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Abstract

Universities regularly face the challenging task of assigning classes to thousands of students
while considering their preferences, along with course schedules and capacities. Ensuring the
effectiveness and fairness of course allocation mechanisms is crucial to guaranteeing student
satisfaction and optimizing resource utilization. We approach this problem from an economic
perspective, using formal justice criteria to evaluate different algorithmic frameworks. To
evaluate our frameworks, we conduct a large scale survey of university students at University of
Massachusetts Amherst, collecting over 1000 student preferences. This is, to our knowledge, the
largest publicly available dataset of student preferences. We develop software for generating
synthetic student preferences over courses, and implement four allocation algorithms: the serial
dictatorship algorithm used by University of Massachusetts Amherst; Round Robin; an Integer
Linear Program; and the Yankee Swap algorithm. We propose improvements to the Yankee Swap
framework to handle scenarios with item multiplicities. Through experimentation with the Fall
2024 Computer Science course schedule at University of Massachusetts Amherst, we evaluate
each algorithm’s performance relative to standard justice criteria, providing insights into fair
course allocation in large university settings.



1 Introduction

Public universities regularly run large-scale matching markets: enrolling students to classes. There are
over 15 million undergraduate students in the United States alone [32], with some universities boasting
cohorts numbering in the tens of thousands [32, Table 312.10]. The sheer scale of the course allocation
problem requires the use of automated assignment mechanisms, which typically (a) collect student
preferences and (b) assign students to classes based on their eligibility/preferences/priority. Ideally,
course allocation mechanisms should be fast, effective and satisfy certain objectives. One reasonable
objective is efficiency: ensuring that classes are assigned to students who actually want and are able to
take them; another is fairness: ensuring that class seats are fairly distributed among students. Other
constraints must be accounted for as well: student schedules should be feasible, i.e., the mechanism
does not cause a scheduling conflict; another is student priority: course allocation mechanisms should
prioritize students with greater needs. Properly designed, course allocation mechanisms guarantee
student satisfaction, facilitate timely graduation, and optimize the utilization of public resources.

The course allocation problem can be naturally modeled as a problem of fair allocation of indivisible
goods [14]: students are agents who exhibit preferences over items — seats in classes. Our goal is to
design a mechanism that assigns items to agents while satisfying certain design criteria. Prima facie,
the course allocation problem is well-positioned to be central in the fair allocation community: it
is a regularly occurring market involving thousands of agents with preferences over thousands of
items (unlike smaller domains, e.g., those offered by the Spliddit platform [24]); moreover, it offers a
rich landscape of constraints and modeling challenges: modeling student preferences, accounting for
scheduling clashes, and determining acceptable justice criteria. The lack of public datasets is one major
obstacle to the proper scientific analysis of course allocation mechanisms. Recent works, e.g., the Course
Match mechanism, [15, 17, 18, 38] offer empirical analysis of course allocation instances; however, these
works do not publicly release their datasets, nor are their proposed allocation mechanisms publicly
available. This makes it difficult to independently verify the efficacy of their proposed approach. In this
work, we take a first step towards creating a publicly available, large-scale ecosystem for the analysis of
the course allocation problem.

1.1 Our Contribution

We implement several algorithmic frameworks for large-scale fair allocation, and test them on preference
data collected from students at University of Massachusetts Amherst. The data ∗ and algorithmic
frameworks † are all in public repositories. In more detail, our contributions include:

Data collection: we collect preference data from 1061 students in the computer science department
of University of Massachusetts Amherst. In the fair allocation domain, this dataset represents one of
the largest sources of publicly available preference data.

Software for Large-Scale Fair Allocation: we implement four allocation mechanisms: Round Robin
(a classical scheduling algorithm, also known as the draft mechanism [16]), a version of Serial Dictator-
ship (the algorithm used at University of Massachusetts Amherst), an Integer Linear Program that finds
the solution maximizing utilitarian social welfare, and Yankee Swap [39], a recently introduced fair
allocation mechanism. We discuss practical considerations in the development of the mechanisms, as
well as methods to utilize structural properties of the course allocation problem which significantly
improve the runtime of the Yankee Swap framework. We test each algorithm against the Fall 2024
University of Massachusetts Amherst Computer Science course schedule, and measure its performance
relative to a number of standard justice criteria.

∗https://github.com/Fair-and-Explainable-Decision-Making/course-allocation-data
†https://github.com/Fair-and-Explainable-Decision-Making/yankee-swap-allocation-framework
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Synthetic Student Preference Generation: to test our algorithmic frameworks under different
regimes of course supply and demand, we introduce a synthetic student generator which creates
new students based on the collected preference data. The student preference generator creates student
profiles that, while distinct from the original data, follow a similar preference distribution.

1.2 Related work

The course allocation problem is well-studied in combinatorial optimization, with various mechanisms
proposed to balance efficiency, fairness, and strategic considerations. Hatfield [26] shows that serial
dictatorships are the only Pareto efficient, strategyproof and non-bossy mechanisms; Hatfield [26]
focuses on additive preferences, whereas we study more general submodular utilities. Budish and
Cantillon [16] examine the Draft (Round-Robin) mechanism for course allocation, and show that the
Draft mechanism retains high efficiency guarantees in practice, despite students misreporting their
preferences. Budish and Cantillon [16] also collect data on a similar scale to ours (900 students at
Harvard Business School), with students ranking classes on a Likert scale. The bidding point mechanism
is widely used for course allocation [37]: students distribute a fixed number of points among their
preferred courses. Bids are then processed in decreasing order and honored if the course and the
student’s schedule are not at capacity. This approach focuses solely on efficiency, neglecting equity,
and is highly susceptible to strategic manipulation, as students may misreport their preferences to get
better outcomes [2]. Furthermore, since bids serve as proxies for preferences, the inferred preferences
may not accurately reflect true student demand, leading to market distortions [37, 28].

Sönmez and Ünver [37] propose a Gale-Shapley Pareto-dominant market mechanism that separates the
dual role of bids by assigning courses through a matching mechanism considering students preferences,
while using bids solely to break ties. In any case, inefficiencies arise from students overbidding on
courses they could have gotten with fewer points. Atef Yekta and Day [2] introduce multi-round
algorithms, based on matching and second-price concepts, which addresses these inefficiencies and
show promising empirical results.

Diebold et al. [20] study course allocation as a two sided matching problem, where courses have
preferences over students, induced by student priority. They analyze the Gale-Shapley Student-Optimal
Stable mechanism — a modified version of the Gale-Shapley deferred acceptance algorithm [22] —
and the Efficiency Adjusted Deferred Acceptance mechanism [27], which reduces the welfare losses
produced by the deferred acceptance algorithm, but is not strategyproof. Similar to other approaches
[33, 36], these fail to incorporate conflicts between classes. Biswas et al. [12] analyze the complexity
of finding fair and efficient course allocations under course conflicts (see also [13]). They establish
that the problem is computationally intractable, unless the number of agents is small. At University of
Massachusetts Amherst, course schedules are very standardized, which makes course schedule conflicts
well-structured and tractable.

Budish [15] introduces the Approximate Competitive Equilibrium from Equal Incomes (A-CEEI) mecha-
nism, which is strategy-proof at large, and approximates envy-freeness and maximin share fairness,
both in theory and empirically (see also [34]). In the context of course allocation, this mechanism
faces some challenges: approximation errors can result in capacity constraint violations, and, early
implementations faced scalability issues [17, 2].

Course Match [17], an A-CEEI-based approach, addresses these issues by introducing two additional
stages to ensure feasibility, together with an interface for students to report utilities, and a software
system capable of handling reasonably sized instances. Course Match relies on students reporting their
complete ordinal preferences over all possible course bundles — an impractical requirement. Instead,
students only rate individual courses and course pairs. At the same time, Course Match does not
guarantee optimal outcomes if students misreport or fail to articulate their true preferences. To mitigate
this issue, Soumalias et al. [38] propose a machine-learning-powered version of Course Match to reduce
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reporting errors by iteratively asking student to rate personalized pairwise comparison queries.

Despite these efforts, Course Match is not guaranteed to find a price vector and corresponding allocation
that respects course capacities, and may not run in reasonable time for large instances [17]. Furthermore,
Course Match is a commercial product. To our knowledge, there is currently no publicly available
implementation of Course Match, nor is there large-scale empirical data to evaluate its effectiveness in
real-world settings. Lastly, Course Match places a significant elicitation burden on students. Students
are encouraged to study a 12-page manual in order to understand the mechanism and enroll in courses
[42]. While this may be reasonable for MBA students or those in advanced economics-related programs,
it may not be suitable for undergraduates from diverse majors and academic backgrounds at a large
public university.

Fair allocation algorithms and solution concepts have been extensively studied in recent years, with a
particular focus on leveraging the structure of agent preferences (see survey by Aziz et al. [3]). Recent
works focus on settings where agents have binary submodular utilities, i.e., items have a marginal
utility of either 0 or 1, and agents exhibit diminishing marginal returns on items as their bundles grow
[4, 6, 23, 10, 40, 39]. Following these works, we implement the Yankee Swap algorithm [40] as one of our
benchmarks. The Yankee Swap algorithm outputs a Lorenz dominating allocation, which is guaranteed
to satisfy several theoretical guarantees [4, 10]. In addition to maximizing the minimal utility of any
agent (implied by the leximin property), it is approximately envy-free, maximizes utilitarian welfare,
and offers each agent at least half of their maximin share guarantee. Furthermore, Yankee Swap is a
strategyproof mechanism, and can encode student priorities [39]. Our empirical evaluation confirms the
effectiveness of the Yankee Swap framework, providing evidence for its potential efficacy as a practical
course allocation mechanism.

2 Course Preference Data

We conducted a survey to gather student preferences for courses offered by the Computer Science
department at University of Massachusetts Amherst during the Fall 2024 semester. We invited all
undergraduate and graduate students in the department to participate in the survey. We reached out in
May 2024, shortly after the final examination period but before grades were released. The survey timing
ensured that most students were available — they were not overly busy with classwork or studying for
exams, nor were they off-campus — and had time to consider their preferences before answering our
survey — they had recently indicated their course preferences for the Fall 2024 on the University of
Massachusetts Amherst portal. The survey achieved a significant effective response rate of 30.33%, with
a relatively balanced response rate across students of different academic status (see Table 1).

The Fall 2024 course schedule for the Computer Science department includes 96 distinct course sections.
Each section is identified by a combination of attributes such as catalog number, section number, course
name, instructor, capacity, and time of day. The same catalog number may offer multiple sections.
However, the combination of catalog number and section number is unique, and is referred to as a
course from now on.

Participation was voluntary, and participants received a $10 Amazon gift card. The survey was hosted
on Qualtrics, an online survey platform, and consisted mainly of the following questions:

Current Status: current academic status refers to the student’s current year in their program, whether
they are an undergraduate (freshman, sophomore, junior, or senior) or a graduate student (enrolled in
a master’s or Ph.D. program). We used this information to tailor the courses presented in surveys to
reduce cognitive load —we did not collect student preferences on any courses that were inappropriate
for their academic status— and to determine student’s priority when enrolling in classes: PhD students
are given priority over MS students, who are given priority over seniors, and so on.
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Academic Number of Number of Response Effective Effective Response
Status Students Responses Rate (%) responses Rate (%)

Freshmen 239 156 65.27 125 53.30

Sophomore 327 134 40.98 113 34.56

Junior 408 143 35.05 126 30.88

Senior 573 135 23.56 117 20.42

MS 613 190 31.00 172 28.06

PhD 148 51 34.46 47 31.76

Unspecified N/A 256 N/A 0 N/A
Total 2308 1065 46.14 700 30.33

Table 1: Number of students, number of responses, and response rates, both overall and broken down by academic
status. Effective response rates reflect responses with non-empty preferences and specified academic status.

Desired course load: we asked students how many courses they wish to enroll in before and after
the add/drop period. Since students are often uncertain about their final preferences, many over-enroll
to explore their options before finalizing their schedules. Thus, these quantities might differ.

Preference Over Courses: students were shown a tailored list of courses with the following key
details — course name, catalog number, section, instructor, day and time — in order to help students
make informed decisions about their preferences. For each course listed, students rated their interest
on a scale from 1 (not interested) to 7 (very interested), with an additional option to select 8 (required)
if the course was a requirement for their program. All courses were rated 1 by default.

The total number of survey responses, the actual number of students (provided by the department),
and the corresponding response rates — both overall and broken down by academic status — are
summarized in Table 1. 256 respondents did not specify their academic status, and as a result, we did not
use their recorded rankings in our analysis. 109 respondents indicated their status but submitted empty
preferences (those students were not paid). We utilized 700 effective responses with both academic
status and non-empty preferences, achieving an effective response rate of 30.33%. Table 1 provides a
detailed breakdown of these values by academic status.

We did not allow students to express preferences over bundles of courses. This is a departure from other
preference elicitation models in the course allocation domain, e.g., [17, 38]. We elicited information on
individual courses since it allows students to express preferences over a large number of courses while
avoiding significant cognitive overload. In addition, our elicitation protocol mapswell to constraint based
utility models: we can naturally map the results of our survey to submodular (or nearly submodular)
student preference functions. Having a complete picture of student preferences over individual courses
also allows us to naturally simulate additional student profiles (as described in Appendix A).

3 Course Assignment as a Fair Allocation Problem

We start by presenting the fair allocation of indivisible goods framework. Our model offers a slight
departure from the standard problem formulation [14], since we allow item types. Let N0 be the set of
non-negative integers. Let N = {1, 2, ..., n} be a set of agents and G = {g1, g2, ..., gm} be a set of item
types. Each item type g ∈ G has a limited number of identical copies q(g); q⃗ = (q(g1), ..., q(gm)) is the
vector describing the quantities of each item. In the context of course allocation, agents are students,
item types are courses, and q(g) is the number of available seats in course g.
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The classic fair allocation literature assigns agents bundles of items, i.e., subsets of the set G. Since our
framework allows items to have multiple copies, a bundle S is a vector in Nm

0 , where Sg is the number
of copies of item g that is in the bundle S. One can simply treat multiple copies of an item as distinct
items and do away with the duplicate items model. However, the notion of item copies is useful for
proving better upper bounds on the runtime of our proposed allocation mechanisms. From a modeling
perspective, treating individual course seats as distinct items makes running even somewhat simple
allocation mechanisms like Round Robin impractical: instead of having ∼ 100 item types, we need to
store information about ∼ 10k individual items. An allocation X = (X0, X1, . . . , Xn) is a partition of
item copies; each agent i ∈ N is assigned a bundle Xi, and X0 denotes the set of unassigned copies.
The allocationX is represented as a matrix, whereXi is a vector in Nm

0 that represents agent i’s bundle
under allocation X . Since agents may own multiple copies of an item, Xi,g is the number of copies
of item g in agent i’s bundle; however, in the course allocation domain students do not receive more
than one seat in any class. An allocation is valid if for any item g ∈ G, X0,g +

∑n
i=1Xi,g = q(g): the

number of unassigned copies of g, X0,g , plus the number of copies assigned to all agents equals exactly
the number of copies q(g). For ease of readability, for an allocation X and an item type g, we say that
g ∈ Xi if Xi,g > 0. Let 1g ∈ {0, 1}m be the indicator vector of item g, i.e., it is equal to 1 in the g-th
coordinate and is 0 elsewhere. Given a bundle of items S, we write S + g and S − g to refer to S + 1g

and S − 1g , i.e., S with an additional copy of the item g, or with one copy of g removed.

Each agent i ∈ N has a valuation function vi : Nm
0 → N0 which depends only on the bundle Xi

allocated to i. We define the marginal utility of agent i from receiving an additional copy of the item
type g as

∆i(Xi, g) = vi(Xi + g)− vi(Xi).

We say that vi is a binary valuation if for any bundle S ∈ Nm
0 and any item type g,∆i(S, g) ∈ {0, 1}.

Given two bundles S, T ∈ Nm
0 , we write S ⪯ T if for all g ∈ G, Sg ≤ Tg ; this is equivalent to stating

that the bundle S is a subset of T in the standard fair allocation model; we write S ≺ T if any of these
inequalities is strict. We say that vi is a submodular function if for any two bundles S, T ∈ Nm

0 such
that S ⪯ T , and any item type g,∆i(S, g) ≥ ∆i(T, g). Intuitively, the more items an agent i owns, the
less marginal benefit they receive from additional items.

Finally, a bundle S ∈ Nm
0 is clean [10] with respect to agent i ∈ N if for any bundle T ≺ S we have

vi(S) > vi(T ), i.e., removing any item from i’s bundle strictly reduces their utility.

3.1 Encoding Student Valuations

While our framework applies to general valuation settings, in our empirical evaluations we model
students as having binary preferences. Binary preferences are extensively studied in the fair allocation
literature, see e.g. [4, 7, 6, 10, 9, 25, 40, 39]. Thus, we have a good understanding of their properties and
the types of guarantees we can offer; furthermore, there exist algorithmic frameworks that compute fair
and efficient allocations for agents with binary submodular valuations. We chose to elicit numerical
preferences from our survey participants in order to offer a more refined view of student preferences,
and to support future empirical analysis of algorithmic frameworks beyond those that handle binary
preferences. In other words, we see the data collection and the algorithmic frameworks/preference
encoding portions of our work as complementary yet distinct contributions to the empirical evaluation
of fair allocation mechanisms.

Allocation mechanisms in the literature typically rely on oracle access to agent valuations. However,
pre-computing and storing agent valuations in a fixed data table is intractable when dealing with
thousands of students and hundreds of classes; what’s more, the allocation mechanisms we utilize do
not need to know agents’ valuations for all possible bundles. To address this challenge, we encode
student preferences via linear inequality constraints. We can encode several types of natural course
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constraints via linear inequalities, such as course scheduling conflicts, maximum enrollment caps for a
student, substitutions (wanting to take course A or course B but not both), and taking only classes the
students approve.

We represent the preferences of a student i by ri linear constraints through a ri ×m matrix Zi and a
limit vector b⃗i. A bundle Xi is feasible, i.e., it is clean with respect to agent i, if and only if

ZiXi ≤ b⃗i. (1)

These constraints can be computed as needed at a relatively low cost, offering a more manageable
approach to modeling student preferences.

Finally, the utility an agent obtains from a bundle Xi is the size of the largest feasible sub-bundle of Xi.
In other words, let |S| denotes the 1-norm of S ∈ Nm

0 , then

vi(Xi) = max{|S| : ZiS ≤ b⃗i, S ⪯ Xi}, (2)

It is relatively straightforward to show that student preferences encoded by Equation (2) are binary:
adding a single item copy can increase the cardinality of the feasible set by at most one. While our
encoding ensures that student valuations are binary, they are not necessarily submodular. For example,
assume that a student i likes classes A, B and C . If class A conflicts with B, B conflicts with C , and A
does not conflict with C , then the marginal gain of giving C to iwhen they haveB is 0; however, if they
have bothA andB, then the marginal gain ofC is 1. In this scenario, items do not exhibit substitutability
[35], a key property of submodular preferences. However, in our data, student scheduling constraints
largely retain submodularity. This is because the vast majority of classes are scheduled at a set of
predetermined times, e.g., Tues/Thu at 1pm-2:15pm. Thus, if class A conflicts with B and B conflicts
with C , then A conflicts with C , avoiding issues similar to those described above.

3.2 Allocation Mechanisms

An allocation algorithm takes as input a setG ofm courses with q⃗ = (q(g1), ..., q(gm)) seats per course,
and a set N of n students with valuations (v1, . . . , vn). Its output is some feasible allocation X of the
course seats. We consider four different allocation algorithms: Serial Dictatorship, Round Robin, an
Integer Linear Program, and Yankee Swap.

Serial Dictatorship: the course allocation algorithm used by University of Massachusetts Amherst
for student enrollment uses a variant of Serial Dictatorship (SD) [26]. The allocation system opens
to students in order of seniority. PhD students enter first, followed by MS students; next, the system
opens for undergraduate enrollment in decreasing order of seniority. We emulate this process by
letting students pick in order of their academic status, and in random order within members of the
same academic cohort. The first student to access the platform enrolls in all their desired courses.
Subsequently, the following students enroll in all desired courses that have available seats left. Students
can enroll in classes they do not want to take; however, since SD is strategyproof, students have no
incentive to do so. However, students are often uncertain about what classes they actually want to
take, and tend to enroll in more classes than they intend on keeping (subsequently dropping out during
the grace period early in the semester). Students who access the platform early get a wide range of
available classes and ‘hoard’ classes; those who log in later face a considerable disadvantage in securing
desired classes. These issues with SD are known from prior works on course allocation (e.g. [15, 16]).

Round Robin: the Round Robin algorithm (RR) [14] (also known as the draft mechanism [16]), operates
in rounds. In each round, students are assigned one available seat that they like, i.e., one that offers
them a marginal gain of 1. This continues until no such seats are available. The order in which students
select their seats is fixed. We again prioritize students according to academic status.
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Integer Linear Program: allocation by Integer Linear Program (ILP) finds an allocation X that maxi-
mizes the utilitarian social welfare subject to course capacity constraints, and linear inequality con-
straints that encode student preferences (see Section 3.1). Since both the objective and constraints are
linear, the ILP returns an optimal integer allocation with respect to USW.

Yankee Swap: in the Yankee Swap algorithm (YS) [40, 39] agents sequentially pick items. In each
round, YS selects the lowest utility student, breaking ties in favor of higher academic status, and lets
them pick a seat that offers them a marginal benefit of 1. If no such seat is available, they may steal
such a seat from another student, as long as that student can recover their utility by either taking an
unassigned seat or stealing a seat from yet another student. This goes on until the last student takes
an unassigned seat. If no such transfer path exists, the student is not elected again. The algorithm
terminates when no student can further benefit from enrolling in courses with available seats, or when
students are solely interested in stealing seats from students who cannot recover their utility. When
agents have binary submodular valuations, YS offers several theoretical guarantees: it outputs a leximin,
EF-X allocation, which also maximizes USW. In addition, YS is truthful: no agent can increase their utility
by misreporting their preferences, e.g., falsely state that they want to enroll in an undesirable class, or
say that they do not want to enroll in a desirable class.

4 Adapting the Yankee Swap Mechanism in the Course Allocation Domain

The main computational overhead of the Yankee Swap algorithm [40] stems from maintaining the
exchange graph G. Given an allocation X , G(X) is a directed graph over the set of items G. There is an
edge from an item g ∈ Xi to another item g′ ∈ G if vi(Xi) = vi(Xi − 1g + 1g′). In other words, there
is an edge from g to g′ if the agent who owns g under X can replace it with g′ without reducing their
utility. If no agent owns item g ∈ G (i.e., g ∈ X0), then g has no outgoing edges.

The Yankee Swap algorithm works as follows. Initially, all agents are assigned empty bundles and
all items are unassigned, i.e., the initial allocation X is such that X0,g = 1 and Xi,g = 0 for all item
types g ∈ G and agents i ∈ N . At each round, we pick an agent i with the lowest utility, breaking
ties arbitrarily. Let Fi(X) = {g ∈ G : ∆i(Xi, g) = 1} be the set of items that offer agent i a marginal
benefit of 1 given their current bundle. We search for a shortest path from Fi(X) to items in X0 in
the resulting graph and execute it. Note the execution of the path (g0, g1, . . . , gp) corresponds to agent
i taking item g0, and the agent who owns item g0 replaces it with item g1, and so on, until we reach
the unassigned item gp, which is now assigned to the last agent in the path. This is referred to as path
augmentation. If no such path exists, agent i is kicked out of the game. We repeat this process until
there are no agents left playing or all items have been allocated.

The original problem formulation assumes no item multiplicity. When items have multiple identical
copies, considering each item copy individually becomes highly inefficient, as the problem size scales by
the number of course seats rather than the number of courses, which is typically significantly smaller.

We propose a modified version of the Yankee Swap algorithm that allows items to have multiple identical
copies, i.e., q(g) > 1. Items now might have multiple owners, which requires a redefinition of the
exchange graph. The exchange graph G is now a directed graph over the set of item types G, in which
there is an edge of the form (g, g′) if there exists some agent i who owns a copy of g, and is willing to
exchange it for a copy of g′. Thus, for each edge (g, g′) we need to maintain a list of agents willing to
make the exchange.

We define a responsible agents tuple R consisting of m2 lists of agents that keep track of the agents
responsible for each of the edges. Here, Rg→g′ is the set of agents who own a copy of g ∈ G and are
willing to exchange it for a copy of g′ ∈ G:

Rg→g′ = {i ∈ N : Xi,g > 0 ∧ vi(Xi) = vi(Xi − 1g + 1g′)}.
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Rg→g′ = ∅ if and only if there is no edge (g, g′) in G: no agent who owns a copy of g wants to exchange
it for a copy of g′. Initially, Rg→g′ = ∅ for every g, g′ ∈ G since no items have been allocated. Once a
path transfer is executed, every agent who had their bundle changed in the process might change the
Rg→g′ values. If done naively, these checks can be time-consuming: theoretically one needs to check
whether any item in agent i’s bundle can be exchanged for any other item. To avoid this overhead, we
observe that the set of classes that agent i can potentially want to exchange their classes for is a subset
of the set of classes they approve. LetDi = {g ∈ G|vi(1g) = 1} be the set of agent i’s approved classes.
If agents have binary submodular valuations over the items, then for any allocationX , Fi(X) ⊆ Di. In
particular, Fi(X) = Di when X is the initial empty allocation.

Our implementation of YS (see Algorithm 1) incorporates key adjustments to account for item multi-
plicity and efficiency. Initially all items copies are unassigned, i.e., X0,g = q(g) for all g ∈ G. Second,
and more importantly, we run path augmentations over item copies while keeping track of item owners.
Third, instead of reconstructing the exchange graph after each iteration, we incrementally update it,
resulting in a more efficient execution.

Algorithm 1 Yankee Swap with Item Multiplicity
Require: A set of item types G with q⃗ = (q(g1), ..., q(gm)) copies each, and a set of agents N with

binary submodular valuations {vi}i∈N over the items
Ensure: A clean leximin allocation
1: X = (X0, X1, ..., Xn)← (q⃗, 0⃗, ..., 0⃗), Rg→g′ ← ∅ for all g ∈ G, g′ ∈ G, U ← N
2: Build graph G with one node per item type g ∈ G
3: while U ̸= ∅ do
4: Let i ∈ argminj∈U vj(Xj)
5: Check if there is a path P = (g0, ..., gp) where g0 ∈ Fi(X) and gp ∈ X0

6: if a path exists then
7: I ← {i}, Xi ← Xi + 1g0

8: for each pair (g, g′) in P do //Path Augmentation Phase 1
9: Let j ∈ Rg→g′

10: I ← I ∪ {j}, Xj ← Xj − 1g + 1g′

11: for each item type h ∈ Dj do
12: if j ∈ Rg→h and Xj,g = 0 then
13: Rg→h ← Rg→h \ {j}
14: if Rg→h = ∅ then
15: Remove edge (g, h) from G
16: X0 ← X0 − 1gp
17: for each agent j ∈ I do //Path Augmentation Phase 2
18: for each item type h ∈ Xj and item type h′ ∈ Dj do
19: if j ∈ Rh→h′ then
20: if vj(Xj) > vj(Xj − 1h + 1h′) then
21: Rh→h′ ← Rh→h′ \ {j}
22: if Rh→h′ = ∅ then
23: Remove edge (h, h′) from G
24: else
25: if vi(Xi) ≤ vi(Xi − 1h + 1h′) then
26: Rh→h′ ← Rh→h′ ∪ {j}
27: if |Rh→h′ | = 1 then
28: Add edge (h, h′) to G
29: else
30: U ← U \ {i}
31: return X
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Path augmentation occurs in two distinct phases. In the first phase, we identify the agents involved in
the transfer path and update the allocation matrix X . For instance, if agent j exchanges item g for g′,
we update the matrix to reflect that the agent now possesses g′ and no longer has g. Next, we update the
exchange graph G(X) and the tuple R to account for items that agents along the path lose. Specifically,
if agent j loses the item g then for any item h approved by agent j, h ∈ Dj , we remove agent j from
Rg→h. If Rg→h becomes empty, we remove the edge (g, h) from G. In the second phase, we update the
exchange graph and the matrix R based on items that agents along the path receive. For each agent j
identified in the previous phase, we check their updated bundle and determine whether they are willing
to exchange any item in their bundle Xj for items in their desired set Dj . We then adjust the tuple R
and update the edges in the exchange graph accordingly. SinceDj is the set of classes that each student
intrinsically approves, it remains invariant throughout the run of Yankee Swap, and is relatively easy to
maintain.

A naive implementation of Yankee Swap searches for a shortest path in the exchange graph in time
quadratic in qtotal =

∑
g∈G q(g), which is significantly larger than the number of item types m.

By redefining the exchange graph and adapting the algorithm accordingly, we reduce the runtime
dependency of the shortest path to be quadratic on m instead. Second, it turns out that calls to student
valuations can be expensive; separating the exchange graph representation from the agents through
the tuple R considerably reduces the number of student valuation function calls (see Appendix B).

5 Justice Criteria

We evaluate the performance of course allocation mechanisms according to fairness and social welfare
criteria. We consider three efficiency criteria. The Utilitarian Social Welfare (USW) sums the total
welfare of agents: USW(X) = 1

n

∑
i∈N vi(Xi), which is equivalent to the percentage of seats assigned.

The USW criterion does not account for potential welfare disparities. For example, from the USW
perspective, a course assignment that offers six courses to one student and none to another is equivalent
to one that assigns three courses each.

The Nash welfare [31, Chapter 3] strikes a balance between utilitarian and egalitarian approaches. An
allocation that maximizes the Nash welfare first minimizes the number of agents with zero utility.
Subject to that, it maximizes the product of agent utilities, i.e. the value NSW(X) = n

√∏
i∈N>0(X) vi(Xi),

where N>0(X) is the set of agents with positive utility under X . Since the Nash welfare takes the
geometric average of the positive student utilities, we complete the picture by reporting the number of
students who receive an empty bundle, i.e., students who ended up receiving no classes that they like.

We also evaluate allocations based on fairness metrics. Given an allocationX , we say that agent i envies
agent j [21] if vi(Xi) < vi(Xj). An allocation is envy-free (EF) if no agent envies another. We count
the number of times an agent envies another, i.e.,

Envy(X) =
n∑

i=1

n∑
j=1

1[vi(Xi) < vi(Xj)].

Envy-free allocations are not guaranteed to exist (consider a setting with two agents and one single
item); this gave rise to a the canonical notion of envy-freeness up to one item (EF-1) [15, 30]. An allocation
X is EF-1 if for any two agents i and j, if i envies j, then there exists some item g ∈ Xj such that
vi(Xi) ≥ vi(Xj − 1g): removing some item from agent j’s bundle eliminates agent i’s envy. We count
the number of times an EF-1 violation occurs:

Envy-1(X) =

n∑
i=1

n∑
j=1

1[∀g ∈ Xj : vi(Xi) < vi(Xj − 1g)].
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Figure 1: Runtime of the four allocation algorithms as a function of the number of students. Boxplots represent
the distribution of runtime values across 10 runs with different random seeds for each instance.

Lastly, we wish to examine share-based fairness concepts, e.g., the maximin share [15]. The maximin
share guarantee of agent i is computed by letting agent i partition the items into n bundles, and
receiving the worst one. More formally, MMSi = maxX minj vi(Xj). While the maximin share is a
well-established and well-studied share-based concept (see, e.g.,[1, 8, 5, 15, 19, 23, 29]), it is inappropriate
in our setting. The reason is simple: most students rate the vast majority of classes at 1, i.e., they do not
want to take them. Thus, any partition of item copies to n bundles will result in at least one bundle
whose value is 0. This implies that the maximin share of the vast majority of students is 0. Since we are
interested in analyzing some share-based fairness criterion, we use the pairwise maximin share [19].
An allocation X is Pairwise Maximin Share Fair (PMMS-fair) if for any pair of agents i and j, agent i’s
valuation of their own bundle is at least the valuation of the worst bundle they could get in a two way
division of Xi ∪Xj . Finally, in our results, we count the number of times a PMMS violation occurs:

PMMS(X) =
n∑

i=1

n∑
j=1

1[vi(Xi) < max
T⪯Xi+Xj

min{vi(T ), vi(Xi +Xj − T )]

6 Implementation, Experiments and Results

We implement a general suite of tools for the fair allocation of indivisible items. We allow for item
multiplicities and allow general constraint-based agent valuations. Our implementation includes
algorithms for the mechanisms discussed in Section 3.2, and the justice criteria described in Section 5 to
evaluate the allocations. In the context of course allocation, we model items as courses derived from the
Fall 2024 course offerings of the Computer Science department at University of Massachusetts Amherst
referred to as the schedule— 96 courses, with real section details, enrollment capacities, and meeting
times— and agents as students with binary valuation functions.

We model real students based on survey responses and generate synthetic students using the method
outlined in Appendix A. From the survey responses regarding the maximum number of courses students
wish to enroll in, along with corresponding simulated values, we define the maximum enrollment
capacity for each student. We take the minimum between this value and the capacity allowed by the
department, which is 6 for undergraduate students and 4 for graduate students.

Both real and synthetic students express preferences for each course as numerical values ranging from
1 to 8. However, since the allocation algorithms require binary preferences, we map these cardinal
preferences to approval preferences by constructing a set of preferred courses using a top-k approach: for
each student, we determine a preference threshold based on their k-th preference and the corresponding
set of preferred courses. This approach eliminates any inherent bias that students might exhibit in
reporting their scores: being more enthusiastic about classes does not offer an advantage. In addition, it
avoids breaking ties in an arbitrary fashion: all classes that receive the same rating receive the same
approval score. For our experiments, we consider k = 10.
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Figure 2: Welfare metrics for the reduced student instance. Figure 2a compares % of allocated seats (USW),
Figure 2b compares the Nash welfare, and Figure 2c presents the number of empty bundles. We compare SD (in
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Figure 3: Fairness metrics for the reduced student instance. Figure 3a shows the number of PMMS violations,
Figure 3b shows the number of envious agents, and Figure 3c shows the number of EF-1 violations. We compare
SD (in blue), RR (in red), YS (in green) and ILP (in orange).

We first examine the scalability of each of our benchmarks. For each cohort size, we use either real
students responses, or a mixture of real and synthetic students to reach the target cohort size. We adjust
the student composition to match the proportional distribution of each academic status as shown in
Table 1, and we scale course capacities accordingly. All sequential algorithms use the same student
tie-breaking scheme: students with a higher academic status are given higher priority, and are ordered
uniformly at random within each group. Figure 1 shows that sequential approaches such as SD, YS
and RR scale well on the number of students, whereas the ILP suffers from exponential blowup in its
runtime, making it infeasible to evaluate for instances of more than 500 students.

To compare all four benchmarks, we use a reduced instance only of students generated from a subset
of real survey responses. According to Table 1, seniors have the lowest response rate of 20.42%. We
scale each course capacity to this value, and sample a subset of real responses from each other status to
match this rate, obtaining an instance of 471 students. We subsample 100 different instances by varying
which students are included in the sample and or the random seed given for the student generation.

Figure 2 summarizes the relative welfare performance of the four algorithmic benchmarks for reduced
student instances. Since YS and ILP maximize welfare, they assign the maximal number of seats, whereas
RR and SD fail to maximize welfare. YS is theoretically guaranteed to outperform all other benchmarks
on Nash welfare (Figure 2b); the fact that other benchmarks sometimes outperform it is explained
by Figure 2c: YS first minimizes the number of zero utility agents (all students were assigned at least
one desirable class in every run of Yankee Swap), and then maximizes the Nash welfare. Every other
benchmark leaves at least some students with zero utility; SD exhibits the worst performance, leaving
23 students (roughly 5% of the cohort) with zero utility on average.
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Figure 4: Histogram of the number of seats assigned to students under the four algorithmic benchmarks, for
reduced student instances. We also report the mean µ number of seats assigned, as well as the standard deviation
σ of the assignment distribution for each allocation mechanism.

Figure 3 summarizes how the four benchmarks perform in terms of fairness. Since YS is guaranteed to
be EF-1 and PMMS-fair, it significantly outperforms the other methods in terms of both PMMS and EF-1
violations. In addition, it exhibits significantly fewer envy violations than the other methods. Perhaps
unsurprisingly, the allocations output by the SD mechanism highly favor students who access the
system early, resulting in significant envy and PMMS violations. Finally, we note that the distribution of
student utilities (Figure 4) shows that the allocations output by YS ensure significantly more equitable
distributions: most students receive bundles of 3 or 4 courses, while none receive 0 or 6 classes.

We run a real-scale experiment with the three scalable algorithms — SD, RR, and YS — by augmenting
the real instance with synthetically generated students until reaching a full-sized instance of 2,308
students, obtaining similar results (see Appendix C.1).

7 Discussion

In this work, we present a publicly available, large-scale framework including detailed student preference
data, fair allocation mechanisms, and evaluation metrics. Our evaluation suite is not complete. In
particular, we hope to include additional mechanisms in our suite (Course Match is a prime candidate)
as well as additional survey data. We also plan to conduct longitudinal studies on the perceived
effectiveness of different course allocation mechanisms within University of Massachusetts Amherst.
Discussions with decision makers at University of Massachusetts Amherst identify an interesting
advantage of serial dictatorship: students do not need to report their full preferences to the university,
and have complete certainty regarding their course schedule when they conclude their interaction with
the allocation mechanism. Assessing the impact of the inherent uncertainty of sequential allocation on
student satisfaction is an important direction for future work.

Assessing the effect of course supply and demand is an promising direction for future work. Preliminary
analysis (see Appendix C.2) indicates that artificially increasing course demand by introducing additional
students results in poorer performance on fairness metrics for all mechanisms; however, since Yankee
Swap offers provable fairness guarantees, it results in more equitable outcomes than other benchmarks.
For example, as we increase the number of students (while keeping course capacities constant) the
number of students who receive no desired classes grows linearly under serial dictatorship. Since
Yankee Swap outputs leximin allocations, this effect does not occur.

Finally, we would like to encode more complex elicitation mechanisms and their effects on student
satisfaction. In particular, explicitly eliciting students’ preferences over course bundles (as is done by
Budish et al. [17]), and integrating those preferences in our frameworks is an important direction for
future work. The sequential frameworks we utilize need to be adapted in order to account for these
changes. The fact that the underlying preferences explicitly encode synergies may call for more complex
sequential approaches, or their integration with optimization based methods.
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A Synthetic Student Generation

We let S = {1, . . . , s} be the set of respondents and G = {g1, . . . , gm} be the set of courses. For each
course g ∈ G, respondent i ∈ S provides a response in the range {1, . . . , 8} (where 8 corresponds to
a required class). We normalize these responses to a preference vector for respondent i, θ⃗i ∈ [0, 1]m.
Fundamentally, we assume that each respondent will randomly formulate binary preferences over the
set of classes such that the normalized value θig ∈ [0, 1] represents the probability that respondent i
wants to take the class g.

Using the preference vector θ⃗i, we define an inference procedure that produces a distribution over
preference vectors that are likely similar, but not equal, to θ⃗i. The process begins by sampling binary
vectors ℓ times according to probabilities θ⃗i, which form a data matrix Di ∈ {0, 1}ℓ×m; if we take the
limit ℓ → ∞, Di uniquely describes θ⃗i. Using the matrix Di, we infer a multivariate beta posterior
distribution, mBeta(γ⃗i), as defined in Westphal [41]. The vector γ⃗i ∈ [0, 1]2

m is an implicit parameter
that captures dependencies among course preferences. In order to avoid combinatorial blowup, the
inference process is adjusted so that these dependencies are limited to covariances. We refer to the
random vector ϑ⃗i ∼ mBeta(γ⃗i) as the i-th random student and the j-th realization σ⃗ij ∈ [0, 1]m, drawn
from mBeta(γ⃗i), as a synthetic student. As ℓ increases, each synthetic student σ⃗ij will differ less and
less from θ⃗i, the original preference vector for the respondent.

We model the population of students for each academic status (e.g. freshmen) using kernel den-
sity estimation (KDE). This distribution is constructed as a uniform mixture of the distributions
mBeta(γ⃗1), . . . , mBeta(γ⃗s), and may be efficiently sampled by drawing one of the kernels mBeta(γ⃗i)
uniformly at random, and then sampling from it. Because the number of rows ℓ in Di determines the
number of samples drawn from the marginal Bernoulli distribution Bern(θig) for each class g, ℓ can be
seen as a smoothing parameter in much the same way that bandwidth controls kernel smoothing in
conventional KDE.

Survey respondents also specify a course max, or the maximum number of courses they are interested
in taking. For each academic status, we model the course max preferences independently from course
preferences. We first fit a multinomial distribution to the set of course max preferences among respon-
dents for that status. Then, for each synthetic student σ⃗ij drawn according to ϑ⃗i, we independently
draw a course max preference from the multinomial distribution.

B Runtime Analysis for Yankee Swap with Item Multiplicity

Let qtotal =
∑

g∈G q(g) be the total number of item copies. As mentioned in Section 4, a naive
implementation of Yankee Swap searches for a shortest path in the exchange graph in time quadratic in
qtotal. By redefining the exchange graph, we reduce the runtime dependency for searching a shortest
path, which is now quadratic onm. Second, it turns out that calls to student valuations can be expensive;
thus, our goal is to reduce the number of student valuation calls.

We assume that each agent is limited to a maximum clean bundle size of cmax, i.e., vi(Xi) ≤ cmax for
all i ∈ N and any possible bundle Xi. Similarly, we assume that each agent can get a positive marginal
utility of at most dmax items: |Di| ≤ dmax for any i ∈ N . Finally, we define pmax as the maximum
length of any transfer path.

We now analyze the time complexity of Algorithm 1 from Section 4. Since the allocation X is a matrix,
updating an agent’s bundle can be done inO(1) time. In each iteration, the algorithm either allocates an
unassigned item or removes an agent from the game. Thus, the outer loop of the algorithm runs at most
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Figure 5: Welfare metrics for a full-size instance with 2,308 students. We compare SD (in blue), RR (in red), and
YS (in green).

qtotal + n times. Identifying the unhappiest agent can be done in O(log n) time and, given that there
are O(m) nodes in the exchange graph G(X), we can find the shortest path in O(m2) time. Path aug-
mentation is the most expensive part of the algorithm. Let qmax = maxg∈G q(g) be the largest number
of copies of any individual item. Since Rg→g′ can have at most q(g) elements, determining whether an
agent is willing to exchange g for g′ takes O(log qmax) time. Hence, phase 1 of the path augmentation
can be computed in O(pmaxdmax log qmax) time, and phase 2 in O(pmaxdmaxcmax(log qmax + τ)) time.
Combining these observations yields following result.

Theorem 1. Algorithm 1 runs in O
(
(qtotal + n)(log n+m2 + pmaxdmaxcmax(log qmax + τ)

)
In the context of course allocation, cmax = 6 is reasonable, since this is the maximal number of classes
students are allowed to take in a single semester at University of Massachusetts Amherst. Students
typically assign a high score to significantly fewer classes than m, thus dmax is also ≪ m. While
transfer paths could potentially be of lengthm, they are far shorter in practice, often consisting of no
more than two or three item swaps. Finally, and maybe more importantly, separating the exchange
graph representation from the agents through the tuple R considerably reduces the number of student
valuation function calls.

C Additional Experiments

In Section section 6, we evaluated the performance of our four benchmark algorithms on a reduced in-
stance derived from real student data. Here, we extend our analysis to a full-scale setting by augmenting
the real survey responses with synthetic students to match the actual size of the department. We focus
on the three scalable sequential algorithms — SD, RR, and YS. Additionally, we examine the behavior of
the system under increased demand by artificially injecting additional students while keeping course
capacities fixed. We evaluate performance in terms of utilitarian social welfare (USW) and the number of
students receiving empty bundles.

C.1 Full-Scale Evaluation

We run a full-scale experiment using the three scalable algorithms: SD, RR, and YS. To construct a
realistic instance, we use all real survey responses and augment them with synthetic students to match
the actual number of CS majors at University of Massachusetts Amherst, resulting in a population of
2,308 students. We generate 100 different samples of synthetic students and run the algorithms on each
instance using a fixed student order.

16



0

5

10

15
×103

 is better

(a) PMMS violations

0

10

20

30

40

50

60
×103

 is better

(b) EF violations

0

5

10

15
×103

 is better

(c) EF-1 violations

Figure 6: Fairness metrics for a full-size instance with 2,308 students

0 1 2 3 4 5 6
Bundle Size

0

200

400

600

800

1000

Fr
eq

ue
nc

y

 =2.99
 =1.40

 =3.02
 =1.26

 =3.10
 =0.98

SD
RR
YS

Figure 7: Averaged distribution of bundle sizes in experiments with 2,308 students.

YS, SD and RR exhibit similar behavior on both welfare (Figure 5) and fairness (Figure 6) metrics. SD is
the least fair and efficient of the three methods, YS offers the best guarantees, and RR falls somewhere
in between.

Figure 7 shows a histogram of bundle sizes for full-size instances. Again, both the serial dictatorship and
the Round Robin mechanisms offer significantly greater disparities as compared to the Yankee Swap
framework; indeed, as Figure 5c shows,∼ 110 students receive an empty bundle under SD,∼ 40 receive
an empty bundle under RR, and no student receives an empty bundle under YS. Yankee Swap bundles
are again heavily concentrated around 3-4 seats, which indicates a more equitable seat distribution.

C.2 Simulating High-Demand Scenarios

How well do different mechanisms respond to increased student demand? To evaluate how different
allocation mechanisms behave under increased student demand, we conducted 10 simulations per
cohort size while maintaining real course capacities. This allows us to analyze what happens when
we increase the number of students without adding more course seats. As shown in Figure 8, all three
algorithms perform well in terms of utilitarian welfare, with YS slightly outperforming the others in
terms of USW.

However, a different trend emerges when considering empty bundles (Figure 9). YS makes a significant
effort to ensure every student receives at least one item, as reflected in the curve’s shape, which suggests
that YS prioritizes allocating each student at least one desirable class, until demand completely outstrips
supply. Given that there is a total of 7,389 seats, enrolling more than 7,389 students inevitably leads to
empty bundles. While RR also mitigates empty bundles, SD exhibits a linear increase in empty bundles
as system stress rises.
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Figure 8: USW as a function of the number of students, while maintaining real course capacities.
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Figure 9: Number of empty bundles as a function of the number of students, while maintaining real course
capacities.
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