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Abstract
We study a budget aggregation setting where voters express their preferred allocation of a fixed
budget over a set of alternatives, and a mechanism aggregates these preferences into a single
output allocation. Motivated by scenarios in which the budget is not perfectly divisible, we depart
from the prevailing literature by restricting the mechanism to output allocations that assign integral
amounts. This seemingly minor deviation has significant implications for the existence of truthful
mechanisms. Specifically, when voters can propose fractional allocations, we demonstrate that
the Gibbard–Satterthwaite theorem can be extended to our setting. In contrast, when voters are
restricted to integral ballots, we identify a class of truthful mechanisms by adapting moving-
phantom mechanisms to our context. Moreover, we show that while a weak form of proportionality
can be achieved alongside truthfulness, (stronger) proportionality notions derived from approval-
based committee voting are incompatible with truthfulness.

1 Introduction

The summer break is approaching, and you are looking forward to hosting a workshop at your university
with participants from around the world. As the organizer, you need to determine how to allocate the
workshop time among paper presentations, poster sessions, and social activities. Naturally, the participants
have varying preferences regarding how the time should be divided. How should you combine these
preferences into the actual allocation?

The problem of aggregating individual preferences on how a budget should be distributed among a set of
alternatives is known as budget aggregation or portioning [14, 9, 12, 6, 10, 13]. In addition to time, the
budget can also represent financial resources, such as when a city council is tasked with allocating its
annual funds across different projects. Several budget aggregation mechanisms have been proposed and
investigated in the literature. An example is the average mechanism, which simply returns the average of
the preferences of all voters. Despite its simplicity, this mechanism is susceptible to manipulation: if a
voter can guess the outcome of the mechanism, she can usually misreport her preference and bring the
average closer to her true preference. In light of this, a number of authors have focused on designing
truthful mechanisms, i.e., mechanisms for which it is always in the best interest of the voters to report
their true preferences. Notably, Freeman et al. [14] introduced the class of moving-phantom mechanisms
and demonstrated that every mechanism in this class is truthful. In addition, a specific moving-phantom
mechanism called the independent markets mechanism is (single-minded) proportional—this means that
when every voter is single-minded (i.e., would like the entire budget to be spent on a single alternative),
the output of the mechanism coincides with the average of all votes.

As far as we are aware, all prior work on budget aggregation allows a mechanism to output any distribution
of the budget.1 However, this can result in “fractional” distributions, which may be difficult or even
impractical to implement in certain applications. For instance, a distribution that allots 6.37 hours
from the 10 available hours at a workshop to paper presentations might be infeasible due to scheduling
considerations or the inability to utilize such precise time increments.2 Likewise, when allocating

1Lindner [19] considered rules that take integral distributions as their input, but did not place any requirement on the output.
2Note that such a distribution can be output, e.g., by the average mechanism, even if all participants submit preferences

consisting only of integral numbers of hours.
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funds, it is often more convenient to work with round numbers. In this paper, we study discrete budget
aggregation, where an integral budget must be distributed among a set of alternatives in such a way that
every alternative receives an integral amount of the budget. Beyond the allocation of time and money,
discrete budget aggregation is generally applicable when the “budget” comprises indivisible items, for
example, in the distribution of faculty hiring slots among university departments.

1.1 Our Contributions

We study two variants of our model: In the integral setting, the voter ballots and the output allocation
must be integral, while in the fractional-input setting, the voter ballots are allowed to be fractional. For
both settings, we establish interesting connections to several social choice frameworks.

Integral Mechanisms: Truthfulness. We explore two approaches for adapting truthful mechanisms
from the fractional setting to our integral setting. Firstly, we round the output of fractional mechanisms
using apportionment methods. We show that combining a well-known fractional mechanism with
several standard apportionment methods fails truthfulness. Secondly, we translate the idea behind
moving-phantom mechanisms directly into our setting. Specifically, we define the class of integral
moving-phantom mechanisms, and prove that every mechanism in this class is truthful.

Integral Mechanisms: Proportionality. We show that there exist truthful mechanisms (from our class
of integral moving-phantom mechanisms) that satisfy single-minded quota-proportionality. While this
property is rather weak, we derive stronger proportionality notions for our setting by viewing it as a
subdomain of approval-based committee elections. However, using a computer-aided approach, we show
that even the weakest of these notions (called JR) is incompatible with truthfulness.

Fractional-Input Mechanisms. Allowing voters to cast fractional ballots has major implications on
the space of truthful mechanisms. Building upon the literature on dictatorial domains, we show that any
fractional-input mechanism that is truthful and onto must be dictatorial. This can be viewed as a variant
of the Gibbard–Satterthwaite theorem.

1.2 Related Work

The analysis of aggregating individual distributions into a collective distribution dates back to the work
of Intriligator [17]. However, Intriligator did not assume that agents possess utility functions and, as a
result, did not address the aspect of truthfulness. Most of the work on truthful budget aggregation thus far
assumes that agents are endowed with ℓ1 utilities. Under this assumption, Lindner et al. [20] and Goel et al.
[16] showed that the mechanism that optimizes utilitarian social welfare (with a certain tie-breaking rule)
is truthful. After Freeman et al. [14] proposed the class of moving-phantom mechanisms, Caragiannis
et al. [9] and Freeman and Schmidt-Kraepelin [13] investigated them with respect to the distances of their
output from the average distribution, while de Berg et al. [10] presented truthful mechanisms outside this
class. Brandt et al. [6] proved that truthfulness is incompatible with single-minded proportionality and an
efficiency notion called Pareto optimality under ℓ1 utilities, but these properties are compatible under a
different utility model. Elkind et al. [12] conducted an axiomatic study of various budget aggregation
mechanisms.

Given the integral nature of the output distribution, discrete budget aggregation bears a resemblance
to the long-standing problem of apportionment [3]. The main difference is that, in apportionment,
the input can be viewed as a single distribution (representing the fractions of voters who support
different alternatives) rather than a collection of distributions. Brill et al. [8] studied an approval-based
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generalization of apportionment, where each voter is allowed to approve multiple alternatives instead of
only one. Delemazure et al. [11] established the incompatibility between truthfulness and representation
notions in that setting.

2 Model and Preliminaries

For any z ∈ N, let [z] denote {1, . . . , z} and [z]0 denote {0, 1, . . . , z}. In the setting of budget aggregation,
we have a set [n] of n voters deciding how to distribute a budget of b ∈ N over a set [m] of m ≥ 2
alternatives. We write

Sm
b = {v ∈ [0, b]m | ∥v∥1 = b}

for the set of vectors distributing a budget b over a number of alternatives m ∈ N, i.e., Sm
b is an (m− 1)-

simplex. Similarly,
Imb = {v ∈ ([b]0)

m | ∥v∥1 = b} ⊂ Sm
b

denotes the set of vectors integrally distributing the budget b over m alternatives. We sometimes refer
to an element of Sm

b or Imb as an allocation or a distribution. We denote by Sn,m,b = (Sm
b )n the set of

all fractional profiles with n voters, m alternatives, and a budget of b, and by In,m,b = (Imb )n the set
of all integral profiles with the same parameters. For each voter i, let pi ∈ Sm

b denote her vote, where
pi = (pi,1, . . . , pi,m).

Budget-Aggregation Mechanisms. We will consider three types of budget-aggregation mechanisms
(or mechanisms for short). Generally, a mechanism is a family of functions An,m,b, one for every triple
n,m, b ∈ N with m ≥ 2. We distinguish three types of mechanisms by the type of input and output space
of the corresponding functions.

• An integral mechanism maps any integral profile to an integral aggregate:

An,m,b : In,m,b → Imb .

• A fractional mechanism maps any fractional profile to a fractional aggregate:

An,m,b : Sn,m,b → Sm
b .

• A fractional-input mechanism maps any fractional profile to an integral aggregate:

An,m,b : Sn,m,b → Imb .

Since n, m, and b are often clear from context, we slightly abuse notation and write A instead of An,m,b.
While our primary focus is on integral and fractional-input mechanisms, we will build upon fractional
mechanisms from the literature.

We define the disutility of voter i with truthful vote pi ∈ Sn,m,b towards aggregate a ∈ Sn,m,b (or
a ∈ In,m,b) as the ℓ1-distance between pi and a, denoted by ∥pi − a∥1.

Truthfulness. A mechanism A is truthful if for any n,m, b ∈ N with m ≥ 2 and any pro-
file P = (p1, . . . , pn), voter i ∈ [n], and misreport p⋆i , the following holds for profile P ⋆ =
(p1, . . . , pi−1, p

⋆
i , pi+1, . . . , pn):

∥pi −A(P )∥1 ≤ ∥pi −A(P ⋆)∥1.

For fractional(-input) mechanisms, both the true profile P and the misreport P ⋆ belong to Sn,m,b, while
for integral mechanisms these profiles must be from In,m,b.
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2.1 Moving-Phantom Mechanisms

Freeman et al. [14] introduced a class of truthful fractional mechanisms, which we summarize below.

Moving-Phantom Mechanisms [14]. For fixed n,m, b, a phantom system Fn is a collection of n+ 1
continuous, non-decreasing functions fk : [0, 1] → [0, b], with fk(0) = 0 and fk(1) ≥ b · n−k

n for
k ∈ [n]0. We refer to these functions as phantom votes (or just phantoms) and to their input as time. Any
collection of phantom systems F = {Fn}n∈N induces a fractional budget aggregation mechanism AF ,
called a moving-phantom mechanism. Namely, for a profile P = (p1, . . . , pn) ∈ Sn,m,b, an alternative
j ∈ [m], and time t ∈ [0, 1], we denote by med(P,F , j, t) := med(p1,j , . . . , pn,j , f0(t), . . . , fn(t)) the
median of all votes on alternative j and all phantom votes (from Fn) at time t. Let t⋆ be a time such
that

∑
j∈[m]med(P,F , j, t⋆) = b; then, the moving-phantom mechanism AF returns the allocation

AF (P ) = a with aj = med(P,F , j, t⋆) for all j ∈ [m]. Such t⋆ is guaranteed to exist3, and while it
may not be unique, the resulting allocation AF (P ) is.

We recap two prominent moving-phantom mechanisms from the literature that we will build upon later.

INDEPENDENTMARKETS [14]. The INDEPENDENTMARKETS mechanism is induced by the phantom
system with

fk(t) = min(b · (n− k) · t, b)

for k ∈ [n]0 and n ∈ N. This corresponds to the phantoms moving towards b simultaneously, while being
equally spaced (before they get capped at b).

UTILITARIAN [20, 16, 14]. The UTILITARIAN mechanism is induced by the phantom system with

fk(t) =


0 if t < k

n ,

b(tn− k) if k
n ≤ t ≤ k+1

n ,

b if k+1
n < t

for k ∈ [n]0 and n ∈ N. This corresponds to all phantoms moving towards b one after another (except
fn which stays at 0). UTILITARIAN maximizes utilitarian social welfare (i.e., minimizes the sum of the
voters’ disutilities).

3 Integral Mechanisms: Truthfulness

We embark on our search for integral mechanisms that are truthful. If one of the truthful fractional
mechanisms from Section 2.1 were guaranteed to output an integral distribution for any integral profile,
then this mechanism would directly yield a truthful integral mechanism. However, no moving-phantom
mechanism satisfies this property—e.g., for the profile ((1, 0), (0, 1)), every anonymous and neutral
mechanism, and thus every moving-phantom mechanism, must return (1/2, 1/2). In this section, we
discuss two approaches for discretizing moving-phantom mechanisms, and exhibit their differing levels
of success in achieving truthfulness.

3We slightly deviate from the definition by Freeman et al. [14] by requiring the sum of medians to reach b instead of 1.
Since we also require phantoms to reach at least b · n−k

n
instead of n−k

n
, this is merely a matter of scaling. Freeman et al. [14,

Proposition 3] showed that requiring fk(1) ≥ n−k
n

for all k ∈ [n]0 implies that the sum of medians at t = 1 is at least 1, thus
normalization occurs.
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3.1 Rounding Fractional Mechanisms

Our first approach is to take a fractional mechanism and round its output into an integral output, i.e.,
we need to map any element of Sm

b to an element of Imb . In fact, this is a well-studied task in the
apportionment literature [3]; an apportionment method is a family of functions (for any m, b ∈ N) such
that Mm,b : Sm

b → Imb . Given a fractional mechanism A and an apportionment method M, we call
M◦A the integral mechanism that is composed of A and M. Commonly studied apportionment methods
include stationary divisor methods, Hamilton’s method, and the quota method (see Appendix A for
definitions). Stationary divisor methods are parameterized by ∆ ∈ [0, 1], where ∆ = 1 corresponds to
the Jefferson (or d’Hondt) method and ∆ = 1/2 corresponds to the Webster (or Sainte-Laguë) method.
However, applying any of these methods to the outcome of INDEPENDENTMARKETS does not yield a
truthful mechanism.

Theorem 1. The composition of INDEPENDENTMARKETS and the following apportionment methods is
not truthful:

• Hamilton’s method

• Quota method

• Any stationary divisor method for which ∆ > 0 and 2
∆ ̸∈ N

• Any stationary divisor method for which ∆ > 0 and 2
∆ ∈ N, if we assume that tie-breaking is in

favor of alternatives with higher amounts in the input allocation

The proof of Theorem 1, along with all other omitted proofs, can be found in the appendix. Clearly,
this theorem does not rule out the possibility that combining a different fractional mechanism with an
apportionment method gives rise to a truthful integral mechanism; in fact, we will show that this is
possible for the UTILITARIAN mechanism. However, the theorem implies that this combination approach
does not preserve truthfulness in general. In the following section, we show that by embedding the
rounding within the definition of the moving-phantom mechanism itself, we obtain a general recipe for
constructing truthful mechanisms.

3.2 Integral Moving-Phantom Mechanisms

The reason why moving-phantom mechanisms can produce non-integral outputs, even when all votes
are integral, is that the sum of medians can normalize when phantom votes (which are continuous
functions) occupy non-integral positions. We will adjust the phantom systems to the integral setting by
modifying them in two ways. First, to guarantee integral medians, we let phantom votes increase in
discrete steps rather than continuously. Second, to guarantee normalization, we define phantom votes for
each alternative separately; this also reflects the inherent necessity for non-neutrality.

For n,m, b ∈ N, an integral phantom system

Φn,m,b = {ϕk,j | k ∈ [n]0, j ∈ [m]}

is a set of (n+ 1) ·m non-decreasing functions

ϕk,j : N ∪ {0} → [b]0

with the following properties, where z := b ·m · (n+ 1):

1. ϕk,j(0) = 0 and ϕk,j(z) ≥ ⌈n−k
n · b⌉ holds for every alternative j ∈ [m] and every k ∈ [n]0, and
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Figure 1: Example of an integral moving-phantom mechanism with n = 2 voters, m = 3 alternatives, and a budget
of b = 4. The votes on each alternative are marked by (black) solid lines. The phantom positions are shown as
(orange) dashed lines. The median vote on each alternative is marked by a rectangle. There are two voters with
reports (4, 0, 0) and (3, 1, 0). The figure shows the positions of the phantoms at a time where normalization is
reached, i.e., the sum of the median votes is 4. The returned budget distribution is (2, 1, 1).

2.
∑n

k=0

∑m
j=1

(
ϕk,j(τ)− ϕk,j(τ − 1)

)
≤ 1 for all τ ∈ [z].

The idea is that we have n + 1 phantom votes on each alternative j ∈ [m], all starting at position 0 at
time τ = 0. In each time step τ → τ + 1 at most one of the phantom votes increases its position by 1,
until eventually all phantom votes reach the position ⌈n−k

n · b⌉ or higher. (We will discuss later why this
lower bound is useful.)

A family of integral phantom systems Φ = {Φn,m,b | n,m, b ∈ N} defines the integral moving-phantom
mechanism AΦ. For a given profile P = (p1, . . . , pn) ∈ In,m,b, and a time τ ∈ [z]0, we are interested in
the median of the votes and the phantom votes on each alternative j, denoted as

med(P,Φ, j, τ) = med(ϕ0,j(τ), . . . , ϕn,j(τ), p1,j , . . . , pn,j).

The integral moving-phantom mechanism AΦ finds τ⋆ ∈ [z]0 such that
∑

j∈[m]med(P,Φ, j, τ⋆) = b, and
returns AΦ(P ) = a with aj = med(P,Φ, j, τ⋆) for each alternative j ∈ [m]. We remark that τ⋆ necessar-
ily exists, because by Condition 1 of an integral phantom system it holds that

∑
j∈[m]med(P,Φ, j, 0) = 0

and
∑

j∈[m]med(P,Φ, j, z) ≥ b, and by Condition 2 it holds that this sum increases by at most 1 in
each time step.4 While τ⋆ is not necessarily unique, the outcome AΦ(P ) is. We illustrate an example in
Figure 1.

We show in the appendix that any integral phantom system leads to a truthful mechanism. The proof
closely follows the proof of truthfulness for fractional moving-phantom mechanisms presented by
Freeman et al. [14].

Theorem 2. Any integral moving-phantom mechanism is truthful.

Rounding Phantom Systems. We can construct integral moving-phantom mechanisms by rounding
phantom systems. Let Fn = {f0(·), . . . , fn(·)} be a phantom system and J·K be a rounding function.5

Then, we first track the point in (fractional) time t ∈ [0, 1] at which Jfk(t)K changes for some k. We
construct an integral phantom system by iterating over these points in time and moving the phantoms

4The statement
∑

j∈[m] med(P,Φ, j, z) ≥ b follows from the fact that moving-phantom mechanisms are guaranteed to
reach normalization when every phantom k reaches n−k

n
· b (see Footnote 3).

5A rounding function maps any x ∈ R to either ⌊x⌋ or ⌈x⌉ in such a way that if it maps x to ⌈x⌉, then it also maps every
number between x and ⌈x⌉ to ⌈x⌉.
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Figure 2: Illustration showing how to construct the integral phantom system Φ from a fractional phantom system
F . In this example, we have n = 2, m = 3, b = 4, the fractional phantom system is INDEPENDENTMARKETS,
and rounding is done using the floor function. Each fractional phantom fk is drawn as a (blue) line spanning all
alternatives and each integral phantom ϕk,j is drawn as an (orange) dashed line. In the left figure (discrete time step
τ ), no fractional phantom is crossing an integer value and all integral phantoms correspond to a rounded fractional
phantom. As time progresses, the upper fractional phantom f0 reaches 3, at which point the corresponding integral
phantoms should move from 2 to 3. To guarantee a time of normalization, they move one after another, as illustrated
in the middle and right figures.

ϕk,1, . . . , ϕk,m up by 1, one after another. We have to be careful when Jfk(t)K changes for the same t
and more than one k; in this case, we first move the phantoms with lower k. Formally, this leads to the
following procedure (see also Figure 2):

• Let 0 ≤ t1 < t2 < · · · < tℓ ≤ 1 be all times at which for some k ∈ [n]0 the value Jfk(·)K changes.

• Let ϕk,j(0) = 0 for j ∈ [m], k ∈ [n]0. Let τ = 0.

• For ti ∈ {t1, . . . , tℓ}, iterate over all k ∈ [n]0 such that Jfk(·)K changes at ti and, starting with the
lowest such k, do the following for j ∈ [m] one after another:

– ϕk,j(τ + 1) = ϕk,j(τ) + 1,

– ϕk′,j′(τ + 1) = ϕk,j(τ) for all (j′, k′) ̸= (j, k),

– increase τ by 1.

Two integral moving-phantom mechanisms that will be of particular interest are the combination of a
variant of INDEPENDENTMARKETS and the floor rounding function (referred to as FLOORIM), and the
combination of UTILITARIAN and the floor rounding function (referred to as FLOORUTIL). We show
that FLOORUTIL is equivalent to the mechanism induced by combining UTILITARIAN with Hamilton’s
apportionment method via the process described in Section 3.1. In particular, this shows that the approach
from Section 3.1 can lead to truthful mechanisms.

Proposition 1. The composition of UTILITARIAN and Hamilton’s method (with tie-breaking by indices
of alternatives) is equivalent to FLOORUTIL.

In the following section, we show that FLOORIM offers a desirable property beyond truthfulness.

4 Integral Mechanisms: Proportionality

Having established the existence of truthful mechanisms in the integral setting, we next examine how
well these mechanisms perform with respect to other properties. We focus on proportionality, i.e., we
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want a mechanism to reflect the preferences of voter groups proportionally. There exists a proportionality
notion in the fractional setting, which requires a mechanism to output the average distribution if all voters
are single-minded. A voter i is said to be single-minded if pi,j = b for some alternative j (and therefore
pi,j′ = 0 for all alternatives j′ ̸= j). We call a profile single-minded if all voters are single-minded, and
define the average allocation µ(P ) where µ(P )j =

1
n

∑
i∈N pi,j for each j ∈ [m].

Single-Minded Proportionality6 [14]. A fractional budget-aggregation mechanism A is single-minded
proportional if for any n,m, b ∈ N with m ≥ 2 and any single-minded profile P , we have A(P ) = µ(P ).

Clearly, outputting exactly the average is not always possible in the integral setting. We therefore adapt
the axiom to make it satisfiable in our setting.

Single-Minded Quota-Proportionality. An integral budget-aggregation mechanism A is single-minded
quota-proportional if for any n,m, b ∈ N with m ≥ 2 and any single-minded profile P , the output
allocation a = A(P ) satisfies aj ∈ {⌊µ(P )j⌋, ⌈µ(P )j⌉} for all j ∈ [m].

We establish the existence of truthful, single-minded quota-proportional mechanisms by adapting the frac-
tional phantom system of single-minded proportional moving-phantom mechanisms and then translating
them into integral mechanisms as described in Section 3.2. For n, b ∈ N, we call a (fractional) phantom
system Fn = {f0, . . . , fn} upper-quota capped if for all k ∈ [n]0 we have fk(1) = ⌈b · n−k

n ⌉.

Theorem 3. For any single-minded proportional and upper-quota capped phantom system F , the
integral moving-phantom mechanism induced by F and the floor function satisfies single-minded quota-
proportionality.

We can transform any phantom system Fn into an upper-quota capped system F ′
n: First extend Fn to

guarantee fk(t) ≥ ⌈b · n−k
n ⌉ (if necessary), then set f ′

k(t) = min(fk(t), ⌈b · n−k
n ⌉). Generally, AF and

AF ′
need not be equivalent, but in the case of the INDEPENDENTMARKETS phantom system—call it

G—they are. We define FLOORIM as the integral moving-phantom mechanism induced by G′ and the
floor function. Theorem 3 then implies that FLOORIM is single-minded quota-proportional. We remark
that the theorem does not hold if we use G′ (or G) and the ceiling function. For example, consider the
instance with n = 6, m = 4, and b = 4, where three voters vote (4, 0, 0, 0) and one voter each votes
(0, 4, 0, 0), (0, 0, 4, 0), and (0, 0, 0, 4). The upper n phantoms are immediately rounded to 1, leading to
the output (1, 1, 1, 1), which violates single-minded quota-proportionality for the first alternative.

Single-minded quota-proportionality is a rather weak proportionality notion, as it only applies to a highly
restricted subclass of profiles. Consider, for example, the non-single-minded profile P = (p1, p2) for
n = 2, m = 4, and b = 2 with p1 = (1, 1, 0, 0) and p2 = (0, 0, 1, 1). Clearly, a desirable outcome
should allocate 1 to either alternative 1 or 2 and also 1 to either alternative 3 or 4, so that both voters are
equally represented. However, integral moving-phantom mechanisms do not consider which of the votes
on different alternatives come from the same voter, and may therefore (depending on the tie-breaking)
return an allocation like (1, 1, 0, 0).

In order to define notions that capture a wider range of scenarios, we demonstrate that our setting can be
interpreted as a subdomain of the well-studied domain of approval-based committee voting [18]. This
allows us to import established axioms of proportional representation to our setting. We show that the
failure to satisfy these axioms is not a weakness of integral moving-phantom mechanisms per se, but
rather stems from more general limitations of truthful mechanisms.

6Freeman et al. [14] called this axiom proportionality; we deviate from this to distinguish it from other proportionality
notions.
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Figure 3: Example showing for m = 3 and b = 4 how a vote pi ∈ Imb can be interpreted as an approval ballot,
i.e., pi = (3, 1, 0) is translated to Ai = {c1,1, c1,2, c1,3, c2,1}. We apply a similar translation when mapping an
allocation a to a committee W .

Connection to Approval-Based Committee Voting. In approval-based committee voting, we have a
set of voters N , a set of candidates M , and a committee size k ∈ N. Each voter i approves a subset of the
candidates Ai ⊆ M , and a voting rule chooses a committee W ⊆ M of size |W | = k. The satisfaction of
a voter i with a committee W is |Ai ∩W |.

We can interpret any instance of our setting as an approval-based committee election with an equivalent
utility model (see also Goel et al. [16]). Let P = (p1, . . . , pn) be a profile in the integral budget
aggregation setting. We set M = {cj,ℓ | j ∈ [m], ℓ ∈ [b]} to be the set of candidates, k = b, and
Ai =

⋃
j∈[m]{cj,ℓ | ℓ ∈ [pi,j ]}. Intuitively, for each alternative we create b (ordered) candidates

corresponding to it, and a voter approves as many of these candidates (in order) as the amount of budget
that she would like to allocate to that alternative. This translation is illustrated in Figure 3. Any chosen
allocation a ∈ Imb can similarly be translated into a committee W =

⋃
j∈[m]{cj,ℓ | ℓ ∈ [aj ]}. To see

that the (dis)satisfactions of the voters coincide in both models, observe that for a voter i and allocation
a ∈ Imb , the following holds: ∥pi−a∥1 = 2b−2

∑
j∈[m]min(pi,j , aj). This is equal to 2b−2|Ai∩W |, so

a voter i prefers an allocation a over another allocation a′ if and only if voter i prefers the corresponding
committee W over W ′.

Using this connection to approval-based committee voting, we translate two different representation
axioms to our setting.

Justified Representation (JR) [2]. For a profile P = (p1, . . . , pn), we say that a voter group N ′ ⊆ [n]
is cohesive if |N ′| ≥ n

b and, for some alternative j, it holds that pi,j > 0 for all i ∈ N ′. An allocation
a ∈ Imb provides JR if for each cohesive group N ′ ⊆ [n], there is a voter i ∈ N ′ and an alternative j such
that aj > 0 and pi,j > 0. A mechanism provides JR if it always returns an allocation providing JR.

Extended Justified Representation+ (EJR+) [7]. For a profile P = (p1, . . . , pn), an allocation a ∈ Imb
provides EJR+ if there is no alternative j, integer ℓ ∈ [b], and voter group N ′ ⊆ [n] with |N ′| ≥ ℓ · n

b
such that pi,j > aj and

∑
j′∈[m]min(pi,j′ , aj′) < ℓ for all voters i ∈ N ′. A mechanism provides EJR+ if

it always returns an allocation providing EJR+.

We establish an impossibility result for each of these axioms. For the first impossibility, we need the
additional axiom anonymity, which disallows a mechanism from making decisions based on the identity
of the voters. (However, a mechanism can still discriminate among the alternatives.)

Anonymity A mechanism A is anonymous if for any profile (p1, . . . , pn) and any permutation of voters
σ : [n] → [n], it holds that A(p1, . . . , pn) = A(pσ(1), . . . , pσ(n)).

9



Theorem 4. No integral mechanism satisfies anonymity, truthfulness, and JR.

In order to prove Theorem 4, we use a computer-aided approach similar to the ones used, e.g., by
Peters [21], Brandl et al. [5], and Delemazure et al. [11]. For fixed n,m, b, we translate the search
for an anonymous, truthful, and JR mechanism into a SAT formula, and use a SAT-solver to check for
satisfiability. Each satisfying assignment corresponds to a mechanism An,m,b satisfying these axioms.
For n = 3, m = 4, and b = 3, the SAT formula is unsatisfiable, which implies that no anonymous,
truthful, and JR mechanism exists. We explain how to encode these axioms into a SAT problem and give
a full proof of Theorem 4 in Appendix B. We extracted a proof that is human-readable, but lengthy—it
argues over 45 different profiles and applies truthfulness 203 times. Therefore, we additionally present a
second result with a (much) shorter proof. For this result, we consider the stronger proportionality notion
EJR+ and add range-respect to the list of axioms. In return, this impossibility does not require anonymity
as one of the axioms.

Range-respect. A mechanism A is range-respecting if for any n,m, b and any profile P =
(p1, . . . , pn) ∈ In,m,b, the following holds for the allocation a = A(P ):

min
i∈[n]

pi,j ≤ aj ≤ max
i∈[n]

pi,j for all j ∈ [m].

Theorem 5. No integral mechanism satisfies truthfulness, EJR+, and range-respect.

Proof. Suppose for contradiction that there is a truthful, EJR+, and range-respecting mechanism A. Let
n = 3, m = 4, and b = 3, and consider the profile

P = ((1, 2, 0, 0), (1, 0, 2, 0), (1, 0, 0, 2)).

Range-respect requires the first alternative to receive exactly 1, leaving alternative 2, 3, or 4 with zero
budget. Assume first that A(P )2 = 0. Consider the profile

P ⋆ = ((0, 3, 0, 0), (1, 0, 2, 0), (1, 0, 0, 2)).

We claim that EJR+ implies that A(P ⋆)2 ≥ 1 and A(P ⋆)1 ≥ 1. For the former statement, notice that
otherwise the voter set {1} yields an EJR+ violation. For showing the latter statement, we now assume
A(P ⋆)2 ≥ 1 and suppose for contradiction that A(P ⋆)1 = 0. If A(P ⋆)3 = A(P ⋆)4 = 1, EJR+ is
violated for for alternative 1 and voter set {2, 3}. Otherwise, there is j ∈ {3, 4} with A(P ⋆)j = 0, which
violates EJR+ for alternative j and voter set {j − 1}.

Hence, we must have A(P ⋆)1 ≥ 1 and A(P ⋆)2 ≥ 1. However, this contradicts truthfulness, as voter 1
from profile P can misreport (0, 3, 0, 0) to decrease her disutility.

The cases A(P )3 = 0 and A(P )4 = 0 can be handled similarly by choosing
((1, 2, 0, 0), (0, 0, 3, 0), (1, 0, 0, 2)) or ((1, 2, 0, 0), (1, 0, 2, 0), (0, 0, 0, 3)) for P ⋆, respectively.

5 Fractional-Input Mechanisms

While both the integral and fractional budget aggregation settings allow for truthful mechanisms, we
demonstrate in this section that truthful fractional-input mechanisms (i.e., those that map from Sn,m,b to
Imb ) are significantly more restricted. In particular, we prove that the only truthful and onto fractional-
input mechanisms are dictatorial. This stands in contrast to the integral setting, where one can verify that,
e.g., FLOORIM is onto and non-dictatorial. Our result builds upon the literature on dictatorial domains
in ranked-choice elections. Thus, before formalizing our result in Section 5.2, we briefly introduce
ranked-choice elections along with a result on dictatorial domains by Aswal et al. [1].
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5.1 Dictatorial Domains

Let A be a set of alternatives and L(A) be the set of all strict rankings over A. We call D ⊆ L(A) a
(sub)domain. In the following, we state the concept of linkedness for subdomains, as defined by Aswal
et al. [1].

Linked Domains. Let D ⊆ L(A) be a subdomain.

• We call two alternatives a, a′ ∈ A connected in D if there exist strict rankings ▷, ▷′ ∈ D such that a
is ranked first by ▷ and second by ▷′, and vice versa for a′.

• We say that alternative a ∈ A is linked to a subset B ⊆ A if there exist distinct a′, a′′ ∈ B such
that a is connected to both a′ and a′′ in D.

• We call the subdomain D linked if we can order the alternatives in A into a vector (a1, . . . , a|A|) such
that a1 is connected to a2 and, for all k ∈ {3, . . . , |A|}, it holds that ak is linked to {a1, . . . , ak−1}.

Informally, Aswal et al. [1] have shown that the Gibbard–Satterthwaite theorem [15, 23] holds for all
linked domains. We state their theorem below and defer the formal definitions of a social choice function,
unanimous, truthful, and dictatorial in the context of ranked-choice voting to Appendix C.1.

Theorem 6 ([1, Theorem 3.1]). For any set of alternatives A with |A| ≥ 3, the following holds: If a
subdomain D ⊆ L(A) is linked, then any unanimous and truthful social choice function on domain D is
dictatorial for any number of voters n ∈ N.

For our proof, we need a stronger version of this theorem, which works even for weak rankings that have
no ties in the two top ranks. We formalize this version and argue why it holds in Appendix C.1.

5.2 Truthful Fractional-Input Mechanisms

There exists a direct connection between our model and that of weak rankings. Namely, each vote p ∈ Sm
b

induces a weak ranking ⊵p over the integral allocations in Imb (i.e., rank points in Imb by their ℓ1-distance
to p). At a high level, our goal is therefore to show that these weak rankings form a linked domain, which
together with the stronger version of Theorem 6 yields a similar result in our setting.

Before doing so, we return to the context of fractional-input mechanisms and formalize the desired result.

Onto. A fractional-input mechanism A is onto if for any n,m, b ∈ N with m ≥ 2 and any integral
allocation a ∈ Imb , there exists a profile P ∈ Sn,m,b with A(P ) = a.

Dictatorial. Given n,m, b ∈ N with m ≥ 2, voter i ∈ [n] is a dictator for a fractional-input mechanism
A for n,m, b if for all profiles P = (p1, . . . , pn) with parameters m and b, it holds that A(P ) has rank 1
(i.e., is most preferred) in ⊵pi . The mechanism A is dictatorial for n,m, b if there exists a voter that is a
dictator for A for n,m, b.

Theorem 7. Any onto and truthful fractional-input mechanism is dictatorial for any values of n,m, b
with m ≥ 3.

Proof Sketch of Theorem 7. We start by defining a set of weak rankings induced by Sm
b , namely,

∇ = {⊵p | p ∈ Sm
b and |r1(⊵p)| = |r2(⊵p)| = 1} ,
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where ⊵p is as defined at the beginning of Section 5.2, and r1(⊵p) (resp., r2(⊵p)) denotes the set of
alternatives ranked first (resp., second) by ⊵p. We prove that this domain is linked, according to an
adaptation of the definition of linkedness by Aswal et al. [1] to weak rankings that have singleton top
ranks. To this end, we carefully construct a ranking of the elements in Imb that witnesses the linkedness of
∇. Assume for contradiction that there exists a fractional-input mechanism A that is onto, truthful, and
non-dictatorial for some n ∈ N. We show that this implies the existence of a social choice function B on
domain ∇ that is unanimous, truthful, and non-dictatorial for n voters, which contradicts the strengthened
version of Theorem 6. While proving unanimity and truthfulness for B is rather immediate, establishing
that B is non-dictatorial requires more effort. This is because ∇ can be interpreted7 as a subdomain of
Sm
b , and A being non-dictatorial on Sn,m,b does not directly imply that B is non-dictatorial on ∇n.

The sharp contrast between the fractional-input and integral settings in relation to truthfulness may seem
surprising. However, we remark that integral moving-phantom mechanisms can be used to construct
fractional mechanisms that are approximately truthful, and the incentive to misreport diminishes as the
budget increases. Specifically, we map each vote p ∈ Sm

b to a point in Imb closest to it (with ℓ1-distance
at most m

2 ) and apply an integral moving-phantom mechanism. By the triangle inequality, the disutility
decrease from misreporting is bounded by 2 · m

2 = m. Thus, for constant m, (relative) misreporting
incentives vanish as b grows.

6 Conclusion and Future Work

In this paper, we have introduced the setting of discrete budget aggregation, which reflects the integrality
requirement on the output often found in budget aggregation applications, and studied it with respect to
truthfulness and proportionality axioms. Regarding truthfulness, we established a sharp contrast between
the integral and the fractional-input settings: in the former, we presented a class of truthful mechanisms
by building upon the literature on fractional budget aggregation, while in the latter, we exhibited the
limitations of truthful mechanisms by leveraging existing results on dictatorial domains. Regarding
proportional representation, we demonstrated that our integral setting can be interpreted as a subdomain
of approval-based committee voting, but even basic representation guarantees from this literature are
incompatible with truthfulness. In contrast, we proved that proportionality can be attained when voters
are single-minded.

Our paper leaves several intriguing directions for future work. First, it would be useful to characterize
the class of truthful integral mechanisms. For the fractional setting, de Berg et al. [10] have recently
shown that there exist truthful mechanisms beyond moving-phantom mechanisms. While characterizing
all truthful mechanisms appears to be difficult in the fractional case given that some of these mechanisms
are arguably unnatural, the question may be easier to answer in the integral case. Another interesting
avenue is to further explore the connections of budget aggregation to approval-based committee voting,
independently of truthfulness. For example, which mechanisms do we obtain in the fractional setting
if we apply well-established committee rules, such as the method of equal shares [22], in the integral
setting and let the budget approach infinity?
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A Missing Definitions and Proofs from Section 3

We start by formally defining some apportionment methods. To account for tie-breaking, we define
apportionment methods in a non-resolute fashion in the following. An apportionment method maps an
element from Sm

b to a subset of elements in Imb , that is, M : Sm
b → 2I

m
b . Then, a tie-breaking rule β

selects one of the outcomes, i.e., for any S ⊆ Imb , we have β(S) ∈ S. Hence, formally, we study the
composition β ◦M ◦ A. We now provide the definitions of different apportionment methods.

Hamilton’s Method Given a vector a ∈ Sm
b , let r be the vector of residues, i.e., rj = aj − ⌊aj⌋ for

each j ∈ [m]. Note that k :=
∑

j∈[m] rj is an integer. Hamilton’s method first gives every alternative j
at least ⌊aj⌋. Moreover, it gives ⌈aj⌉ to the k alternatives maximizing rj . Since there may be multiple
alternatives with the same residue, Hamilton returns one vector per subset of k alternatives maximizing
rj .

Stationary Divisor Methods Stationary divisor methods are parameterized by ∆ ∈ [0, 1], which
defines a rounding function. Formally,

JzK∆ =

{
{y} if y − 1 + ∆ < z < y +∆ for some y ∈ N ∪ {0},
{y, y + 1} if z = y +∆ for some y ∈ N ∪ {0}.

For ∆ ∈ [0, 1], the ∆-divisor method M∆ is defined by

M∆(a) =

x ∈ (N ∪ {0})n
∣∣∣∣∣ there exists λ > 0 such that
xj ∈ JλajK∆ for all j ∈ [m] and

m∑
i=1

xj =
m∑
i=1

aj

 .

The Jefferson/D’Hondt method corresponds to M1 in our notation, and the Webster/Sainte-Laguë method
to M0.5.

Quota Method The quota method can be seen as a constrained version of (a sequential interpretation
of) Jefferson’s method. That is, we assign the budget of b iteratively. For each round k ∈ [b], let γj be the
current budget of alternative j. Then, in each round we choose an alternative j minimizing (γj + 1)/aj
over a restricted subset of “eligible” alternatives. An alternative is eligible if allocating the next unit
of budget to it would not give it more than its “fair share” rounded up. Formally, in round k, the set
of eligible agents is U(a, γ, k) =

{
j ∈ [m]

∣∣∣ γj < ajk∑
j′∈[m] aj′

}
, where γ = (γ1, . . . , γm). Among all

eligible alternatives, the next unit of budget is assigned to an alternative j minimizing (tj + 1)/aj . The
output of the quota method consists of all vectors that can be achieved by some way of breaking ties.

Theorem 1. The composition of INDEPENDENTMARKETS and the following apportionment methods is
not truthful:

• Hamilton’s method

• Quota method

• Any stationary divisor method for which ∆ > 0 and 2
∆ ̸∈ N

• Any stationary divisor method for which ∆ > 0 and 2
∆ ∈ N, if we assume that tie-breaking is in

favor of alternatives with higher amounts in the input allocation
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Proof. Hamilton’s method. Consider the following preference profile with n = 10, m = 6, and b = 8:

P =



8 0 0 0 0 0
8 0 0 0 0 0
8 0 0 0 0 0
8 0 0 0 0 0
8 0 0 0 0 0
7 1 0 0 0 0
7 0 1 0 0 0
7 0 0 1 0 0
7 0 0 0 1 0
7 0 0 0 0 1


,

where every row corresponds to the report of one voter. For this profile, INDEPENDENTMARKETS

returns (80/15, 8/15, 8/15, 8/15, 8/15, 8/15). As a result, Hamilton’s method rounds up three of the alterna-
tives 2, 3, 4, 5, 6; without loss of generality, we can assume that the outcome of Hamilton’s method is
(5, 1, 1, 1, 0, 0). Now, suppose that the last voter changes her report to (8, 0, 0, 0, 0, 0). For the new profile,
INDEPENDENTMARKETS returns (40/7, 4/7, 4/7, 4/7, 4/7, 0), and Hamilton’s method rounds up the first
alternative along with two of the alternatives 2, 3, 4, 5 (this leads to, e.g., the outcome (6, 1, 1, 0, 0, 0)).
Any of these outcomes is strictly preferred to the original outcome by the last voter, so truthfulness is
violated.

Quota Method. Consider the following two profiles with n = b = 4 and m = 5:

P =


3 1 0 0 0
3 0 1 0 0
3 0 0 1 0
3 0 0 0 1

 P ⋆ =


3 1 0 0 0
3 0 1 0 0
3 0 0 1 0
4 0 0 0 0

 .

INDEPENDENTMARKETS returns a = (2, 0.5, 0.5, 0.5, 0.5) for profile P , which is (without loss of gen-
erality) rounded to a = (2, 1, 1, 0, 0) by the quota method. For the profile P ⋆, INDEPENDENTMARKETS

returns (16/7, 4/7, 4/7, 4/7, 0). Note that the first alternative is eligible to receive a budget of 3 and that
16
7 · 1

3 > 4
7 . Hence, the quota method returns (without loss of generality) (3, 1, 0, 0, 0), which is strictly

preferred by the last voter. This causes a violation of truthfulness.

Stationary Divisor Methods. Consider the integral profile P ∈ In,m,b with m = ⌈2 + 2
∆⌉ alternatives,

n = m voters, and a budget of b = 2, where for each i ∈ [n − 1] we have pi,1 = pi,i+1 = 1, and
pn = (1, 1, 0, . . . , 0). As an example, we display this profile for ∆ = 1 (so n = m = 4):

1 1 0 0
1 0 1 0
1 0 0 1
1 1 0 0

 .

INDEPENDENTMARKETS reaches normalization at time t = 1
2n , when phantom k is at position n−k

n
for each k ∈ [n]0. Hence, the output of INDEPENDENTMARKETS is (1, 2

n ,
1
n , . . . ,

1
n). Taking this as

an input to the stationary divisor method M∆, we note that choosing the multiplier λ = 1 + ∆ leads
to 1λ = 1 + ∆ and 1

nλ < 2
nλ ≤ 2

(2+ 2
∆
)( 1

1+∆
)
= ∆. Here, note that the weak inequality is an equality

if and only if 2
∆ ∈ N; in this case, M∆ may return (2, 0, . . . , 0) or (1, 1, 0, . . . , 0), and we are going to

assume that the tie-breaking rule chooses in favor of (2, 0, . . . , 0). If 2
∆ ̸∈ N, then the unique output is

(2, 0, . . . , 0).
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Now, consider the profile P ⋆ in which the last voter misreports p⋆n = (0, 2, 0, . . . , 0). INDEPENDENT-
MARKETS reaches normalization at time t = 1

2n−1 , when phantom k is at position 2(n−k)
2n−1 for each

k ∈ [n]0. The output of INDEPENDENTMARKETS is therefore x = (2(n−1)
2n−1 , 4

2n−1 ,
2

2n−1 , . . . ,
2

2n−1),

for which we can find the multiplier λ⋆ = ∆(2n−1)
4 such that x1λ⋆ = (n−1)∆

2 = (⌈2 + 2
∆⌉ − 1)∆2 <

(2+ 2
∆)∆2 = 1+∆ and x2λ

⋆ = ∆. Thus, the output of M∆ is (1, 1, 0, . . . , 0), which is strictly preferred
by voter n. This yields a contradiction to truthfulness.

Theorem 2. Any integral moving-phantom mechanism is truthful.

Proof. The proof is analogous to the proof of truthfulness of fractional moving-phantom mechanisms
given by Freeman et al. [14, Theorem 2]. Let m,n, b ∈ N be fixed, P = (p1, . . . , pn) ∈ In,m,b an integral
profile, and P ⋆ = (p1, . . . , pi−1, p

⋆
i , pi+1, . . . , pn) a profile with a misreport p⋆i ̸= pi by voter i. Let

AΦ be a mechanism defined by the integral phantom system Φ, and let a = AΦ(P ) and a⋆ = AΦ(P ⋆).
Further, let τ and τ⋆ be times at which

∑
j∈[m]med(P,Φ, j, τ) = b and

∑
j∈[m]med(P ⋆,Φ, j, τ⋆) = b,

respectively.

We first show that any change of the medians resulting from reporting p⋆i instead of pi can only increase
the disutility of voter i if we fix all phantoms ϕk,j at their positions ϕk,j(τ). We then show that updating
the phantom positions from ϕk,j(τ) to ϕk,j(τ

⋆) can result in a disutility decrease of at most the amount
that it increased before.

Let us first consider the medians on each alternative of the phantom positions ϕk,j(τ) and the profile P .
For each alternative j, the median only changes if the voter “crosses” it by moving from pi to p⋆i , i.e., we
have

med(P ⋆,Φ, j, τ) < med(P,Φ, j, τ) if p⋆i,j < med(P,Φ, j, τ) ≤ pi,j ,

med(P ⋆,Φ, j, τ) > med(P,Φ, j, τ) if pi,j ≤ med(P,Φ, j, τ) < p⋆i,j ,

med(P ⋆,Φ, j, τ) = med(P,Φ, j, τ) otherwise.

Therefore, any change of the medians will be in the direction away from pi, thus increasing voter i’s
disutility by

y :=
∑
j∈[m]

|pi,j −med(P ⋆,Φ, j, τ)| −
∑
j∈[m]

|pi,j −med(P,Φ, j, τ)| (1)

=
∑
j∈[m]

|med(P ⋆,Φ, j, τ)−med(P,Φ, j, τ)|.

We now consider how the disutility can change when updating the phantom positions from τ to τ⋆.
Assume that τ ≤ τ⋆ and thus

∑
j∈[m]med(P ⋆,Φ, j, τ) ≤ b; the proof for τ ≥ τ⋆ works analogously.

Since for all k, j we know that ϕk,j is non-decreasing, the medians med(P ⋆,Φ, j, τ) must be lower than
the medians med(P ⋆,Φ, j, τ⋆) by a total amount of∑
j∈[m]

|med(P ⋆,Φ, j, τ⋆)−med(P ⋆,Φ, j, τ)| = b−
∑
j∈[m]

med(P ⋆,Φ, j, τ)

=
∑
j∈[m]

med(P,Φ, j, τ)−
∑
j∈[m]

med(P ⋆,Φ, j, τ)

≤
∑
j∈[m]

|med(P,Φ, j, τ)−med(P ⋆,Φ, j, τ)| = y.

(2)

Thus, for the total disutility of voter i, we get

∥pi −AΦ(P ⋆)∥1 =
∑
j∈[m]

|pi,j −med(P ⋆,Φ, j, τ⋆)|
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(triangle inequality) ≥
∑
j∈[m]

(
|pi,j −med(P ⋆,Φ, j, τ)| − |med(P ⋆,Φ, j, τ)−med(P ⋆,Φ, j, τ⋆)|

)
=

∑
j∈[m]

|pi,j −med(P ⋆,Φ, j, τ)| −
∑
j∈[m]

|med(P ⋆,Φ, j, τ)−med(P ⋆,Φ, j, τ⋆)|

((1) and (2)) ≥

 ∑
j∈[m]

|pi,j −med(P,Φ, j, τ)|+ y

− y

= ∥pi −AΦ(P )∥1,

which concludes the proof.

Proposition 1. The composition of UTILITARIAN and Hamilton’s method (with tie-breaking by indices
of alternatives) is equivalent to FLOORUTIL.

Proof. For any n,m, b ∈ N, consider a profile P and let Fn = {f0, . . . , fn} be the phantom system of
the UTILITARIAN mechanism. Let Φn,m,b = {ϕk,j | k ∈ [n]0, j ∈ [m]} be the integral phantom system
induced by Fn and the floor function. We denote Hamilton’s method by M.

Let a = AF (P ) be the fractional allocation returned by UTILITARIAN, let t be a time of normalization
of AF for P , and let τ be the time step where ϕk,j(τ) = ⌊fk(t)⌋ for k ∈ [n]0 and j ∈ [m]. Denote by
J ⊆ [m] the set of alternatives for which aj is non-integral. Since all votes lie on integral points, the
medians for all alternatives j ∈ J must lie on phantom positions. Since the utilitarian mechanism moves
the phantoms in sequence, only one phantom k⋆ can be at a non-integral position at time t, and we have
aj = fk⋆(t) for all j ∈ J .

Let x = b −
∑

j∈[m]med(P,Φ, j, τ) be the amount of budget missing for normalization at time step
τ . Now, let t′ be the time at which phantom k⋆ reaches ⌈fk⋆(t)⌉ (note that all other phantoms did not
move relative to time t). By the construction of Φ, the discrete phantoms ϕj,k⋆ increase their position in
order of j. For the aggregate â = AΦ(P ), we therefore have that âj = aj for j /∈ J , âj = ⌈aj⌉ for the x
smallest j ∈ J , and âj = ⌊aj⌋ for all other j ∈ J .

Similarly, for Hamilton’s method, since all non-integral values in a are the same, the decision on which
alternatives are rounded up and which are rounded down is entirely decided by the tie-breaking. Since we
assume tie-breaking by the indices of the alternatives, this leads to the same aggregate M(a) = â.

B Missing Proofs from Section 4

We first prove Theorem 3, which establishes the existence of single-minded quota-proportional mecha-
nisms.

Theorem 3. For any single-minded proportional and upper-quota capped phantom system F , the
integral moving-phantom mechanism induced by F and the floor function satisfies single-minded quota-
proportionality.

Proof. Let F be a family of upper-quota capped phantom systems that induce a single-minded propor-
tional moving-phantom mechanism AF . Let Φ be the family of integral phantom systems induced by F
and the floor function, according to the approach described at the end of Section 3.2. We want to show that
AΦ satisfies single-minded quota-proportionality. Let n,m, b ∈ N and P ∈ In,m,b be a single-minded
profile. For each j ∈ [m], let nj be the number of voters i with pi,j = b. The average on each alternative
j is then given by µ(P )j = b · nj

n . We prove that AΦ satisfies single-minded quota-proportionality by
showing that it outputs an aggregate a with aj ∈ {⌊b · nj

n ⌋, ⌈b · nj

n ⌉} for each alternative j.
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Since on each alternative j there are nj voters at position b and n− nj voters at position 0, the median at
any time step τ equals the (n− nj + 1)th phantom of Φ, i.e., med(P,Φ, j, τ) = ϕn−nj , j(τ). Similarly,
for the fractional phantom system F , the median on alternative j is med(P,F , j, t) = fn−nj (t) at any
time t.

By the single-minded proportionality of AF , we know that at any time of normalization t for profile P ,
we have fn−nj (t) = b · nj

n for all alternatives j. By construction of ϕ, there must exist a time step τ1 ∈ N
at which ϕn−nj , j(τ1) = ⌊b · nj

n ⌋ on each alternative j. Then, the sum of medians at that time is∑
j∈[m]

med(P,Φ, j, τ1) =
∑
j∈[m]

ϕn−nj , j(τ1) =
∑
j∈[m]

⌊
b · nj

n

⌋
≤

∑
j∈[m]

b · nj

n
= b,

showing that the aggregate aj must be at least ⌊b · nj

n ⌋ on each alternative j.

Similarly, since F is upper-quota capped, the phantoms of F reach (⌈b · (n−0)
n ⌉, . . . , ⌈b · (n−n)

n ⌉) at time
1 for each alternative j. Therefore, there must exist a time step τ2 ∈ N at which ϕn−nj , j(τ2) = ⌈b · nj

n ⌉
on each alternative j. Thus,∑

j∈[m]

med(P,Φ, j, τ2) =
∑
j∈[m]

ϕn−nj , j(τ2) =
∑
j∈[m]

⌈
b · nj

n

⌉
≥

∑
j∈[m]

b · nj

n
= b,

showing the upper bound aj ≤ ⌈b · nj

n ⌉.

We now turn towards proving Theorem 4, which shows the incompatibility of anonymity, truthfulness,
and justified representation for integral mechanisms. For constructing the proof, we use a computer-aided
approach, encoding an anonymous, truthful, and JR mechanism into a SAT formula and then checking
satisfiability using a SAT-solver. Below, we go into more detail on how this works. The process is similar
to proofs by, e.g., Peters [21], Brandl et al. [5], and Delemazure et al. [11].

Fix n,m, b. For P ∈ In,m,b, let Γ(P ) ⊆ Imb denote all allocations satisfying JR with respect to P .
For each pair of profile P ∈ In,m,b and JR allocation a ∈ Γ(P ), we define a boolean variable xP,a
representing whether a is chosen as the output allocation for P . Since any mechanism must choose
exactly one allocation per profile, we add the following clauses to guarantee that at least one and at most
one variable can be positive for a profile, respectively.∨

a∈Γ(P )

xP,a for all P ∈ In,m,b

¬xP,a ∨ ¬xP,a′ for all P ∈ In,m,b and a, a′ ∈ In,m,b with a ̸= a′

Since we require anonymity, we can significantly reduce the number of variables by identifying all profiles
that are permutations of each other. To implement truthfulness, we add a clause for each combination of
two profile-outcome pairs that violate truthfulness.

¬xP,a ∨ ¬xP ⋆,a⋆ for all P = (p1, . . . , pn) ∈ In,m,b

for all i ∈ [n], p⋆i ∈ Imb with ∥pi − a∥1 > ∥pi − a⋆∥1,
where P ⋆ = (p1, . . . , pi−1, p

⋆
i , pi+1, . . . , pn)

For m = 4 alternatives, n = 3 voters, and a budget of b = 3, the SAT formula is unsatisfiable, which
establishes Theorem 4. To present a human-readable proof, we extracted a minimum unsatisfiable set
of clauses and then identified a case distinction over the outcome of a specific profile that leads to a
contradiction by a series of truthfulness applications.
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Theorem 4. No integral mechanism satisfies anonymity, truthfulness, and JR.

Proof. Suppose for contradiction that there is a mechanism A satisfying anonymity, truthfulness, and
JR. Let n = 3, m = 4, and b = 3. We show the theorem by computing all JR outcomes for a
number of specific profiles and excluding the possible outputs of A further by applying truthfulness
to pairs of profiles. Note that since n = b, JR is equivalent to the condition that for every voter, there
exists an alternative such that both the voter and the outcome allocate a positive amount to it. For the
sake of readability, we write profiles and allocations without parentheses and commas, e.g., the profile
((0, 0, 2, 1), (0, 3, 0, 0), (0, 0, 0, 3)) is written as 0021 0300 0003. Since A satisfies anonymity, it returns
the same outcome for all permutations of a profile. Thus, we represent each profile by its lexicographically
smallest permutation, e.g., we represent all permutations of the profile 0021 0300 0003 by the profile
0003 0021 0300.

The following tables can be read as follows: For each profile in the table, we list all JR outcomes in the
“Outcomes” column. Outcomes that have been excluded by earlier arguments are grayed out. Outcomes
that are newly excluded by the current argument are grayed out and underlined. Each line in the table
thus represents a statement, which says that the outcome of A for the given profile must be one of the
black allocations. Each unique statement has an ID.

Every pair of adjacent lines (without whitespace) represents an argument, which corresponds to a
truthfulness application. The profiles from a pair of adjacent lines only differ in one vote and we can
exclude outcomes of the second profile by truthfulness. For this, we need to assume that one of the
profiles has the truthful vote and the other one has the misreport of the changing voter. Which profile has
the truthful vote or misreport is denoted in the columns “Truthful ID” and “Misreport ID”. To make it
easier to follow the argument for a specific profile, the “Last Mentioned” column refers to the statement
ID that last restricted the output set of the profile.

As an example, consider the following argument.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID

s032 0003 0030 2010 0012 0021 0111 1011
s039 0030 1002 2010 0012 0021 0111 1011 1020 1110 2010 s038 s032 s039

In the first line, we can see that out of all JR outcomes for the profile 0003 0030 2010, all but one have
been excluded by previous arguments. Thus, we know at this point that A must return 1011, which allows
us to exclude some of the outcomes of the profile in the second line. Notice that apart from the order
of the voters, the two profiles only differ in one vote, which is 0003 in the first profile and 1002 in the
second profile. For this argument, the table indicates that the profile from the first line (s032) contains
the truthful vote and the second one (s039) has the misreport. Since a voter with truthful vote 0003 has
disutility 4 for the outcome 1011 and the disutility cannot decrease by misreporting, we can exclude
outcome 0012 for the second profile, as this would lead to a disutility of 2. This outcome is grayed out
and underlined. The other grayed-out outcomes have been excluded by earlier arguments, which can be
checked in statement s038.

Note that there are situations in which not all outcomes that could be excluded by a truthfulness application
are excluded. These outcomes will then be excluded using a different argument at a later time.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID
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s001 0003 0030 0300 0111
s002 0003 0021 0300 0102 0111 0201 1101 s002 s001
s003 0003 0021 0210 0012 0021 0102 0111 0201 1011 1101 s003 s002

s002 0003 0021 0300 0102 0111 0201 1101
s004 0012 0021 0300 0102 0111 0120 0201 0210 1101 1110 s004 s002

s002 0003 0021 0300 0102 0111 0201 1101
s005 0012 0021 0300 0102 0111 0120 0201 0210 1101 1110 s004 s002 s005
s006 0012 0021 0210 0012 0021 0030 0102 0111 0120 0201

0210 1011 1020 1101 1110 2010
s006 s005

s002 0003 0021 0300 0102 0111 0201 1101
s007 0021 0300 1002 0102 0111 0201 1101 1110 s002 s007

s001 0003 0030 0300 0111
s008 0003 0030 0201 0012 0021 0111 1011 s008 s001
s009 0030 0201 1002 0012 0021 0111 1011 1110 s008 s009

s008 0003 0030 0201 0012 0021 0111 1011
s010 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s010 s008

s008 0003 0030 0201 0012 0021 0111 1011
s011 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s010 s008 s011

s008 0003 0030 0201 0012 0021 0111 1011
s012 0030 0201 1110 0012 0021 0111 0120 0210 1011 1110 s012 s008

s001 0003 0030 0300 0111
s013 0003 0030 0210 0012 0021 0111 1011 s013 s001
s014 0003 0021 0210 0012 0021 0102 0111 0201 1011 1101 s003 s014 s013

s013 0003 0030 0210 0012 0021 0111 1011
s015 0003 0021 0210 0012 0021 0102 0111 0201 1011 1101 s014 s013 s015
s016 0012 0021 0210 0012 0021 0030 0102 0111 0120 0201

0210 1011 1020 1101 1110 2010
s006 s016 s015

s015 0003 0021 0210 0012 0021 0102 0111 0201 1011 1101
s017 0012 0021 0210 0012 0021 0030 0102 0111 0120 0201

0210 1011 1020 1101 1110 2010
s016 s015 s017

s018 0012 0030 0210 0012 0021 0030 0111 0120 0210 1011
1020 1110 2010

s017 s018

s013 0003 0030 0210 0012 0021 0111 1011
s019 0012 0030 0210 0012 0021 0030 0111 0120 0210 1011

1020 1110 2010
s018 s019 s013

s013 0003 0030 0210 0012 0021 0111 1011
s020 0012 0030 0210 0012 0021 0030 0111 0120 0210 1011

1020 1110 2010
s019 s013 s020
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s001 0003 0030 0300 0111
s021 0003 0030 1110 0012 0021 0111 1011 s021 s001

s001 0003 0030 0300 0111
s022 0012 0030 0300 0111 0120 0210 1110 s022 s001
s023 0012 0030 0210 0012 0021 0030 0111 0120 1011 1020

0210 1110 2010
s020 s023 s022

s024 0012 0210 3000 1011 1020 1101 1110 2010 s023 s024

s001 0003 0030 0300 0111
s025 0030 0300 1011 0111 0120 0210 1110 s025 s001

s026 0003 0030 3000 1011
s027 0003 0021 3000 1002 1011 1101 2001 s027 s026
s028 0003 0021 2010 0012 0021 0111 1002 1011 1101 2001 s028 s027

s027 0003 0021 3000 1002 1011 1101 2001
s029 0021 1110 3000 1002 1011 1020 1101 1110 2001 2010 s029 s027

s026 0003 0030 3000 1011
s030 0003 0030 1011 0012 0021 0111 1011 s030 s026
s031 0030 1011 2010 0012 0021 0030 0111 0120 0210 1011

1020 1110 2010
s031 s030

s026 0003 0030 3000 1011
s032 0003 0030 2010 0012 0021 0111 1011 s032 s026
s033 0003 0021 2010 0012 0021 0111 1002 1011 1101 2001 s028 s033 s032

s032 0003 0030 2010 0012 0021 0111 1011
s034 0003 0021 2010 0012 0021 0111 1002 1011 1101 2001 s033 s032 s034
s035 0021 1110 2010 0012 0021 0030 0111 0120 0210 1002

1011 1020 1101 1110 2001 2010
s035 s034

s034 0003 0021 2010 0012 0021 0111 1002 1011 1101 2001 s033
s036 0021 1110 2010 0012 0021 0030 0111 0120 0210 1002

1011 1020 1101 1110 2001 2010
s035 s034 s036

s032 0003 0030 2010 0012 0021 0111 1011
s037 0003 1110 2010 0012 0021 0111 1002 1011 1101 2001 s037 s032

s032 0003 0030 2010 0012 0021 0111 1011
s038 0030 1002 2010 0012 0021 0111 1011 1020 1110 2010 s038 s032

s032 0003 0030 2010 0012 0021 0111 1011
s039 0030 1002 2010 0012 0021 0111 1011 1020 1110 2010 s038 s032 s039
s040 0030 1002 2100 0111 1011 1020 1110 2010 s039 s040

s032 0003 0030 2010 0012 0021 0111 1011
s041 0030 1011 2010 0012 0021 0030 0111 0120 0210 1011

1020 1110 2010
s031 s041 s032

s042 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s041 s042

22



s043 0003 0300 3000 1101
s044 0003 0201 3000 1002 1011 1101 2001 s044 s043
s045 0012 0201 3000 1002 1011 1101 1110 2001 s044 s045

s043 0003 0300 3000 1101
s046 0003 0300 2100 0102 0111 0201 1101 s046 s043
s047 0003 0210 2100 0102 0111 0201 1011 1101 s046 s047

s048 0030 0300 3000 1110
s049 0030 0300 1110 0111 0120 0210 1110 s049 s048
s050 0030 0201 1110 0012 0021 0111 0120 0210 1011 1110 s012 s049 s050

s048 0030 0300 3000 1110
s051 0030 0300 2010 0111 0120 0210 1110 s051 s048
s052 0021 0300 2010 0111 0120 1101 1110 0210 s051 s052

s048 0030 0300 3000 1110
s053 0030 0300 2100 0111 0120 0210 1110 s053 s048
s054 0030 0201 2100 0111 0120 0210 1011 1110 s053 s054

s053 0030 0300 2100 0111 0120 0210 1110
s055 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s042 s055 s053

s053 0030 0300 2100 0111 0120 0210 1110
s056 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s055 s053 s056

According to s054, the profile 0030 0201 2100 has four remaining possible output allocations: 0111,
1011, 1110, and 0120. We make a case distinction.

Case 1: 0030 0201 2100 has outcome 0111.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID

s054 0030 0201 2100 0111 0120 0210 1011 1110
s057 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s011 s054 s057

s054 0030 0201 2100 0111 0120 0210 1011 1110
s058 0030 0201 3000 1011 1110 s054 s058
s059 0012 0201 3000 1002 1011 1101 1110 2001 s045 s059 s058
s060 0012 0210 3000 1011 1020 1101 1110 2010 s024 s059 s060

s059 0012 0201 3000 1002 1011 1101 1110 2001
s061 0012 0300 3000 1101 1110 s059 s061
s062 0012 0210 3000 1011 1020 1101 1110 2010 s060 s062 s061
s063 0003 0210 3000 1011 1101 s062 s063
s064 0003 0210 2100 0102 0111 0201 1011 1101 s047 s064 s063
s065 0003 0030 2100 0111 1011 s064 s065
s066 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s056 s066 s065
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s058 0030 0201 3000 1011 1110
s067 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s057 s067 s058
s068 0030 0300 1011 0111 0120 0210 1110 s025 s067 s068
s069 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s066 s069 s068
s070 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s067 s070 s069

Case 2: 0030 0201 2100 has outcome 1011.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID

s054 0030 0201 2100 0111 0120 0210 1011 1110
s071 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110 s011 s071 s054
s072 0030 0300 1011 0111 0120 0210 1110 s025 s071 s072
s073 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s056 s073 s072

s071 0030 0201 1011 0012 0021 0111 0120 0210 1011 1110
s074 0030 1011 2100 0111 0120 0210 1011 1020 1110 2010 s073 s071 s074
s075 0030 0201 2100 0111 0120 0210 1011 1110 s054 s074 s075

Case 3: 0030 0201 2100 has outcome 1110.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID

s054 0030 0201 2100 0111 0120 0210 1011 1110
s076 0003 0030 2100 0111 1011 s054 s076
s077 0030 1002 2100 0111 1011 1020 1110 2010 s040 s077 s076

s054 0030 0201 2100 0111 0120 0210 1011 1110
s078 0030 0201 1110 0012 0021 0111 0120 0210 1011 1110 s050 s078 s054
s079 0003 0030 1110 0012 0021 0111 1011 s021 s078 s079
s080 0003 1110 2010 0012 0021 0111 1002 1011 1101 2001 s037 s080 s079
s081 0021 1110 2010 0012 0021 0030 0111 0120 0210 1002

1011 1020 1101 1110 2001 2010
s036 s081 s080

s054 0030 0201 2100 0111 0120 0210 1011 1110
s082 0030 1002 2100 0111 1011 1020 1110 2010 s077 s054 s082
s083 0030 0300 1002 0111 1110 s082 s083
s084 0021 0300 1002 0102 0111 0201 1101 1110 s007 s084 s083
s085 0021 0300 2010 0111 0120 0210 1101 1110 s052 s084 s085

s084 0021 0300 1002 0102 0111 0201 1101 1110
s086 0021 0300 3000 1101 1110 s084 s086
s087 0021 0300 2010 0111 0120 0210 1101 1110 s085 s087 s086
s088 0021 1110 2010 0012 0021 0030 0111 0120 0210 1002

1011 1020 1101 1110 2001 2010
s081 s088 s087
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s093 0021 0300 3000 1101 1110
s089 0021 1110 3000 1002 1011 1020 1101 1110 2001 2010 s029 s089 s093
s090 0021 1110 2010 0012 0021 0030 0111 0120 0210 1002

1011 1020 1101 1110 2001 2010
s088 s090 s089

Case 4: 0030 0201 2100 has outcome 0120.

ID Profile Outcomes
Last Men-

tioned
Truthful

ID
Misreport

ID

s054 0030 0201 2100 0111 0120 0210 1011 1110
s091 0030 0201 1002 0012 0021 0111 1011 1110 s009 s054 s091

s054 0030 0201 2100 0111 0120 0210 1011 1110
s092 0030 0201 3000 1011 1110 s054 s092
s093 0012 0201 3000 1002 1011 1101 1110 2001 s045 s093 s092
s094 0012 0210 3000 1011 1020 1101 1110 2010 s024 s093 s094

s093 0012 0201 3000 1002 1011 1101 1110 2001
s095 0012 0300 3000 1101 1110 s093 s095
s096 0012 0210 3000 1011 1020 1101 1110 2010 s094 s096 s095
s097 0003 0210 3000 1011 1101 s096 s097
s098 0003 0210 2100 0102 0111 0201 1011 1101 s047 s098 s097
s099 0003 0030 2100 0111 1011 s098 s099
s100 0030 1002 2100 0111 1011 1020 1110 2010 s040 s100 s099

s092 0030 0201 3000 1011 1110
s101 0030 0201 1002 0012 0021 0111 1011 1110 s091 s101 s092
s102 0030 0300 1002 0111 1110 s101 s102
s103 0030 1002 2100 0111 1011 1020 1110 2010 s100 s103 s102
s104 0030 0201 2100 0111 0120 1011 1110 0210 s054 s104 s103

We have reached a contradiction in all four cases, which completes the proof.

C Missing Definitions and Proofs from Section 5

We start this section by arguing that a strengthening of Theorem 6 holds in Appendix C.1, before using
this result for our proof of Theorem 7 which we present in Appendix C.2.

C.1 Strengthening the Result by Aswal et al. [1]

Let A be a set of alternatives and R(A) be the set of all weak rankings over A. For any weak ranking
⊵∈ R(A), we let r1(⊵) = {a ∈ A | a ⊵ a′ for all a′ ∈ A} and r2(⊵) = {a ∈ A \ r1(⊵) | a ⊵
a′ for all a′ ∈ A \ r1(⊵)} be the set of alternatives of rank 1 and 2, respectively, with respect to ⊵. We
call D ⊆ R(A) a (sub)domain. In particular, we will be interested in the subdomain of weak rankings
for which the first and second ranks are unique, i.e., R̂(A) = {⊵∈ R(A) | |r1(⊵)| = |r2(⊵)| = 1}.
For R̂(A), linkedness can be defined in an analogous manner as for strict rankings in Section 5. For
completeness, we restate this definition below.
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Linked Domains. Let D ⊆ R̂(A) be a subdomain.

• We call two alternatives a, a′ ∈ A connected in D if there exist weak rankings ⊵,⊵′∈ D such that
a ∈ r1(⊵) = r2(⊵′) and a′ ∈ r1(⊵′) = r2(⊵).

• We say that alternative a ∈ A is linked to a subset B ⊆ A if there exist distinct a′, a′′ ∈ B such
that a is connected to both a′ and a′′ in D.

• We call the subdomain D linked if we can order the alternatives in A into a vector (a1, . . . , a|A|),
such that a1 is connected to a2 and, for all k ∈ {3, . . . , |A|}, it holds that ak is linked to
{a1, . . . , ak−1}.

Before we formalize the strengthening of the result by Aswal et al. [1], we define social choice functions
along with the three required axioms.

Social Choice Function. For a domain D ⊆ R(A), a social choice function is a family of functions8

Bn : Dn → A, one for every number of voters n ∈ N. Since n is often clear from context, we slightly
abuse notation and write B instead of Bn.

Unanimity. A social choice function B is unanimous if for any number of voters n ∈ N, alternative
a ∈ A and profile P = (⊵1, . . . ,⊵n) with r1(⊵i) = {a} for all i ∈ [n] we have B(P ) = a.

Dictatorial. For n ∈ N, voter i ∈ [n] is a dictator for a social choice function B if for all profiles
P = (⊵1, . . . ,⊵n) with |r1(⊵i)| = 1 we have B(P ) ∈ r1(⊵i). A social choice function B is called
dictatorial for n ∈ N if, for any n voters, there exists a voter that is a dictator for B.

Truthfulness. A social choice function B is truthful if for any number of voters n ∈ N, any profile
P = (⊵1, . . . ,⊵n), voter i ∈ [n], and misreport ⊵⋆

i , the following holds for profile P ⋆ = (⊵1, . . . ,⊵i−1

,⊵⋆
i ,⊵i+1, . . . ,⊵n):

B(P ) ⊵i B(P ⋆).

Theorem 8 (Adjusted version of Theorem 3.1 of Aswal et al. [1]). For any set of alternatives A with
|A| ≥ 3, the following holds: If a subdomain D ⊆ R̂(A) is linked, then any unanimous and truthful
social choice function B on domain D is dictatorial for any number of voters n ∈ N.

Proof Sketch. We claim that the proof provided by Aswal et al. [1] carries over essentially as it is written
from the class of strict rankings L(A) to the class R̂(A), i.e., the class of weak rankings ⊵ with the
property that r1(⊵) and r2(⊵) are singletons. Since the proof by Aswal et al. [1] spans five pages in their
paper, it would be out of scope to identically reproduce this proof at this point. To nevertheless be more
concrete, we roughly summarize the proof below and point out the situations at which properties of strict
rankings are used by Aswal et al. [1] and why they are also met by R̂(A).

Proof of Proposition 3.1 of Aswal et al. [1]. The proof by Aswal et al. [1] starts by showing that the
statement in Theorem 6 holds if and only if the same statement holds for the case of two voters. This
statement is proven in Proposition 3.1 of their paper. We discuss two points in this proof:

8Note, that Aswal et al. [1] define a social choice function with a fixed number of voters n, whereas we define a social choice
function as a family of functions, one for each number of voters.
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• Since the forward direction is trivial, they focus on the backwards direction. To this end, they first
assume that f is a truthful social choice function satisfying unanimity. From that, they define a
social choice function g for two voters by defining g(▷i, ▷j) = f(▷i, ▷j , . . . , ▷j). They then go on
and argue that g is truthful as well. For contradiction, they assume that g is manipulable by j, i.e.,
there exist ▷i, ▷j , ▷′j such that b = g(▷i, ▷

′
j) ▷j g(▷i, ▷j) = a. Then, they argue that sequentially

moving from (▷i, ▷j , . . . , ▷j) to (▷i, ▷
′
j , . . . , ▷

′
j) and applying the truthfulness of f in each step

shows that a = f(▷i, ▷j , . . . , ▷j) ▷j f(▷i, ▷
′
j , . . . , ▷

′
j) = b, which is a contradiction to the previous

assumption. For the case of weak rankings, we can still assume that b ▷j a, but only show that
a ⊵j b. Clearly, this still yields a contradiction.

• On the second page of this proof, the authors use the fact that a social choice function that is onto
and truthful also satisfies unanimity. This implication also holds for social choice functions defined
on R̂(A).

Induction over the alternatives. After having established Proposition 3.1, the proof moves on and
shows Theorem 6 for the case of two voters. The proof carries out an induction over the number of
alternatives. Within this induction, the proof uses the concept of option sets. The set O2(▷1) ⊆ A contains
all alternatives that can be returned, given that voter 1 votes ▷1, i.e., it is the option set for voter 2. The
proof now uses the fact that any truthful social choice function has to satisfy f(▷1, ▷2) = max▷2(O2(▷1))
(and the same for reversed roles of the voters). This is a well-established fact which can be easily
shown (for example, see Barbera and Peleg [4]). For the case of weak rankings, this generalizes to
f(⊵1,⊵2) ∈ max⊵2(O2(⊵1)). However, since the proof only applies this result when at least one of the
two top-ranked alternatives of voter 2 is in their option set (and thus, the maximum set is a singleton), we
can use the original version of the statement in all of these cases.

C.2 Proof of Theorem 7

We now discuss the connection between fractional-input mechanisms and weak rankings. For that, let
n,m, b be fixed for the rest of the section. For each vote p ∈ Sm

b let ⊵p be the inferred weak ranking
over all integral allocations in Imb , i.e., for two integral allocations a, a′ ∈ Imb we have a ⊵p a′ if and
only if ∥p− a∥1 ≤ ∥p− a′∥1. Let ∇ = {⊵p| p ∈ Sm

b with |r1(⊵p)| = |r2(⊵p)| = 1} be the domain of
weak rankings over the elements of Imb inferred from all elements in Sm

b with unique rank one and two
allocations. We show in the following that ∇ forms a linked domain.

Lemma 1. The subdomain ∇ ⊆ R̂(A) is linked.

Proof. We prove the claim by iteratively constructing a vector (a1, . . . , a|I
m
b |) of the allocations in Imb .

For each allocation added, we argue why it is connected in ∇ to at least two previously added allocations.

We call two integral allocations a, a′ ∈ Imb adjacent if they have ℓ1-distance of 2, which means they only
differ on two alternatives and only by 1 each. Note that for any pair of adjacent allocations a, a′ ∈ Imb ,
we can find a fractional vote p ∈ Sm

b , such that r1(⊵p) = {a} and r2(⊵p) = {a′}.9 Thus, all pairs of
adjacent allocations are connected in ∇. By adding allocations from Imb to the vector, such that they are
adjacent to at least two previous allocations, we make sure to satisfy the connection requirements from
the definition of a linked domain.

We add the allocations to the vector in three phases. We provide an example of the vector construction for
m = 4 and b = 3 in Table 7.

In the first phase we only add allocations a with a3 ∈ {0, 1} and a4 = · · · = am = 0. The first two
allocations are (b, 0, 0, . . . , 0) and (b− 1, 0, 1, 0, . . . , 0). We then alternate, between (i) adding 1 to the

9Choose p = 2
3
a+ 1

3
a′, which gives ∥p− a∥1 = 2

3
, ∥p− a′∥1 = 4

3
, and ∥p− â∥1 ≥ 2 for any other integral allocation

â ∈ Imb .
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Table 7: Example construction of the ranking of the elements of I43 . For readability, we shorten the notation for
an allocation by leaving out parenthesis, commas and spaces, e.g., the allocation (1, 2, 0, 0) is written as 1200. In
the first phase, we add allocations a with a3 ∈ {0, 1} and a4 = 0. In the second phase, we add allocations a with
a4 = 0 in increasing order of a3. In the third phase, we add allocations a with a4 ̸= 0 in increasing order of a4.

Phase 1 3000, 2010, 2100, 1110, 1200, 0210, 0300
Phase 2 1020, 0120

0030
Phase 3 2001, 1101, 1011, 0201, 0111, 0021

1002, 0102, 0012
0003

second element and subtracting 1 from the third and (ii) adding 1 to the third element and subtracting 1
from the first alternative, until we added (0, b, 0, . . . , 0). In both cases, we can easily see, that the new
element is adjacent to the two previous elements.

For the second phase, we add all remaining allocations a with a4 = · · · = am = 0 in increasing
order of a3 = 2, . . . , b. For any a = (a1, a2, a3, 0, . . . , 0), we know that the two adjacent allocations
â = (a1 + 1, a2, a3 − 1, 0, . . . , 0) and ā = (a1, a2 + 1, a3 − 1, 0, . . . , 0) have already been added.

Finally, in the third phase, for each remaining alternative j ∈ {4, . . . ,m}, we add all elements with
aj+1 = · · · = am = 0 in increasing order of aj = 0, . . . , b. As in the second phase, we know for any a =
(a1, a2, . . . , aj−1, aj , 0, . . . , 0) that the adjacent allocations â = (a1 + 1, a2, . . . , aj−1, aj − 1, 0, . . . , 0)
and ā = (a1, a2 + 1, . . . , aj−1, aj − 1, 0, . . . , 0) have already been added.

We constructed a vector of all the allocations in Imb , such that each one is connected in ∇ to two previous
allocations, which shows that ∇ is linked.

Now, we restate Theorem 7 from Section 5. Recall that the axioms onto and dictatorial were defined in
the main text.

Theorem 7. Any onto and truthful fractional-input mechanism is dictatorial for any values of n,m, b
with m ≥ 3.

Proof. The high-level structure of the proof is the following:

(i) We assume that there exists a fractional-input mechanism A that is onto, truthful, and non-dictatorial
for some n ∈ N. Then, we show that such a mechanism A is in particular also unanimous (definition
follows below).

(ii) We show that the fractional-input mechanism A induces a social choice function B on the domain
∇ that is unanimous, truthful, and non-dictatorial for n voters. However, since ∇ is linked by
Lemma 1, this yields a contradiction to the assumption from (i).

Step 1. We assume that there exists a fractional-input mechanism A that is onto, truthful, and non-
dictatorial for some n ∈ N. We start by defining unanimity.

Unanimity. For an allocation a ∈ Imb , let Xa ⊂ Sn,m,b be the set of votes that strictly prefer a over any
other allocation in Imb . A fractional-input mechanism A is unanimous if for any n,m, b ∈ N with m ≥ 2,
allocation a ∈ Imb and profile P ∈ (Xa)

n we have A(P ) = a.
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We now show that A being onto and truthful implies that A is unanimous. We remark that this implication
has been established in other contexts. For a ∈ Imb , let Xa ⊆ Sm

b be as in the definition of unanimity.
Assume for contradiction that there exists some a ∈ Imb and a profile P = (p1, . . . , pn) ∈ (Xa)

n with
A(P ) = a′ ̸= a. Since A is onto there must be another profile P̂ = (p̂1, . . . , p̂n) with A(P̂ ) = a.
We transform the profile P into the profile P̂ , by moving each voter i from their original vote pi to p̂i
one by one. For i ∈ [n]0 let P̄i = (p̂1, . . . , p̂i, pi+1, . . . , pn) be the profile in which every voter up to
i has changed their vote from pi to p̂i. Note that P̄0 = P and P̄n = P̂ . We know by truthfulness for
any i ∈ [n − 1]0 that if A(P̄i) ̸= a then A(P̄i+1) ̸= a, otherwise voter (i + 1) with a truthful vote of
pi+1 ∈ Xa would prefer the outcome of the profile with a misreport a = A(P̄i+1) over the outcome
of the profile with the truthful report A(P̄i) ̸= a. By iteratively applying this argument, we get that
A(P̄i) ̸= a for all i ∈ [n]0, contradicting the assumption a = A(P̂ ) = A(P̄n). Hence, A is unanimous.

Step 2. We first define for every element in ⊵∈ ∇ exactly one representative in Sm
b . More precisely, let

π : ∇ → Sm
b be such that for p = π(⊵) it holds that ⊵p=⊵. Then, we define the set of representatives

by S∇ = {π(⊵) |⊵∈ ∇}. Now, we are ready to construct the social choice function B on domain
∇ as follows: for any profile of weak rankings P = (⊵1 . . . . ,⊵n) ∈ ∇n, we return the output
B(P ) = A(π(⊵1), . . . , π(⊵n)).

In the following, we are going to show that B is unanimous, truthful, and non-dictatorial for n voters by
using these properties of A. We point out that we defined these properties independently for the two
functions, since the former is a social choice function and the latter is a fractional-input mechanism.

Claim: B is unanimous, truthful, and non-dictatorial for n voters.

Proof of claim: The fact that A is unanimous directly implies that B is unanimous. The same holds for
truthfulness.

It remains to show that B is non-dictatorial for n. Suppose without loss of generality that voter n is a
dictator under B. Since A is non-dictatorial for n voters, there must be an integral allocation a ∈ Imb and
a profile P = (p1, . . . , pn) ∈ Sn,m,b with an aggregate a⋆ = A(P ), such that ∥pn − a∥1 < ∥pn − a⋆∥1
(i.e., a certificate of n not being a dictator). Let p⋆ ∈ S∇ ∩ Xa⋆ , i.e., p⋆ is a vote that “prefers” a⋆

over any other allocation from Imb and is a representative. We iteratively transform the profile P into
the profile P ⋆ = (p⋆, . . . , p⋆, pn) by moving each voter i ∈ [n − 1] from pi to p⋆. In each step, we
argue that the aggregate cannot change. This is because otherwise the ith voter with (truthful) vote p⋆

in the new profile (p⋆, . . . , p⋆, pi+1, . . . , pn) with an aggregate a′ ̸= a⋆ could misreport pi to attain the
profile (p⋆, . . . , p⋆, pi, . . . , pn) with aggregate a⋆, which is strictly preferred by voter i, contradicting
truthfulness of A. Thus, we have A(P ⋆) = a⋆. Consider the situation when voter n misreports any
element p′n ∈ S∇ ∩Xa. The new profile P ′ = (p⋆, . . . , p⋆, p′n) is (S∇)

n. Therefore, by the fact that n is
a dictator under B and p′n ∈ Xa, we know that B(⊵p⋆ ,⊵p⋆ , . . . ,⊵p′n) = a. By the construction of B this
also implies that A(P ′) = a. However, this contradicts truthfulness of A. Thus, B is non-dictatorial for
n voters. ■

As sketched out before, we showed in Step 2 that B is unanimous, truthful, and non-dictatorial for n
voters. However, since ∇ is a linked domain (by Lemma 1) over |Imb | ≥ 3 alternatives (since m ≥ 3),
this is a contradiction to Theorem 8. Therefore, A has to be dictatorial for all n ∈ N.
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