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Abstract

Opinion influence by means of manipulating a social graph structure, as well as election manip-
ulation by means of artificial grouping (gerrymandering), are well-known fields of application
and investigation in computational social choice and machine learning. However, while studied
separately, in real life, both of these manipulations (social graph alteration and gerrymandering)
occur simultaneously. In this paper, we offer the first model of such a simultaneous process,
which takes the form of repeated gerrymandering with an underlying social graph for opinion
diffusion. We term this process "Frankenmandering", and provide the first steps in its analysis:
examples of principal feasibility and the impact of the underlying social graph.

1 Introduction

Influencing the spread of opinion in a social network has been studied from two main perspectives:
forcing changes in network topology [35, 24, 4], or placing "influencers" in the network [5, 29]. Former
can be deployed by social network management, while the latter is an open market. Fortunately, neither
is too easy [11], though possible [39, 6, 36, 12].

However, in district-based election schemes, political parties have found another dubious tactic: Ger-
rymandering – altering the grouping of voters to skew the representative’s election process. It has
been studied in practical political terms [2, 37, 27] and more theoretical terms [15, 9, 26]. Strangely,
Gerrymandering remains (as a task) a single-shot process, a way to exploit the existing set of opinions,
rather than means to both exploit and form them. This is in spite of the existence of some studies
in political science (e.g., [30]) of the long-term effects of gerrymandering. Doubly strange, since the
question of grouping people for forced interaction, targetting their opinions in an elections context, has
been raised (e.g., [31]).

In this paper, we bridge the gap and show that gerrymandering can be effectively used as an opinion
formation tool with long-term electoral effects. Specifically, we link gerrymandering with the formation
(or modification) of social opinion networks, and thus use it as a long-term opinion control method. We
term this new model of repeated gerrymandering process over social networks "Frankenmandering".

2 Model of Interaction

Given a set of n voters V , each characterised by a position in some "physical" space pv ∈ Rd and an
opinion cv ∈ Rm. The physical location, pv , of voters is used to restrict their grouping into districts. We
will use bold-face c ∈ (Rm)n to denote the vector of all opinions of all voters, and use functional form
cv(l) to refer to the l’th coordinate of the preference vector cv of voter v ∈ V . In addition, for a subset
D ⊂ V , we will denote the sub-vector of opinions within the subset by c|D = {cv}v∈D ∈ (Rm)|D|. Let
there also be a directed (social) graph G = (V,E,w) with w : E → R being an edge weight function.
In addition, let L[G] : (Rm)n → (Rm)n be a graph-parameterised opinion dynamics function, and

1

S


d : (Rm)n → R a social opinion evaluation function. Finally, let there be a representative selection
function F, so that for any Ṽ ⊆ V , F

(
c|

Ṽ

)
∈ Ṽ .

Set c0 to be the initial opinion of all voters, and consider the following process iterated for every time
period t:

1. Districts,Dt = {Dt
j ⊆ V }Kj=1, are being selected, so that

K⋃
j=1

Dt
i = V , and ∀i, j holdsDt

i ∩Dt
j =

∅;

2. Local elections are run, producing district representatives rtj = F
(
ct|Dt

j

)
∈ Dt

j , j ∈ {1, ...,K};

3. Representatives become local "influencers". I.e., Graphs, {Ht
j = (Dt

j , E
t
j , w

t
j)}Kj=1, are built so that

(rtj , v) ∈ Et
j for all v ∈ Dt

j , and wt
j : E

t
j → R reflect the influence of the chosen representative

on the "constituents" of its district;

4. Social influence is then exercised on all opinions via Lt = L[G ∪
K⋃
j=1

Ht
j ], so that : ct = Lt(ct−1)

2.1 District Geometry and Initial Opinion Distribution

In our initial studies, we will assume that voters are placed on a regular (2D) grid, though they do not
necessarily form that grid. This initial simplification pursues several goals.

First, such a positioning will simulate well the real-life geographical maps used in applied gerrymander-
ing. Such maps are commonly reduced to planar graphs, and we will have the benefit of prior work
on algorithmic gerrymandering as experimentation baselines (e.g., [15, 14]). Second, grids and planar
graphs are a convenient medium for the application of spatial distribution models, such as Gaussian
and Dirichlet Processes [16, 19, 33], to capture and track the distribution of opinions in geographical
space and over the social network.

Second, speaking of the "geography" and voter’s "physical" locations pv ∈ Rd, we must note that it
is common practice to restrict district formation. Specifically, it is required that there are contiguous
non-overlapping regions of the location space Aj ⊂ Rd, j ∈ {1, ...,K}, so that Dj ⊂ Aj . Further
restrictions come in the form of an exclusion areaA∅ ⊂ Rd, and the requirement that no district-forming
area Aj intersects with A∅. The exclusion area dictates geographic limitations, such as a lake or a river,
that a district cannot cross/bridge.

The importance of limiting the choice of possible districts cannot be understated, as it is a distinguishing
feature of Gerrymandering from Partition Control of elections (see, e.g., [7, 10], and the tremendous
volume of citations therein). Both Gerrymandering and Partition Control strive to exploit the splitting
of voters into (similarly sized) sub-groups. Partition Control even takes a deeper look at multi-stage and
on-line voting processes, but it is Gerrymandering that explicitly focuses on the (geographic/topological)
limitations of possible voter groupings.

In practice, following a classical robotics trick, geographic limitations tend to be resolved by "tessellating"
the permissible space of locations, and then forming districts by collecting connected "shards". This can
further be reduced to a complementary graph of the tessellation, where each shard is represented by the
graph’s node and each edge represents a side shared by two shards. This naturally leads to redistricting
being reduced to graph separation, as in, e.g. [14, 15]. In our feasibility study in Section 4 we adopt
this view of redistricting as well, making sure that the "geography" graph is planar.

However, in out formal model we maintain the "physical" locations, as they may be correlated with
opinions and, thus, exploited for Gerrymandering with partial opinion information.
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2.2 Local Representative Election

The grand formalism of The Model does not limit the manner in which a district representative is chosen,
but merely suggests that it exists and it is uniform for all districts. However, to begin our analysis
of The Model we focus on metric/spatial social choice. It is a long-standing theoretical and practical
modelling technique [17, 32, 34]. More recent research even provides some bounds and assurances as
to the quality of the outcome (e.g., [3, 1], with the former explicitly targetting district-based voting)
and computational feasibility under uncertainty (e.g., [20]).More specifically, we assume a "median"
representative is elected:

rj = arg min
l∗∈Dj

∑
λ∈Dj

∥cl − cλ∥

2.3 Opinion Dynamics

There are multiple opinion dynamics we can target, starting from the (weighted) Ising model and to
aggregate dynamics with backlash/backfire [22, 25]. The latter is of particular interest here.

During an interaction of two voters u, v ∈ V , connected by an edge e = (uv) ∈ E, the opinion cv will
undergo a change depending on the relative proximity of cu:

ct+1
v =


ctv + µ+(ctu − ctv) ∥cv − cu∥ < ϵ+

ctv − µ−(ctu − ctv) ∥cv − cu∥ ≥ ϵ−

ctv otherwise

where ϵ− >> ϵ+ are, respectively, the "backfire" and "confirmation" thresholds, and µ+, µ− are the
corresponding degrees of sensitivity. Sensitivity arguments can be a function of the general edge weight
w(e) as described by the social network graph G = (V,E,w). These effects are aggregated (and the
influence coefficients are possibly normalised) across all edges.

Now, in [22, 25], from which we borrow the "absorption/backlash" response functions, the opinions cv
are scalar values in [0, 1] or [−1, 1]. However, in our model optinions are multi-dimensional, so that
cv ∈ Rm with m > 1 and not necessarily have finite range. Essentially, we see them as multi-issue
opinions, interpreting each dimension of the opinion vector cv as a (logit) stance on that issue.

The simplest way to expand the "absorption/backlash" response to multi-issue opinions would be to
apply the dynamic function above per opinion coordinate. In addition, sensitivity coefficients can be
correlated with the overall (normalised) distance of opinions, so that overall close opinions will depress
the backfire sensitivity, while the overall distant opinions will depress the confirmation coefficients. In
fact, borrowing some inspiration from [13], the dynamic may be written as:

ct+1
v = ctv + µt

uv(c
t
u − ctv),

where µt ∝ wuv⟨ctu, ctv⟩, so that the update coefficient is proportional to: a) the strength/magnitude of
the individual opinions; b) their alignment (cos of the angle between the opinion vectors, or another
distance); and c) the strength of the influence, wuv of voter u on voter v. However, in this paper, we
will be using an even more generic form of neighbourhood influence aggregation, formally described as
follows.

Let us define for a c ∈ Rm a unit vector with the same direction 1⃗(c) = 1
∥c∥c, extending this function

so that 1⃗(⃗0) = 0⃗. Let µ : R → R be the discrepancy response function (DRF), which we presume to
be bounded so that there are µ− < µ+ ∈ R so that µ− ≤ µ(x) ≤ µ+. Now, given a (directed) social
graph G = (V,E,w), let us denote the influencing and following neighbours of a voter v ∈ V by
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N↓(v) = {u ∈ V |(uv) ∈ E} and, respectively N↑(v) = {u ∈ V |(vu) ∈ E} Then, opinion dynamics
over a (directed) social graph G = (V,E,w) are expressed by:

ct+1
v = ctv +

1

Z

∑
u∈N↓(v)

µ
(
∥(ctu − ctv)∥

)
wuv1⃗(ctu − ctv),

where Z is a normalisation factor that controls sensitivity to the cardinality of a voter’s neighbourhood.
So, for example, Z ∝

∑
u∈N↓(v)

wuv normalises the relative importance of neighbours without regard to

their number, while Z ∝
∑

u∈N↓(v)

wuvµ
(
∥(ctu − ctv)∥

)
also normalises the response to the discrepancy

in the neighbours opinion.

DRF is what dictates whether a voter is attracted or repulsed by the opinion of its neighbour(s). We will
be using DRF with two distinct phases of similarity bias (or "assimilation"), wherein somewhat different
but close opinions are attractive, and backfire, wherein opinions that are too distinct to a voter will be
repulsive. Furthermore, we will allow for three neutral ranges: "indifference" (wherein voters deem the
difference in opinion inconsequential), "ambivalence" (wherein voters choose a positive or negative
reaction) and "irrelevance" (where the opinion of the other voter is so distinct that it is disregarded).
Figure 1 depicts the overall shape of the DRFs that we will employ.

Figure 1: Discrepancy Response Function used in Section 4.2
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3 Creating Frankenmandering

The Model only describes the interaction between a social graph opinion dynamics and a redistricting
process. But on it own, The Model lacks purpose. To develop one we expand the concept of Gerryman-
dering [21, 18]– a single instance redistricting aimed at ensuring that representatives hold a specific
type of opinion.

3.1 Gerrymandering

To begin, let us recast the classical Gerrymandering problem in terms and formalism of our Model. In
this case, the opinions represent a preference order over m candidates, and the representative is there
to support the aggregate preference order of its district. The winner of an election is determined by
aggregating the preferences of the representatives, and Gerrymandering targets this final (single-shot)
outcome.
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E.g., the following procedure may be followed. Let a (plurality) ballot projection β : Rm → Rm such that
if bv = β(cv) for some v ∈ V then bv is a one-hot vector and bv(l

∗) = 1 implies l∗ ∈ arg max
i∈[1:m]

cv(i).

Then the representative for district Dj is defined by

rj = argmax
r∈Dj

〈
β(cr),

∑
v∈Dj

β(cv)

〉

That is the ballot of the representative corresponds to choosing the candidate with the highest number
of plurality votes in the district.

A constructive Gerrymandering algorithm then accepts a desired candidate l∗ ∈ [1 : m], and seeks

re-districting, {Dj}Kj=1, that makes l∗ a winner. I.e., l∗ = arg max
i∈[1:m]

b(i), where b =
K∑
j=1

br .

A destructive Gerrymandering algorithm seeks a re-districting so that b(l∗) < max
i∈[1:m]

b(i), preventing

l∗ from winning the election.

The softer versions of the above also exist, where redistricting seeks to maximise (or minimise) the
number of votes received by the idealised candidate.

3.2 Gerrymandering a Dynamic Voter Base

Noticeably, Gerrymandering aims at a static voter base, i.e., it is a single shot operation whose after-
effects on the voter’s opinions are not taken into account. In fact, we did not find any work on repeatedly
gerrymandering a population of voters, though some works (e.g., [30]) in political science do discuss
whether the fact of gerrymandering influences such population metrics as polarisation.

In this work, we show that (repeated) re-districting can be used as a control mechanism of opinion
dynamics, thus having long-term and, potentially, permanent effect on future elections. We term such
re-districting: Frankenmandering.

Frankenmandering accepts as input some desired "reference"/ideal opinion c∗, which it then seeks to
spread throughout the population within a given number, T , of strategic re-districtings. We define
Strong (or Populist) Frankenmandering as minimising the total distance from actual voter opinions
to the ideal one. Formally, it is captured by the following optimisation problem:

min
D1,...,DT

∑
v∈V

∥c∗ − cTv ∥

s.t.

∀j ∈ [1 : K] ∀t ∈ [1 : T ]

rtj = F
(
ct|Dt

j

)
Ht

j = (Dt
j , E

t
j , w

t
j)

Lt = L[G ∪
K⋃
j=1

Ht
j ]

ct = Lt(ct−1)

Frankenmandering is a control problem: it optimises opinion diffusion over a social network via
(restricted) graph connectivity control. In its naive form above it poses a much stronger requirement
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on the final outcome than Gerrymandering at time t = T would do. However, it does have a more
Gerrymandering-like variant, which we term Senat Frankenmandering, where the objective function
targets the representative’s opinion at time t = T :

min
D1,...,DT

K∑
j=1

∥c∗ − cT (rTj )∥

4 Frankenmandering Feasibility

We would like to present two hand-crafted examples. The first example is to show that Frankenmander-
ing, as a repeated extension of Gerrymandering, is possible. That is, there exist instances of opinion
profiles where repeated redistricting leads to a consistent shift in opinions. The second is to show that
a social network can amplify even a single-step Gerrymandering solution into a Frankenmandering
monster. That is, even a single redistricting (maintained for a long time) can lead to persistent and
consistent opinion shift.

4.1 Frankenmandering Inchworm

In this first example, we demonstrate that by carefully selecting the districtsDt at each step, we can
cause all opinions of a population to indefinitely shift in the positive direction. Our example relies on
planar graph adjacency of voters, as depicted in Figure 3. This corresponds to a realistic geography,
where districts are contiguous. At the same time, we assume an empty social network graph G ("a city
of strangers").

We begin with the following profile of opinions for n = 10 voters: {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. In each
iteration, we create a single district dt of size 3, and size-1 districts for all other voters. The representative
(elected median voter) then exerts influence on the two other voters in dt according to the following
update rule, depicted for a single voter-influencer pair (u, v) with opinions cv, cu:

ct+1
v =

{
ctv + sign(ctu − ctv) ∥cv − cu∥ < 3

ctv − sign(ctu − ctv) ∥cv − cu∥ ≥ 3

Frankenmandering then seeks to select a sequence of districts dt such that we shift the entire profile of
voter opinions by exactly +1; i.e. we end up with the target opinion profile {1, 1, 1, 2, 3, 4, 5, 6, 6, 6}.
The intuition behind the solution is that re-districting proceeds in two phases: The first phase uses the
backfire effect to “push” the most positive voters away from the main body while keeping the median
voter close to the least positive voters to attract them toward a central value. The second phase selects
increasingly higher opinion median voters to “pull” voters toward increasingly positive values. While
this shift occurs, it is important to keep a “ladder” of voters with intermediate opinion values that can
be used as median voters. The movement of voters is reminiscent of the locomotion of the inchworm.

Figure 2: A Sequence of Gerrymandered Districts to Shift All Voters
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Figure 2 illustrates a sequence of arrow diagrams that depicts the selection of districts that causes all
opinions to shift exactly +1. In each arrow diagram, each voter is positioned (vertically) according to
her opinion. The sequence of arrow diagrams proceeds from left to right. In each iteration t, the 3 voters
shaded in orange are selected to form the district dt. The median voter becomes the representative,
whose opinion remains uninfluenced. The voters’ opinions may shift, and these shifts are depicted as a
small arrow: green arrows denote an attractive effect toward the representative, and red arrows denote
the backfire effect pushing the voter away from the representative. These shifts are then reflected at the
next arrow diagram at t+ 1. The final (t = 8) diagram reproduces the initial (t = 0) opinion profile,
with all opinions shifted +1. The same pattern can then be repeated to shift the entire population’s
opinions indefinitely.

Figure 3: "Geography" Graph of Voters in Fig 2

4.2 Social Network Effect Example

In this second example, we show that we can achieve the same effect of shifting the opinions of the
entire population with a single, persistent districting of voters, if the social influence between the voters
can be leveraged. Let us define an initial opinion profile on n = 6 voters of {0, 1, 2, 3, 4, 6}, and a target
opinion profile of {1, 2, 3, 4, 5, 7}. We will fix a district d∗ to include exactly the first two voters and
the last voter. The social network will be a line graph, with each voter connected to (up to) two most
similar peers. Finally, the opinion dynamics have DRF as in Figure 1 or, more explicitly:

ct+1
v =


ctv ∥cv − cu∥ < 2

ctv + sign(ctu − ctv) ∥cv − cu∥ < 4

ctv − sign(ctu − ctv) ∥cv − cu∥ < 6

ctv ∥cv − cu∥ ≥ 6

Note the explicit use of the "indifference" and "irrelevance" plateaus of the DRF in this example.

Figure 4: A Fixed Gerrymandered District to Shift All Voters

The sequence of arrow diagrams in Figure 4 shows how this is accomplished. As in Figure 2, the vertical
positions in each arrow diagram denote the opinions of the voters. The social network among the
voters is depicted as a gray line graph. Only voters 0, 1, and 5 form the fixed district d. Influence from
the representative is depicted by small arrows as before (in this case, these are exactly the red arrows).
Social influence between voters through the social network are drawn directly on the network (in this
case, these are exactly the green arrows). By t = 8, the same opinion profile is regenerated, with all
opinions shifted +1 from t = 0. With no further intervention, this system will shift opinions of all
voters indefinitely in the positive direction.
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5 Discussion and Future Work

In this paper, we present a novel interaction model of repeated redistricting with an underlying
social network. The redistricting forces some nodes to become temporary opinion influencers in the
social network, wherein the opinions undergo a non-trivial dynamic with "assimilation" and "backfire"
properties. We term the strategic use of such redistricting Frankenmandering, and formulate an
opinion control problem that corresponds to it. We show the feasibility of Frankenmanding by providing
two key examples, where the opinions essentially "inchworm" in the desired direction.

We are building two algorithmic solutions to Frankenmandering. First, we are developing a rein-
forcement learning based solution. In spite of ostensibly high complexity, deep learning solutions of
influencer placing in an opinion network do exist, e.g. [12, 8, 38]. Our current designs follow these and
other approaches capable of some reasoning over graph embeddings [23, 28]. Second, we are considering
an ad-hoc algorithm based on the "inchworm" solution for more general graphs by reordering the
"geography" and the social graphs to align with the order implied by the geodesic distance of voter
opinions from the ideal, target opinion c∗.

We submit our model and preliminary findings to the community, seeking comments, critique, and
cooperation to facilitate our progress.
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