cycle. We can decompose these two cycles
(say C and C ′) into a set of cycles C1, C2, . . . , Cu such that each new cycle has length smaller than
2|S|. Moreover, each edge appears the same number of times in C1, . . . , Cu as it appears in the two
cycles C and C ′.

All four statements above can be found in Brezovec et al. [7]: (a) is equivalent to Lemma 2, (b) is
equivalent to Theorem 3, (c) is equivalent to Lemma 3, and (d) is equivalent to Lemma 4.

Consider any two k-MDW allocations X and Y . From Theorem D.1(a), a matching and back-matching
must exist between X \ Y and Y \X . The matching and back matching form a set of disjoint cycles C.

We say an edge from (h, d) ∈ X to (h′, d′) ∈ E \X is a cross edge if h ̸= h′. This essentially means
that ∆h′(Xh′ , d′) = 1. Therefore, there must exist an edge from all (h′′, d′′) ∈ X to (h′, d′) in G(X).
We use this observation for our next operation, which we call uncrossing.

Lemma D.2 (Uncrossing Lemma). For some allocation, let C be a cycle in the exchange graph G(X) over
the set of nodes S. There exist a set of disjoint cycles C1, C2, . . . , Cu in G(X) such that each node in S is
contained in exactly one cycle and each cycle has at most one cross edge.

Proof. Assume that the cycle C has more than one cross-edge. Suppose that C consists of the ordered
set of edges {e1, e2, . . . , es}, where e1 is a cross edge and the next cross edge after e1 is at et. Let e1 be
an edge from (h1, d1) to (h2, d2), and let et be an edge from (h3, d3) to (h4, d4).

We replace e1 with e′1 which is an edge from (h1, d1) to (h4, d4). We replace et with e′t which is an
edge from (h3, d3) to (h2, d2). Both e′1 and e′t must exist in G(X) since e1 and et are cross edges. We
then output the cycles C1 = {e2, e3, . . . , et−1, e

′
t} and C2 = {e′1, et+1, . . . , es}. C1 has at most one

cross edge; the only possible cross edge is e′t. We then repeat this procedure with C2 till we have a
disjoint set of cycles, each with at most one cross-edge.

We are now ready to prove the lemma.

Lemma 4.2. LetX and Y be two k-MDW allocations. Then, for any hospital i ∈ H such that |Xi| < |Yi|,
there exists a hospital j ∈ H such that |Xj | > |Yj | and a k-MDW allocation X ′ such that

(i) |X ′
i| = |Xi|+ 1,

(ii) |X ′
j | = |Xj | − 1, and

(iii) |X ′
p| = |Xp| for all p ̸= i, j.

Proof. From Theorem D.1(a), there is a matching and back matching between X \ Y and Y \X in the
exchange graph G(X). This matching and back matching can be assumed to be a set of cycles C with at
most one cross edge in each cycle (Lemma D.2).

We associate each cycle with a winning and losing hospital. Suppose that the cycle C corresponds to a
valid swap. A hospital is winning with respect to a cycle C if its utility strictly increases if the swap is
executed. A losing hospital is one whose utility strictly decreases if this happens. Since each cycle has
at most one cross edge, there is at most one winner and loser in a cycle. Even if C is not a valid swap,
we define winners and losers by pretending it is a valid swap and looking at the size of each hospital’s
bundle before and after the swap.

The total weight of all the cycles in C is 0. This follows from the fact that bothX and Y are k-MDW allo-
cations, and the total weight of all the cycles in C is equal to

∑
(h,d)∈X\Y cd(h)−

∑
(h′,d′)∈Y \X cd′(h

′).
Since there is no negative weight cycle in the graph (Theorem D.1(b)), each cycle in C has a weight of 0.
By the assumptions made in the lemma, |Yi| > |Xi|; so there must be (at least) one cycle C in C where
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hospital i is a winner. We show that either C is a valid swap, or we can find a smaller 0 weight cycle
where i is the winner.

If C is a valid swap, then we are done. If C is not a valid swap, then from Theorem D.1(c), there is
another matching and back matching between the nodes of C . We then apply the uncrossing operation
to this new matching and back matching to create a new set of cycles C1, . . . , Cs. Since C is a 0 weight
cycle, each of C1, . . . , Cs must also be a 0 weight cycle (Theorem D.1(b)).

Case 1: s > 1. There must be a cycle C ′ in this new set of cycles such that i is the winner. Note that
C ′ is smaller than C and C ′ has 0 weight.

Case 2: s = 1. We invoke Theorem D.1(d) to rewrite these two cycles C and C1 as a set of cycles
C ′
1, . . . , C

′
u where each C ′

w is smaller than C . We then apply the uncrossing lemma to each of these
cycles to ensure that there is at most one cross edge in each of the cycles. Then we find the cycle C ′ in
this new set of cycles where i is the winner. C ′ is smaller than C . C ′ also has 0 weight since both C
and C1 have 0 weight, and there are no negative weight cycles in G(X) (Theorem D.1(b)).

In summary, either the cycle we find is a valid swap and has 0 weight, Or we find a smaller cycle with 0
weight where i is the winner. We can repeat the above procedure with the smaller cycle until we find a
cycle C∗ which is a valid swap. We perform this valid swap using C∗ on the allocation X to create a
k-MDW allocation Z where i’s utility increases by 1, some hospital q’s utility decreases by 1 and all
the other hospitals have the same utility.

If |Xq| > |Yq|, we are done. Otherwise, we repeat this procedure with the allocation Z and q. This
procedure is guaranteed to terminate, since with each new allocation we strictly increase |X ∩ Y |; that
is |Z ∩ Y | > |X ∩ Y |.
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