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Abstract

Hedonic games—at the interface of cooperative game theory and computational social choice—

are coalition formation games in which the players have preferences over the coalitions they

can join. Kerkmann et al. [15] introduced altruistic hedonic games where the players’ utilities

depend not only on their own but also on their friends’ valuations of coalitions. The complexity

of the veri�cation problem for core stability has remained open in four variants of altruistic

hedonic games: namely, for the variants with average- and minimum-based “equal-treatment”

and “altruistic-treatment” preferences. We solve these four open questions by proving the

corresponding problems coNP-complete; our reductions rely on rather intricate gadgets in the

related networks of friends.

1 Introduction

Hedonic games are at the interface of two areas: cooperative game theory—in particular, they are special

coalition formation games (CFGs)—and computational social choice—as the players in a hedonic game

have preferences over the coalitions (i.e., subsets of the players) they can join. The ultimate goal of a

hedonic game (and of CFGs in general) is to form a coalition structure (i.e., a partition of the player

set into coalitions) that is stable in some sense. To study which coalition structures are likely to form,

various stability notions have been introduced among which core stability perhaps is the most natural

and most central one. Suppose that there is a coalition structure Γ in a hedonic game but a group C
of players are not satis�ed with their coalitions in Γ: Instead, they would prefer leaving their current

coalition in Γ so as to form a new coalition together. In such a case, we say that C blocks Γ, and a

coalition structure is said to be core-stable if it is not blocked by any coalition. For more background on

hedonic games, on core stability as well as other stability concepts for them, and on the computional

complexity of the veri�cation and existence problems for hedonic games with respect to various stability

notions, we refer to the book chapters by Aziz and Savani [2] and Bullinger et al. [6] and to the survey

by Woeginger [25].

Speci�cally, we will study altruistic hedonic games, which were introduced by Kerkmann et al. [15] (see

also its predecessor by Nguyen et al. [18]). As noted by them (and previously already in the survey by

Rothe [23]), their work was inspired in part by the—apparently unrelated—work of biologists: Hare and

Woods [10] complement Darwin’s celebrated thesis of “survival of the �ttest” with a novel insight into

how evolution works, put forward as their thesis of “survival of the friendliest.” Indeed, they collect data

and arguments (e.g., by comparing bonobos and chimpanzees, two species of great apes) showing that

evolutionary success can also arise from a friendlier behavior. Transferring this idea to game theory,

altruistic behavior in games can surpass aggressive sel�shness that only cares about maximizing one’s

own utilities, regardless of the impact on others, especially so when a group of players need to coalesce.

As surveyed by Rothe [23], a variety of altruistic models have been studied for noncooperative and, to a

lesser extent, cooperative games, and Kerkmann et al. [15, 18] were the �rst to study altruism in hedonic

games. Later on, Schlueter and Goldsmith [24] extended their idea when they studied “super-altruistic
hedonic games,” and Kerkmann et al. [16, 12] transferred their ideas and models to CFGs in general.

If game theory aims at modeling the behavior of players in the real world, thus providing a theoretical

framework to realistically support their decision-making, it must take altruistic behavior into account.
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Indeed, the models of Kerkmann et al. [15, 18, 16, 12] are based on the friend-oriented preference extension
due to Dimitrov et al. [8] where players divide the other players into friends and enemies, yielding a

network of friends (a simple, undirected graph whose edges represent friendship relations among the

players) that allows for a compact representation of hedonic games.
1

Unlike in the model of Dimitrov et al. [8], however, in the models of Kerkmann et al. [15, 18, 16, 12] the

players’ utilities from a coalition are not solely determined by their own valuations; rather, also the

(average or minimum) valuations of their friends are taken into account. Speci�cally, three degrees

of altruism are de�ned that di�er depending on the order in which players refer to their own or their

friends’ valuations: In the sel�sh-�rst model (SF), the players �rst look at their own and then at their

friends’ valuations—the latter only if they themselves are indi�erent; in the equal-treatment model (EQ),

they treat their own and their friends’ valuations equally at the same time; and in the altruistic-treatment
model (AL), the players �rst consider their friends’ valuations, and only in the case of indi�erence they

decide according to their own valuation which coalition they prefer.

The above papers provide long lists of related work. Instead of repeating them here, we just highlight

some of the work that is most closely related to ours because it also studies core stability in hedonic

games, such as the papers by Banerjee et al. [3], Dimitrov et al. [8], Alcade and Romero-Medina [1],

Woeginger [26], Peters [21], Ohta et al. [19], and Chen et al. [7]. Bullinger and Kober [5] introduced the

notion of loyalty in cardinal hedonic games, and their loyal variant of symmetric friend-oriented hedonic

games is nothing other than the minimum-based altruistic hedonic games under EQ preferences.

For average- and minimum-based SF altruistic hedonic games, Kerkmann et al. [15] have shown that

it is coNP-complete to verify whether a given coalition structure is core-stable, and Kerkmann et
al. [16] showed coNP-completeness of the veri�cation problem for average- and minimum-based SF

altruistic CFGs, leaving these questions open for the other two degrees of altruism: average- and

minimum-based EQ and AL preferences in both altruistic hedonic games and, more generally, altruistic

CFGs. Note that EQ and AL preferences are particularly interesting, as they are “more altruistic” than

SF preferences. Recently, Ho�jan et al. [11] solved these open questions for altruistic CFGs, again

showing coNP-completeness of the veri�cation problem for average- and minimum-based EQ and AL

preferences.
2

We solve all four questions that remained open along this line of research: We show that for average- and

minimum-based EQ and AL altruistic hedonic games, the veri�cation problem also is coNP-complete.

Our proofs are based on constructing rather involved gadgets in the networks of friends of these games.

2 Preliminaries

The goal of a coalition formation game (CFG) is to partition a �nite set N of players into coalitions, i.e.,

subsets of N , yielding a coalition structure, i.e., a partition of N ; the set of all possible coalition structures
over N is denoted by CN . Given a coalition structure Γ ∈ CN , the coalition containing player i is

denoted by Γ(i). We are interested in studying hedonic games, which constitute a special type of CFGs.

A hedonic game (N,�) is speci�ed by the player set N and a preference pro�le � = (�1, . . . ,�n),

where n = |N | and �i ⊆ N i ×N i
is player i’s preference relation (i.e., a complete, weak order) over

N i = {C ⊆ N | i ∈ C}, the set of all coalitions containing i.

Speci�cally, for any two coalitions C,D ∈ N i
, we write C �i D to mean that player i weakly prefers C

1

Representing hedonic games compactly is important, as each of n players can join 2n−1
coalitions, and all players need to

express their preferences on all coalitions they can join. For a large variety of ways of succinctly representing hedonic games,

we refer to, e.g., the book chapters by Aziz and Savani [2] and Bullinger et al. [6] and also the work of Kerkmann et al. [14].

2

In fact, Kerkmann et al. [16] and Ho�jan et al. [11] consider sum-based (not average-based) SF, EQ, and AL preferences.

However, these are equivalent to (and a bit simpler than) average-based SF, EQ, and AL preferences for altruistic CFGs, as each

player has the same number of friends, no matter which two coalition structures are being compared, so the denominator in

the average can simply be omitted, leaving just the sum of their friends’ valuations; cf. (1) in Section 2.
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to D; we write C �i D to mean that i prefers C to D (i.e., C �i D and not D �i C); and we write

C ∼i D to mean that i is indi�erent between C and D (i.e., C �i D and D �i C). Since the players’

preferences only depend on the coalitions containing them, �i also induces a weak preference ranking

of player i ∈ N over the coalition structures in CN : For Γ,∆ ∈ CN , Γ �i ∆ if and only if Γ(i) �i ∆(i).

For a hedonic game (N,�), a partition Γ ∈ CN , and a coalition C ⊆ N , let ΓC→∅ denote the coalition

structure that results from Γ when all players i in C leave Γ(i) to form a new coalition, C , while all

other players remain in their coalition in Γ.
3

Formally, ΓC→∅ = {C} ∪ {C ′ \C | C ′ ∈ Γ}. We say that

a coalition C blocks Γ if C �i Γ(i) for all players i ∈ C , and Γ is core-stable if no nonempty coalition

blocks Γ.

Kerkmann et al. [15] (see also [18]) introduced altruistic hedonic games (AHGs), which have later been

generalized by Kerkmann et al. [16] (see also [12]) to altruistic coalition formation games (ACFGs).

Both AHGs and ACFGs are based on the friend-oriented preference extension due to Dimitrov et al. [8],

which allows for a compact representation: Every player divides the other players into friends and

enemies, which yields a network of friends—a simple, undirected graph G = (N, E) whose vertices are

the players and whose edges represent mutual friendship relations, whereas a missing edge indicates

that these two players are enemies. For i ∈ N , let Fi = {j ∈ N | {i, j} ∈ E} be the set of i’s
friends and Ei = N \ (Fi ∪ {i}) be the set of i’s enemies, and de�ne i’s friend-oriented valuation for a
coalitionC ⊆ N i

by vali(C) = n · |Fi∩C|−|Ei∩C|; recall that n = |N |. Hence, for any two coalitions

C,D ∈ N i
, player i friend-orientedly prefers C to D, denoted as C �Fi D, exactly if C contains more

friends of i than D, or in case C and D contain the same number of players among i’s friends, if C
contains fewer enemies of i than D. Note that C �Fi D if and only if vali(C) > vali(D).

In the altruistic model of Kerkmann et al. [15], the players’ utilities from a coalition are not only

determined by their own valuations, but also the (average or minimum) valuations of their friends in the

same coalition are taken into account. Speci�cally, they de�ne the following three degrees of altruism:

• In the sel�sh-�rst model (SF), the players’ preferences mainly depend on their own valuations,

consulting their friends’ valuations only if they are indi�erent between two coalitions;

• in the equal-treatment model (EQ), the players weigh their own and their friends’ valuations

equally; and

• in the altruistic-treatment model (AL), the players �rst consider their friends’ valuations, consulting

their own valuations only in the case of indi�erence between two coalitions.

Formally, setting the minimum of the empty set to zero by convention, de�ne the (friend-oriented)
average and minimum value of player i’s friends in a coalition C ∈ N i (without and with i) by

avgFi (C) =
∑

c∈C∩Fi

valc(C)

|C ∩ Fi|
and avgF+

i (C) =
∑

c∈(C∩Fi)∪{i}

valc(C)

|(C ∩ Fi) ∪ {i}|
, (1)

minFi (C) = min
c∈C∩Fi

{valc(C)} and minF+
i (C) = min

c∈(C∩Fi)∪{i}
{valc(C)}. (2)

Now, de�ne player i’s average-based and minimum-based utilities from a coalition C ∈ N i
in an AHG

according to the above three degrees of altruism:

util
avg-SF

i (C) = w · vali(C) + avgFi (C) and utilmin-SF

i (C) = w · vali(C) + minFi (C),

util
avg-EQ

i (C) = avgF+
i (C) and utilmin-EQ

i (C) = minF+
i (C), and

util
avg-AL

i (C) = vali(C) + w · avgFi (C) and utilmin-AL

i (C) = vali(C) + w ·minFi (C),

3

The notation ΓX→Y usually denotes the coalition structure obtained from Γ when a set X of players joins some

coalition Y ; hence, our notation ΓC→∅ re�ects the intuition that establishing a new coalition C can be thought of as all

members of C joining the empty coalition ∅.
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a

b

c

d e

a b, c d e

vali(Γ) 8 14 14 2

util
avg-SF

i (Γ) 8w + 14 14w + 12 14w + 10 2w + 14

util
avg-EQ

i (Γ) 12 12.5 11 8

util
avg-AL

i (Γ) 14w + 8 12w + 14 10w + 14 14w + 2

utilmin-SF

i (Γ) 8w + 14 14w + 8 14w + 2 2w + 14

utilmin-EQ

i (Γ) 8 8 2 2

utilmin-AL

i (Γ) 14w + 8 8w + 14 2w + 14 14w + 2

Figure 1: Illustration for Example 1. The network of friends is depicted to the left. The table on the right contains

players’ valuations and utilities in the coalition structure Γ = {N} under the six preference models considered.

where w ≥ n4 is a constant weight on some of the valuations that ensures that the SF utility is �rst

determined by i’s valuation and the AL utility is �rst determined by i’s friends’ valuations [15]. Again,

since players due to their hedonism care only about the coalitions containing them, their utilities from

coalitions immediately induce their utilities from coalition structures: util
avg-SF

i (Γ) = util
avg-SF

i (Γ(i)),

etc.

Depending on which aggregation method and which degree of altruism is used, we denote our games

as average-based or min-based SF, EQ, or AL AHGs. We study the computational complexity of the

veri�cation problem for them: Given such a game and a coalition structure Γ, is Γ core-stable?

Example 1. Consider a game I containing a setN = {a, b, c, d, e} of players whose network of friends

is depicted in Figure 1. Note that b and c have the same friends and enemies in N , and thus have the

same valuations and utilities as long as they are contained in the same coalition.

The coalition C = {a, b, c, d} yields the valuations and utilities for its players as shown in Table 1,

where we �x some constant weight w ≥ n4 = 54 = 625 ensuring the right order for SF and AL utilities.

Consider the coalition structure Γ = {N} containing only the grand coalition N , which consists of all

players. Observe that C blocks Γ in both the minimum-based EQ and AL models, but does not block Γ
under the remaining four models.

a b, c d Does C block {N}?

vali(C) 9 15 9

util
avg-SF

i (C) 9w + 15 4 15w + 11 4 9w + 15 7 no

util
avg-EQ

i (C) 13 4 12 7 13 4 no

util
avg-AL

i (C) 15w + 9 4 11w + 15 7 15w + 9 4 no

utilmin-SF

i (C) 9w + 15 4 15w + 9 4 9w + 15 7 no

utilmin-EQ

i (C) 9 4 9 4 9 4 yes

utilmin-AL

i (C) 15w + 9 4 9w + 15 4 15w + 9 4 yes

Table 1: The valuations and utilities of players in the coalition C = {a, b, c, d}. The sign 4 means that the given

player i ∈ N prefers C toN under the given preference model, while the sign 7 means the opposite, i.e.,N �i C .
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This shows that Γ is not in the core of I if I is interpreted as a min-based EQ or AL AHG. By contrast,

it is not hard to verify that Γ is in the core of I if I is interpreted as an average-based SF, EQ, or AL

AHG or a min-basd SF AHG.

Since our AHGs are compactly represented by their (undirected) friendship graphs G = (N, E), we also

need some graph-theoretic notation. For any subset M ⊆ N of the vertices of G, let G[M ] denote the

subgraph of G induced byM . For each vertex i ∈ N , let δ(i) ⊆ E denote the set of edges incident to i
in G. Note that δ(i) = {{i, j} | j ∈ Fi} gives player i’s friendship relations in the game.

Referring to some standard textbooks [9, 20, 22], we assume the reader to be familiar with the basic

notions of computational complexity theory, such as the complexity classes P (deterministic polynomial
time), NP (nondeterministic polynomial time), and coNP = {L | L ∈ NP} (the class of complements of
NP problems). Our reductions used to show coNP-hardness are based on the standard polynomial-time
many-to-one reducibility, and problems that are coNP-hard and in coNP are said to be coNP-complete.

3 Core Stability in AHGs

Each of our reductions is from the NP-complete problem Cliqe where we are given a graphH = (V,E)
with an integer k, and the question is whether H contains a clique of size k, i.e., a complete graph on k
vertices, as a subgraph. The following observation will be useful.

Observation 3.1. If a simple graph H = (V,E) satis�es |V |+ α|E| ≤ k + α
(
k
2

)
for some α ≥ 1 and

each of its vertices has degree at least k − 1, then H is a clique of size k.

Proof. Let v be any vertex in the graph. Since v has degree at least k − 1, the graph contains at least k

vertices. Since each of them has degree at least k − 1, the number of edges is at least
k(k−1)

2 , so we get

|V |+ α|E| ≥ k + α
(
k
2

)
. Thus all of these inequalities must hold with equality, so the number of edges

must be exactly
(
k
2

)
, and the number of vertices must be exactly k. This means that the graph is indeed

a clique of size k.

3.1 Min-Based EQ and AL AHGs

We show that verifying core stability in min-based AHGs is coNP-complete, using the same construction

for both min-based EQ and min-based AL preferences.

Theorem 3.2. Verifying core stability in a min-based EQ or AL AHG is coNP-complete.

Proof. Both problems clearly are in coNP because one can verify in polynomial time that a given

coalition is blocking. To prove their coNP-hardness, we present a reduction from Cliqe to their

complements. Let our input for Cliqe be the graph H = (V,E) and integer k. If k is even, then we

add an additional vertex connected to every vertex of H ; the obtained graph has a clique of size k+ 1 if

and only if H contains a clique of size k. Therefore, without loss of generality, we may assume that k is

odd.

Construction. We construct from (H, k) a min-based EQ or AL AHG over player set N and an

underlying friendship graphG. Let us start by de�ning a (k−1, k′)-circulant gadget for k′ = k
(
k
2

)
+k+1

as follows: It contains k′ players arranged along a cycle Q of length k′, and each player i on Q is friends

with those k−1 players onQwho are at a distance of at most
k−1
2 away from i alongQ (not including i

itself); see Figure 2a for an illustration. We refer to Q as the base cycle of the gadget.

We now introduce vertex, edge, and incidency gadgets; each of these gadgets will be a (k − 1, k′)-

circulant gadget. For each vertex v ∈ V , we add a vertex gadget over player set Pv , with a special
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(a) The friendship graph of a (k − 1, k′)-circulant

gadget for k = 5 with k′ = 11 players, with the

base cycle shown with bold, blue lines.

(b) The friendship graphs of a normal (i.e., non-pinched) and a pinched

(d, k′)-dome gadget for d = 4 with k′ = 17 players. The top, mid,

and fringe players are depicted as purple, green, and blue circles,

respectively.

Figure 2: Illustration of our gadgets in the proofs of Theorems 3.2, 3.6, and 3.8.

vertex player v′ ∈ Pv corresponding to the vertex v. Similarly, for each edge e ∈ E, we introduce

an edge gadget over player set Pe, containing the edge player e′ ∈ Pe corresponding to the edge e.
Next, for each vertex v ∈ V and for each edge e ∈ δ(v), we introduce an incidency gadget over

player set Pv,e, containing the incidency player bv,e. Additionally, we de�ne a set Ae of k − 3 dummy
players for each edge e ∈ E. We will use the notation V ′ = {v′ | v ∈ V }, E′ = {e′ | e ∈ E},
B = {bv,e | v ∈ V, e ∈ δ(v)}, and A =

⋃
e∈E Ae. The total set of players is

N =
⋃·
v∈V

Pv ∪
⋃·
e∈E

(Pe ∪Ae) ∪
⋃·

v∈V, e∈δ(v)

Pv,e.

Besides the friendships within gadgets, we let each incidency player bv,e ∈ B be friends with the vertex

player v′ and the edge player e′, so G[V ′ ∪ E′ ∪ B] can be obtained from H by subdividing each of

its edges once. Next, for each edge e = xy ∈ E, we let the dummy players in Ae be friends with

players e′, bx,e, and by,e. Finally, for each edge e ∈ E, we let G[Ae] be a clique of size k − 3, so all

players in Ae are friends with each other. This completes the de�nition of our AHG.

Let us de�ne the coalition structure Γ as

Γ = {Pv | v ∈ V } ∪ {Pe | e ∈ E} ∪ {Pv,e | v ∈ V, e ∈ δ(v)} ∪ {Ae | e ∈ E},

so Γ contains the player set of each vertex, edge, and incidency gadget as well as the set of dummy

players associated with any edge as a coalition. Note that, for n = |N |, each player i’s valuation of Γ is

vali(Γ) =

{
(k − 1) · n− (k′ − k) if i ∈ N \A,
(k − 4) · n if i ∈ A.

Therefore, both in the min-based EQ and AL models, the utility of each player equals its valuation.

Proof of correctness. We claim that Γ is not core-stable if and only if H contains a clique of size k.

Only if: Let us �rst assume that Γ is not core-stable; we show that H contains a clique of size k. The

following claim captures the key property of our gadgets.

Claim 3.3. Let P be a set of players of a (k − 1, k′)-circulant gadget in the constructed instance whose
unique player having friends outside P is p? (a vertex, edge, or incidency player). If some coalition C ⊆ N
blocks Γ, then C ∩ P ⊆ {p?}.

Proof: Let us show �rst that each player i ∈ C ∩ (P \ {p?}) must have at least k − 1 friends in C .

Suppose for the sake of contradiction that i has at most k − 2 friends in C . On the one hand, if i has a
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friend j ∈ C , then j ∈ C ∩ P and, for ϕ ∈ {min-EQ,min-AL}, the utility of j in ΓC→∅ is at most the

valuation of i:
utilϕj (ΓC→∅) ≤ vali(ΓC→∅) ≤ (k − 2) · n < utilϕj (Γ),

which contradicts j ∈ C . On the other hand, if i has no friends inC , then utilϕi (ΓC→∅) = 0 < utilϕi (Γ),

which contradicts i ∈ C .

Now, to see the statement of the claim, assume for the sake of contradiction that C contains some

player i ∈ P \ {p?}. Let Q denote the base cycle of the (k − 1, k′)-circulant gadget with players P .

If P 6⊆ C were true, then consider the path in Q[C] that contains i (a subpath of the base cycle); let

player j be one endpoint of this path that does not coincide with p? (such a player j exists because

i 6= p?). Then j has fewer than k− 1 friends in C because one of j’s friends, though adjacent to j on Q,

is not in C . This is not possible by the argument given in the previous paragraph, so P ⊆ C follows.

To see that P ⊆ C is not possible either, consider some player i in P \ {p?} that is not a friend of p?;
by k′ > k, such a player exists. Assuming that P ⊆ C , we get that i and all friends of i have valuation

exactly (k − 1)n− (|C| − k) in ΓC→∅, which is at most (k − 1)n− (k′ − k) = utilϕi (Γ) by |C| ≥ k′.
This contradicts i ∈ P ⊆ C . C

We will also need the following simple claim.

Claim 3.4. Let C ⊆ N be a coalition blocking Γ. Each player i ∈ C has at least k − 1 friends in C .

Proof: First, if some player i has a non-dummy friend j in C (i.e., a friend j ∈ C \ A), then i must

have at least k − 1 friends in C , as otherwise, for ϕ ∈ {min-EQ,min-AL}, we have utilϕj (ΓC→∅) ≤
vali(ΓC→∅) ≤ (k − 2)n < utilϕj (Γ) which contradicts j ∈ C . In particular, since dummy players in C
must have non-dummy friends in C (as C ⊆ A is not possible), and each dummy player has k − 1
friends in total, we get that whenever C ∩ Ae 6= ∅ for some e = xy ∈ E, then C must contain all

players in {e′, bx,e, by,e} ∪Ae.

To prove the claim, it remains to show that every non-dummy player i in C has a non-dummy friend

in C . First, every player in C must have some friend in C , as otherwise this player’s utility is zero

in ΓC→∅. For the sake of contradiction, assume that some non-dummy player i ∈ C has only dummy

friends in C . Then, by construction, i must be among the players in {e′, bx,e, by,e} for some edge

e = xy ∈ E for which C ∩ Ae 6= ∅. Since e′ is friends with both bx,e and by,e, it follows that i has

a friend in {e′, bx,e, by,e}. However, by the argument given in the previous paragraph, C ∩ Ae 6= ∅
implies {e′, bx,e, by,e} ⊆ C , showing that i has a non-dummy friend in C . This contradiction proves

the claim. C

Let C ⊆ N be a coalition that blocks Γ. Using Claim 3.3, we obtain that C ⊆ V ′ ∪ E′ ∪ B ∪ A. Let

us create the subgraph HC of H that contains a given vertex or edge if and only if the corresponding

vertex or edge player is contained in C . We now show that HC is a well-de�ned subgraph of H . First,

recall that each incidency player bv,e has exactly k−1 friends in V ′∪E′∪B∪A, namely the players v′,
e′, and the k − 3 players in Ae; therefore, if bv,e is contained in C , then due to Claim 3.4 all friends

of bv,e must be in C as well. Keeping this in mind, assume that e′ ∈ C for some edge e = xy ∈ E.

Since e′ also has exactly k − 1 friends in V ′ ∪ E′ ∪B ∪A, namely those in Ae together with the two

incidency player bx,e and by,e, all of them must be in C by Claim 3.4. However, {bx,e, by,e} ⊆ C in turn

implies {x′, y′} ⊆ C , so HC is indeed well-de�ned.

Using again Claim 3.4, we know that each vertex in HC has degree at least k − 1. To see this, note that

x′ ∈ C ∩ V ′ implies that there are at least k− 1 incidency-player friends of x′ in C , together with their

edge-player friends, which means that there are at least k − 1 edges incident to x in HC . To prove that

HC is a clique of size k, we will use Observation 3.1.
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By our previous arguments, e′ ∈ C ∩E′ implies that all k− 1 friends of e′ in B ∪A are also in C . Since

no player in B ∪A has two edge players as a friend, we get

|C| = |C ∩ V ′|+ |C ∩ E′|+ |C ∩ (B ∪A)| ≥ |C ∩ V ′|+ k|C ∩ E′|.

Consider now an edge player e′ in C . Since every friend of e′ in C , as well as e′ itself, has exactly k − 1
friends in C , the utility of e′ is utilϕe′(ΓC→∅) = (k−1)n− (|C|−k) for ϕ ∈ {min-EQ,min-AL}, which

exceeds utilϕe′(Γ) only if |C| < |k′|. Thus |C| ≤ k
(
k
2

)
+k, which implies |C∩V ′|+k|C∩E′| ≤ k+k

(
k
2

)
.

Applying Observation 3.1 with α = k, it follows that HC is a clique of size k.

If: Let us now show that if H contains a clique on a set K of k vertices, then there exists a coalition

C ⊆ N that blocks Γ. Let C contain the vertex and edge players corresponding to the vertices and

edges of the clique K , together with all friends of these edge players in A ∪B, so |C| = k + k
(
k
2

)
. The

utility of each player in ΓC→∅ is then (k− 1)n− (|C| − k), which is more than its utility in Γ, because

|C| = k + k
(
k
2

)
< k′. Therefore, C blocks Γ, and so Γ is not core-stable.

3.2 Average-Based EQ and AL AHGs

To show the coNP-completeness of verifying core stability in an average-based EQ or AL AHG, we

introduce a new type of gadgets. For some integers d ≥ 1 and k′ > 2d+ 1, we de�ne a (d, k′)-dome
gadget as follows: It contains k′ players, among them a top player p? with friends p1, . . . , pd that we

call mid players, and with the remaining k′− d− 1 players forming a clique in the friendship graph that

we call the base clique. Additionally, for each mid player pi, we select a player p′i in the base clique in a

way that the players p′1, . . . , p
′
d, called fringe players, are all distinct, and we let pi be friends with p′i.

We further introduce a modi�cation of this gadget: Let a pinched (d, k′)-dome be obtained from a

(d, k′)-dome gadget by the identi�cation of all d mid players into a single mid player.

See Figure 2b for an illustration of such gadgets. The following claim captures their key property.

Proposition 3.5. Suppose that an instance of an average-based EQ or AL AHG over n players contains a
(possibly pinched) (d, k′)-dome gadget on player set P for some integers d and k′ satisfying n ≥ k′(d+ 1)
and k′ > 2d+ 3. Assume further that no player in P except for its top player p? has a friend outside P . If
P ∈ Γ is a coalition in some coalition structure Γ, and a coalition C blocks Γ, then C contains no player
from the base clique of the gadget.

Proof. Let k′′ = k′−d−1 denote the size of the base cliqueK in our gadget over P . First observe that if

some non-fringe player i within the base cliqueK is in C , then all k′′ players in the base clique are in C ,

as otherwise each friend of i (and i itself) loses a friend in C when compared to P , and thus the average

number of friends among i’s friends decreases by at least 1. The average number of enemies may only

decrease by at most d+ 1, so n > d+ 1 implies utilϕi (ΓC→∅) < utilϕi (Γ), a contradiction to i ∈ C . In

fact, i ∈ C further implies that each player in the base clique K must have the same number of friends

in C as in Γ, as otherwise the average number of friends among i’s friends (possibly counting also i
itself) decreases by at least

1
k′′ , while the average number of enemies of these players can only decrease

by at most d+ 1, so
n
k′′ > d+ 1 implies utilϕi (ΓC→∅) < utilϕi (Γ). Thus we have P \ {p?} ⊆ C . The

presence of some fringe player j in C further implies p? ∈ C by the same arguments, since p? /∈ C
would mean a decrease of at least

1
k′′+1 in the utility of j. Therefore, we get P ⊆ C ; however, then the

utility of every player in the base clique is at most its utility in Γ, which contradicts our assumption

that C blocks Γ.

We thus have proven that C cannot contain non-fringe players in the base clique of P . However, from

this it follows that no fringe player i of P can be contained in C , as its utility in ΓC→∅ would be less

than its utility in Γ: Observe that all fringe-player friends of i (if any) lose at least one friend when

switching from Γ to ΓC→∅ (because there are k′ − 2d− 1 > 0 non-fringe players in the base clique K),
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while the mid-player friend of i has at most d+1 friends, which is strictly fewer than the k′′−1 ≥ d+2
friends of the base clique players in Γ. Thus, no player in K can be contained in C .

We are now ready to show coNP-completeness of verifying core stability in an AHG with either avg-EQ

or avg-AL preferences, starting with the former.

Theorem 3.6. Verifying core stability in an average-based EQ AHG is coNP-complete.

Proof. Membership of the veri�cation problem in coNP again is obvious. To show its coNP-hardness,

we again reduce from Cliqe. Let (H, k) be our input, where H = (V,E) is a graph and k an integer.

We may assume, without loss of generality, that k ≥ 4 and that |V |+ |E| ≥ k2. Let k′ = k + 3
(
k
2

)
+ 1.

The reduction will, to some degree, be similar to the one given in the proof of Theorem 3.2, but we need

to carefully modify the construction and proof of correctness to make it work for avg-EQ preferences.

Construction. We construct vertex, edge, and incidency gadgets as follows. For each vertex v ∈ V , we

add a (k− 1, k′)-dome gadget over player set Pv whose top player is the vertex player v′ corresponding

to v. For each edge e ∈ E, we add a (2, k′)-dome gadget over player set Pe whose top player is the edge
player e′ corresponding to e. Further, for each v ∈ V and e ∈ δ(v), we introduce a (2, k′)-dome gadget

over player setPv,e whose top player is the incidency player bv,e. Let n denote the total number of players

in the constructed gadgets, and we will also use the notation V ′ = {v′ | v ∈ V }, E′ = {e′ | e ∈ E},
and B = {bv,e | v ∈ V, e ∈ δ(v)}. Besides the friendships within gadgets, we let each incidency

player bv,e ∈ B be friends with the vertex player v′ and the edge player e′, so the friendship graph

induced by V ′ ∪E′ ∪B can be obtained from H by subdividing each of its edges once. This completes

the de�nition of our average-based EQ AHG.

Let Γ be the coalition structure that contains the player set of each vertex, edge, and incidency gadget

as a coalition; formally, Γ = {Pv | v ∈ V } ∪ {Pe | e ∈ E} ∪ {Pv,e | v ∈ V, e ∈ δ(v)}.

Due to Proposition 3.5, we will not be interested in non-fringe base players, so we only need to compute

the valuation of the remaining players in Γ, which are as follows:

vali(Γ) =


(k − 1) · n− (k′ − k) if i is a vertex player,

2 · n− (k′ − 3) if i is an edge, an incidency, or a mid player,

(k′ − k) · n− (k − 1) if i is a fringe player in a vertex gadget,

(k′ − 3) · n− 2 if i is a fringe player in an edge or incidency gadget.

It is now straightforward to compute the utilities of the players in Γ in the average-based EQ model; we

provide these for top and mid players below:

util
avg-EQ

i (Γ) =


3k−3
k · n−

(
k′ − 1− 3k−3

k

)
if i ∈ V ′,

2 · n− (k′ − 3) if i ∈ E′ ∪B,

k′+1
3 · n− (k′ − 1− k′+1

3 ) if i is a mid player in Γ(i).

Proof of correctness. We claim that Γ is not core-stable if and only if H contains a clique of size k.

Only if: Let us �rst assume that Γ is not core-stable; we show that H contains a clique of size k. Let

C be a coalition blocking Γ. Observe that C can contain no mid players from an edge or incidency

gadget: By Proposition 3.5, a mid player i can have only one friend in C , namely the top player in Γ(i),

while the top player in such a gadget has four friends in total; hence, the utility of i in C can be at

most
5
2n < util

avg-EQ

i (Γ), a contradiction to i ∈ C . Therefore, by Proposition 3.5, C can only contain

players in V ′ ∪ E′ ∪B, and possibly some mid players from vertex gadgets.

Next, we show an analogue of Claim 3.4.

Claim 3.7. If e′ ∈ C for some edge e = xy ∈ E, then {bx,e, by,e, x′, y′} ⊆ C and |C| < k′.
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Proof: The friends of e′ in C can only be the two incidency players bx,e and by,e, and they both

can have at most two friends in C (besides e′, one of the vertex players x′ and y′). Thus the utility

of e′ in ΓC→∅ can exceed util
avg-EQ

e′ (Γ) only if {bx,e, by,e} ⊆ C and, moreover, both bx,e and by,e
have two friends in C , which leads to {x′, y′} ⊆ C . Therefore, the utility of e′ in ΓC→∅ is exactly

util
avg-EQ

e′ (ΓC→∅) = 2n− (|C| − 3), which exceeds util
avg-EQ

e′ (Γ) if and only if |C| < k′. C

Let us create a subgraph HC of H that contains a given vertex or edge if and only if the corresponding

vertex or edge player is contained in C . By Claim 3.7, HC is a well-de�ned subgraph of H .

We proceed by showing that every vertex v in HC has at least k − 1 incident edges. Intuitively, the

reason for this is that adding friends with only one friend in the coalition cannot raise the utility of a

player. For a formal proof, assume for the sake of contradiction that v has at most k − 2 incident edges.

Then v′ has at most k − 2 friends with two friends being in C , and v′ may have an additional number `
of friends, each of whom has only v′ as a friend in C . Then we get

util
avg-EQ

v′ (ΓC→∅) ≤
2(k − 2) + (k − 2 + `) + `

k + `− 1
· n =

(
3− `+ 3

k + `− 1

)
· n

<

(
3k − 3

k
− 1

k2

)
· n < 3k − 3

k
· n−

(
k′ − 1− 3k − 3

k

)
= util

avg-EQ

v′ (Γ),

where the �rst strict inequality holds because k ≥ 4 and ` ≥ 0, as can be checked through simple

calculation, and the second strict inequality follows from our assumptions on the size of the graph H
that guarantees n ≥ k2 · k′. Therefore, we obtain a contradiction to v′ ∈ C , proving that each vertex

in HC has degree at least k − 1.

To show that C is a clique, we use Observation 3.1. Recall that |C| < k′ due to Claim 3.7. Since each

incidency player has only one edge-player friend, but each edge player in C has two incidency-player

friends in C , we get

k + 3

(
k

2

)
= k′ − 1 ≥ |C| = |C ∩ V |+ |C ∩ E|+ |C ∩B| ≥ |C ∩ V |+ 3|C ∩ E|. (3)

Applying Observation 3.1 with α = 3, it follows that HC is a clique of size k.

If: Let us now show that if H contains a clique on a set K of k vertices, then there exists a coalition C
that blocks Γ. Similarly as in the proof of Theorem 3.2, let C contain the vertex and edge players

corresponding to the vertices and edges of the clique K , together with all friends of these edge players

in B, so |C| = k + 3
(
k
2

)
. In the new coalition structure ΓC→∅ (after the members of C have deviated

from their coalitions in Γ), the utility of each player i in C is as follows:

util
avg-EQ

i (ΓC→∅) =


3k−3
k · n−

(
|C| − 1− 3k−3

k

)
if i ∈ V ′,

2 · n− (|C| − 3) if i ∈ E′,
k+3
3 · n− (|C| − 1− k+3

3 ) if i ∈ B.

Since |C| = k+ 3
(
k
2

)
< k′ and k ≥ 4, it follows that util

avg-EQ

i (ΓC→∅) < util
avg-EQ

i (Γ) for each player i
in C . Therefore, C blocks Γ, and so Γ is not core-stable.

Finally, we turn to showing that verifying core stability in an average-based AL AHG is coNP-complete.

Theorem 3.8. Verifying core stability in an average-based AL AHG is coNP-complete.

Proof. Again, membership of the veri�cation problem in coNP is obvious and, to show its coNP-

hardness, we present a reduction from Cliqe. The proof will be quite similar to that of Theorem 3.6:
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We use the same ideas and an analogous construction, however, the details need to be carefully adjusted.

Let (H, k) be our input instance of Cliqe, where H = (V,E) is a graph and k an integer. Set

k′ = k + 3
(
k
2

)
+ 1. Without loss of generality, we assume that |V |+ |E| > k ≥ 3 and that

k+1
3 is an

integer.

Construction. We construct vertex, edge, and incidency gadgets as follows. For each vertex v ∈ V ,

we introduce a pinched (2, k′)-dome gadget over player set Pv whose top player is the vertex player v′

corresponding to v. For each edge e ∈ E, we introduce a pinched (2, k′)-dome gadget over player set Pe
whose top player is the edge player e′ corresponding to e. Additionally, for each vertex v ∈ V and each

edge e ∈ δ(v), we introduce a pinched

(
k+1
3 , k′

)
-dome gadget over player set Pv,e whose top player is

the incidency player bv,e. We let n denote the total number of players in the constructed gadgets, and we

will use the notation V ′ = {v′ | v ∈ V }, E′ = {e′ | e ∈ E}, and B = {bv,e | v ∈ V, e ∈ δ(v)}. Besides

the friendships within gadgets, we let each incidency player bx,e ∈ B for some edge e = xy ∈ E be

friends with the vertex player x′, the edge player e′, and—in addition—the incidency player by,e. This

completes the de�nition of our AHG.

Let Γ be the coalition structure that contains the player set of each vertex, edge, and incidency gadget

as a coalition; formally, Γ = {Pv | v ∈ V } ∪ {Pe | e ∈ E} ∪ {Pv,e | v ∈ V, e ∈ δ(v)}.

Due to Proposition 3.5, we will only be interested in the utilities of the top and mid players within

each gadget in Γ. Recall that the mid player in a pinched (d, k′)-gadget has d+ 1 friends in the gadget.

Simple calculation and k ≥ 3 gives us the following:

util
avg-AL

i (Γ) =

{
3 · n− (k′ − 4) if i ∈ V ′ ∪ E′,
k+4
3 · n−

(
k′ − 1− k+4

3

)
if i ∈ B′;

util
avg-AL

i (Γ) ≥ 2k′−3
3 · n−

(
k′ − 1− 2k′−3

3

)
if i is a mid player in Γ(i).

Proof of correctness. We claim that Γ is not core-stable if and only if H contains a clique of size k.

Only if: Assume �rst that some coalition C blocks Γ. Observe that a blocking coalition C can contain

no mid players from an edge or incidency gadget: By Proposition 3.5, a mid player i can have only one

friend in C , namely the top player in Γ(i), while the top player in such a gadget has at most four friends

in total; hence, the utility of i in C can be at most 4n < 2k′−4
3 · n < util

avg-AL

i (Γ), a contradiction

to i ∈ C . Therefore, by Proposition 3.5, C can only contain players in V ′ ∪ E′ ∪B, and possibly some

mid players from vertex gadgets.

We de�ne the graph HC as in the proof of Theorem 3.6, i.e., HC contains a given vertex or edge of H if

and only if the corresponding vertex or edge player is in C .

Next, we show that Claim 3.7 remains true for the modi�ed construction.

Claim 3.9. If e′ ∈ C for some edge e = xy ∈ E, then {bx,e, by,e, x′, y′} ⊆ C and |C| < k′.

Proof: The friends of e′ in C can only be the two incidency players bx,e and by,e, and both of these

players can have at most three friends in C . If one of bx,e and by,e is not in C , then the utility of e′

in ΓC→∅ could be at most 2n < util
avg-AL

e′ (Γ). Hence, we get {bx,e, by,e} ⊆ C; moreover, both bx,e
and by,e must have three friends in C , which leads to {x′, y′} ⊆ C . Therefore, the utility of e′ in ΓC→∅
is exactly util

avg-AL

e′ (ΓC→∅) = 3n− (|C| − 4), which exceeds util
avg-AL

e′ (Γ) if and only if |C| < k′. C

By Claim 3.9, we know that HC is a well-de�ned subgraph of H . We next prove that every vertex

in HC has degree at least k − 1.

Assume x′ ∈ C . First notice that each friend of x′ has at most three friends in C . Thus all friends

of x′ in C need to have exactly three friends in C , as otherwise the utility of x′ in ΓC→∅ would be
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lower than
2+3(`−1)

` · n = 3n− n
` < 3n− k′ < util

avg-AL

x′ (Γ) where ` denotes the number of friends

that x′ has in C ; notice that the inequality n > k′ · ` we use here follows from the fact that x must have

degree at least `− 1 in H . In particular, no mid player in the vertex gadget containing x′ can be in C .

Furthermore, whenever bx,e ∈ C for some edge e incident to x in H , then e′ ∈ C follows. This means

that the degree of x in HC is exactly the number of friends that x′ has in C .

Consider now the utility of some incidency player bx,e in C : If x′ has at most k − 2 friends in C , then

util
avg-AL

bx,e
(ΓC→∅) ≤

2 + 3 + k − 2

3
· n < k + 4

3
· n− k′ < util

avg-AL

bx,e
(Γ)

where the �rst strict inequality follows from n > 3k′ which in turn holds due to our assumptions on the

size of the graph H . This proves that x′ needs to have at least k − 1 friends in C , that is, every vertex

in HC has degree at least k − 1. Finally, observe that the inequality (3) holds; using also Claim 3.9, we

can apply Observation 3.1 with α = 3. It follows that HC is a clique of size k.

If: Given a clique of size k in H , proving that the corresponding vertex, edge, and incidency players

form a coalition blocking Γ is a straightforward adaptation of the arguments presented in the proof of

Theorem 3.6.

4 Conclusions and Open Questions

Having solved the last four open problems related to the computional complexity of verifying core

stability in altruistic hedonic games, the picture for this property is now complete: For all three degrees

of altruism, in both the average-based and the minimum-based case, and for both altruistic hedonic

games and the more general altruistic CFGs, it is coNP-complete to verify whether a given coalition

structure is core-stable. Of course, many related problems remain open and can be tackled in future

research.

For example, we only have an upper bound of containment in coNP for verifying strict core stability,

and it remains to show a matching lower bound of coNP-hardness. A coalition structure Γ is strictly
core-stable if it is not weakly blocked by any coalition, i.e., for each coalition C ⊆ N , we either have

Γ(i) �i ΓC→∅(i) for some player i ∈ C , or we have Γ(i) ∼i ΓC→∅(i) for all players i ∈ C .

Regarding the existence of (strictly) core stable coalition structures, we know that the coalition structure

whose coalitions are the connected components in the network of friends is always strictly core stable in

AHGs in the SF model; however, this is not necessarily true in the more altruistic EQ and AL models [15].

In fact, Kerkmann et al. [15] showcased a min-based EQ AHG with no strictly core stable coalition

structure. For AL AHGs or for average-based EQ AHGs, no such example is known so far. Furthermore,

the computational complexity of deciding whether a (strictly) core stable coalition structure exists in

EQ or AL AHGs, or ACFGs, remains open.

In addition, the existence problems for other properties of AHGs or ACFGs remain open as well, such

as the existence of a (strictly) popular coalition structure, even though the corresponding veri�cation

problems have recently been settled for AHGs [13]. A coalition structure Γ is popular if it is preferred

to any other coalition structure ∆ by at least as many players as there are players preferring ∆ to Γ.

Note that for additively separable and fractional hedonic games, Bullinger and Gilboa [4] have recently

settled the computational complexity of deciding whether there exist popular coalition structures by

showing completeness for the class NPNP
, the second level of the polynomial hierarchy.

Finally, in addition to classical complexity, it would be very interesting to study these problems in terms

of their �xed-parameter tractability and parameterized complexity (see, e.g., the work of Chen et al. [7])

or in terms of their approximability (see, e.g., the work of Munagala et al. [17] who study core stability

in the context of participatory budgeting).
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