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Abstract

The well-known Condorcet Jury Theorem states that, under majority rule, the better of two
alternatives is chosen with probability approaching one as the population grows. We study an
asymmetric setting where voters face varying participation costs and share a (possibly heuristic)
belief about their pivotality.

In a costly voting setup where voters abstain if their participation cost is greater than their
pivotality estimate, we identify a single property of the heuristic belief—weakly vanishing
pivotality—that gives rise to multiple stable equilibria in which elections are nearly tied. In
contrast, strongly vanishing pivotality (as in the standard Calculus of Voting model) yields a
unique, trivial equilibrium where only zero-cost voters participate as the population grows. We
then characterize when nontrivial equilibria satisfy a version of the Jury Theorem: below a sharp
threshold, the majority-preferred candidate wins with probability approaching one; above it,
both candidates either win with equal probability.

1 Introduction

Consider a population of N voters voting over two alternatives A and B, with A being the better
alternative according to some pre-defined criterion. Consider further that the preference of each
individual voter is determined independently by an outcome of a coin toss biased in favour of the better
alternative A. That is, each individual voter supports alternative A with probability p and B with
the probability 1 — p. Under this setting, the famous Condorcet’s Jury Theorem (CJT) states that the
majority rule selects candidate A with certainty when population size increases to infinity.

An implicit assumption in Condorcet’s theorem is that everyone votes, or at least that the decision to
vote is independent of one’s preference over alternatives. In contrast, in many practical situations
such as political elections, or a local or national referendum, abstention is found to be a common and
prominent phenomenon. For instance, the voter turnout in US presidential elections has been around
52%-62% over the past 90 years [Martinez and Gill, 2005]. Abstention is also observed to be a significant
phenomenon in lab experiments [Blais, 2000; Owen and Grofman, 1984].

From a rational, economic perspective, the surprise is not why some voters abstain, but why anyone
votes at all. As Anthony Downs noted in 1957, a rational voter compares the benefit of voting—which
occurs only if they are pivotal—against a fixed cost. In large electorates, the probability of being pivotal
is so low that the expected benefit rarely outweighs the cost. This leads to the so-called paradox of
voting [Downs, 1957], where the only equilibrium is trivial: only voters with zero (or arbitrarily small')
costs turn out.

While Condorcet’s result holds under the assumption that everyone votes, Down’s theory of rational
voting predicts meagre participation in large-scale elections. Our goal in this paper is to understand the
equilibria that arise from rational voting but with a flexible estimation of one’s chances to be pivotal, in
an attempt to reconcile the theoretical predictions with the moderate turnout rates we see in practice.
We ask: (1) are there equilibria where a significant portion of the population votes? (2) how likely is
the better candidate to win, in equilibrium? We are mainly interested in the answer as the size of the
population grows to infinity: does the winning probability of the better candidate approach 1? Or does
the paradox of voting ‘kill” Condorcet’s Jury theorem? We now present the standard model of voter
turnout from the literature, which formalizes how voters estimate their likelihood of being pivotal.

'In large but finite populations, only voters with near-zero voting costs participate.



The Calculus of Voting model: Originally proposed by Downs [1957] and later developed by Riker
and Ordeshook [1968], this model of rational voting attributes each voter’s decision to abstain to the
expected cost-benefit analysis. Let p; denote the pivotality of voter ¢, V; denote the personal benefit
she receives if her preferred candidate wins an election, D; denote the social benefit she receives by
performing a civic duty of voting and G; denote the costs of voting she incurs. These costs include the
cost of obtaining and processing information and the actual cost of registering and going to polls (see
also [Aldrich, 1993] for discussion of voting and rational choice). A voter i votes if and only if

pi - Vi +D; > G;. (1)

The calculus of voting model considers p; to be the probability that that all voters except ¢ reach a tie.
The tie probabilities are derived from the aggregated stochastic votes, and thus the pivot computation
and subsequent equilibrium analysis quickly become intractable.

Enter heuristics Several recent models maintain the fundamental game-theoretic approach of equilib-
rium among strategic voters, but relax the assumption that voters calculate their true pivot probabilities,
or engage in probabilistic calculations at all. This includes minmax regret equilibrium [Ferejohn and
Fiorina, 1974], sampling equilibrium [Osborne and Rubinstein, 2003], or Local-dominance equilib-
rium [Meir et al., 2014; Meir, 2015]. Merrill [1981] considers (as we also do later) voters maximizing
expected utility but without specifying how they estimate their pivot probability.

Exit rationality Finally, there are models that suggest voting heuristics people may use, without
engaging in any equilibrium analysis. A particularly simple example (not related to turnout) is the
’k-pragmatist’ heuristic [Reijngoud and Endriss, 2012], and there are many others, see a recent survey
in [Meir, 2018]. Some of these essentially model the decision as a function of the (estimated) margin
between candidates [Bowman et al., 2014; Fairstein et al., 2019].

Our key takeaway from the long list of existing models, along the entire ‘rational-to-heuristic’ spectrum,
is that the estimated margin plays a major role, in addition to the size of the population (that is not
always considered). There is also empirical evidence of the connection between (narrow) margin and
(high) turnout [Aldrich, 1993], and strong experimental evidence that the decision to abstain is positively
correlated with a high margin and with large population [Levine and Palfrey, 2007]. Gerber et al. [2020]
conducted a large field experiment, that showed people substantially over-estimate the chance of a
small margin (and thus their chances of being pivotal).

It is important to mention a stream of papers that assume voters get a noisy signal of the ‘truth’, but
actually have shared interest (sometimes called ‘epistemic voting’ [Coleman and Ferejohn, 1986]). In
these models a voter may prefer to vote differently from her signal due to Bayesian reasoning, thereby
providing additional reasons for failure of the CJT [Austen-Smith and Banks, 1996]. We discuss this in
Sec. 7. However we follow the more common assumption that voters (if they vote) always follow their
signal.

1.1 Our Contribution

Analyzing every model from the literature separately would be tedious and leave us with an isolated
set of narrow results. Instead, we stay within the Downsian framework where voters are rational in the
sense of aiming to maximize their expected utility in equilibrium, but allow a wide range of ways in
which voters estimate their pivotality. The dashed rectangle in Fig. 1 shows the scope of models in our
framework.
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Figure 1: Position of our work within the literature: EQ=Equilibrium; R=Rational; and H=Heuristic.

Our Results: We fully characterize the CJT result for the models considered in the paper. At the heart
of our characterization result lie two key elements: (1) the pivot points, which emerge as the limiting
points of the sequence of non-trivial equilibria with increasing population size , and (2) the dependence
of voter pivotality on two parameters: population size n and margin of victory m. While strongly
vanishing pivotality models (Calculus of voting model, for instance) tends to collapse the equilibrium
into a unique and trivial outcome, it is the more nuanced, weakly vanishing and tie-sensitive models
that gives rise to richer, more complex equilibria. This leads to outcomes that fundamentally diverge
from the classical implications of Condorcet’s Jury Theorem, revealing new dynamics in collective
decision-making under uncertainty. In particular, we show that under weakly vanishing models of
pivotality estimation it is possible that a significant fraction of population votes but fails to converge
to selecting better alternative even in the limit (hence also for any population size). That is, there is a
nonzero probability of a surprise in the election irrespective of the population size.

2 Model

We start with the standard Calculus of Voting model, later expanding it to allow heuristic pivotality
estimation.

2.1 Calculus of Voting

We study a two-candidate (referred to as A and B) election with N voters. Each voter is either a
supporter of A (prefers A, ie., A >=; B) or a supporter of B. We adapt the classical two-candidate
calculus of voting model as follows. The action of each voter is to vote for one of the two candidates
{4, B}, or abstain (_L). We set the utility of having i’s favorite candidate selected as 1, and denote as
¢; := max{0, G’%Zm} the effective cost of voting for voter ¢ (with G;, D; and V; as defined in Eq. (1)).

We consider the effective cost of voting and the preference of voter ¢ as an independent sample from a
commonly known joint distribution D over [0, 1] x {A, B} and is denoted by the tuple (c¢;, T;). We
assume that D has no atoms, except possibly at ¢ = 0 (“core voters”).

Rational equilibrium Note that the only private information a voter has (other than the type
distribution, which is common knowledge), is her own type. Moreover, since voting for the less
preferred candidate is strictly dominated, we can assume that the only two actions for voter ¢ are T
(vote for T;) and L (abstain). A (pure, ex-ante) strategy profile is therefore a mapping v from the type
space [0,1] x {A, B} to an action {T, L }. Now, a voting game is composed of a distribution D and
population size N. Every game, together with a strategy profile v, induces a joint distribution on the



number of votes for A and B.

The expected (normalized) utility gain from actively voting is thus exactly the probability that the voter
is pivotal p°, minus the voting cost ¢;. Since p° in turn also depends on v, we define the explicit function
P%(v) = P{ 5 (v) that represents the probability that a single player is pivotal? under strategy profile
v in the game (D, N) (we often omit the game from the definition).

In a (pure) Bayes-Nash equilibrium, each player picks an action that maximizes her expected utility,
given the distribution on other players’ actions. This distribution, in turn, is induced by the type
distribution of the other players (conditional on the player’s realized type) and the strategy profile. In
our case:

+ The type distribution is an i.i.d. sample from D, and the voter’s realized type reveals no further
information;

+ The utility-maximizing action of each voter is to vote (T) iff Eq. (1) holds for her type.

Definition 1 (Threshold profile). A strategy profile v is called a threshold profile if there is a threshold
¢ = c(v) such thatVc; € [0,1],VT; € {A, B}, v(c;,T;) =T iffe; <ec.

Observation 1. A threshold strategy profile v is a Bayes-Nash equilibrium of the Calculus of Voting game
(D, N), ifand only if ¢ := ¢(v) = P%N(v).

Proof. Let i be a voter (c;,T;) and note that P°(v) does not depend on her type T}. As v is a threshold

profile, we have p; = p° = P%(v). The utility-maximizing action of voter is to vote if and only if
c; < PO(v). O

We restrict our attention to threshold profiles ¢ € [0, 1] unless explicitly said otherwise. Note that we
did not explicitly say what is the function P°. However clearly such a function is well-defined, and
even without a formal definition it is clear that fixing v, P%} ~ (v) decreases very rapidly with N. This
means that only voters with essentially zero cost will vote, regardless of the type distribution. Indeed,
this is the well-known paradox of voting, and it is easy to see that it may lead to an almost-certain win
of the minority candidate, if happens to be supported by more low-cost voters.

Support functions While D contains all necessary information regarding the distribution of costs in
the population, we would like to present costs in a more intuitive way.

For T € {A, B} let sp : [0, 1] — [0, 1] be a continuous, non-decreasing function, where s7(c) should
be read as the fraction of the distribution that prefers T" and has individual cost at most c. We call s¢
the support function of T', and note that it does not depend on the identity of voter 7.

Proposition 2. Let voter costs and types are sampled i.i.d. from a distribution D. Then any distribution
D induces a unique pair of support functions s s, sg with sa(1) + sp(1) = 1, and vice-versa.

2.2 Perceived Pivotality

The informal statement above regarding the negligible turnout is not only disappointing, but also
unrealistic, as in practice a substantial fraction of the population usually votes. We would therefore
relax some of the rationality assumptions. These assumptions essentially correspond to the two bullets
in the equilibrium characterization in Cor. 1: The second suggests that voters act based on their true

®For simplicity we consider po as the probability that both candidates are exactly tied with % votes each, which is indeed
the pivot probability when N is even. When N is odd, things get more complicated, but since for large N the differences are
negligible, we maintain our simplifying assumption.



probability of being pivotal; and the first means that they maximize their expected utility given this
probability and Eq. (1). In what follows, we will maintain the utility maximization assumption but allow
voters much more freedom in estimating their pivot probability P.

Pivot functions We highlighted earlier that the two most important factors that determine the
probability of various outcomes are (1) the size of voting population, n; and (2) the margin, m. Our
simplifying assumption (following e.g., [Myerson and Weber, 1993]) is that voters only consider n and
m as expected values. Thus, an expectation-based Perceived Pivotality Model (PPM) is specified by a
function p, which maps any pair of n and m to p(n,m) € (0, 1], and is continuous, non-increasing in
both parameters, and strictly decreasing when strictly below 1.

PPM quantifies a subjective ex-ante belief of the individual voter about the importance of her vote. The
equilibrium analysis crucially depends on the PPM model under consideration. In Sec. 3, we provide
several concrete pivotality models, which can either approximate the real pivot probability P° or reflect
beliefs and other factors affecting utility.

Replacing P with a general PPM p(n, m) allows us to consider a broad set of voters’ behaviors. To see
why this is useful, we first observe that the expected margin and the number of voters can be easily
derived for any threshold profile c. We define the two following functions:

n(c, N) := (sa(c) + sp(c))N;; (expected voters) (2)
_ [sal0) = sp(c)]

m(c) : sa(e) + sp(e)

. (expected margin) (3)
Observation 3. Given support functions (i.e. a type distribution) (sa, sg), a threshold profile c, and
population size N, the expected number of active voters is n(c, N') and the expected margin is m(c).

Election equilibrium We can now broaden our class of games. An Election Game is a tuple
(sa,sB,p, N), where s4, sp are the support functions of the type distribution D; p is a PPM; and
N is the size of the population. For the special case where p = P]Q,p, we get the Calculus of Voting
game. However, in a general election game, a voter votes according to how much she perceives herself
as pivotal. We extend the equilibrium definition accordingly.

Definition 2. A strategy profile v is an election equilibrium of election game (sa, sg,p, N), if

1. v is a threshold profile; and

Proposition 4. Every election has at least one equilibrium.

The proof follows from the fact that g(c¢) := p(n(c, N), m(c)) is a continuous function from [0, 1] onto
itself and therefore must have a fixed point.

2.3 Issues and Elections

We want to be able to analyze elections as the population size grows. An issue is a triple [ = (s 4, Sg, D).
Thus an issue together with a specific population size N defines an election game (s 4, g, p, V) (or just
(I, N)) as above. Alternatively, an issue can be thought of as a series of election games, one for every
population size N. Denote by C' (I, N) C [0, 1] the set of all equilibrium points of election £ = (I, N).

Definition 3 (Issue equilibrium). An equilibrium of issue I is a series of points¢ = (cy)n s.t. VN, ey €
C(I,N), and ¢ has a limit. We denote the limit by c*.



For an issue equilibrium ¢ with limit ¢*, if c;y > ¢* for all IV we say that €is a right equilibrium. Similarly,
if ey < ¢* for all N we say that ¢ is a left equilibrium.

Trivial equilibria An equilibrium is trivial if its limit is 0, meaning only core supporters vote.

3 Perceived Pivotality Models

We first consider models that closely approximate the actual probability that a single voter is pivotal,
i.e., the probability of a tie V4 = Vp.

3.1 Fully Rational models

We first argue that our model captures the Calculus of Voting as a special case, i.e. that P is also a
PPM.

Proposition 5. For every N, there is a PPM p%ov s.t. for every threshold profile c, P% N =

p%OV (n(c, N), m(c)). More precisely,

Py (nm):= E Pr (z=[n"/2])].

n/~Bin(N, ) xNBin(n’,H'Tm)

Note that as N grows, n’ is highly concentrated around n. We can therefore define an approximate
version with a PPM p that does not depend on N:

Example 1 (Binomial PPM).

PPrnm) = Pr (z=|n/2)). (@
x~Bin (n,(l+m)/2)

A later model by [Myerson, 1998] suggested drawing the scores of each candidate independently from a
Poisson distribution (see Appendix E). Conceptually, the Poisson model is more appropriate in situations
where voters can abstain (as the total number of active voters is not fixed), However it behaves very
similarly to the Binomial model, and for our purpose they are almost the same. In fact, all three models
belong in a much larger class of PPMs, characterized by strong vanishing pivotality:

Definition 4 (Vanishing Pivotality). We say that a PPM p has [strong] vanishing pivotality if
limy, 00 p(n,m) = 0 forallm > 0 [m > 0].

As we will later see, issues with vanishing pivotality (v.p.) always admit a trivial equilibrium. Clearly at
the trivial equilibrium, Jury theorems are irrelevant: the candidate with more core support always wins
with probability that approaches 1 as the population grows, regardless of who is more popular overall.
It is not hard to verify (e.g., using Stirling approximation) that in both the Binomial and Poisson PPMs,
p(n,m) = @(ﬁ) for m = 0, and decreases exponentially fast in n for any m > 0.

3.2 Tie-Sensitive models

We saw that even in the rational models (which have strong vanishing pivotality), the case of m = 0 is
different, with a substantially higher probability to be pivotal. A simple and perhaps more cognitively
plausible assumption is that voters consider themselves pivotal if the margin is small enough, regardless
of the number of voters.

Definition 5 (Tie-sensitive pivotality). We say that a PPM is q-tie-sensitive if p(n,0) > ¢ for alln.



That is, if the expected outcome is a tie, everyone thinks they are pivotal at least to some extent,
regardless of the number of active voters. By definition, any PPM has either strong v.p. or tie-sensitivity.
If it is tie-sensitive and has v.p. we say it has weak vanishing pivotality. Tie-sensitivity may occur due
to various reasons, and we provide and discuss examples in Section 6.

4 Characterizing Equilibrium Limits

We begin by characterizing the trivial equilibrium.

Proposition 6. Suppose s4(0) # sp(0). Any issue with vanishing pivotality admits a trivial equilibrium.

Proposition 7. Suppose s4(0) + sp(0) > 0. Any issue with strong vanishing pivotality admits only
trivial equilibrium.

Next, we show that the intersection points of the support functions (where the margin is 0) form the
limiting points of equilibria. Recall that by our assumption there is a finite number of such points (but
see Appendix C).

Definition 6 (Pivot Points). For a given pair of support functions s 4, $p, a pivot point is any ¢ € (0, 1)
where sa(c) = sp(c).

For technical reasons we will assume throughout the paper that there is only a finite number of
intersection points where s4(¢) = sp(c), and that all derivatives of s4, sp are bounded in some
environment of each such point. We explain the more general case in Appendix C.

Theorem 8. Let I be an issue with a PPM p having weakly vanishing pivotality and is q-tie-sensitive.
Any pivot point ¢* < q has a right- and left-equilibrium with limit c*. For support functions with finite
intersection points, the limit of any equilibrium is either 0 or a pivot point.

Proof. We start with the existence of the right equilibrium. The proof for the left equilibrium is
symmetric. Let ¢* < ¢ be some pivot point of I, and let § > 0. We need to show there is some Ns and
some ¢s5 € (c*,¢* +0) s.t. ¢5 € C(I, Ny).

Since all derivatives are bounded, there is some open interval (c¢*, ¢* +t) where s 4, sp differ, and w.l.o.g.
sa(c) > sp(c) forany ¢ € (c*,c¢* +t). Let § := min{t, d, ¢ — ¢*} and note that by the definition of
pivot point, € := m(c* + J) > 0. Also, n(c* + §, N) = (sa(c* +6) + sp(c* + §))N < N. Thus by
weakly vanishing pivotality:
pn(e” + 8, N), m(c” +8)) < p(N,€) —— 0,
—00
so there is N5 for which p(n(c* + §, Ns), m(c* + §)) < J. From tie-sensitivity, for any N (including
Nj):
p(n(c,N),m(c")) = p(n(c"N),0) > p(N,0) > q¢ > c*+ 9.

Let g(x) := p(n(c*+x, Ns), m(c*+x))— (c¢*+x). Then f is continuous in z € [0, §) with g(0) > 0 and
g(0) < 0. From intermediate value theorem there is some z* where g(z*) = 0 and thus ¢5 := ¢* + z*
is an equilibrium of (I, Ny).

In the other direction, assume towards a contradiction that there is a nontrivial equilibrium with limit ¢
that is not a pivot point. Note that by our assumption of finite intersection points, and due to bounded
derivatives, s4(c) — sp(c) > & > 0 in some interval [¢ — ¢, ¢ + ¢]. Thus in any point in this interval
the pivotality goes to 0 for sufficiently large IV, and in particular is lower than ¢ — §, which means it is
not an equilibrium of (I, N) for any N > N. Note that if ¢ is tight (i.e., the PPM is not ¢’-tie-sensitive
for any ¢’ > ¢), points above ¢ cannot be the limit of any equilibrium, as the pivotality at any c is at
most q. O



So we have a rather complete characterization of equilibria, or at least of their limit points, in every
issue. Two natural questions are: (a) whether these equilibria are inherently stable; and (b) are these
equilibria “good” in the sense of the Condorcet Jury Theorem.

4.1 Stability of Equilibrium Points

Intuitively, stability means that a small perturbation will not cause us to drift from the equilibrium
point, but to gravitate back to it [Granovetter, 1978; Palfrey and Rosenthal, 1990].

Definition 7 (Stability (informal)). An equilibrium cy is stable, if there is some € > O such that for any
threshold profile ¢ with |c — cn| < &, the trend® at c is towards cy .

Theorem 9. Let € be a right-equilibrium of issue I with limit ¢* > 0. Then for sufficiently large N, ¢y is
stable.

We provide here the proof outline. The full proof with the exact definition of stability is given in
Appendix D. Note that close to the equilibrium point, both n(c) and m(c) are increasing in ¢, and thus
p(n(c),m(c)) is decreasing in c. So any perturbation that ends up with fewer active voters will mean
higher pivotality, and some voters will join back (and vice versa). Since for sufficiently large IV the left-
and right-equilibria are the only equilibria, and the right ones are stable, the left ones must be unstable.

5 Jury Theorems for Pivot Points

Given an election instance 2 = (I, N) and a threshold profile ¢ € [0, 1], a random variable counting the
number of active votes for A (and likewise for B) V4 := > . x 1[c; < ¢ A T; = A]. We further denote
the Winning Probability of A in profile ¢ of election (I, N) as WP (I, N, c) := Pr(Va > V|I, N, ¢).
Finally, for any issue I with issue equilibrium ¢, we define

WP4(1.2) = lim WPA(I, N, cy).

We emphasize that we, as ‘outsiders’ to the election, care about the actual probability of the event,
which is not affected by the perceived pivotality model p, once c is determined.

Our main question regards the non-trivial equilibria, whose limits are the pivot points. For an equilibrium
¢ with limit ¢*, we define the convergence rate as c¢r(¢) := limy_00 VN|cy — ¢*|.

Definition 8. We say that ¢ is converging fast if cr(¢) = 0; and slow if cr(¢) = 400. Otherwise, we say
that ¢ has moderate convergence rate (c*) € (0, c0).

Local Jury theorems We say that / admits a jury theoremat ¢* € [0, 1], if there is an issue equilibrium
¢ with limit ¢* s.t. WP 4 (1, ¢) = 1. Similarly, I admits a non-jury theoremat ¢* if WP 4 (I, ¢) < 1, meaning
that regardless of the size of the population, there is some constant probability that the better candidate
A will lose. I admits a strong non-jury theorem if WP 4(I,¢) = 3.

Theorem 10 (Characterization of Stable Jury Equilibria). Let I be an issue and let ¢ be a nontrivial right
equilibrium of I with limit c*. There are three cases, where ¢ admits a

1. Jury theorem if ¢ converges slowly;

That is, when starting from cy, the best response of voters in e-neighborhood of cn gets closer to ¢y until convergence
as we increase V.



PPM Type Equilibria| Conv. Rate ‘ Jury Thm ‘ Example PPMs
Network (fixed k);
no v.p. atq - - Altruist (f(n) = exp(w(n)))
q-tie- Poly. (5 > 2a);
sensitive| weak at all pivot slow Yes Altruist (f(n) = w(y/n))
vanishing points Poly. (5 = 2a);
pivotality below ¢ | moderate Weak | Altruist (f(n) = ©(y/n))
fast No Poly. (8 < 2c)
CoV; Binomial; Poisson;
- strong v.p. |at0 - - Altruist (f(n) = o(y/n))

Table 1: (From L to R) First two columns show the three main types of PPM, as per Def. 4 and 5. The third column
summarizes the main results of Sec. 4. Next two columns shows the finer partition of weakly v.p. models, and the
winning probability of the leader following the results in Sec. 5. The rightmost column shows the classification of
the models in Sections 3 and 6.

2. weak non-Jury theorem if ¢ converges moderately; and

3. strong non-Jury theorem if ¢ converges fast.

Proof Sketch. Let p and o denote the mean and standard deviation of the random variable V4 — Vg
representing the difference between the votes received by two candidates. We approximate this random
variable by a Gaussian distribution. The ratio £ is critical for determining whether the sequence ¢
satisfies a specific variant of the Jury theorem, as the winning probability is approaching ® (g) (here
®(-) denotes the CDF of standard normal distribution).

We prove that the margin m(cy) is essentially proportional to |y — ¢*|. In particular, when the
sequence |cy — c*| converges at a slow rate, so does the margin, meaning that m(cy) = w(1/v/N), it
can be shown that £ tends to infinity with IV, and consequently ® (g) tends to 1. This result implies
that ¢ adheres to the Jury theorem since, in this case, the ratio % grows unbounded as NV increases.

"]

On the other hand, under conditions of fast convergence, where m(cy) = o(1/v/N), the ratio =
approaches zero as N becomes large. Consequently, ® (g) — 0, indicating weak non-Jury theorem.
This result reflects that the distribution of the voting difference becomes more centered around zero
with a diminishing spread, leading to an increasingly uncertain outcome.

For the intermediate case of moderate convergence, where m(cy) = ©(1/v/N), the ratio £ converges
to a finite positive limit as IV increases. This behavior implies that ¢ (g) remains bounded strictly
between 0 and 1. Consequently, ¢ does not fully satisfy the Jury theorem but neither does it completely
diverge from its principles. A detailed proof is given in Appendix A. O

6 Classification of PPMs

Recall the ‘rational’ PPMs with strong vanishing pivotality we considered in Sec. 3. As our positive
results apply for PPMs that are tie-sensitive, it is important to at least provide some examples of such
models, that can also be justified in practice.

We suggest simple models demonstrating how tie-sensitivity may emerge from at least three reasons:
limited communication, altruism, and heuristics.

Limited Communication Several authors in the literature considered models in which voters are
embedded in an implicit or explicit network, where they only ‘see’ a limited number of K neighbors [Os-
borne and Rubinstein, 2003; Michelini et al., 2022], based on which they can assess their pivotality.



Generally, k out of K neighbors will be active in expectation, and k can be a function k = x(n). This
yields the following model:

Example 2 (Network PPM). pNetwork(s) (n m) := pBi(k(n), m).

It is not hard to see that if e.g. k& = k(n) is a constant, then the model is gj-tie-sensitive for some

qr = @(ﬁ) and does not have vanishing pivotality at all. Thus equiliria are not at pivot points.

Otherwise (i.e. k is strictly increasing with n), it has strong vanishing pivotality and thus only the
trivial equilibrium.

Altruist voters Another possibility is that voters correctly estimate their pivotality (say, using the
Binomial or Poisson model above), but that their value V; scales with the size of the population as
V; - f(IV). That is, voters consider large elections as ‘more important’. We note that this argument is
sometimes used as a possible explanation for the paradox of voting [Downs, 1957]. Note that

G; — D; G; — D;

m<l’ — = v, <p- f(N).

We therefore get another class of PPMs (considering that n and N scale roughly at the same rate):

Example 3. p®@f)(n,m) := min{q, pP"(n,m) - f(n)}.

It is not hard to see that the Altruist PPM is weakly vanishing for any sub-exponential function f, and
that it is ¢-tie-sensitive whenever f = Q(y/n). In fact, we can classify all the regimes of altruist PPMs:

Proposition 11. Let I be an issue with an Altruist PPM with function f, and let ¢ be a non-trivial
equilibrium. Then:

1. if f = e“") then @ is a fixed equilibrium at q; else
2. if f = w(y/n) then @ converges slowly; else
3. if f = ©(\/n) then € converges moderately; else

4. ¢ is trivial.

Interestingly, there is no f for which there is a non-trivial equilibrium with fast convergence (See also
Table 1).

Polynomial heuristics Another PPM is induced by defining the dependency on n and m directly:

Example 4 (Polynomial PPM). For ¢, a, 3 > 0,p"?%(@®8) (n, m) = min{q, m~* - n=#}.

It is immediate from the definition that the Polynomial PPM is both g-tie-sensitive and has a weakly
vanishing pivotality, so it remains to classify the models according to rate of convergence.

Suppose that the support functions have different derivatives at c* (see Appendix C).

Lemma 12. Let I be an issue with a Polynomial PPM and let ¢ = (cn)n be a non-trivial equilibrium of I
. L _B
with limit ¢*. Then cy = ¢* + O(N " «a).
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From the lemma (and Theorem 10), we conclude that the critical threshold for the Jury theorem is at
o = 208: If « > 20 then convergence is fast and there is a strong non-jury theorem; and if @ < 2 then
convergence is slow enough to guarantee a local jury theorem. See Table 1.

The threshold includes the special case where 5 = %, o = 1. This is case is interesting and natural
because the dependency on the number of active voters is ﬁ—just as in the fully rational models—

whereas the dependency on the margin is linear.

Moreover, in the case of moderate convergence rate where o = 23, A wins w.p. @((c*)_é). Con-
veniently, most terms cancel out and we get that WP 4(1,¢) = ®((¢*) =) < 1. Interestingly, the
probability does not depend on the shape of the support functions at all (except their intersection point),

and neither does it depend on 5.

6.1 Sensitivity to model parameters

Our theoretical results provide a sharp threshold between ‘positive’ and ’negative’ results, which
depends on the PPM or its parameters. However, there results hold in the limit as N grows. We next
study via an example how A’s winning probability changes as population size increases and/or when
we vary the parameters. For simplicity and easy computation we use the Polynomial PPM with 5 = % 4

Example 5. Suppose sa(c) = 0.1+ ¢/2 and sp(c) = 0.4. That is, B has 40% overall support, all of them
core supporters and A has 60% overall support and a fraction of voters are distributed over cost range [0, 1].
We assume the Tie-sensitive PPM with o = 1.

> , - 1 m—
E -8- Win probability of A under ¢* > & N =10? &
o L —&— Win probability of B under ¢~ | | E . 10
o - 50" 2 09| |3 |
© 2 . ‘
1 1 1 = © —==N = 10"
& 5ol 7))
: : 7: p 0.96 ‘5‘08*+N:108 "/ |
1 1 ! m kS . - /
=T~ E 0.94] 12 /
: : PRI i E 07 /S ]
: . JHE 2 g ;: v
—= S = 092F 1 =2 e
' : £lils = 09 / |
u P
1 1 =" = = o .
X ' WL T T S 0 == w . . L
b = P >, 10° 100 10° 100 107 10° 09T 07 08 00 1 L1
N N N Population size (logarithmic scale) a

Figure 2: (L) demonstrates election instance from Section 6.1. For large value N, the pivot point ¢*, two non-

trivial equilibria c}; and ¢}, and the trivial equilibrium c° are shown. For c};, the probability of a random voter to
+

vote A is proportional to s4(cj). The m(cj) is proportional to the margin of victory. The bold arrows indicate
that cf;, ¢% are stable equilibria whereas cyy is not stable. (C) Win probability for different values of N under
respective induced equilibria. (R) Win probability of A for § = 0.5 and different values of « in polynomial PPM
model for different values of N. The trend reversal can be observed at o = 1.

As noted earlier in the main paper, the unique pivot point is 0.6, so we expect the winning probability
to approach ®(0.671) =2 0.952 in both c]'t, and cy; as N increases.

Figure 2 (C) demonstrates the Non-Jury Theorem, showing that the winning probability of A in the stable
equilibrium ¢ is bounded away from 1, even as the total population size N is increasing. Interestingly,
the winning probability of B behaves differently and is decreasing towards the ¢~ equilibrium point.
Hence B would always prefer a smaller fraction of the population to vote whereas the popular candidate
prefers a large population to vote. Showing that the equilibrium ¢~ is not stable.

We observe that the win probabilities under ¢t and ¢~ for respective winning candidates are significantly
different. While B wins with a high probability under ¢~, A wins under ¢* with a high probability for

*The code used for the simulation results is available at https://anonymous.4open.science/r/NJT-E778/.
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the same population size, for a fixed population size, the win probabilities of these candidates under
their favoured equilibria are not the same.

Figure 2 (R) shows the win probability of candidate A under ¢t and for different values of .. We observe
that with higher values of N equilibrium win probability of at ¢t approaches a step function around
a = 1 = 2. The larger value of a pushes the equilibrium point ¢ towards the right, increasing the
win probability of the popular candidate. Yet this occurs slowly and even for high N there is a gradual
increase of the win probability of A with a.

7 Discussion

The starting point of this paper was the Paradox of Voting, which entails the Condorcet Jury Theorem
(CJT) would not hold in a population with heterogeneous voting costs, due to abstention and bias. We
showed that when voters are sufficiently responsive to the expected margin, the (locally) more popular
candidate wins with a probability approaching one, aligning with the classical CJT.

There is of course ample literature on the CJT analyzing theoretical and practical conditions where
it may fail (see [McCannon, 2015]). In the introduction, we already mentioned epistemic voting, that
is supposedly outside the scope of models we consider: e.g., in epistemic voting minority voters are
unaware of this and everyone gains from high turnout. However, a recent paper by Michellini et
al. [Michelini et al., 2022] suggest a way to re-obtain a CJT when voters are only exposed to few
neighbors. This can be thought of as a special case of heuristics that increases their perceived pivotality,
so perhaps our results could be extended to cover ‘heuristic’ epistemic voting as well, with some
modifications.

Strategic behavior in the epistemic voting scenario is more problematic though, leading to the ‘swing
voter curse’ [Feddersen and Pesendorfer, 1996; Austen-Smith and Banks, 1996]. It is less likely that
considering self as more pivotal would help, as the problem is with the voter’s belief about her competence.

Other factors affecting vote decisions like external pressure [Bolle, 2022], bandwagon effect [Morton
et al,, 2015], and information cascades [Golub and Jackson, 2010; Acemoglu et al., 2011], which provide
alternative reasons for the failure of group wisdom, are outside the scope of our paper.

Future directions In light of the above discussion, we believe that relaxing the rigid rationality
assumption in favor of more general pivot probability models is an important step in understanding the
boundaries of positive and negative results in the social choice literature (in our case, CJT and paradox
fo voting, respectively).

While this paper focused on the limit case, studying the winning probabilities in small-population
settings is also important, following our preliminary empirical example. Another avenue is to explore
heterogeneity not only in participation costs but also in how voters estimate their pivotality. While it is
relatively straightforward to show that an equilibrium still exists in this extended model (Appendix F),
characterizing these equilibria and understanding how this diversity affects the CJT remains an open
and intriguing question.
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A Missing Proofs

Proposition 2. Let voter costs and types are sampled i.i.d. from a distribution D. Then any distribution
D induces a unique pair of support functions s s, sg with sa(1) + sp(1) = 1, and vice-versa.

Proof. Suppose there are N voters sampled from D. Given a cost threshold c, let the random variable

XX) (c) == w5 >.jzillej < cand A »; BJ denote fraction of supporters—other than voter i—
of candidate A having the voting cost at-most c¢. Similarly, define Xg)(c) = Zj\;zl 1c;

cand B >; AJ. Note that, as X:(Fi) (c) does not depend on her type T; and her private cost ¢;. Since every
agent is exposed to the same knowledge, we have, X7 (c) := X:(Fl)(c) = X:(FZ)(C) == X;N) (¢) for
all T € {A, B}. Finally, let sp(c) := E[X7(c)], and note that it depends neither on i or N.

To see that s7(c) is continuous, let sT, s~ the right and left limits of sp(c) at ¢* € (0,1). If s~ < s*
then Prp|[(c*,T)] = st — s~ > 0, in contradiction to our assumption that D has no atoms in (0, 1).

To show the direction, we define Prp[T; = A] := sa(1), then by assumption Prp[T; = B] :=
1 —54(1) = sp(1). Foreach T' € { A, B}, the function sr(c)/sr(1) is the CDF of Prp|c;|T;]. O

Proposition 4. Every election has at least one equilibrium.

Proof. For any ¢ € [0, 1], define f(c) := p(n(c), m(c)). Since the support functions are continuous,
n(c) and m(c) are continuous (by Egs. (2),(3)). By continuity of p, the function f is also continuous.
Finally, every continuous function from [0, 1] to itself has a fixed point, due to intermediate value
theorem applied to f(z) — . O
n size).

Lemma 13. The Altruist PPM has v.p. iff f = exp(o(n)) and is q-tie-sensitive for some g > 0 iff
f = Q(/m).

Proof. For any m > 0, we have

pP"(n,m) - f(n) = exp(~O(n)) f(n),
which goes to 0 if f(n) is subexponential, and goes to infinity otherwise.

Similarly, at m = 0, we have

which goes to 0 if f(n) = o(y/n) (in which case the model has strong vanishing pivotality); goes to
infinity if f(n) = w(n); and approaches some positive constant ¢’ if f(n) = ©(y/n), in which case we
define ¢ := min{1, ¢'}. O

Proposition 7. Suppose s4(0) + sp(0) > 0. Any issue with strong vanishing pivotality admits only
trivial equilibrium.

Proof. Assume towards a contradiction that there is a nontrivial equilibrium ¢ = (cy )y with limit
¢* > ¢ for some § > 0. This means that ¢y > ¢ for all sufficiently large N > N'.
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Now, since lim,,_,o p(n,0) = 0, there is some n* such that p(n,0) < g for all n > n*. Let N* :=
n” , so that n(cy+, N*) = n*. Also w.lo.g. N* > N’. We then have that

salen*)+sp(en=)
q < cn+ = p(n(en=, N*),m(en+))
cy+, N*

< p(n( ),0)
=p(n*,0) <gq,

i.e. a contradiction. OJ

Proposition 6. Suppose s4(0) # sp(0). Any issue with vanishing pivotality admits a trivial equilibrium.

Proof. For any § > 0, we should show that there is some N5 and ¢5 < § such that ¢s € C(I, Ns).

W.lo.g. sp(0) > s4(0), and by the bounded derivatives, the margin m/(c) is at least some ¢ > 0 in
some neighborhood ¢ € [0, ¢|. Let ¢ := min{g, }.

By weakly vanishing pivotality,
p(n(d), m(d)) < p(n(d),e) = p(sp(0)N,&) = 0

as N grows. In particular there is some N for which p(sp(0)Nj, &) < 8. We argue that there must be
an equilibrium in the range [0, d].

Indeed, fix N and let f(z) := p(n(z), m(z)) — x. We know that f is continuous, that f(0) > 0 and
that f(0) = p(n(d),m(d)) —d < § — ¢ = 0. From the intermediate value theorem, there must be some
¢s € [0,0) for which f(cs) = 0, meaning cs = p(n(cs), m(cs)). Thus ¢s € C(I, Ns). O

Lemma 14. m(cy) = |ey — ¢*[(m* + o(1)).

Proof. Since the first and second derivatives of s 4, s are bounded, so are those of the functions n(c, N)
and m(c) (as per Eq. (2),(3)).

We denote m/(c) := agéc) and n/(c) := % 8"5960’]\[), so neither function depends on N.

Also note that n’(c) > 0 everywhere and m* = m/(c¢*) > 0,n/(¢*) > 0 by the definition of pivot point.
We also denote s* := s4(c*) + sp(c*) and note that s* - N = n(c*).

Due to bounded derivatives, there must be some interval [¢* — ¢, ¢* 4 §] and constants T, m,7,n > 0
such that m/(c) € [m,m] and n/(c) € [n, 7| for all ¢ € [¢*, ¢* + ). Moreover, m, M can be arbitrarily
close to m* and likewise for n’ (the functions are nearly-linear near ¢*). We consider only N’s large
enough so that ¢y is in this interval, and so that p(n(cy), m(cy)) < 1.

For any ¢ € [c¢*, ¢* + ¢], we have that

m(c) € [m(c?) + [e = ¢|m, m(c") + e — ¢"[m]

= le = [ - [m,m] = |e = c*|(m” + o(1)),

where the last equality is due to the bounded second derivatives of the support functions, and in
particular of their difference. g

Theorem 10 (Characterization of Stable Jury Equilibria). Let I be an issue and let ¢ be a nontrivial right
equilibrium of I with limit c*. There are three cases, where ¢ admits a

1. Jury theorem if¢ converges slowly;

2. weak non-Jury theorem if ¢ converges moderately; and
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3. strong non-Jury theorem if ¢ converges fast.

Proof. Let ¢ = (cy)n be a nontrivial equilibrium with limit at pivot point ¢* < gq.

Denote p4 := s4(cn); pp := sp(cn) the probabilities that a single random voter is voting actively for
A or B, respectively with p4 > pp and let s* := p4 + pp.

The variables V4, Vg are coming from a single multinomial distribution with parameters N and
(pa,pB,1 — (pa + pp)). In the limit of N, these are two correlated Normal variables, with mean
pa =N -pa,pp = N - pp and variance 04 = Npa(1 — pa),0% = Npp(a — pg). Their difference
V4 — Vp is a Normal variable with expectation

p=pa—pg=N(ps—pp)=N- -m(cn)s*
and with variance

02 =04 4+ 0% —2C0V (V4,Vp)
= N(pa(l —pa) +pe(l —pB)) + 2N (papp)
pa+pp — (P4 — 2papB + Ph))
A+pB— (pa—DB)?)
A+ — (m(en)(pa+pB))%)
= N((pa+pp)(1 —m(en)*(pa + pp)))
=n(cy,N) — O(N -m(en)?) = N - s* — o(N),

— N(
=N(p
=N(p

where the last equality is since m(cy) is diminishing.
From the calculations above,

B N.-s*-m(cy) g
o s*-N—o(N)_\/N\ﬁ . ©)

where x 2 y is a shorthand for limy_, |z — y| = 0. This is the main fact we need for all three cases.

Slow convergence Suppose that ¢ converges slowly to ¢*. Then by Lemma 14, m(cy) = O(1)|en —

| = w(l/\/N) and from Eq. (5),
B~ VNV w(1/VN) = w(1),
o
ie, £ goes to infinity as N grows. As a result, using Normal approximation of V4 — Vg, we have

I
WP4(I, N, = P >0)= P < =)=
A( CN) wa(fL,aQ)(x ) mNN{O,l)(aj O')
WPA(I7N76N) = Q)(ﬁ) —_— 17

g

N—o0

where ® is the CDF of the standard Normal distribution function.

Fast convergence This case is very similar, except now m(cy) = O(1)|cy — ¢*| = o(1/v/N), which
by Eq. (5) means £ = /N/s* - o(1/v/N) = o(1), i.e. in this case £ goes to 0 as N grows, and thus

WPA(L, N, en) = d(E) —— 0.5.

g N—oo
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Moderate convergence In the knife-edge case where cr(¢) = r(c*) is a positive constant, we have
by Lemma 14 that m(cy) = ©(1/+v/ N), and more precisely, that

r(c*) - m*

VN

m(en) = |leny — f|(m* +o(1)) =

This means that the ratio £ also has a finite positive limit, specifically

L= VNS - mien) = V5= -r()(m" + o(1),

)

and by continuity of ®, we can define the constant ¢(c*) := limy_c ®(£) = ®(V/s* - 7(c*)m*), and
it holds that
WPA(Iv N7 CN) = (b(i) —_— ¢(C*) < 17

as required. O

B Parameters of Specific PPMs

B.1 Polynomial PPM

Lemma 12. Let I be an issue with a Polynomial PPM and let ¢ = (cn)n be a non-trivial equilibrium of I
. . _B
with limit ¢*. Then cy = ¢* + ©O(N ™).

. . . . _8 .
That is, the point ¢ must be at distance that decreases proportionally to N~ «: not closer neither
farther away.

Proof. We will prove for ¢y > ¢*. The proof for ¢y < c* is symmetric.

By Theorem 8, c* is a pivot point.

Since the first and second derivatives of s4, sp are bounded, so are those of the functions n(c) and
m(c) (as per Eq. (2),(3)).

We denote m/(c) := agéc) and n'(c) == & a"%CC’N), so neither function depends on N.

Also note that n'(c) > 0 everywhere and m/(c¢*) > 0,n/(¢*) > 0 by the definition of pivot point. We
also denote s* := s4(c*) + sp(c*) and note that s* - N = n(c*).

Therefore there must be some interval [¢*, ¢*+d] and constants 77, m, 72, n > 0 such thatm/(c) € [m,m]
and n’(c) € [n,n] forall ¢ € [¢*, ¢* + §]. Moreover, m, T can be arbitrarily close to m/(c¢*) and likewise
for n’ (the functions are nearly-linear near c*). We consider only N’s large enough so that ¢y is in this
interval, and so that p(n(cy), m(cy)) < 1.

1

Now, let € := ¢y — ¢*, and wlo.g. ¢ < min{0.1,0.1/7}. We want to show ¢ = O(—5 ). From the
N&

definition of equilibrium,

1

" +e=cny=pnen),men)) = m(cen)on(cn)?
1

=
m(c* 4+ e)n(c* + )P

1
(c* + a)én(c* +¢)

m(c* +¢) = - (6)
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Now, by the constant bounds on the derivatives,

m(c* +¢) € [m(c") + me, m(c*) + me| (7)
= [me, me], (3)
n(c* +¢) € [n(c*) + ne- N,n(c") +ne - N]
= [(s" +ne)N, (s* + ne)N|
C [s*N, (s* + 0.1)N] )

For the upper bound, we get from Eqs.(6),(8),(9)
me < m(c* +¢) <

e <

);

m-(¢)a(s) N Ne

since m, ¢* and s* are all constants. Likewise, for the lower bound,

1

me > m(c* +¢) > -
(¢ +0.1)% ((s* + 0.1)N)

] =
«a

B

o

e = Q(—) as required.

O]

Clearly the term “0.1" used in the proof is arbitrary and could be replaced by a smaller constant. Thus
the lemma shows

1 T B

¢ +m(c*)? - N"8 < ey < +m(c*)" -t N a,

where m/ is the derivative of m(c) at ¢*. Moreover, from Eq. (7),

B _ B
t-N o <m(eny)<t-Na,

which we use in the proof of Theorem 10. In the limit as N grows, both ¢, ¢ converge to

@

and thus r* = t* - /5% = (¢*)"a (s%)05 4,

B.2 Altruist PPM

Proposition 11. Let I be an issue with an Altruist PPM with function f, and let ¢ be a non-trivial
equilibrium. Then:

1 if f = e*(") then @ is a fixed equilibrium at q; else
2. if f = w(y/n) then T converges slowly; else
3. if f = ©(\/n) then € converges moderately; else

4. ¢ is trivial.
Note that there is no f for which there is a non-trivial equilibrium with fast convergence.

19



Proof. Case 1. To see that ¢ = ¢ is an equilibrium, note that the margin at m(q) is strictly less than 1
(say, > 1 — &) and this pB"(n, m(q)) > 6". Also, f(n) > €™ for any constant Z and in particular for
Z = —log.

Thus
alt(q,f) o n . —logd-ngn
p (n,m(q)) = min{g, f(n)é"} > min{qg, e 6"}
= min{q,d "0"} = min{q, 1} = q.

That is, all voters with cost ¢ < ¢ consider themselves pivotal.

For Cases 2 and 3, we know from Lemma 13 and Theorem 8 that ¢ converges to a pivot point ¢* € (0, 1).

For Case 2, assume towards a contradiction that convergence is (at least) moderate, i.e., there is a
constant X > 0 s.t. |y — ¢*| < X/V/N forall N.

Now, we have that in equilibrium ¢ = ¢y with n := n(cy, V) and
e :=m(cn) <supm/(c) - |ey — | < Y/VN,
(&

for some constant Y, due to bounded derivatives.

Set Z := ¢¥”. Since f(n) = w(y/n), for any sufficiently large n, we have f(n) > 4Z+/n. Note that the
number of active voters at the pivot point ¢* is s* - N, and that n(cy) = sy - N = s*N.

Note that for all n,

pP(2n 4 1,2¢) = (2:> (1 + 5)"(% —e)
1

>

T N
> \/ﬁ(l "> \f(l (Y/VN)?)"
2
= F( = YNy > -y
1

for sufficiently large n.
Finally, pick IV large enough so that n = n(cy ) respects the conditions above, then

1> g > ey = p@)(n,e) = pP"(n,e) f(n)
> pP(n,e)Zv/n

1 _Y2
> e -47\/n
2¢/n/2 vn

>€_Y2-Z:1,

which is a contradiction.

Case 3. We start from p®™"(n,e) = O(l)ﬁ(l — £2)", which means p™*/)(n,¢) = O(1)(1 — &)™

Since this converges to some pivot point c*, we have that

(1-e3)" - Z,
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Figure 3: Pivot points and equilibria when the support functions are partially overlapping.

for some constant Z < 1. Thus the margin at equilibrium holds

c—e(Cy) = V1= 71 = ,/%bg% — 0(/I/N),

where we use the fact that lim,, (1 — Z'/")n = log . Finally, the gap |cy — ¢*| is linear in the
margin € due to bounded derivatives.

Case 4 follows immediately from Lemma 13 and Prop. 7, as the PPM is strongly vanishing. O

C Partially-coinciding Support Functions

The assumption of a finite number of pivot points for s 4, sp is somewhat restrictive. Suppose there are
segments of the cost distribution where voters are equally likely to prefer A or B: this would translate
to intervals [c* , ¢} | where s4(c) = sg(c) forall ¢ € [¢*, ¢} ]. See Fig. 3. By our assumption on the
introduction the support functions should be differentiable near the pivot points (so the figure is not
allowed), but we actually only need them to have bounded derivative in some open right environment of
c’ , and likewise for the left pivot point. In other words, the left- and right- derivative at c¢* could be
different but has to exist.

The effect on our result in Theorem 8 is that the right equilibrium will converge to ¢’ (from the right),
and the left equilibrium will converge to ¢* from the left. The proof itself remains unchanged.

we have p(n,m(c)) = p(n,0) > g by g¢-tie-sensitivity, and for sufficiently large N we should get
p(n(e, N),0) = q. We conclude that if the interval contains ¢ then ¢ will also be an equilibrium. Also
note that this equilibrium will be stable, as with any small perturbation all voters still think they are
g-pivotal.

Can points on the interval [c* , ¢’ | be an equilibrium? note that since m(c) = 0 for all ¢ € [c*, c}],

An assumption we cannot relax is that the margin at the [right side of the right-] pivot point must
be strictly increasing. If the support functions have the same asymptote at ¢* then equilibrium will
still exist but we cannot say anything about the rate of convergence of ¢ to c¢*, or on the winning
probability.

D Stability

Recall that every agent has two (undominated) actions: vote/abstain. A Profile is a mapping from the
nonatomic set of agents to a subset of active voters. So for a given election, we can think of every profile
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P as a subset of agents. Every agent in profile P has a best response (to P), which is either to keep her
action or switch to the other action. We thus denote by BR(P) the profile obtained from P if all voters
simultaneously switch to their best-response. Note that the Bayes-Nash equilibria are those profiles

where BR(P) = P.
Definition 9. Let P, () be two profiles.

1. Write d(P, Q) to denote their difference, i.e. the fraction of agents playing differently.
2. The e-neighborhood of a profile P is the set of profiles with difference at most <.

Recall that P is a threshold profile if there is ¢ such that exactly all voters with ¢; < ¢ vote in P. In such
a case we denote the threshold by ¢(P).

An easy observation is that for any P, BR(P) is a threshold profile. This is since in P there is some
expected number of active voters np and some expected margin mp and thus the threshold of BR(P)
would be ¢(BR(P)) = p(np, mp).

In particular, BR(P) for some threshold profile with ¢(P) = a is also a threshold profile with some
¢(BR(P)) = b. We then denote b = BR(a).

Definition 10. We say that a threshold profile P is moving towards a threshold q if both q and ¢(BR(P))
are on the same side of ¢(P).

Definition 11 (Stable equilibrium). An election equilibrium () with threshold cy is stable, if there is
some € > 0 such that for any profile P in a e-neighborhood of Q):

o If P is a threshold profile then it is moving towards cyy;

« Otherwise, BR(P) (which is a threshold profile) is moving towards cy.

This means that when starting from profile P, a best response by few agents will get closer to (), so it
will still be in the e-neighborhood of () and will continue to get closer in every step until convergence.

Lemma 15. There is some interval Z = [c*, ¢* + z] where for every N, p(n(c, N'), m(c)) is monotonically
decreasing in ¢ € Z. Moreover, for every € > (0 there is sufficiently large N, such that

1. p(n(c, Nz),m(c)) is strictly decreasing in c in the range ¢ € [¢* + &, ¢* + z|;

2. cn. € (¢ +e,c+2/2].

Proof. Note that n(c, N) is non-decreasing in ¢ everywhere. In addition, m(c*) = 0, and by our
assumption that s4, sp have different derivatives at ¢*, we get m’(¢*) > 0. So from our bounded
derivative assumption m must be strictly increasing in some range [c*, ¢* + z] that is independent of
N. Since p(n, m) is monotonically non-increasing in both parameters, p is non-increasing in ¢ in the
entire range [¢*, ¢* + z], and this holds for every N.

Showing that it strictly decreasing is not immediate because in principle it could equal the maximum
value in the entire range. Indeed this is the case for the Polynomial PPM if IV is low. However, from weak
vanishing pivotality, we know that p(n(c* 4+ ¢, N), m(c* + ¢)) goes to 0 with N, and thus drops below
the maximal value for sufficiently large V.. From our assumption on p(n, m), it is strictly decreasing in
both parameters below its maximal value, and thus strictly decreasing in ¢ in the range (¢* + ¢, ¢* + 2]
whenever N > N..

For the minimal € for which this holds, we have p((n(c* + ¢, Nz),m(c* +¢)) =1 > ¢y and so ¢y
must be more to the right, where the pivotality decreases.

We increase N further as needed until ¢y is in the range (¢* + ¢, ¢* + z/2) (must occur eventually as
the limit of (cy )y is ¢*). O
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The next definition generalizes Def. 7:
Definition 12 (Stable equilibrium). An election equilibrium () with threshold cyy is stable, if there is some
€ > 0 such that for any profile P in a c-neighborhood of ):

« If P is a threshold profile then it is moving towards cy ;

« Otherwise, BR(P) (which is a threshold profile) is moving towards cy.

Theorem 9. Let € be a right-equilibrium of issue I with limit ¢* > 0. Then for sufficiently large N, cy is
stable.

Proof. We first explain how to select V. Suppose that V is sufficiently large so that by Lemma 15, p is
strictly decreasing in ¢ in some range (¢* + &', ¢* + z] and ey € (¢ + &', ¢* + 2/2].
Consider a profile P in the e-neighborhood of ¢y, where ¢ is determined below.

Threshold profile: Suppose first that P is a threshold profile with threshold ¢. Then choose ¢ small
enough so that ey — ¢| < min{cy — (¢* + £’), z/2}. This guarantees that:

¢>cey—(ey— (" +&)=c+¢,

¢c<ceny+z/2<c + 2.

Since both ¢, ¢y are in the interval [¢* + €', ¢* + z] where p is strictly decreasing, when ¢ < cy:
BR(¢) = p(n(¢é),m(¢)) > p(n(en), m(en)) = en > ¢,

so both ¢, BR(¢) are above ¢. Similarly, when ¢ > ¢y then both would be below.

Non-threshold profile: Next, suppose that P is not a threshold profile. Then we only need to show
that ¢ = ¢(BR(P)) is also in the interval [¢* + &', ¢* + z].
Denote € := (cy — (¢* +€’))/t, where t will be determined later.

Denote by 7, ™ the expected number of voters and expected margin in the current profile P. Note that

ne(l—e)(salen)+splen))N£e-N Cn(eny,N) +e

and similarly
e |sa(en) — splen)| £ e
salen) +splen) £e

where s’ = s4(cy) + sp(cn) is a constant.

Cmley)£2e-4,

Now set ¢ := p(n, m) and note that since p has bounded derivatives,
¢ =p(n,m) € p(n(en, N),m(cn)) £ O0(e) =cen £ h-¢,
for some constant h. We now set ¢t > h, so that
é>cy—h-e>cy—t-e=cy—(ey—(c"+€))=c"+¢,
and

c<ceny+h-e
<en + (ey =)
=c"+2(cy — )
< +2(2/2)

=c" + 2.
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Thus ¢ (which is the threshold of the best-response to profile P) is still on the monotone interval and
the previous part of the proof shows it is moving towards cy.

O]

E Calculus of Voting PPM

Example 6 (CoV PPM). The Calculus of Voting PPM (note it also depends on the size of the entire population
N)
Bz‘n(

pCOV (na m, N) = L/~ Bin(N,;n/N) [p 7’Ll, m)]

= n’wBin(N,n/N)[ Pr (.I = Ln//QJ )] (11)
mNBin(n’,(1+m)/2

Note that from Equations (2),(3) we can also derive the expected fraction of A and B supporters from

n,mand N, as
2+mN? 1 N
w:,i(i)Qm‘

SA,Sp =
’ 2n2 2 n

Proposition 16. The following three terms coincide:

1. The probability of a tie, i.e. Pr(V4 = Vp|I, N, c);
2. pCOV(n7 m, N),
3. Pr(VA,VB,Vo)NMult(N,(sA,sB717314,83))[VA = VB]

Proof. There is a tie if there is exactly the same number of active A voters and B voters. One way to
compute this is to first sample n’ active voters by flipping a coin for each of the NV voters. Then for
each of the n’ active voters decide (w.p. s4 vs. sp) if she is an A or B supporter. There is a tie if there
are exactly n’ /2 A supporters, which happens w.p. p?™(n/, m).

Alternatively, we could just decide for each of the IV voters whether she is an active A supporter (which
occurs w.p. 4 = Pr(., 1,)~pl[i is active and supports AJ), an active B supporter, or inactive. Then we
check if the two (correlated) multinomial variables V4 and Vp are the same. O

Proposition 17. The CoV PPM has strongly vanishing pivotality. Le., for every fixed ¢, limn_, o, Pr(V4 =
VB|I, N, c) = 0. Moreover,

« p¢V(n,m,N)=0(==) ifm = 0; and

B

« 9O (n,m, N) = eap(~O(n)) if m > 0.
(assuming the ration/N remains fixed)

Proof. As N goes to infinity, w.h.p we have n’ € [0.99n, 1.01n]. Also note that m remains fixed. Thus
Pr(Va=Vg|I,N,c) < p”"(0.99n,m) + exp(6(—N)),

and

Pr(Va = Vg|I,N,c) > pP™(1.01n,m) — exp(©(—N)).
n,m) = 6(%) for m = 0 and pP™(n,m) = exp(—O(n)) for m > 0, and
changing n by a constant fraction does not change the asymptotic result. d

Now we have pP(
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E.1 Poisson PPM

Example 7 (Poisson PPM). The Poisson PPM considers the perceived pivotality as the probability that an
equal number of supporters are drawn from Poisson distributions with parameters N - s4 and N - sp:

Poi
n,m) = Pr Xa=X 12
b ( ) XANPoisson((1+m)n/2)( A B) (12)
X g~Poisson((1—m)n/2)

Note that while s4, sp and IV cannot be inferred from n, m, the Poisson parameters can be inferred as

SN = 34 — 4m LN = 1=m
SA N—SAJran— 5'n,and sp - N = =5"n.

F Diverse PPM

Suppose that each type includes not just voting cost ¢; and preferred candidate 7}, but also i’s own
pivotality estimation function p;(n, m), which we still assume to be continuous and decreasing in both
parameters.

We fix an election (I, V), where [ is a distribution over types.

Proposition 18. Every election (I, N) has a pure Bayes-Nash equilibrium.

Proof. The functions s4(c) and sp(c) become useless, since there is no meaningful cost threshold that
applies to all agents.

Also let a, b be the fraction of core supporters of A and B, respectively. However, we will maintain the
notation s 4, sp for the fraction of all voters who actively vote for A and B, respectively.

Note that
(sa,sp) e A={(z,y): (x>a)AN(y>b) AN (x+y <1}

Given a pair of numbers s 4, s g, we can still compute the expected number of active voters and expected
margin as in Eq. (2),(3) (recall that N is fixed):

n(sa,sp):=(sa+ sp)N; (active voters) (13)
m(sa,sp) = M. (expected margin) (14)
SA+ 5B

We now define functions Sy4, Sp which map n and m to (s4,sg) € A, by integrating over the
distribution I:

Sa(n.m) = Privilei < pi(n,m) AT; = AJ;
Sp(n,m) := Pri~r[c; < pi(n,m) ANT; = BJ;

Finally we get a function ' : A — A defined as

F(sa,sp):= (Sa(n(sa,sB),m(sa,sp)), Sp(n(sa,sp),m(sa,sp))).

Since [ is atomless, p; are continuous, and (), m() are continuous, so are S4() and Sg(). Thus F'is a
continuous function from a compact and convex set A onto itself. From Brouwer’s fixed point theorem,
F has a fixed point. This point is a pure Nash equilibrium of (I, N). O
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