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Abstract

Distributing services, goods, and tasks in the gig economy heavily relies upon on-demand
workers (aka agents), leading to new challenges varying from logistics optimization to the ethical
treatment of gig workers. We focus on fair and efficient distribution of delivery tasks—placed on
the vertices of a graph—among a fixed set of agents. We consider the fairness notion of minimax
share (MMS), which aims to minimize the maximum (submodular) cost among agents and is
particularly appealing in applications without monetary transfers. We propose a novel efficiency
notion—namely non-wastefulness—that is desirable in a wide range of scenarios and, more
importantly, does not suffer from computational barriers. Specifically, given a distribution of
tasks, we can, in polynomial time, i) verify whether the distribution is non-wasteful and ii) turn
it into an equivalent non-wasteful distribution. Moreover, we investigate several fixed-parameter
tractable and polynomial-time algorithms and paint a complete picture of the (parameterized)
complexity of finding fair and efficient distributions of tasks with respect to both the structure
of the topology and natural input restrictions. Finally, we highlight how our findings shed light
on computational aspects of other well-studied fairness notions, such as envy-freeness and its
relaxations.

1 Introduction

Distributing services, goods, and tasks in today’s economy increasingly relies upon on-demand gig
workers. In particular, many e-commerce platforms and retail stores utilize freelance workers (in
addition to their permanent employees) to distribute goods in an efficient manner. Naturally, this so-
called ‘gig economy’ involves many workers (aka agents), leading to new challenges from logistical and
ethical perspectives. While the logistical aspect of this problem has been studied from an optimization
perspective [35, 56, 51, 52, 36], little attention has been given to the fair treatment of gig workers.

We focus on the distribution of delivery tasks from a warehouse (the hub) that are placed on the vertices
of a graph and are connected through an edge (a route) between them. The goal is then to distribute
these tasks among a fixed set of agents while adhering to given well-defined notions of fairness and
economic efficiency.

A substantial subset of these problems either excludes monetary transfers entirely (e.g., charity organiza-
tions) or involves only fixed-salary labor arrangements (e.g., postal service workers). Developing fair al-
gorithms for such scenarios has sparked interest in designing algorithms without money [53, 5, 46, 7, 49]
and are notably more challenging compared to those that allow payment-based compensations (i.e.,
monetary transfers) based on specific tasks [48]. Motivated by this, we primarily focus on a fairness
notion of minimax share (MMS), which aims to guarantee that no agent incurs a (submodular) cost
greater than what they would receive under an (almost) equal distribution. While MMS allocations are
guaranteed to exist and are compatible with the economic notion of Pareto optimality (PO), computing
such allocations has been shown to be computationally intractable [29].

1.1 Our Contribution

We generalize the model from the setting where the traversal of each edge costs the same to the weighted
setting, where the cost of traversing edge can differ. This significantly extends the applicability of the
model, as it allows us to capture a broader variety of real-life instances.



Non-Wasteful Allocations. We introduce a new efficiency notion called non-wastefulness, which is
partly inspired by similar notions in the literature onmechanism design for stable matching [24, 32, 59, 6]
and auctions [33]. Intuitively, in our context, non-wastefulness states that no delivery order can be
reassigned to a different agent so that the original agent is strictly better off and the new worker is
not worse off. This fundamental efficiency axiom prevents avoidable duplicate journeys—an obvious
choice by delivery agents. Moreover, in contrast to Pareto optimality, it can be verified whether a
given allocation is non-wasteful in polynomial time (Theorem 1). Additionally, in polynomial-time,
any distribution can be turned into a non-wasteful one where no agent is worse off (Theorem 2).
Additionally, in Section 4, we formally settle the connection between non-wastefulness and the fairness
notions of MMS, and in the appendix, we study the Price of Non-wastefulness.

Algorithms forMMS and Non-wasteful Allocations. Our main technical contribution is providing
a complete complexity landscape of finding MMS and non-wasteful allocations under various natural
parameters. In doing so, we paint a clear dichotomy between tractable and intractable cases. Specifically,
in Section 5, we show that if the number of junctions or dead-ends of the topology is bounded, then the
problem can be solved efficiently in FPT time, even for weighted instances. In Section 6, we turn our
attention to the parameterization by the number of orders and the number of agents, both parameters
that are expected to be small in practice. While FPT algorithm for the former is possible even for
weighted instances, for the latter, a tractable algorithm is not possible already for two agents. Also, we
close an open problem of Hosseini et al. [29] by showing that their XP algorithm for the unweighted
case and parameterization by the number of agents is essentially optimal.

The Impact of Topology Structure. Section 7 is then devoted to different topological restrictions.
The most notable result here is (in)tractability dichotomy based on the k-path vertex cover, where
we prove the existence of FPT algorithms for any weighted instance and k ≤ 3, and intractability for
unweighted instances with k ≥ 4. Along the way, we identify several polynomial-time algorithms for
certain graph families, such as caterpillar graphs, and additional hardness results, such as for unweighted
topologies, which are in the distance one to the disjoint union of paths.

Envy-Based Fairness We conclude the paper with a series of results regarding envy-based fairness
notions such as EF and its relaxations EF1 and EFX. The main outcome here is that non-wastefulness is
incompatible with these fairness notions.

1.2 Related Work

Fair division of indivisible items is one of the most active areas at the intersection of economics and
computer science [11, 3]. Different fairness notions are studied in this area, with MMS being one of
the prominent ones [3, 47]. A relevant literature mostly focus on computational aspects [10, 28, 47]
and existence guarantees [40], with special focus on approximations of MMS [8, 61, 2, 15]. Closest to
our work are recent papers of Li et al. [42] and Wang and Li [58], which also study submodular costs;
however, they do not assume a graph encoding the costs.

Several works also explored fair division on graphs [16, 13, 14, 20, 9, 44, 12, 57, 43, 19]. The closest
model to ours is the one where we have a graph over items, each agent has certain utility for every
item, and the goal is not only to find a fair allocation, but each bundle must additionally form a disjoint
and connected sub-graphs.

Finally, there are multiple works exploring fairness in different gig economy contexts, including food
delivery [27, 45] and ride-hailing platforms [22, 54]. Nevertheless, these papers mostly focus on



experiments and neglect the theoretical study, and the models studied therein are very different from
ours.

2 Preliminaries

We use N to denote the set of positive integers. For an integer i ∈ N, we set [i] = {1, 2, . . . , i} and
[i]0 = [i]∪ {0}. For a set S, we let 2S be the set of all subsets of S and, for an integer k ∈ N, we denote
by

(
S
k

)
the set of all k-sized subsets of S. For detailed notations regarding computational complexity

theory (classic and parameterized), we follow the monographs of Arora and Barak [4] and Cygan et al.
[17], respectively.

Graph Theory The fair delivery problem is modeled as a connected and acyclic graph, aka a tree.
Let G = (V,E) be a tree rooted in vertex r ∈ V and v ∈ V be its vertex. The degree of the vertex
v is |{u | {v, u} ∈ E}| and we call v a leaf if deg(v) is exactly one. By leaves(G), we denote the
set of all leaves, and we set L = | leaves(G)|. All non-leaf vertices are called inner vertices. A vertex
p = parent(v) is a parent of vertex v if p is a direct predecessor of v on the shortest r, v-path, and
children(v) is a set of vertices whose parent is vertex v. By Gv , we denote the sub-tree of G rooted in
vertex v, and, for a set S ⊆ V , we useWS to denote the set of all shortest paths with one end in r and a
second end in some vertex of S.

Distribution of Delivery Orders. In distribution of delivery orders, we are given a topology, which
is an edge-weighted tree G = (V,E, ω) rooted in a vertex h ∈ V , called a hub, and a set of agents
N = {1, . . . , n}. The vertices in V \ {h} are called orders. Bym, we denote the number of orders in the
given instance. The goal is to find an allocation π : V \ {h} → N . For the sake of simplicity, we denote
by πi the set of orders allocated to an agent i; that is, πi = {v ∈ V \ {h} | π(v) = i}. Moreover, we
say that πi is agent i’s bundle and that an order v ∈ πi is serviced by an agent i ∈ N . By Π, we denote
the set of all possible allocations. Formally, an instance of our problem is a triple I = (N,G, h). We
say that an instance I is unweighted if the weights of all edges are the same. Otherwise, I is weighted.

The cost of servicing an order v ∈ V \ {h}, denoted cost(v), is equal to the length of the shortest path
between h and v. A cost for servicing a set S ⊆ V \{h} is equal to the length of a shortest walk starting
in h, visiting all orders of S, and ending in h, divided by two. Observe that such a walk may also visit
some orders that are not in S. It is apparent that the cost function is submodular and identical for all
agents.

Fairness. In this work, we are interested in finding fair allocations. Arguably, the most prominent
notion studied in the context of resource allocation is envy-freeness (EF), which requires that no agent
likes a bundle allocated to any other agent more than the bundle allocated to them. Formally, we define
envy-freeness as follows.

Definition 1. An allocation π is envy-free (EF) if for every pair of agents i, j ∈ N it holds that cost(πi) ≤
cost(πj).

Observe that since the cost functions are identical, the EF allocations are necessarily equitable, meaning
that the cost for every agent is the same. It is easy to see that such allocations are not guaranteed to
exist: consider an instance with a single order and two agents.

Therefore, we will further focus on some relaxation of envy-freeness. The first relaxation we study is
called envy-freeness up to one order (EF1) and adapts a similar concept from the fair division of indivisible
items literature. Here, we allow for a slight difference between agents’ costs.
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Figure 1: An illustration of non-wastefulness. On the top, we depict an allocation that is not non-wasteful: while
both the green (circle, 1) agent and yellow (diamond, 3) agents service a vertex if and only if they service a leaf
in the respective sub-tree, the red (square, 2) agent services the order of the top branch even though it is not
servicing any leaf of this sub-tree. On the bottom, we depict a non-wasteful allocation for the same instance.
Observe that in this case, the non-wasteful allocation even strictly improved the cost for the red agent.

Definition 2. An allocation π is envy-free up to one order (EF1) if, for every pair of agents i, j, either
πi = ∅ or there exists an order v ∈ πi such that cost(πi \ {v}) ≤ cost(πj).

We also consider minimax share guarantee (MMS) as a desired fairness notion.1 This notion can be seen
as a generalization of the famous cake-cutting mechanism and requires that the cost of each agent is, at
most, the cost of the worst bundle in the most positive allocation. Formally, the notion is defined as
follows.
Definition 3. An MMS-share of an instance I of fair distribution of delivery items is defined as

MMS-share(I) = min
π∈Π

max
i∈[n]

cost(πi).

We say that an allocation π is minimax share (MMS), if for every agent i ∈ N , it holds that cost(πi) ≤
MMS-share(I).

Observe that since the cost functions are identical, we define the MMS-share for the whole instance
and not separately for each agent.

3 Non-wasteful Allocations

In this setting, some economic efficiency notions, such as utilitarian optimality, may not be generally
compatible with fairness. Moreover, computing an MMS allocation along with Pareto optimality is
computationally hard [29]. Thus, we propose a weaker efficiency notion of non-wastefulness. Informally,
a non-wasteful allocation requires that no agent i should be pushed to service an extra order if assigning
this order to another agent j reduces the cost of i’s bundle without increasing the cost of j’s bundle.
Formally, we define our efficiency notion as follows; for an illustration of the definition, we refer the
reader to Figure 1.
Definition 4. An allocation π is non-wasteful, if for every order v ∈ V \ {h} it holds that if an agent
i ∈ N services v, then i also services some leaf ℓ ∈ leaves(Gv).

A Pareto optimal allocation implies non-wastefulness, but the converse does not hold. Thus, a non-
wasteful allocation is always guaranteed to exist (since PO allocations always exist).
Proposition 1. A non-wasteful allocation is guaranteed to exist and can be found in linear time.

Note that the same observation holds also for the utilitarian optimal (and consequently for the Pareto
optimality). An egalitarian optimal allocation always exists; however, finding such an allocation is
computationally hard (see formal proof in Section 4).

1In the literature on fair division, this notion is usually studied under the name maximin share. In our setting, however,
all items have negative utility for agents, so instead of having all costs negative, we reverse the objectives and obtain an
equivalent notion.



3.1 Algorithmics of Non-wastefulness

Our first result shows that we can decide in polynomial time whether a given allocation is non-wasteful
or not. This stands in direct contrast with Pareto optimality, which, under the standard theoretical
assumptions, cannot admit a polynomial-time algorithm for its associated verification problem [34],
and makes non-wastefulness arguably one of the fundamental axioms each distribution of delivery
orders should satisfy, as agents can check this property basically in hand without the need of extensive
computational resources.

The results established in the remainder of this section serve as stepping stones for multiple subsequent
sections, where we investigate the algorithmic aspects of non-wastefulness combined with different
fairness notions. A naive procedure for verification of non-wastefulness just, for every internal vertex v,
checks whether at least one of the leaves in the sub-tree rooted in v is serviced by the agent servicing v.

Theorem 1. There is an algorithm that, given an instance I and an allocation π, decides whether π is a
non-wasteful allocation in O

(
m2

)
time.

The next important property of non-wastefulness is that, given an allocation π, we can efficiently
convert it to a non-wasteful allocation that does not differ from π very significantly and while weakly
improving the cost for agents. This result is appealing from the practical perspective, as it can be
applied to any existing allocation of delivery tasks with negligible (polynomial) computational overhead.
This clearly indicates that non-wastefulness can be very easily used as a layer on top of the current
approaches (both algorithmic and manual) for the distribution of delivery tasks without affecting its
computability.

Theorem 2. There is a linear-time algorithm that, given an allocation π, returns a non-wasteful allocation
π′ such that πi ∩ leaves(G) = π′i ∩ leaves(G) and cost(π′i) ≤ cost(πi) for every i ∈ N . In other words,
in the new non-wasteful allocation π′, the set of leaves serviced by an agent i ∈ N remains the same as in
π.

4 MMS and Non-wasteful Allocations

If we are given an MMS allocation and apply the algorithm from Theorem 2, we obtain a non-wasteful
allocation such that the cost of no bundle is increased. Therefore, the new allocation is necessarily both
MMS and non-wasteful.

Proposition 2. Every MMS allocation can be turned into an MMS and non-wasteful allocation in linear
time.

It follows from Proposition 2 that finding MMS and non-wasteful allocations is, from the computational
complexity perspective, equivalent to finding an MMS allocation. Therefore, by the result of Hosseini
et al. [29], finding MMS and non-wasteful allocation is also computationally intractable, even if the
instance is unweighted.

Naturally, the hardness from Hosseini et al. [29] carries over to the more general weighted case, which
raises the question of whether there are special topology structures or parameters for which the problem
admits tractable algorithms.

In the remainder of this paper, we provide a detailed analysis of the problem’s complexity, taking into
account both topological restrictions and other natural input restrictions. Notably, we present the first
tractable algorithms for the setting of computing fair and efficient distribution of delivery orders and, in
contrast to [29], some of our positive results also apply to weighted instances, extensively broadening
their practical appeal.



Before we dive deep into our results on various topologies, we show several additional auxiliary lemmas
that help us simplify the proofs of the following subsections.

First, we show that finding MMS (and non-wasteful) allocation is as hard as deciding whether the
MMS-share of an instance is at most a given integer q ∈ N. This follows from the fact that the cost of
the most costly bundle in all MMS allocations is the same.

Lemma 1. Let F be a family of instances such that it is NP-hard to decide whether the MMS-share of an
instance from F is at most a given q ∈ N . Then, unless P = NP, there is no polynomial time algorithm
that finds MMS allocation for all instances from F.

The consequence of Lemma 1 is that we can focus only on the complexity of deciding the MMS-share, as
the impossibility of a tractable algorithm for finding MMS and non-wasteful allocations follows directly
from this lemma and Proposition 2.

Next, we show that one can freely assume that the hub is located on some internal vertex v ∈ V (G). If
this is not the case, then we can move the hub to the single neighbor of the leaf ℓ = h and remove ℓ
from the instance while preserving the solution of the instance.

Lemma 2. Let I = (N,G = (V,E), h) be an instance of fair distribution of delivery orders such that
the hub h is a leaf of G and J be an instance with h removed and with the hub being h’s original child
v ∈ children(h); that is, J = (N, (V \ {h}, E), v). Then, it holds that

MMS-share(I) = MMS-share(J ) + ω({h, v}).

Also, by combining the negative result of Hosseini et al. [29, Theorem 1] with Lemma 2, we directly
obtain that the intractability of our problem is not caused by a large number of possible routes directly
leaving the hub.

Corollary 1. Unless P = NP, there is no polynomial-time algorithm that finds an MMS and non-wasteful
allocation, even if the instance is unweighted and the degree of the hub is 1.

5 Small Number of Dead-ends or Junctions

We start our algorithmic journey with two efficient algorithms: one for topologies where the number of
dead-ends (leaves) is small and one for topologies where the number of junctions (internal vertices) is
small. Note that we need to study them separately as none is bounded by another. To see this, assume a
star graph with one junction and an arbitrarily large number of dead-ends and, in the opposite direction,
a simple path graph with exactly two dead-ends and an arbitrary number of junctions.

We start with an FPT algorithm for the former parameter, that is, the number of leaves L. The algorithm
is based on dynamic programming.

Theorem 3. When parameterized by the number of leaves L, an MMS and non-wasteful allocation can be
found in FPT time, even if the instance is weighted.

Proof. We prove the result by giving an algorithm running in 2O(L) · (m+n)O(1) time. The algorithm is
based on a dynamic programming approach, and, maybe surprisingly, it does not exploit the topology’s
structure, as is common for such algorithms, but rather tries to guess for each agent the set of leaves
he or she is servicing in an optimal solution. The crucial observation here is that for MMS and non-
wastefulness, the agents are interested only in their own bundles. Therefore, we do not need to store
the whole partial allocation; rather, we need only the bundle of the currently processed agent and the
list of all already allocated orders.

More formally, the core of the algorithm is a dynamic programming table T[i, P,Q], where



Algorithm 1 A dynamic programming algorithm for the computation of an MMS and non-wasteful
allocation on instances with a small number of dead-ends.
Input: A problem instance I = (G, h,N).
Output: MMS-share(I).
1: return min

Q⊆leaves(G)
SolveRec(n, leaves(G) \Q,Q)

2: function SolveRec(i, P,Q)
3: if i = 1 and T[i, P,Q] = undef then
4: if P = ∅ then
5: T[i, P,Q]← cost(Q)
6: else
7: T[i, P,Q]←∞
8: else if T[i, P,Q] = undef then
9: if P ∩Q = ∅ then
10: x← min

P ′⊆P
SolveRec(i− 1, P \ P ′, P ′)

11: T[i, P,Q]← max{x, cost(Q)}
12: else
13: T[i, P,Q]←∞
14: return T[i, P,Q]

• i ∈ N is the last processed agent,

• P ⊆ leaves(G) is a subset of leaves allocated to agents 1, . . . , i− 1, and

• Q ⊆ leaves(G) \ P is a bundle of agent i,

and in each cell of T[i, P,Q], we store the minimum of the maximum-cost bundle over all partial
allocations, where leaves of Q are assigned to agent i, leaves of P are distributed between agents
1, . . . , i− 1, and leaves of V \ {h} \ (P ∪Q) are unassigned. The computation is then defined as of
Algorithm 1. Note that, for the sake of exposition, the code presented computes just the optimal cost.
To extend the algorithm so that it also finds an MMS and non-wasteful allocation, we store in each cell
a pair (q, π), where q is the minimum cost and π is a partial allocation achieving this cost.

The number of cells of the dynamic programming table is O
(
n · 2L · 2L

)
∈ 2O(L) · nO(1), and each cell

is computed exactly once. The most time-consuming operations of the algorithm are lines 1 and 10,
where we, at worst, try all possible subsets of leaves. That is, the overall running time of the algorithm
is 2O(L) · (n+m)O(1) as promised. Note that we made no assumptions about the edge weights.

Once the dynamic programming table is correctly computed, we just find Q ⊆ leaves(G) such that
T[n, leaves(G) \Q,Q] is minimized. By the definition of MMS-share, any corresponding partial alloca-
tion is MMS.

The structural counterpart of the number of leaves is the number of internal vertices. Again, we show
that under this parameterization, our problem is in the complexity class FPT. However, this algorithm
is completely different from the previous one and combines an insight into the structure of MMS and
non-wasteful solutions with careful guessing and ILP formulation of the carefully designed subproblem.

Theorem 4. When the instance is parameterized by the number of internal vertices k and the number of
different edge weights ψ, an MMS and non-wasteful allocation can be found in FPT time.

Proof. Our algorithm combines several ingredients. First, we show a structural lemma that allows us to
restrict the number of important agents in terms of the number of internal vertices. Then, for these
important agents, we guess their bundles in an optimal solution. Finally, for each guess, we design an



integer linear program (ILP) that helps us verify whether our guess is indeed a solution. For the sake of
exposition, we first show the proof for the unweighted instances; the generalization to instances with a
bounded number of different weights is described at the end of the proof.

Let ≡ be an equivalence relation over the set of leaves such that for a pair ℓ, ℓ ∈ leaves(G) it holds
that ℓ ≡ ℓ′ if and only of parent(ℓ) = parent(ℓ′). Observe that the relation partitions the leaves into
k equivalence classes; we denote them T1, . . . , Tk. In the following lemma, we show that for each
allocation π, there exists an allocation π′ where no agent is worse off and which possesses a nice
structure.

Lemma 3. Let π be an allocation. There always exists a nice allocation π′ such that cost(π′i) ≤ cost(πi)
for every i ∈ N . An allocation is π′ is nice if for each pair of distinct agents i, j ∈ N there exists at most
one type t ∈ [k] so that |π′i ∩ Tt| > 0 and |π′j ∩ Tt| > 0.

The previous lemma implies that there is always an allocation, namely the nice one, where most agents
service leaves of exactly one type. To see this, assume that a nice allocation π exists with

(
k
2

)
+1 agents

servicing at least two different types of leaves. Then, by the Pigeonhole principle, there is necessarily a
pair of agents i and j both servicing at least one leaf of some Tt and Tt′ with t ̸= t′, which contradicts
that π is nice. Consequently, at most

(
k
2

)
agents service leaves of multiple different types, and all other

agents services leaves of exactly one type.

In the next phase of the algorithm, we first guess the number η ≤ min{
(
k
2

)
, n} of important agents,

and then for each of agents i ∈ [η], we guess the structure of their bundle. Specifically, for each agent
i ∈ [η], the bundle structure is a subset Li ⊆ [k], where t ∈ Li represents that, in a solution π, the agent
i services at least one leaf of type t. By Lemma 3, we can assume that all remaining agents j ∈ [η+1, n]
are servicing exactly one type of leaves, so we do not need to guess their structure.

To verify whether our guess is correct, we use an integer linear programming formulation of the
problem. Before introducing the problem’s ILP encoding, we guess the MMS-share q of the instance.
Note that since the instance is unweighted, there is only a linear number of possible values of q, and we
can try all of them in increasing order to obtain the minimum possible q.

In the formulation, we have a non-negative integer variable xti for every i ∈ [η] and every t ∈ |Ti|
representing the number of additional leaves of type t the agent i services. Additionally, we have k
variables y1, . . . , yk where each yj represents the number of agents servicing only the leaves of type Tj .
The constraints of the program are as follows (we use dt = dist(parent(Tt), h)).

∀i ∈ [η] :
∑
t∈Li

(xti + 1 + dt) ≤ q (1)

∀t ∈ [k] :
∑

i∈[η] : t∈Li

(xti + 1) + yt · (q − dt) = |Tt| (2)

∑
t∈[k]

yt + η ≤ n (3)

The constraints (1) ensure that the cost of no bundle exceeds the guessed value of the MMS-share. The
constraints (2) then secure that all orders are serviced. Finally, due to the constraint (3), the number of
agents is correct. Also, observe that we do not use any objective function, as we are only interested in
the feasibility of our program. However, we could exploit the objective function to, e.g., find MMS and
non-wasteful allocation that minimizes the sum of costs.

For the running time, observe that the number of variables of the program is η ·k+k ∈ O
(
k2 · k + k

)
∈

O
(
k3
)
. Therefore, the program can be solved in time kO(k3) ·mO(1) by the result of Lenstra Jr. [41].

There are 2O(k3) different guesses we need to verify, and therefore, the overall running time of the
algorithm is 2O(k3) · 2O(k3 log k) ·mO(1) ∈ 2O(k

3 log k) ·mO(1), which is indeed in FPT.



To finalize the complexity picture with respect to the number of internal vertices, in our next result, we
show that the parameter the number of different weights cannot be dropped while keeping the problem
tractable; in particular, we show that if the number of edge-weights is not bounded, then an efficient
algorithm cannot exist already for topologies with a single internal vertex. The reduction is from the
3-Partition problem [23].

Theorem 5. Unless P = NP, there is no polynomial-time algorithm that finds an MMS and non-wasteful
allocation, even if G is a weighted star and the weights are encoded in unary2.

6 Small Number of Agents or Orders

In real-life instances, especially those related to applications such as charity work, it is reasonable to
assume that the number of orders or the number of agents is relatively small. Therefore, in this section,
we focus on these two parameterizations and provide a complete dichotomy between tractable and
intractable cases.

First, assume that our instance possesses a bounded number of ordersm. Then, the topology has at
mostm leaves, and therefore, we can directly use the FPT algorithm from Theorem 3 and efficiently
solve even weighted instances.

Corollary 2. When parameterized by the number of ordersm, an MMS and non-wasteful allocation can
be found in FPT time, even if the instance is weighted.

A more interesting restriction from both the practical and theoretical perspective is when the number
of agents is bounded. Our next result rules out the existence of a polynomial-time algorithm already for
instances with two agents and uses a very simple topology. The reduction is from a suitable variant of
the Eqitable Partition problem [18].

Theorem 6. Unless P = NP, there is no polynomial-time algorithm that finds an MMS and non-wasteful
allocation, even if G is a weighted star and |N | = 2.

For unweighted instances, though, Hosseini et al. [29, Theorem 5] introduced an XP algorithm capable
of finding an MMS allocation. That is, if the instance is unweighted, then for every constant number of
agents, there is an algorithm that finds an MMS and non-wasteful allocation in polynomial time. Their
result raises the question of whether this parameterization admits a fixed-parameter tractable algorithm.
We answer this question negatively by showing that, under the standard theoretical assumptions,
FPT algorithm is not possible, and therefore, the algorithm of Hosseini et al. [29] is basically optimal.
Moreover, the topology created in the following hardness proof is so that if we remove a single vertex,
we obtain a disjoint union of paths. This time, we reduce from Unary Bin Packing parameterized by
the number of bins [31].

Theorem 7. Unless FPT = W[1], there is no FPT algorithm with respect to the number of agents |N | that
finds an MMS and non-wasteful allocation, even if the instance is unweighted and the distance to disjoint
paths of G is one.

7 Restricted Topologies

In this section, we take a closer look at the computational (in)tractability of fair distribution of delivery
orders via different topological restrictions. In addition to the theoretical significance of this approach [30,
62, 55], the study is also driven by a practical appeal. In multiple problems involving maps or city

2We say that the weights are unary encoded if ω(w) ∈ O (m+ n) for every e ∈ E.



topologies it arises that the underlying graph model usually possesses certain structural properties.
These can be exploited to design efficient algorithms for problems that are computationally intractable
in general (see, e.g., [21, 1, 37] for a few examples of such studies).

7.1 Star-Like Topologies

Topologies isomorphic to stars are particularly interesting for applications where, after processing each
order, an agent must return to the hub. One such example is moving companies, where loading a vehicle
with more than one order at a time is usually physically impossible.

In contrast to the previous intractability for weighted instances, the following result shows that if G is
an unweighted star, then MMS and non-wasteful allocation can be found efficiently.

Proposition 3. If G is a star and the input instance is unweighted, an MMS and non-wasteful allocation
can be found in linear time.

The previous positive results naturally cannot be generalized to the weighted setting as of Theorem 6
already for instances with two agents. However, the hardness in Theorem 6 heavily relies on the fact that
the weights of the edges are exponential in the number of orders. This is not a very natural assumption
for real-life instances. In practical instances, it is more likely that the weights will be relatively small
compared to the number of orders. Fortunately, we show that, for such instances, an efficient algorithm
exists for any constant number of agents. The algorithm uses as a subprocedure the Multi-Way
Number Partition problem, where the goal is to partition a set of numbers A into subsets A1, . . . , Ak

so that maxi∈[k]
∑

a∈Ai
a is minimized. This problem is known to admit a pseudo-polynomial time

algorithm [39].

Theorem 8. For every constant c ∈ N, if G is a weighted star and |N | = c, an MMS and non-wasteful
allocation can be found in pseudo-polynomial time.

7.2 Bounded-Depth Topologies

Stars rooted in their center are rather shallow trees; in particular, they are the only family of trees of
depth one. It is natural to ask whether the previous algorithms can be generalized to trees of higher
depth. In the following result, we show that this is not the case. In fact, our negative result is even
stronger and shows that we cannot hope for a tractable algorithm already for unweighted instances of
depth two and with diameter four. The reduction is again from the 3-Partition problem.

Theorem 9. Unless P = NP, there is no polynomial-time algorithm that finds an MMS and non-wasteful
allocation, even if the instance is unweighted, the depth of G is two, the diameter of G is four, and the
4-path vertex cover number of G is one.

The structural parameter 4-path vertex cover mentioned in the previous result can be seen as the
minimum number of vertices we need to remove from the topology to obtain a disjoint union of stars.
That is, topologies with bounded 4-path vertex cover are generalizations of stars and apply to an even
wider variety of real-life instances.

In contrast to the previous hardness result, we show that if the problem is parameterized by the 3-path
vertex cover number of the topology, there exists an FPT algorithm. A set of vertices C is called the
3-path vertex cover (3-PVC) if the graph G′ = (V \ C,E) is a graph of maximum degree one. The size
of the smallest possible 3-PVC is then called the 3-path vertex cover number or dissociation number of
G [50]. This parameter, albeit less common, has been used to obtain tractable algorithms in several
areas of artificial intelligence and multiagent systems [60, 26, 38, 25], and is also a generalization of the
well-known vertex cover; if we remove vertex cover vertices, we obtain a graph of maximum degree



zero. It is worth mentioning that a minimum size 3-PVC of a tree can be found in polynomial time [50].
Therefore, any algorithm for the fair division of delivery orders can first check whether the topology
possesses bounded 3-PVC and, if yes, employ our algorithm.

Theorem 10. If the instance is parameterized by the 3-path vertex cover number ϑ and the number of
different weights ψ, combined, an MMS and non-wasteful allocation can be found in FPT time.

The algorithm from Theorem 10 uses as the sub-procedure the FPT algorithm for the parameterization
by the number of internal vertices and the number of different edge-weights. In fact, we show that
any instance with 3-pvc ϑ and ψ different edge-weights can be transformed to an equivalent instance
with O (2ϑ) internal vertices and O

(
ψ2

)
different edge-weights. Such a reduced instance can then be

directly solved in FPT time by the algorithm from Theorem 4.

7.3 Topologies with a Central Path

When the topology is a simple path, we can find an MMS and non-wasteful allocation in polynomial
time: just allocate each leaf to a different agent. Moreover, this approach works even if the instance is
weighted.

Proposition 4. If G is a path, an MMS and non-wasteful allocation can be found in linear time, even if
the instance is weighted.

Proof. By Lemma 2, we know that the hub is not a leaf. Therefore, there are two leaves, ℓ1 and ℓ2.
Without loss of generality, assume that the shortest path from h to ℓ2 is at most as long as the shortest
path from h to ℓ1. We define a solution allocation so that π1 =Wℓ1 \ {h}, π2 =Wℓ2 \ {h}, and πi = ∅
for every i ∈ [3, n]. Since every bundle contains all vertices on a path from h to the respective leaf, the
allocation π is clearly non-wasteful. It is also easy to see that the allocation is MMS. The lower-bound
on the MMS-share is the distance to the most distant leaf from h, and our allocation achieves this
bound.

Therefore, the following set of results explores the complexity picture for instances that are not far
from being paths. More specifically, we focus on topologies where all vertices are at a limited distance
from a central path. Such topologies may appear in practice very naturally, e.g., in instances where the
central path is a highway, and the other vertices represent smaller towns along this highway.

Unfortunately, by the intractability results for weighted stars (cf. Theorem 5), we cannot expect any
tractable algorithms for topologies with distance to the central path greater or equal to one. Nonetheless,
focusing on unweighted instances, we give a polynomial time algorithm for graphs where each vertex
is at a distance at most one from the central path; such graphs are commonly known as caterpillar trees.

Theorem 11. IfG is a caterpillar tree and the instance is unweighted, an MMS and non-wasteful allocation
can be found in polynomial time.

The natural subsequent question is whether we can generalize the algorithm from the previous section
to larger distances from the central path. It turns out that, without further restriction, this is not the
case. In fact, the topology used in the proof of Theorem 9 has all vertices at a distance at most two from
the central path, and the created instance is unweighted.

Corollary 3. Unless P = NP, there is no polynomial time algorithm that finds an MMS and non-wasteful
allocation, even if all vertices are at a distance at most two from the central path, the central path consists
of a single vertex, and the instance is unweighted.



8 Concluding Remarks

Our work extends the fair delivery problem to settings with weighted edges, proposes non-wastefulness
as an efficiency concept, and provides a comprehensive landscape on designing tractable algorithms.
The fixed-parameter and polynomial-time algorithms for computing MMS and non-wasteful allocations
may give insights on further strengthening the efficiency notions to PO or other desirable concepts.
Moreover, going beyond tree structures requires dealing with cycles, walks, which require new ways of
modeling cost. It is not clear how the standard fairness notions, e.g. MMS, can be defined in this setting.
While our negative computational results carry over to general graphs, tractable algorithms may arise
when restricting the parameter/structure of the problem.

Acknowledgments

This work was co-funded by the European Union under the project Robotics and advanced industrial
production (reg. no. CZ.02.01.01/00/22_008/0004590). Hadi Hosseini was supported in part by NSF
Awards IIS-2144413 and IIS-2107173. Part of the work was done while Šimon Schierreich was visiting
Penn State University as a Fulbright-Masaryk Fellow and he acknowledges the support by the Czech
Technical University in Prague funded grant No. SGS23/205/OHK3/3T/18.

References

[1] Aishwarya Agarwal, Edith Elkind, Jiarui Gan, Ayumi Igarashi, Warut Suksompong, and Alexan-
dros A. Voudouris. Schelling games on graphs. Artificial Intelligence, 301:103576, 2021.
doi:10.1016/j.artint.2021.103576.

[2] Hannaneh Akrami, Jugal Garg, Eklavya Sharma, and Setareh Taki. Simplification and improvement
of MMS approximation. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence, IJCAI ’23, pages 2485–2493. ijcai.org, 2023. doi:10.24963/ijcai.2023/276.

[3] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin,
Alexandros A. Voudouris, and Xiaowei Wu. Fair division of indivisible goods: Recent progress and
open questions. Artificial Intelligence, 322:103965, 2023. doi:10.1016/j.artint.2023.103965.

[4] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. ISBN 978-0-521-42426-4. doi:10.1017/CBO9780511804090.

[5] Itai Ashlagi and Peng Shi. Optimal allocation without money: An engineering approach. In
Proceedings of the 15th ACM Conference on Economics and Computation, EC ’14, pages 351–352.
ACM, 2014. doi:10.1145/2600057.2602904.

[6] Haris Aziz and Bettina Klaus. Random matching under priorities: Stability and no envy concepts.
Social Choice and Welfare, 53(2):213–259, 2019. doi:10.1007/s00355-019-01181-x.

[7] Santiago R. Balseiro, Huseyin Gurkan, and Peng Sun. Multiagent mechanism design without
money. Operations Research, 67(5):1417–1436, 2019. doi:10.1287/opre.2018.1820.

[8] Siddharth Barman and Sanath Kumar Krishnamurthy. Approximation algorithms for maximin fair
division. ACM Transactions on Economics and Computation, 8(1):5:1–5:28, 2020. doi:10.1145/3381525.

[9] Vittorio Bilò, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero Monaco, Dominik
Peters, CosimoVinci, andWilliam S. Zwicker. Almost envy-free allocations with connected bundles.
Games and Economic Behavior, 131:197–221, 2022. doi:10.1016/j.geb.2021.11.006.

[10] Sylvain Bouveret and Michel Lemaître. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290, 2016.
doi:10.1007/S10458-015-9287-3.

[11] Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet. Fair allocation of indivisible goods.
In Handbook of Computational Social Choice, pages 284–310. Cambridge University Press, 2016.
doi:10.1017/CBO9781107446984.013.

https://doi.org/10.1016/j.artint.2021.103576
https://doi.org/10.24963/ijcai.2023/276
https://doi.org/10.1016/j.artint.2023.103965
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/2600057.2602904
https://doi.org/10.1007/s00355-019-01181-x
https://doi.org/10.1287/opre.2018.1820
https://doi.org/10.1145/3381525
https://doi.org/10.1016/j.geb.2021.11.006
https://doi.org/10.1007/S10458-015-9287-3
https://doi.org/10.1017/CBO9781107446984.013


[12] Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Dominik Peters. Fair
division of a graph. In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
IJCAI ’17, pages 135–141. ijcai.org, 2017. doi:10.24963/ijcai.2017/20.

[13] Sylvain Bouveret, Katarína Cechlárová, and Julien Lesca. Chore division on a graph. Autonomous
Agents and Multi-Agent Systems, 33(5):540–563, 2019. doi:10.1007/S10458-019-09415-Z.

[14] Robert Bredereck, Andrzej Kaczmarczyk, and Rolf Niedermeier. Envy-free allocations respecting
social networks. Artificial Intelligence, 305:103664, 2022. doi:10.1016/j.artint.2022.103664.

[15] Chandra Chekuri, Pooja Kulkarni, Rucha Kulkarni, and Ruta Mehta. 1/2-approximate MMS alloca-
tion for separable piecewise linear concave valuations. In Proceedings of the 38th AAAI Conference
on Artificial Intelligence, AAAI ’24, pages 9590–9597. AAAI Press, 2024. doi:10.1609/aaai.v38i9.28815.

[16] George Christodoulou, Amos Fiat, Elias Koutsoupias, and Alkmini Sgouritsa. Fair allocation in
graphs. In Proceedings of the 24th ACM Conference on Economics and Computation, EC ’23, pages
473–488. ACM, 2023. doi:10.1145/3580507.3597764.

[17] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, Cham, 2015. ISBN
978-3-319-21274-6. doi:10.1007/978-3-319-21275-3.

[18] Argyrios Deligkas, Eduard Eiben, Viktoriia Korchemna, and Šimon Schierreich. The complexity of
fair division of indivisible items with externalities. In Proceedings of the 38th AAAI Conference on
Artificial Intelligence, AAAI ’24, pages 9653–9661. AAAI Press, 2024. doi:10.1609/aaai.v38i9.28822.

[19] Argyrios Deligkas, Eduard Eiben, Stavros D. Ioannidis, Dušan Knop, and Šimon Schierreich.
Balanced and fair partitioning of friends. In Proceedings of the 39th AAAI Conference on Artificial
Intelligence, AAAI ’25, Washington, DC, USA, 2025. AAAI Press.

[20] Eduard Eiben, Robert Ganian, Thekla Hamm, and Sebastian Ordyniak. Parameterized complex-
ity of envy-free resource allocation in social networks. Artificial Intelligence, 315:103826, 2023.
doi:10.1016/j.artint.2022.103826.

[21] Edith Elkind, Neel Patel, Alan Tsang, and Yair Zick. Keeping your friends close: Land allocation
with friends. In Proceedings of the 29th International Joint Conference on Artificial Intelligence,
IJCAI ’20, pages 318–324. ijcai.org, 2020. doi:10.24963/ijcai.2020/45.

[22] Seyed A. Esmaeili, Sharmila Duppala, Davidson Cheng, Vedant Nanda, Aravind Srinivasan, and
John P. Dickerson. Rawlsian fairness in online bipartite matching: Two-sided, group, and individual.
In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23, pages 5624–5632.
AAAI Press, 2023. doi:10.1609/aaai.v37i5.25698.

[23] Michael R. Garey and David S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975. doi:10.1137/0204035.

[24] Masahiro Goto, Atsushi Iwasaki, Yujiro Kawasaki, Ryoji Kurata, Yosuke Yasuda, and Makoto Yokoo.
Strategyproof matching with regional minimum and maximum quotas. Artificial Intelligence, 235:
40–57, 2016. doi:10.1016/j.artint.2016.02.002.

[25] Niels Grüttemeier and Christian Komusiewicz. Learning Bayesian networks under sparsity
constraints: A parameterized complexity analysis. Journal of Artificial Intelligence Research, 74:
1225–1267, 2022. doi:10.1613/jair.1.13138.

[26] Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Efficient Bayesian network
structure learning via parameterized local search on topological orderings. In Proceedings of the
35th AAAI Conference on Artificial Intelligence, AAAI ’21, pages 12328–12335. AAAI Press, 2021.
doi:10.1609/aaai.v35i14.17463.

[27] Anjali Gupta, Rahul Yadav, Ashish Nair, Abhijnan Chakraborty, Sayan Ranu, and Amitabha Bagchi.
Fairfoody: Bringing in fairness in food delivery. In Proceedings of the 36th AAAI Conference on Ar-
tificial Intelligence, AAAI ’22, pages 11900–11907. AAAI Press, 2022. doi:10.1609/aaai.v36i11.21447.

[28] Tobias Heinen, Nhan-Tam Nguyen, Trung Thanh Nguyen, and Jörg Rothe. Approximation and
complexity of the optimization and existence problems for maximin share, proportional share,
and minimax share allocation of indivisible goods. Autonomous Agents and Multi-Agent Systems,
32(6):741–778, 2018. doi:10.1007/S10458-018-9393-0.

https://doi.org/10.24963/ijcai.2017/20
https://doi.org/10.1007/S10458-019-09415-Z
https://doi.org/10.1016/j.artint.2022.103664
https://doi.org/10.1609/aaai.v38i9.28815
https://doi.org/10.1145/3580507.3597764
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1609/aaai.v38i9.28822
https://doi.org/10.1016/j.artint.2022.103826
https://doi.org/10.24963/ijcai.2020/45
https://doi.org/10.1609/aaai.v37i5.25698
https://doi.org/10.1137/0204035
https://doi.org/10.1016/j.artint.2016.02.002
https://doi.org/10.1613/jair.1.13138
https://doi.org/10.1609/aaai.v35i14.17463
https://doi.org/10.1609/aaai.v36i11.21447
https://doi.org/10.1007/S10458-018-9393-0


[29] Hadi Hosseini, Shivika Narang, and Tomasz Wąs. Fair distribution of delivery orders. Artificial
Intelligence, 347:104389, 2025. doi:10.1016/j.artint.2025.104389.

[30] Ayumi Igarashi and William S. Zwicker. Fair division of graphs and of tangled cakes. Mathematical
Programming, 203(1):931–975, 2024. doi:10.1007/S10107-023-01945-5.

[31] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
doi:10.1016/j.jcss.2012.04.004.

[32] Yuichiro Kamada and Fuhito Kojima. Stability concepts in matching under distributional con-
straints. Journal of Economic Theory, 168:107–142, 2017. doi:10.1016/j.jet.2016.12.006.

[33] Takehiro Kawasaki, Nathanaël Barrot, Seiji Takanashi, Taiki Todo, and Makoto Yokoo. Strategy-
proof and non-wasteful multi-unit auction via social network. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, AAAI ’20, pages 2062–2069. AAAI Press, 2020.
doi:10.1609/aaai.v34i02.5579.

[34] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. On the complexity of efficiency
and envy-freeness in fair division of indivisible goods with additive preferences. In Proceedings of
the 1st International Conference on Algorithmic Decision Theory, ADT ’09, volume 5783 of LNCS,
pages 98–110. Springer, 2009. doi:10.1007/978-3-642-04428-1_9.

[35] Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing. Journal
of Computer and System Sciences, 63(1):2–20, 2001. doi:10.1006/jcss.2001.1752.

[36] Benjamin Knight, Dmitry Mitrofanov, and Serguei Netessine. The impact of AI technology on the
productivity of gig economy workers. In Proceedings of the 25th ACM Conference on Economics
and Computation, EC ’24, page 833. ACM, 2024. doi:10.1145/3670865.3673642.

[37] Dušan Knop and Šimon Schierreich. Host community respecting refugee housing. In Proceedings
of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23,
pages 966–975. ACM, 2023. URL https://dl.acm.org/doi/10.5555/3545946.3598736.

[38] Dušan Knop, Šimon Schierreich, and Ondřej Suchý. Balancing the spread of two opinions in
sparse social networks (student abstract). In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, AAAI ’22, pages 12987–12988. AAAI Press, 2022. doi:10.1609/aaai.v36i11.21630.

[39] Richard E. Korf. Multi-way number partitioning. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI ’09, pages 538–543. IJCAI/AAAI, 2009. URL http:
//ijcai.org/Proceedings/09/Papers/096.pdf.

[40] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing approximate
maximin shares. Journal of the ACM, 65(2):8:1–8:27, 2018. doi:10.1145/3140756.

[41] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

[42] Bo Li, Fangxiao Wang, and Yu Zhou. Fair allocation of indivisible chores: Beyond additive
costs. In Proceedings of the 37th Annual Conference on Neural Information Processing Sys-
tems, NeurIPS ’23, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
aa5d22c77b380e2261332bb641b3c2e3-Abstract-Conference.html.

[43] Lily Li, Evi Micha, Aleksandar Nikolov, and Nisarg Shah. Partitioning friends fairly. In Proceedings
of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23, pages 5747–5754. AAAI Press, 2023.
doi:10.1609/aaai.v37i5.25713.

[44] Jayakrishnan Madathil. Fair division of a graph into compact bundles. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence, IJCAI ’23, pages 2835–2843. ijcai.org, 2023.
doi:10.24963/ijcai.2023/316.

[45] Ashish Nair, Rahul Yadav, Anjali Gupta, Abhijnan Chakraborty, Sayan Ranu, and Amitabha Bagchi.
Gigs with guarantees: Achieving fair wage for food delivery workers. In Proceedings of the 31st
International Joint Conference on Artificial Intelligence, IJCAI ’22, pages 5122–5128. ijcai.org, 2022.
doi:10.24963/ijcai.2022/711.

[46] Harikrishna Narasimhan, Shivani Agarwal, and David C. Parkes. Automated mechanism design
without money via machine learning. In Proceedings of the 25th International Joint Conference on

https://doi.org/10.1016/j.artint.2025.104389
https://doi.org/10.1007/S10107-023-01945-5
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1016/j.jet.2016.12.006
https://doi.org/10.1609/aaai.v34i02.5579
https://doi.org/10.1007/978-3-642-04428-1_9
https://doi.org/10.1006/jcss.2001.1752
https://doi.org/10.1145/3670865.3673642
https://dl.acm.org/doi/10.5555/3545946.3598736
https://doi.org/10.1609/aaai.v36i11.21630
http://ijcai.org/Proceedings/09/Papers/096.pdf
http://ijcai.org/Proceedings/09/Papers/096.pdf
https://doi.org/10.1145/3140756
https://doi.org/10.1287/moor.8.4.538
http://papers.nips.cc/paper_files/paper/2023/hash/aa5d22c77b380e2261332bb641b3c2e3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/aa5d22c77b380e2261332bb641b3c2e3-Abstract-Conference.html
https://doi.org/10.1609/aaai.v37i5.25713
https://doi.org/10.24963/ijcai.2023/316
https://doi.org/10.24963/ijcai.2022/711


Artificial Intelligence, IJCAI ’16, pages 433–439. IJCAI/AAAI Press, 2016. URL http://www.ijcai.
org/Abstract/16/068.

[47] Trung Thanh Nguyen and Jörg Rothe. Complexity results and exact algorithms for fair division of
indivisible items: A survey. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence, IJCAI ’23, pages 6732–6740. ijcai.org, 2023. doi:10.24963/ijcai.2023/754.

[48] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, STOC ’99, pages 129–140. ACM, 1999.
doi:10.1145/301250.301287.

[49] Manisha Padala and Sujit Gujar. Mechanism design without money for fair allocations. In
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,
WI/IAT ’21, pages 382–389, 2021.

[50] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning tree
problems. Journal of the ACM, 29(2):285–309, 1982. doi:10.1145/322307.322309.

[51] Michal Pioro. Fair routing and related optimization problems. In Proceedings of the 15th International
Conference on Advanced Computing and Communications, ADCOM ’07, pages 229–235. IEEE, 2007.
doi:10.1109/ADCOM.2007.121.

[52] Tristan Pollner, Mohammad Roghani, Amin Saberi, and David Wajc. Improved online con-
tention resolution for matchings and applications to the gig economy. In Proceedings of
the 23rd ACM Conference on Economics and Computation, EC ’22, pages 321–322. ACM, 2022.
doi:10.1145/3490486.3538295.

[53] Ariel D Procaccia and Moshe Tennenholtz. Approximate mechanism design without money. ACM
Transactions on Economics and Computation, 1(4):1–26, 2013. doi:10.1145/2542174.2542175.

[54] Aitor López Sánchez, Marin Lujak, Frédéric Semet, and Holger Billhardt. On balancing fairness and
efficiency in routing of cooperative vehicle fleets. In Proceedings of the 12th International Workshop
on Agents in Traffic and Transportation, ATT ’22, volume 3173 of CEUR Workshop Proceedings, pages
62–76. CEUR-WS.org, 2022. URL https://ceur-ws.org/Vol-3173/5.pdf.

[55] Šimon Schierreich. Multivariate analysis and structural restrictions in computational social choice.
In Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24, pages
8502–8503. ijcai.org, 2024. doi:10.24963/ijcai.2024/966.

[56] Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics, 123(1-3):487–512, 2002. doi:10.1016/S0166-
218X(01)00351-1.

[57] Miroslaw Truszczynski and Zbigniew Lonc. Maximin share allocations on cycles. Journal of
Artificial Intelligence Research, 69:613–655, 2020. doi:10.1613/jair.1.11702.

[58] Fangxiao Wang and Bo Li. Fair surveillance assignment problem. In Proceedings of the 33rd ACM
on Web Conference 2024, WWW ’24, pages 178–186. ACM, 2024. doi:10.1145/3589334.3645613.

[59] Qingyun Wu and Alvin E. Roth. The lattice of envy-free matchings. Games and Economic Behavior,
109:201–211, 2018. doi:j.geb.2017.12.016.

[60] Mingyu Xiao, Weibo Lin, Yuanshun Dai, and Yifeng Zeng. A fast algorithm to compute maximum
k-plexes in social network analysis. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence, AAAI ’17, pages 919–925. AAAI Press, 2017. doi:10.1609/aaai.v31i1.10655.

[61] Mingyu Xiao, Guoliang Qiu, and Sen Huang. MMS allocations of chores with connectivity
constraints: New methods and new results. In Proceedings of the 22nd International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’23, pages 2886–2888. IFAAMAS, 2023. URL
https://dl.acm.org/doi/10.5555/3545946.3599112.

[62] Yu Zhou, Tianze Wei, Minming Li, and Bo Li. A complete landscape of EFX allocations on graphs:
Goods, chores and mixed manna. In Proceedings of the 33rd International Joint Conference on
Artificial Intelligence, IJCAI ’24, pages 3049–3056. ijcai.org, 2024. doi:10.24963/ijcai.2024/338.

http://www.ijcai.org/Abstract/16/068
http://www.ijcai.org/Abstract/16/068
https://doi.org/10.24963/ijcai.2023/754
https://doi.org/10.1145/301250.301287
https://doi.org/10.1145/322307.322309
https://doi.org/10.1109/ADCOM.2007.121
https://doi.org/10.1145/3490486.3538295
https://doi.org/10.1145/2542174.2542175
https://ceur-ws.org/Vol-3173/5.pdf
https://doi.org/10.24963/ijcai.2024/966
https://doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/10.1613/jair.1.11702
https://doi.org/10.1145/3589334.3645613
https://doi.org/j.geb.2017.12.016
https://doi.org/10.1609/aaai.v31i1.10655
https://dl.acm.org/doi/10.5555/3545946.3599112
https://doi.org/10.24963/ijcai.2024/338


Hadi Hosseini
Penn State University
State College, PA, USA
Email: hadi@psu.edu

Šimon Schierreich
Penn State University
State College, PA, USA
Czech Technical University in Prague
Prague, Czechia
Email: schiesim@fit.cvut.cz

hadi@psu.edu
schiesim@fit.cvut.cz

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Non-wasteful Allocations
	Algorithmics of Non-wastefulness

	MMS and Non-wasteful Allocations
	Small Number of Dead-ends or Junctions
	Small Number of Agents or Orders
	Restricted Topologies
	Star-Like Topologies
	Bounded-Depth Topologies
	Topologies with a Central Path

	Concluding Remarks

