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Abstract

The Skating System, which originated from the scrutineering system in dance sport tournaments,
can be formulated as a voting system: We introduce and formalize the Skating System Single
(SkS, for short), a new voting system embedded into the framework of computational social
choice. Although SkS has similarities with Bucklin voting, it differs from it because it is subject
to additional constraints when determining the election winners. Through an analysis of the
axiomatic properties of SkS and of its vulnerability to manipulative and electoral control attacks,
we compare SkS with Bucklin voting and provide insights into its potential strengths and weak-
nesses. In particular, we show that SkS satisfies nondictatorship as well as the majority criterion,
positive responsiveness, monotonicity, and citizens’ sovereignty but violates the Condorcet crite-
rion, strong monotonicity, independence of clones, consistency, participation, resoluteness, and
strategy-proofness. Further, we study manipulation—showing that the constructive coalitional
weighted manipulation problem for SkS is NP-complete, while the destructive variant can be
solved in polynomial time—and initiate the study of control.

1 Introduction

Voting plays a fundamental role in collective decision-making and has an abundance of practical usages.
One of these applications is winner determination in ballroom tournaments. Ballroom dancing is a style
of partner dance that originated in the 16th century in the European Royal courts [1, 20] and has since
evolved, incorporating influences from various cultures. It is characterized by specific partner dance
positions, coordinated movements, and a combination of various dance styles. Today, it continues to
be popular worldwide, both as a social activity and a competitive sport with standardized rules and
judging criteria. A typical ballroom tournament proceeds in several rounds in which couples dance
simultaneously and where the so-called adjudicators cast their votes on the participating couples. After
each round, at most half of the participating dancing couples drop out, whereas the remaining couples
proceed to the next round. Eventually, the tournament progresses through the quarter-finals and
semi-finals to the final. A final consists of at least two and at most six couples competing in multiple
dances.! The adjudicators evaluate the dance couples in two different ways depending on the phase
of the tournament. During all rounds except the final, the adjudicators approve or disapprove the
participants. However, they can give an approval to at most half of the participants. The evaluation
format changes in the finals, though, where the adjudicators are asked to cast a strict linear ranking of
all participants per dance. This ranking must be created independently for every dance, i.e., having, e.g.,
four dances in the final, all adjudicators must rank all couples four times.

The intricate and complex rule set the adjudicators must adhere to is known as the Skating System,
described in detail by Williams [31]. The system’s name has its roots in figure skating and was adapted
and later used for dance sport tournaments. Records show that the first major competition that used an
early form of the Skating System was the British Championship in Blackpool in 1937 (see [31]). The
rule set covers the following topics: Instructions to the adjudicators on how to evaluate the participants,
winner determination of the single dances, winner determination of the tournament, and additional
rules to break possible ties. That is, the Skating System consists of multiple evaluation methods, each

'In exceptional cases, the tournament office may allow more than six couples.



producing an output to be used for the next evaluation step. The following example shows how to rank
the couples—based on the rankings of the adjudicators—to determine the winner of one dance in a
dance tournament final according to the Skating System.

Example 1. Consider a dance tournament final with a single dance,

six competing couples, and five adjudicators—A, B, C, D, and E— Couples A B C D FE
each ranking the couples from first (best) to sixth (last) place as shown 31 1 1 6 6 6
on the right. Intuitively, couple 31 could be winning for having the 32 4 2 3 3 1
most first positions, or couples 32 or 34 for having several of first, 33 2 6 2 4 92
second, and third positions. However, the actual winner according to 34 3 3 1 2 5
the Skating System is couple 33. Couple 32 is ranked second, 34 is 35 6 4 5 6 4
ranked third, followed by couples 36, then 35, and lastly, couple 31 is 36 5 5 4 1 3

even in the last position.

As shown in the example, the Skating System allows for quite unintuitive results, making a formalization
and an extensive axiomatic analysis particularly important to either justify or dismiss its usage both in
ballroom tournaments and as a general voting rule. Until today, there are only a handful of investigations
of the Skating System [22, 23]. Therefore, the Skating System is mostly unknown in the area of COMSOC.

We introduce a new voting rule—called Skating System Single (SkS, for short)—that corresponds to and
formalizes parts of the rule set of the Skating System, namely the winner determination of each dance
in the final round. To the best of our knowledge, the Skating System has not been formalized as a
social choice function yet. However, such a formalization is necessary to be able to perform axiomatic
or complexity-theoretic analyses. Since the rule set of the Skating System is already widely used in
real-life tournaments worldwide,” we deem it necessary to start such studies. Therefore, we provide an
extensive axiomatic analysis of SkS, considering properties such as the Condorcet criterion, majority,
positive responsiveness, (strong) monotonicity, independence of clones, and participation.

Moreover, we study the complexity of manipulation for SkS: In an election, instead of all voters casting
their votes sincerely when ranking the candidates from most to least preferred, some voters might also
vote strategically to change the election outcome in their favor. That is, based on complete knowledge
of all sincere voters’ preferences, they might cast ballots that misrepresent their honest preferences
with the intention of making a favored candidate the winner of an election (constructive case) or prevent
a despised candidate from becoming the winner (destructive case). A voting system is called strategy-
proof if no voter can improve the election outcome by voting strategically. However, Gibbard [17]
and Satterthwaite [26] showed that every voting system that satisfies certain reasonable axioms like
nondictatorship cannot be strategy-proof. Bartholdi et al. [3, 4] introduced and studied constructive
manipulation by a single manipulator who aims at making a favored candidate win an unweighted
election. Conitzer et al. [8] added the destructive goal, generalized this for coalitions of manipulators
and also considered weighted elections, i.e., elections where the contribution of each vote is weighted
by some integer. In their book chapter, Conitzer and Walsh [7] survey the computational barriers to
manipulation in voting.

Another type of attack on elections, for which we initiate the study of SkS in this work, is electoral
control, introduced by Bartholdi et al. [5] in the constructive and Hemaspaandra et al. [18] in the
destructive case. In control scenarios, an external agent, also called the (election) chair, attempts to make
a distinguished candidate win (constructive case) or not win (destructive case) an election by interfering
with the structure of the election, e.g., by adding, deleting, or partitioning voters and candidates.

If the corresponding decision problem is NP-hard, we say that the voting rule is resistant to that kind
of attack. Otherwise, if the decision problem can be solved in polynomial time, we call this voting rule
vulnerable to that attack type.

2Specifically, the Skating System is used by the World DanceSport Federation and the International Olympic Committee.



Related Work. Manipulation and control are also closely related to bribery [14], a third attack type
on elections, surveyed together with control by Faliszewski and Rothe [13]. In bribery scenarios, an
external agent tries to make a given candidate win an election (in the constructive case) or, not win (in
the destructive case) by bribing voters to change their vote within a given budget. The book chapter by
Baumeister and Rothe [6] covers all three types of attacks on elections.

The newly introduced SkS is most closely related to the Bucklin voting system. For Bucklin voting,
manipulation and bribery have been studied by Faliszewski et al. [15] and electoral control by Erdélyi
et al. [12, 11].

While the work of Bartholdi et al. [3, 4] marks the very beginnings of the area of COMSOC, this—and,
in particular, the study of strategic voting, manipulation, and control of elections—is still a very active
field of current research (see, e.g., [9, 10, 21]).

2 Preliminaries

Before we turn to elections, we introduce some general assumptions and notation. For a logical
expression P, we define I p to be 1 if P is true, and 0 otherwise. For n € N\ {0}, we write [n] for the
set {1,...,n}. We assume that the reader is familiar with the basic concepts of complexity theory (for
more background, the textbooks by see Papadimitriou [24] and Rothe [25]).

An election is a pair (C, V), where C = {c1,...,cp} for m € Nis a set of candidates and V' =
(v1,...,v,) for n € Nis a list of votes specifying the voters’ preferences over the candidates in C.
Voters can express their preferences over the candidates in many different ways. As is most common in
social choice theory, SkS requires rankings of the candidates, i.e., each vote is given by a (strict) linear
order over C. We write ¢ >, d if a voter v prefers candidate c to candidate d, omitting the subscript
when v is clear from the context: ¢ > d. We use pos,(c) to denote the position of candidate ¢ in vote v.
A voting system maps any given election (C, V') to a subset of C, the winner(s) of (C, V). For i € [m]
and ¢ € C, let score’(c) = Y ey Tpos, (c)<i be the number of votes in which c is ranked among the
top-i positions in the votes from V. Further, let sum_pos’(c) = Y, .y (pos,(c) - Hposv(c)gi) be the
sum of positions candidate ¢ achieves up to stage i in the votes V. Only if needed, we use (C, V) as a
subscript and explicitly write scorefaw (c) and Sum_pOSéC7v) (c).

We now define the well-known Bucklin voting system which, given an election (C, V'), proceeds in stages
until at least one candidate has reached (or exceeded) the majority threshold maj(V') = |IVl/2] + 1, i.e.,
is among at least maj(V’) top-i positions in the votes V. That is, in each stage i, we check if at least
one candidate reaches the majority threshold. If none of the candidates reached it in the current stage,
we proceed to the next stage. For any candidate ¢ € C' and for any stage i € [m|, with m = |C|, the
Bucklin score of c in stage i is defined by scorel; (c) = score’(c). Let i* be the smallest stage in which at
least one candidate reaches maj(1'), and return the candidate(s) with the highest Bucklin score in this
stage ¢* as the (set of) Bucklin winner(s),

Obviously, every Bucklin winner who is already found in the first stage must be a unique winner (i.e.,
wins alone), and if we were to proceed to the very last stage m = |C/, all candidates in C' are Bucklin
winners. In particular, we always have at least one Bucklin winner.

Example 2. Let (C, V) be an election with C' = {U, X, Y, Z} and the
following votes shown on the right. In stagei = 1, we have scores (U) =
2 and scorel(¢) = 1 forc € {X,Y, Z}. None of the candidates reaches
the majority threshold maj(V') = 3; thus we proceed with stage 2 in
which both U and X reach this threshold with a score of 3. Hence, both
U and X are the Bucklin winners of the election.

Anne: U >-X»>Y =2
Bob: U>=X>Y>Z
Caro: X>-U»=Y =72
Dave: Y >=Z>U> X
Ella: Z>Y »>U>X




3 Skating System Single (SkS)

Example 2 shows a Bucklin election with multiple winners. A keen reader may have noticed that,
even though both winners share the same Bucklin score, one of the candidates (namely U) is ranked
higher than the other in two of the three decisive votes (and four of the five voters in total). While in
this example the difference in the sum of positions is only one, we later show in Theorem 1 that this
difference can be arbitrarily large. Surely, this makes a strong case that U deserves to win alone, does it
not?

In this section, we—first intuitively and then more formally—introduce the Skating System Single (SkS,
for short), a new voting system inspired by the rule set of the Skating System [31]. Just as Bucklin
voting, SkS proceeds in stages. While proceeding through each stage, various conditions are checked
until a winner is found. Essentially, most of the conditions can be seen as a form of tie-breaking if more
than one candidate qualifies as a possible winner. However, even though this intrinsic tie-breaking
exists, SkS is not a resolute rule. Before formally defining winner determination, let us first give an
overview of the stages in SKS, given an election (C, V') with m = |C| candidates.

Stage 1: Is any candidate ¢ € C' in the top position of at least maj(V') votes?

Yes: Candidate c is the unique SkS winner.

No: Continue with stage 2.
Stage i, 2 < i < m: Are there any candidates C’ C C in the top-i positions of at least maj(V’) votes?

Yes: Let C* C C’ be the candidates from C” with the highest score (to be formally defined below).
Is it true that |C™*| = 1?
Yes: This candidate in C* is the unique SkS winner.
No: Does a single candidate ¢ € C* have the lowest sum of top-i positions (to be formally
defined below)?
Yes: This candidate c is the unique SkS winner.
No: If i = m (i.e., currently we are already in the last stage), return all candidates C*
as SkS winners. Otherwise, continue with stage ¢ + 1, but only with candidates
from C* who tie for the lowest sum of top-i positions.?

No: Continue with stage ¢ + 1 (with all candidates).

Having a first idea of what the complete SkS voting system looks like, we can now start with its formally
precise definition.

Again, we use the majority threshold maj(V') = [IV|/2] + 1. Next, we define the scoring functions used
by SkS. In each stage, the score of a candidate will consist of two components: First, the number of
votes in which the candidate was ranked in the top-¢ positions and, second, the sum of these positions,
allowing for a more refined distinction of candidates. The higher a candidate is ranked in a voter’s
preference, the less impact this vote has on the sum of positions, i.e., a lower ranking in the top-i
positions will increase the sum of positions more than being the top candidate in a vote, so a lower sum
of positions is favorable.

Definition 1 (SkS). Let (C, V) be an election with m = |C| candidates. Let i; = min;e [, {i |
score’(c) > maj(V')} be the minimal stage in which candidate ¢ reaches the majority threshold, and let
i* = mingec (7)) be the smallest stage where at least one candidate reaches the majority threshold. The
SkS voting rule looks for the minimal stage j € [i*, m] in which one single candidate has the highest
score. To this end, consider the following cases for the set Cj = arg max . (score’(c)).

*Proceeding with only the candidates from C* who tie for the lowest sum of top-i positions instead of all candidates from
C™ leads to an interesting interaction. A candidate ¢ € C* may be excluded based on the sum of positions, even if ¢ would
beat all candidates who tie for the lowest sum of positions by score in the next stage.



Case |Cj| = 1: The sole candidate in C; is the unique SkS winner.

Case |Cj| > 1: SkS compares the sum of positions for all candidates in Cj: O} =

arg minyec, (sum_pos’(c)).
Case |C}| = 1: The sole candidate in C is the unique SkS winner.

Case |C;| > 1: If more than one candidate has the lowest sum of positions, we proceed to the
next stage 7 + 1 and repeat the steps mentioned above with only the candidates in C]’. (ie.,
set C' = CJ’) As soon as j = m, all candidates Cj’- are the SkS winners.

The following example illustrates how SkS works.

Example 3. Let (C, V') be an election with the set of candidates C = {X,Y, Z} and the voters Anne,
Bob, Caro, and Dave having the following preferences: Anne: X =Y > Z, Bob: Y = X > Z, Caro:
Y -~ Z > X, and Dave: Z = X =Y. We havemaj(V') = |4/2] 4+ 1 = 3. The stages of the SkS election
are depicted below. Candidates within the top-i positions of the votes in stage i are marked by a v'. The
two rows at the bottom of the tables show the resulting scores.

Stage 1 Votes X Y VA Stage 2 Votes X Y Z

Anne: X >Y > Z v - - Anne: X =Y =7 | v(1) v(2) -

Bob: Y - X >~ 7 - v - Bob: Y - X>=7Z | v(2) v(1) -
Caro: Y = Z > X - v - Caro: Y = 7Z > X - V(1) V(©2)
Dave: 7 > X =Y - - v Dave: 7 - X =Y |v(2) - v(1)

score! (c) 1 2 1 score?(c) 3 3 2

sum_pos'(c) 1 2 1 sum_pos?(c) 5 4 3

Since in the first stage, no candidate receives enough votes to reach the majority threshold, the election
proceeds to the second stage. Here, for each candidate, we also show in which position of the given vote the
candidate is ranked in case this candidate was ranked within the top-i positions. That is, we write v'(2), if
X is ranked in the second position. In the second stage, both X andY reach the majority threshold. Since
candidate Y has a lower sum of positions, Y is the unique SkS winner.

As mentioned above, SkS resembles Bucklin voting: They both proceed in stages and use the majority
principle. Therefore, let us compare them in some more detail and discuss their similarities and
differences. The first and most obvious similarity is that the first part of the SkS score equals the Bucklin
score: score’(c) = scorel(c) = D,y Mpos, (¢)<i- Second, the first stage of both voting systems
coincides: A candidate ¢ with score!(c¢) > maj(V') wins alone in both SkS and Bucklin voting. Beyond
the obvious, unique Bucklin winners reaching the majority threshold at a later stage will also be unique
SkS winners. The reverse, however, is not always the case: Even if an SkS winner is unique, there can
be multiple Bucklin winners of the election. For example, in the election from Example 3, we have seen
that Y is the unique SkS winner, but it is easy to see that both X and Y would be the Bucklin winners.
Furthermore, all SkS winners are also Bucklin winners; again, the reverse is not always the case (as we
have just seen). We summarize and prove these and other properties below.

Theorem 1. (i) Every unique Bucklin winner is a unique SkS winner.
(ii) Every SkS winner is a Bucklin winner.
(iii) For all k > 1, there is an election with the same k SkS and Bucklin winners.

(iv) The difference in the sum of positions of Bucklin winners can be arbitrarily large in the decisive stage.



Proof. (i) Assume that ¢,, € C is the unique Bucklin winner of an election (C, V). Let i* be
the minimal stage in which at least one candidate reaches the majority threshold in Bucklin
voting. Clearly, ¢,, reaches the majority threshold in stage i*. The Bucklin winner is defined as
arg max,. o (scorel (c*)). Since ¢, is the sole Bucklin winner, ¢,, has a greater Bucklin score
than all other candidates in stage ¢*. The majority threshold is the same for both SkS and Bucklin
voting and, thus, we know that c,, also reaches the majority threshold in an SkS election in
stage ¢* and stage ¢* is, again, the smallest stage in which a candidate has reached the majority
threshold. By definition of score’(c) = Y,y Lyos, (0)<i = scorek (c), it immediately follows
that arg max, - (score’ (¢)) = {cy}, and therefore, c,, is also the unique SkS winner of (C, V).

(i) Let (C, V) be an election. First, if (C, V') has a unique Bucklin winner, we know from the first
statement that the SkS and Bucklin winners of (C, V') are the same. So assume that (C, V') has
two or more Bucklin winners. It remains to show that every SkS winner is also a Bucklin winner in
this case. We show this by contradiction. Let C:Z be the set of Bucklin winners and C: the set of
SkS winners of (C, V). For the sake of contradiction, assume that C  CZ, i.e., at least one SkS
winner, say ¢*, is not a Bucklin winner. Since ¢* is an SkS winner, we have score’ (¢*) > maj(V),
where ¢* is the minimal stage in which any candidate reached the majority threshold. Since c¢* is
not a Bucklin winner, we also know that scorel (c*) < scorel (c) and scorel (c) > maj(V') for
all ¢ in CE. Immediately, we have score’ (¢*) < score’ (c) for all ¢ in CZ. Since ¢* € C3, we
have ¢* € arg max, . (score’ (c)). This is a contradiction.

(iii) For k = 1, this directly follows from the first statement. For £ > 1, construct an election (C, V')

as follows. Let C' = {c1, ca, ..., cx }. Construct k votes by setting
cp > C > -+ > Ck—1 Ck
co > C3 > - = Ck ~ C1
C, »= € »= ==+ > Cgk—2 »~ Cg_1

Due to the cyclic permutation of the votes, each candidate is ranked at each position exactly
once and receives exactly one additional point in each stage. Therefore, all candidates reach the
majority threshold maj(V') at the same time: in stage % for odd k, and in stage g + 1 for even k.
Since all candidates tie in their scores, they all are Bucklin winners. For SkS, the positional scores
of all candidates in each stage 7 is > ecli] ¢ and, as in Bucklin voting, all candidates tie in each
stage. Therefore, SkS proceeds through all stages without excluding any candidate and, finally,

declares all of them winners.

(iv) We give a construction for an election in which the difference in the sum of positions between
two Bucklin winners can be controlled by setting two integer parameters. Let i,n € N be two
integers with i > 3 andn > 0 and let C' = {c¢1,...,con} and D = {dy, ..., d, 12} be two sets
of candidates. Construct an election (C, V') with the candidates C' = {a,b} U C" U D and the
following votes—note that we only depict the first n 4 2 positions of each vote, as the remainder
of the vote can be arbitrary:

Vote list V'

a =c >=...=c¢cp =D - ...

a =c¢ =...=c¢c, ~0b — ...
b =cCpi1 ... Con >=a — ...
di>=de > ...>=dpy1>dpyo = ...

(i—1)

di>=do > ...>dpy1 > dpyo = ...




We have maj(V) = [i — 1| + 1 = i. It is clear, that each candidate from C’ and D occurs at
most ¢ — 1 times in the top n 4 2 positions. Candidate a is ranked in the first postion a total of
¢ — 1 times and then once again in position n 4 2, reaching the majority threshold in stage n + 2.
The inverse is true for candidate b, who is ranked only once in the first position and then 7 — 1
times in position n + 2, also reaching the majority threshold in stage n + 2. Thus both @ and b
are the Bucklin winners. The difference between the two winners is immediately clear, though:
Calculating the sum of positions in stage n + 2 for a and b, we have

sum_pos"%(a) =i — 14+ n +2,
sum_pos"2(b) =1+ (i — 1)(n + 2).

By increasing either ¢ (and thus the number of votes) or n (and thus the number of candidates) or
both, we can boost the difference in the sum of positions between a and b arbitrarily. O

SkS and Bucklin voting differ in their behavior whenever some candidates reach the majority threshold
due to the same number of votes. In such cases, Bucklin returns all these candidates as winners, yet
SkS instead first compares their sums of positions: If they are the same, it moves on to the next stage
with the relevant candidates, repeating the procedure either until one candidate is the sole winner or
until the last stage reached with multiple SkS winners. Following this, we state the following lemma on
winner determination in SKS. Intuitively, Lemma 1 states that once candidates have tied both in terms
of the highest score and lowest sum of positions (while also reaching the majority threshold) leading to
a reduced candidate set in the next stage, any unique winner beats all other remaining candidates by a
strictly higher score.

Lemma 1. Let (C, V) be an election and C' C C some candidates. Assume that, for some stage i, we
have score’(c) = score’(d) > maj(V), score’(c) > score’(x), and sum_pos'’(c) = sum_pos‘(d) for
alle,d € C',c#d,andx € (C'\ C'), i.e., SkS proceeds to stage i + 1 with the reduced candidate set C'.
Then it holds that

(i) for a unique SkS winner c, we have score’ (c) > score’ (d) for somei < j < |C| andd € (C'\ {c});

(ii) if there is no unique SkS winner, we have score’ (c) = score’ (d) for alli < j < |C| and for some
ceC,deC"\{c}.

Proof. (i) Let SKS be in stage 7 and assume we have a reduced candidate set C’ C C'. Since we have a
reduced candidate set, all candidates from the reduced set must have tied both the score and sum
of positions in the previous round. Assume that c is the first unique SkS winner in stage j with
i < j < |C|but score’ (¢) < score’(d) for some d € C* C (C"\ {c}). Since c is a winner there
can be no candidate d with a higher score and thus we have score’ (c) = score’ (d). Additionally,
since c is the unique SkS winner, the sum of positions for c is the uniquely lowest sum of positions
among all candidates from C*. Since all candidates from C* must have tied both in highest score
and sum of positions in stage j — 1, we have that c either decreased their sum of positions or
gained the same increase in score as the other candidates while simultaneously receiving less
sum of positions. As both are not possible, we thus have a contradiction.

(ii) This follows directly from the definition of SkS. O

4 Axiomatic Analysis of SkS

In this section, we consider the following axiomatic properties of voting systems: the Condorcet criterion,
the majority criterion, monotonicity, positive responsiveness, strong monotonicity, independence of
irrelevant alternatives, independence of clones, consistency, participation, nondictatorship, citizens’



sovereignty, resoluteness, and strategy-proofness. These have been motivated and discussed in depth
in the social choice literature and have been investigated for an abundance of voting systems (see, e.g.,
(2, 6, 30, 32]). In the following, we study which of them are satisfied by SkS and which are not.

Theorem 2. SkS satisfies the majority criterion, positive responsiveness, monotonicity, nondictatorship, and
citizens’ sovereignty. On the other hand, SkS does not satisfy the Condorcet criterion, strong monotonicity,
independence of irrelevant alternatives, independence of clones, consistency, participation, resoluteness, nor
strategy-proofness.

Proof. Due to space limitations, among the axioms satisfied by SkS, we will only present the proofs
for monotonicity and positive responsiveness, two closely related, well-known axioms from the social
choice literature. Recall that a voting system is monotonic if for every election (C, V') and for each
candidate ¢ € C, if (i) ¢ wins the election, and (ii) a new election (C,V’) is generated from (C, V)
by improving the position of ¢ in some votes, leaving the relative rankings of all other candidates
unchanged, then c also wins this new election. Further, positive responsiveness means that a (possibly
tied) winner c turns a unique winner whenever c is raised in some votes, again leaving everything else
the same.

Monotonicity: Assume a candidate ¢ wins an SkS election (C, V). Now, we improve the positions of ¢
in some votes, leaving the relative rankings of all other candidates unchanged. Let W be the resulting
list of new votes. For the sake of contradiction, assume that ¢ does no longer win the SkS election
(C,W). However, since c has only improved the positions in some votes, if ¢ has won (C, V') already
in the first stage due to a majority of top positions, ¢ must also win (C, W) in the first stage due to a
majority of top positions. If ¢ has won (C, V') at a later stage, let i > 1 be the stage where ¢ meets or
exceeds the majority threshold in (C, V'). Now, since ¢ has only improved the positions in some votes
while none of the other candidates can have a better position in the votes of W than in those of V, it
follows that (i) ¢ reaches the majority threshold at a stage j* < i’ in (C, W) and no other candidate can

jc corete
e (C,W)(C) > 5core(c7v)(c), and
ZC

(iif) sum_posgé W) (¢) < sum_pos IGA% (¢). Hence, c again is an SkS winner in (C, W), a contradiction.

reach the majority threshold at an earlier stage than in (C, V), (ii) score

Positive responsiveness: Let (C, V') be an election and let ¢, d € C be two SkS winners of (C, V).
Recall from Lemma 1 that if multiple winners exist in an SkS election, then once the majority threshold is
reached at some stage ¢, candidates c and d will continue to tie in both score and sum of positions for every
following stage. Let V' be a vote list derived from V' by improving, without loss of generality, ¢’s position
in at least one ballot, while leaving the relative rankings of all other candidates unchanged. Assume that ¢
is not a unique winner of election (C, V). Then either (i) ¢ does not win at all or (ii) ¢ does win alongside
someone else, say z € C'. Since SKS satisfies monotonicity, (i) immediately leads to a contradiction,
which leaves us with case (ii). Due to ¢’s improvement, there must be some stage j with 1 < j < |C|
where scorei,, (¢) > score],(c) and sum_pos@,(c) < sum_p‘osl"/(c). Note that for any other candidate
y € C \ {c} and every stage i, we have score{,, (y) < scorej,(y) and sum_posj,, (y) > sum_posy, (y).
In particular, s position did not improve. Let i’ < i be the stage in which ¢ reaches the majority
threshold in (C, V'). If i < i, we have that ¢ reached the majority threshold earlier than in the original
election. Since x is also a winner, we have score%}, (c) = score%;, (z), a contradiction. Lastly, if /' = i, due

to Lemma 1, we have score{},(c) = scorei, (x) and sum_posi,, (¢) = sum_posi, (y) fori’ < j < |C
again a contradiction.

5

Condorcet criterion, independence of clones, and independence of irrelevant alternatives:
Again, due to space limitations, we will present just one counterexample in Table 1 showing that SkS
satisfies neither the Condorcet criterion nor independence of clones nor independence of irrelevant
alternatives (referring to the social choice literature for the formal definitions of these properties). Let
C={X,Y,Z}andC' = {X,Y, Z,Z'}. Thelist V of votes over C'is depicted in Table 1a. Since |[V'| = 7,
we have maj(V') = 4. Further, we have SCOYG%O,V)(C) = 2forc € {X,Y} and score%oyv)(Z) = 3.



Anne: XY >=Z7 Anmme: X >Y =277

Bob: XY >~Z Bob: X »Y =77
Caro: Y~-X>=Z Caro: Y =X =277
Dave: Y~-7Z+-X Dave: Y >=Z>7'»X
Ella: Z-Y X Ella: Z>Z2'>Y > X
Fred: Z-Y =X Fred: Z>=Z7Z'-Y =X
Gail: Z-Y X Gal: Z>-Z7'>Y >X
(a) Vote list V' of the original election. (b) Vote list V'’ after adding the clone Z'.

Table 1: Vote lists of the two elections in the proof of Theorem 2.

Since neither candidate reaches the required threshold in stage ¢ = 1, we continue with the next stage.
Here, we have score%cyv) (X) =3, score%cyv)(Z ) =4 and score%qv) (Y) = 7. Now, Y is the unique
SkS winner because score%c’v)(c) > maj(V) for ¢ € {Y, Z}, and score%c,v)(Y) > score%c’v)(Z).
Adding a clone Z’ of candidate Z yields the election (C’, V') depicted in Table 1b. Note that the clone
7' is always ranked in the position behind Z and the rest of the votes is left untouched. The scores in the
first stage of the election remain the same. However, in the second stage, the scores change with respect
to the election (C, V). That is, the scores of X and Z are unchanged, while Y loses three points to the
clone Z’. Now, we have score?c,y,)(c) =4force {Y,Z} and score?c,y,)(d) =3ford € {X,Z'}.
Since maj(V') = Score%c,’v,) Y) = score%c,’v,) (Z), we have to consider the sum of positions for Y’
and Z to determine the winner. We have sum_pos?c/y,)(z )=5<6= sum_pos%c,yv/)(Y). Thus,
after the addition of the clone Z’, the winner of the SkS election changed from Y to Z, and SkS satisfies
neither independence of clones nor independence of irrelevant alternatives. Note that, in the second
election, Y is still a Condorcet winner and yet loses the SkS election to Z now. Therefore, SkS does not
satisfy the Condorcet criterion. O

As Bucklin and SkS are heavily related, their axiomatic properties often align. Nonetheless, they are not
always the same, as shown by positive responsiveness, which SkS satisfies while Bucklin does not.* A
comprehensive overview of all properties considered here is given in Table 2.
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§ &S F IS Fagssdyss
S X S 7
S F Y TSSO E TR
Bucklin X v 4 X X X X X X 4 4 X X
SkS X v v v X X X X X 4 4 X X

Table 2: Comparison of axiomatic properties between SkS and Bucklin (see, e.g., [6]).

*It is easy to see that Bucklin violates positive responsiveness by a small counterexample. Consider the candidates
C ={a,b,c} and the votesa > b > c>d,b>a > c > d,and c = d > a > b. Both a and b are the Bucklin winners in
stage two. We can now improve b’s position in the last vote to ¢ > d > b > a without changing the election result.



5 Complexity of Manipulation in SkS

In this section, we will study the complexity of manipulation in SkS. As mentioned in the introduction,
Bartholdi et al. [3, 4] initiated the study of manipulating voting systems in terms of determining the
computational complexity of the corresponding decision problems. They considered the most restricted
problem variant: constructive manipulation by a single manipulator seeking to make a preferred
candidate win an unweighted election.

The most general problem, due to Conitzer et al. [8], considers constructive coalitional weighted
manipulation. This means that there is a group (or coalition) of manipulators who jointly seek to
make their preferred candidate win a weighted election. In a weighted election, voters may not all
have the same voting power; rather, each voter is assigned a nonnegative integer weight, and if
the voting system (as is the case for SkS) uses scores, these weights need to be taken into account
when determining the candidates’ scores. For SkS, a weighted election is represented as (C, V, Wy/),
where Wy = (wy,...,w,) is a list of nonnegative integer weights with w; being the weight of the
i-th voter. The majority threshold now is maj(V) = [(X.evwo)/2] + 1, and score’(c) for i € [m]
and ¢ € C now is the sum of the weights of those voters who rank ¢ among their top-¢ positions,
ie., score’(c) = 3 oy (I (¢)<i - wy). The definition of sum_pos’(c) is analogously weighted, i.c.,
sum_pos‘(c) = Y,y (pos,(c) - Wyos, (e)<i - w, ), and SkS for weighted elections works as described
in Definition 1. Now, we are ready to define the most general manipulation problem for any voting
system &:

£-CoNSTRUCTIVE-COALITIONAL-WEIGHTED-MANIPULATION (£-CCWM)

Given: A set C' of candidates, a list V' of nonmanipulative votes over C' each having a nonnegative integer
weight collected in a list Wy, a list Wg of the manipulators’ nonnegative integer weights, where the
manipulators’ votes in S are as yet unspecified, V N S = (), and a distinguished candidate ¢ € C.

Question: Can the votesin S be set such that ¢ is the unique £ winner of the weighted election (C, VUS, Wy (g)?

The following special variants of £-CCWM have been studied in COMSOC (see, e.g., [7, 6]): £-
CoNSTRUCTIVE-COALITIONAL-MANIPULATION (£-CCM) where the considered elections are unweighted
(i.e., every voter has unit weight) and £-CoNSTRUCTIVE-MANIPULATION (£-CM) where the considered
elections are unweighted and there is only a single manipulator. Further, when the goal of the manipu-
lation is not to make a distinguished candidate ¢ win alone but to prevent c from becoming the sole
winner, we obtain the destructive variants of the above three problems: £-DESTRUCTIVE-COALITIONAL-
WEIGHTED-MANIPULATION (£-DCWM), £-DESTRUCTIVE-COALITIONAL-MANIPULATION (£-DCM), and
E-DESTRUCTIVE-MANIPULATION (£-DM).

We focus on the unique-winner model, as defined in the above problems.” We expect the reader to
be familiar with the notions of NP-hardness and NP-completeness based on the polynomial-time
many-one reducibility <}, (see, e.g., [16, 19, 24, 25])

Theorem 3. SkS-CCWM is NP-complete, even for instances with only four candidates.

NP-hardness of SkS-CCWM can be shown by suitably extending the proof of Bucklin-CCWM being
NP-hard, which is due to Faliszeswki et al. [15], via a reduction from the well-known NP-complete
problem PARTITION: Given a list (a1, ag, ..., ay) of positive integers with Zle a; = 2K, does there
exist a subset A C [k] such that ;¢ 4 a; = >_,c 4\ 4 @ = K? In particular, we have to take care of all
cases in which the sum of positions plays a role in the winner determination.

*One could also study the nonunique-winner model where the constructive goal is merely to make ¢ a winner (possibly
among several winners), and the destructive goal is to ensure that ¢ does not win at all.
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The complexity of SkS-CCM and SkS-CM remains open.

We now turn to the destructive case and study the complexity of SkS-DCWM. Unlike its constructive
variant, this problem is easy to solve, which can be achieved by employing the algorithm of Faliszeswki
et al. [15] for Bucklin-DCWM and by appropriately handling the cases in which the sum of positions
plays a role for determining the SkS winners. Since DCM is a special case of DCWM and DM in turn is
a special case of DCM (see, e.g., [6]), we obviously have: DM < DCM <2, DCWM.

Theorem 4. SkS-DCWM (and hence, SkS-DCM and SkS-DM) are in P.

6 Complexity of Control in SkS

In the previous section, a coalition of manipulators seeked to influenced the election in their favor. In
a similar fashion, an external agent (called the chair) having the power to change the structure of an
election, may exert this control power, again with the goal of making some favored candidate win (or
preventing a despised candidate’s victory). The study of electoral control was initiated by Bartholdi et
al. [5] for the constructive case and by Hemaspaandra et al. [18] for the destructive case. Since then,
control has been investigated for many voting systems (see, e.g., [6, 13]), and in particular for Bucklin
voting by Erdélyi et al. [12, 11]. Out of the many standard control types from the literature (again,
see [6, 13]), we focus on a few select cases, namely on (constructive and destructive) control by either
adding voters or deleting candidates, starting with the latter type of control for any voting system &:

&-CoNSTRUCTIVE-CONTROL-BY-DELETING-CANDIDATES (£-CCDC)

Given: A set C of candidates, a list V' of votes over C, a distinguished candidate ¢ € C, and a nonnegative
integer k.

Question: Does there exist a subset of candidates C’ C C, |C’| < k, such that ¢ is the unique £ winner of the
election (C'\ C", V), where the votes in V' are now restricted to the candidates in C'\ C'?

E-DESTRUCTIVE-CONTROL-BY-DELETING-CANDIDATES (£-DCDC), the destructive variant of £-CCDC, is
defined analogously, except that now the chair’s goal is to ensure that the distinguished candidate c is not
a unique winner of (C'\ C’, V) (i.e., ¢ may still win, but only along with other candidates), and it is not
allowed to simply delete ¢ (i.e., we require ¢ ¢ C”). In £-CONSTRUCTIVE-CONTROL-BY-ADDING-VOTERS
(£-CCAV), in addition to the candidates C, the votes V over C, the distinguished candidate ¢ € C, and
a nonnegative integer k (now as an addition limit), we are given a list of additional votes U over C' of as
yet unregistered voters, and we ask whether there exists a sublist of votes U’ C U with |U’| < k such
that c is the unique £ winner of the election (C,V U U’). Again, the destructive variant of £-CCAV,
E-DESTRUCTIVE-CONTROL-BY-ADDING-VOTERS (£-DCAV), is defined analogously, except that the chair’s
goal now is to prevent the distinguished candidate ¢ from becoming a unique winner. Again, we focus
on the unique-winner model. We now present our results on the above control problems for SkS.

Theorem 5. SkS-CCDC, SkS-DCDC, and SkS-CCAV are NP -complete in the unique-winner model.

For all of the above control problems we can either directly apply or adapt the proof of the respective
control problem for Bucklin voting due to Erdélyi et al. [12].

In contrast, SkS is vulnerable to destructive control by adding voters. We note that Bucklin-DCAV is
in P as well, i.e., Erdélyi et al. [12] provide a polynomial-time algorithm solving this problem. We know
that by Theorem 1, any unique Bucklin winner is also a unique SkS winner and thus any Yes-instance of
Bucklin-DCAV is also a Yes-instance of SkS-DCAV in the unique-winner model. The reverse, however,
is not always true, since in the case of multiple Bucklin winners, the despised candidate could still be a
unique winner in SkS due to the sum of positions. Therefore, in order to adapt it to SkS, we need to
extend the existing algorithm for Bucklin-DCAV so as to take each additional case into consideration.
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Table 3: Overview of complexity results for manipulation and control in SkS. R means resistance and V means
vulnerability.

CWM CDC CAV
Constructive (C) R [Theorem 3] R [Theorem 5] R [Theorem 5]
Destructive (D) V [Theorem 4] R [Theorem 5] V [Theorem 6]

Theorem 6. In the unique-winner model, SkS-DCAV is in P.

Due to limited space, we only provide a sketch of the adaptions and the resulting algorithm. Recall that
by Theorem 1, a unique Bucklin winner is also a unique SkS winner, and every SkS winner is also a
Bucklin winner. Additionally, Bucklin-DCAV is in P for both winner models, as has been shown by
Erdélyi et al. [12]. We can use these facts by first running the Bucklin-DCAV algorithms before handling
the cases specific to SkS in which the sum of positions comes into play. Essentially, if destructive control
by adding voters is possible for Bucklin in the nonunique-winner model (i.e, if the despised candidate
is not among the Bucklin winners after this control action), it immediately follows that destructive
control by adding voters is possible for SkS in the unique-winner model as well. Moreover, if destructive
control by adding voters for Bucklin is impossible in both winner models, it immediately follows that
this control action is also impossible for SkS in the unique-winner model.

We now consider the only remaining case where destructive control by adding voters for Bucklin
is impossible in the nonunique-winner model but possible in the unique-winner model. That is, no
candidate strictly beats the despised candidate, but it is possible to find a list of votes to add such that at
least one candidate wins together with the despised candidate as a Bucklin co-winner. For SKS, this
is a necessary, yet not a sufficient condition for destructive control by adding voters to be possible in
the unique-winner model: If two candidates tie in Bucklin score during some stage, since the despised
candidate can still have a lower sum of positions, we cannot guarantee that the despised candidate is
not a unique SkS winner. Fortunately, it is possible—even though nontrivial—to check in polynomial
time whether the current Bucklin co-winner can actually beat the despised candidate in SkS.

7 Conclusion and Future Work

We have introduced the Skating System Single, a voting system that is inspired by the Skating System
which is used in ballroom tournaments, i.e., dance competitions. We have studied SkS from an axiomatic
point of view and have analyzed the computational complexity of manipulation for it; in addition, we
have started the complexity-theoretic analysis of electoral control for SkS (see Tables 2 and 3 for an
overview of our results). Since SkS has many similarities with Bucklin voting, it is not surprising that
these two voting systems share many of their properties. However, this is not always the case: For the
property of positive responsiveness, we show that SkS satisfies it, whereas Bucklin does not. While SkS
certainly stands on its own, it can also be viewed as a refinement of Bucklin voting (as demonstrated by
Theorem 1 and Lemma 1) and can thus be applied in many general election settings aside from ballroom
tournament finals. Further, the proofs for SkS are technically more complicated due to the tie-breaking
rules involving not only scores but also the candidates’ sums of positions in the votes.

As to future research, it would be interesting to study further axiomatic properties of SkS (e.g., the Smith
criterion [29]°) and to expand our study of attacking SkS to other manipulation and control scenarios as
well as to bribery, which have been studied intensively for Bucklin voting [12, 11, 15]. In particular,
it would be highly interesting to detect further differences between the results on SkS and those on
Bucklin voting.

Note that the strict Smith set is also known as the Schwartz set [27, 28].
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