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Abstract

We study coalition formation in the framework of fractional hedonic games (FHGs). The objective
is to maximize social welfare in an online model where agents arrive one by one and must be
assigned to coalitions immediately and irrevocably. For general online FHGs, it is known
that computing maximal matchings achieves the optimal competitive ratio, which is, however,
unbounded for unbounded agent valuations.
We achieve a constant competitive ratio in two related settings while carving out further con-
nections to matchings. If algorithms can dissolve coalitions, then the optimal competitive ratio
of 1

6+4
√
2
is achieved by a matching-based algorithm. Moreover, we perform a tight analysis for

the online matching setting under random arrival with an unknown number of agents. This
entails a randomized 1

6 -competitive algorithm for FHGs, while no algorithm can be better than
1
3 -competitive.

1 Introduction

The formation of coalitions is a widely studied problem at the intersection of artificial intelligence, game
theory, and the social sciences [26, 1]. The goal is to form groups from a set of agents, which could
represent members of a society or, more broadly, firms or computer programs. We call the resulting
coalition structure a partition, and agents have preferences concerning their potential coalitions. This
setting has undergone in-depth scrutiny in game theory where a particularly appealing and well-studied
class of coalition formation games are hedonic games [16]. Their central—hedonic—aspect is that the
preferences of an agent only depend on the members of her coalition but not on the structure or
members of other coalitions.

However, even under this natural restriction, stating preferences explicitly requires the consideration
of an exponentially large set of potential coalitions. Hence, for the sake of computational tractability, a
significant amount of research has been undertaken concerning hedonic games with inherently concise
preference representations. One way of achieving this is to derive an agent’s preferences over coalitions
from her preferences over single agents. For instance, agents might assign a subjective valuation to
each other agent, which can then be aggregated to obtain utilities over coalitions. This approach gives
rise to the classes of additively separable (ASHG) or fractional (FHG) hedonic games [7, 3]. In this work,
we focus on FHGs, in which the utility an agent assigns to a coalition is the average utility she assigns
to the coalition members (assuming a utility of 0 for herself). Aziz et al. [3] argue that this model is
suitable for the analysis of network clustering, and use it to represent basic economic scenarios such as
the bakers-and-millers game.

An important aspect of real-world coalition formation processes is that agents arrive over time. This
has motivated the study of an online model of hedonic games by Flammini et al. [19]. In their basic
model, agents arrive one by one and have to be assigned to existing coalitions of any size immediately
and irrevocably. The objective is to achieve high social welfare, defined as the sum of agents’ utilities.
Unfortunately, this is a demanding objective in FHGs: if Vmin and Vmax are the minimum and maximum
permitted absolute value of nonzero utilities, the best possible competitive ratio is Vmin

4Vmax
.

A crucial role in achieving welfare approximations, whether in an offline or online setting, has been to
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employ matchings, which can be interpreted as partitions with coalitions of size at most 2.1 For instance,
the aforementioned competitive ratio is attained by forming maximal matchings, which is even the
best deterministic approach for unweighted games [19]. Moreover, the best known polynomial-time
approximation algorithm for social welfare in offline FHGs, achieving a 2-approximation, is to form a
maximum weight matching [18]. Similarly, in the related model of ASHGs, maximum weight matchings
achieve an n-approximation of social welfare, where n is the number of agents. At the same time, an
n1−ϵ-approximation isNP-hard to compute for any ϵ > 0 [20], even if weights are bounded globally [14].
Our work extends this intuition by considering two more sophisticated models of online FHGs, where
we show that online matching algorithms achieve a constant optimal or close to optimal performance.

In the first model, the free dissolution setting, the algorithm gets the additional power to dissolve
coalitions. We show that a matching algorithm achieves the optimal competitive ratio of 1

6+4
√
2
, which

is a factor 1
2 worse than the best online matching algorithm in the corresponding matching domain.

In the second model, the random arrival setting, the algorithm cannot revoke matching decisions, but
agents arrive in a uniformly random order. Hence, it has to compete well against an adversary that only
fixes the game but not the precise arrival order. This also avoids the worst-case example by Flammini
et al. [19], which crucially relies on specifying valuations based on the previous decisions of algorithms.
We achieve a 1

6 -competitive algorithm, while no algorithm can be better than 1
3 -competitive. The

latter result relies on a tight analysis of matching algorithms with an unknown number of agents, for
which a competitive ratio of 1

3 is optimal. Since we prove this result on the tree domain, a specific
domain of instances where positive valuations form trees, it directly transfers algorithmic limitations to
the coalition formation setting. We thus once again observe the power of matching algorithms when
analyzing an online coalition formation model.

2 Related Work

The hedonic formation of coalitions traces back to Drèze and Greenberg [16], while hedonic games in
the form studied today have been conceptualized by Bogomolnaia and Jackson [7]. The latter paper
introduces the class of ASHGs, in which utilities for coalitions are obtained through a sum-based
aggregation of individual valuations. Fractional hedonic games were introduced later by Aziz et al. [3].
An overview of hedonic games can be found in the book chapters by Aziz and Savani [1] and Bullinger
et al. [13].

Several authors studied various notions of stability in FHGs [8, 5, 6, 23, 3, 9], while Aziz et al. [2]
consider welfare maximization. In addition to examining algorithms for (utilitarian) social welfare, they
consider the maximization of egalitarian and Nash welfare. They prove NP-hardness of finding optimal
partitions for the different objectives and give polynomial-time approximation algorithms. Matching
algorithms are shown to yield reasonable approximation ratios. In particular, Aziz et al. [2] show that a
maximum weight matching (MWM) is a 1

4 -approximation of social welfare in general, unconstrained
FHGs. This analysis was later improved and made tight by Flammini et al. [18] who prove that MWMs
yield precisely a 1

2 -approximation.

An online model for hedonic games was first studied by Flammini et al. [19], who consider FHGs and
ASHGs.2 They investigate the model where agents arrive in an adversarial order. They give lower and
upper bounds for deterministic algorithms on the achievable competitive ratio for maximizing social
welfare. Except for simple FHGs, their results are rather discouraging because the competitiveness
crucially depends on the range of valuations. For ASHGs, Bullinger and Romen [11] consider the
random arrival and the free dissolution models and show that these dependencies vanish. We achieve

1A notable exception are online FHGs with nonnegative weights, for which the optimal algorithm forms coalitions of
unbounded size [19].

2While being inspired by models of hedonic games, Flammini et al. [19] develop their model as a “coalition structure
generation problem” and, therefore, adopt a purely graph-theoretic instead of a game-theoretic perspective.
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similar results for FHGs. Furthermore, going beyond welfare maximization, Bullinger and Romen [12]
study stability and Pareto optimality for online ASHGs with adversarial agent arrival.

There is a vast body of literature on online matching. A recent survey is given by Huang et al. [22].
Here, we only discuss the works that are closest to our setting. For unweighted graphs, Gamlath et al.
[21] give the online algorithm with the currently best known competitive ratio for maximum cardinality
matchings with adversarial vertex arrival. Kesselheim et al. [24] study MWMs with random vertex
arrival on one side of bipartite graphs and show that the upper bound of 1

e , which stems from the fact
that the scenario generalizes the secretary problem, can be matched by an algorithm. Ezra et al. [17]
propose an algorithm for approximating an MWM in general weighted graphs with random vertex
arrival where the total number of vertices to arrive is known in advance. They also show the asymptotic
tightness of that algorithm’s competitive ratio by considering a family of graphs where all edge weights
differ by a large factor, so there is only one valuable edge for a matching. Finally, Bullinger and Romen
[11] study online MWM under free dissolution.

3 Preliminaries and Model

We begin by introducing some notation. For i ∈ N, we denote [i] := {1, . . . , i}. For a set S and i ∈ N,
let
(
S
i

)
:= {T ⊆ S | |T | = i}, i.e.,

(
S
i

)
denotes the set of all subsets of S of size i. Next, for a graph

G = (V,E) and a set of vertices S ⊆ V , let G[S] denote the subgraph of G induced by S. Finally, we
denote the indicator function by χ(·). It takes a Boolean argument as an input and returns 1 if it is true
and 0, otherwise.

3.1 Hedonic Games

Let N be a finite set of agents. A nonempty subset C ⊆ N is called a coalition. The set of coalitions
containing agent i ∈ N is denoted byNi := {C ⊆ N | i ∈ C}. A set π of disjoint coalitions containing
all members of N is a partition of N . A matching is a partition in which all coalitions have size at
most 2.3 For agent i ∈ N and partition π, let π(i) denote the unique coalition in π that i belongs to.

A (cardinal) hedonic game is a pair G = (N, u) where N is the set of agents and u = (ui)i∈N is a
tuple of utility functions ui : Ni → Q. Agents seek to maximize utility and prefer partitions in which
their coalition achieves a higher utility. Hence, we define the utility of a partition π for agent i as
ui(π) := ui(π(i)). We denote by n(G) := |N | the number of agents and write n if G is clear from the
context.

Following Aziz et al. [3], a fractional hedonic game (FHG) is a hedonic game (N, u), where for each
agent i ∈ N there exists a valuation function vi : N \ {i} → Q such that for all C ∈ Ni it holds that
ui(C) =

∑
j∈C\{i}

vi(j)
|C| . Note that this implies that the utility for a singleton coalition is 0. Since the

valuation functions contain all information for computing utilities, we also represent an FHG as the pair
(N, v), where v = (vi)i∈N is the tuple of valuation functions. Additionally, an FHG can be succinctly
represented as a complete directed weighted graph where the weights of directed edges induce the
valuation functions.

An FHG (N, v) is said to be symmetric if for every pair of distinct agents i, j ∈ N , it holds that
vi(j) = vj(i). We write v(i, j) for the symmetric valuation between i and j. A complete undirected
weighted graph can represent a symmetric FHG. For simplicity, we also denote this graph by (N, v)
Moreover, an FHG is said to be simple if for every pair of distinct agents i, j ∈ N , it holds that
vi(j) ∈ {0, 1}. Simple FHGs can be represented by directed unweighted graphs (where edges represent
valuations of 1). Finally, a symmetric FHG is said to belong to the tree domain if every connected

3In contrast to the standard definition of matchings, we assume that unmatched agents are part of a matching in the form
of singleton coalitions.
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component of the edges with positive weight in the associated undirected graph forms a tree, and every
other edge has a negative weight smaller than the negative sum of all positive edge weights.

We measure the desirability of a partition in terms of social welfare. Given an FHG G = (N, v), we
define the social welfare of a coalition C ⊆ N as SW(C) :=

∑
i∈C ui(C) and of a partition π as

SW(π) :=
∑

i∈N ui(π) =
∑

C∈π SW(C). We denote by π∗(G) a partition that maximizes social
welfare in G. Note that we can replace both vi(j) and vj(i) by 1

2(vi(j) + vj(i)) for all i, j ∈ N , which
results in a symmetric FHG in which the social welfare of every partition remains the same [10]. Hence,
it suffices to consider symmetric FHGs instead of the full domain of FHGs. However, note that this
technique cannot be applied to simple FHGs (or other restricted classes of FHGs) as the symmetrization
may result in nonsimple FHGs. Given c ≤ 1, a partition π is called a c-approximation to social welfare
in game G if SW(π) ≥ c · SW(π∗(G)).

If π is a matching, then SW(π) also denotes the weight of the matching (since for each matched pair,
both agents contribute 1

2 of the edge weight). Hence, maximizing social welfare among matchings is
precisely the maximum weight matching (MWM) problem.

3.2 Online Models and Competitive Analysis

We assume an online model of FHGs where agents arrive one by one and have to be assigned to new or
existing coalitions. For an agent set N , define Σ(N) := {σ : [|N |] → N bijective}. This is interpreted
as the set of all arrival orders.

An instance (G, σ) of an online FHG consists of an FHG G = (N, v) and an arrival order σ ∈ Σ(N).
An online coalition formation algorithm ALG produces on input (G, σ) a sequence ALG(G, σ)1, . . . ,
ALG(G, σ)n(G) of partitions, where for each i ∈ [n(G)],ALG(G, σ)i is a partition of {σ(1), . . . , σ(i)}.
Hence, the partial partitions have to contain precisely the agents that have arrived so far. Moreover, we
require that for all input tuples (G, σ) and (H, τ) and k ∈ N with k ≤ min{n(G), n(H)} it holds that
ALG(G, σ)k = ALG(H, τ)k whenever vσ(i)(σ(j)) = vτ(i)(τ(j)) for all i, j ∈ [k].4 This condition
says that the algorithmic decision to form the kth partition can only depend on the information the
algorithm has obtained until the kth agent arrives. In particular, it can not depend on the knowledge
about agents arriving in the future. Furthermore, this condition implies that decisions must be identical
if all valuations are identical up to a certain agent’s arrival. The output of the algorithm is the partition
produced when the final agent is added; we denote ALG(G, σ) := ALG(G, σ)n(G).

In addition, an algorithm’s decisions are assumed to be irrevocable, i.e., agents can only be added to
an existing or a completely new coalition, while not changing the existing coalitions. Formally, this
means that for all instances (G, σ) and 2 ≤ k ≤ n(G), we require that ALG(G, σ)k[{σ(i) | 1 ≤ i ≤
k − 1}] = ALG(G, σ)k−1, i.e., the (k − 1)st partition is the kth partition restricted to the first k − 1
agents. An algorithm may, however, have the additional power to dissolve a partition before adding
a new agent. In this case, we say that the algorithm operates under free dissolution and additionally
allow that ALG(G, σ)k[{σ(i) | 1 ≤ i ≤ k − 1}] is of the form (ALG(G, σ)k−1 \ C) ∪ {{i} | i ∈ C}
for some C ∈ ALG(G, σ)k−1.

The objective is to achieve a good welfare approximation. We say that ALG is c-competitive5 if

inf
G

min
σ∈Σ(N)

SW[ALG(G, σ)]

SW[π∗(G)]
≥ c.

Equivalently, this means that for all instances, (G, σ), ALG produces a c-approximation of social
welfare. In other words, we benchmark algorithms against a worst-case adversary that can both fix an
instance, i.e., the number of agents and their mutual valuations, as well as an exact arriving order.

4We later consider randomized algorithms, for which the produced random partition has to be identical.
5We use the convention that 0

0
= 1 and x

0
= 0 for any x ∈ Q with x < 0.
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In addition, we consider a model where the agents arrive in a uniformly random arrival order. The
objective is then to achieve high welfare in expectation. We denote by ALG(G) the random partition
produced with respect to a uniformly random arrival order. An algorithmALG is said to be c-competitive
under random arrival if

inf
G

Eσ∼Σ(N) [SW[ALG(G)]]

SW[π∗(G)]
≥ c.

Hence, in this model, an algorithm is benchmarked against an adversary that can design a worst-case
instance, but has no control over the exact arrival order of the agents. In both models, the competitive
ratio cALG of ALG is the supremum c such that ALG is c-competitive. Note that the competitive ratio
is always at most 1.

We also consider randomized algorithms, which can use randomization to decide which coalition an
agent should be added to. In this case, the competitive ratio is measured with respect to the expected
social welfare of the random partition constructed by the randomized algorithm.

The competitive ratio is also defined for subclasses of FHGs, such as simple and symmetric FHGs, where
the infimum is only taken over games from that subclass. Finally, the competitive ratio is also defined
for online matching algorithms, for which the weight of the matching produced by an algorithm is
compared with the weight of an MWM.

4 Connections between Matchings and FHGs

The first significant connection between MWMs and welfare maximization in FHGs is that the former
yields a 1

2 -approximation for the latter. In Appendix A, we show a very instructive alternative proof of
this theorem originally shown by Flammini et al. [18]. Our argument establishes the connection between
MWM and FHGs via random matchings. More precisely, it is easy to see that the social welfare of the
MWM is at least as much as the sum of the social welfare of random matchings on an arbitrary partition
of the agents. Furthermore, we show that a random matching in a coalition is a 1

2 -approximation of
the social welfare of the coalition. If we apply these arguments to the optimal partition, the theorem
follows directly.

Theorem 4.1. [Flammini et al. [18]] Every MWM is a 1
2 -approximation of social welfare in symmetric

FHGs.

This implies the same guarantee for online algorithms: c-competitive online matching algorithms are
c
2 -competitive for online FHGs. We can use this insight to make an interesting observation: it is known
that no deterministic online algorithm can achieve a competitive ratio of better than 1

4 for simple
symmetric FHGs [19]. However, there exists a randomized online matching algorithm for MWM on
unweighted graphs (i.e., maximum cardinality matching) that beats a competitive ratio of 1

2 [21], i.e.,
achieves a competitive ratio of 1

2 +2ϵ∗ for some constant ϵ∗ > 0. We can apply Theorem 4.1 to conclude
that randomization can be utilized to beat the best deterministic algorithm in this case.

Corollary 4.2. There exists ϵ∗ > 0 and a randomized online coalition formation algorithm for simple and
symmetric FHGs with competitive ratio 1

4 + ϵ∗.

In contrast to Theorem 4.1, negative results for MWM, i.e., impossibilities of achieving a certain
competitive ratio, do not transfer to FHGs. They only imply that it is impossible to create a matching
of a certain quality. This does not rule out that an online algorithm can create a partition with larger
coalitions that achieve more social welfare. However, we now show that negative results are inherited
on domains where positive valuations form a tree (while other valuations are sufficiently negative).

Theorem 4.3. Let c ≤ 1 and assume that no c-competitive (randomized) algorithm exists for online MWM
on the tree domain. Then, no c-competitive (randomized) online coalition formation algorithm exists for
symmetric FHGs.
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Proof. We show a proof by contraposition. Assume a c-competitive online coalition formation algorithm
ALG for symmetric FHGs exists. We construct a c-competitive algorithm ALG ′ on the tree domain
that never forms a coalition of size three or more. To this end, let ALG ′ simulate ALG , i.e., whenever
a new agent and her valuations are revealed to ALG ′, it feeds the same input to ALG . Then, ALG ′

observes the output of ALG . If the new agent is in a coalition of size two with positive social welfare,
then ALG ′ forms the same coalition. In all other cases, ALG ′ puts the new agent into a singleton
coalition. Additionally, if ALG dissolves a coalition in the coalition dissolution setting, then ALG ′ also
dissolves the matched pair from this coalition if necessary. In particular, ALG ′ only returns (random)
matchings and, therefore, is a matching algorithm.

On the tree domain,ALG ′ achieves at least as high (expected) welfare asALG because the large negative
valuations make every coalition of size more than two have negative social welfare. Consequently, every
coalition of size at least 3 achieves less welfare than when it was dissolved into singleton coalitions
(or pairs of positive valuation). Thus, ALG ′ is c-competitive on the tree domain against all possible
partitions and, therefore, in particular, against all matchings.

Interestingly, negative results for MWM are usually essentially6 achieved on the tree domain [4, 11],
which makes the previous theorem very powerful. However, even if we have a tight result for MWM
where the lower bound is achieved on the tree domain, Theorems 4.1 and 4.3 leave a gap of a factor of 2.
As we will see, closing this gap can take significant effort.

5 FHGs under Coalition Dissolution

We first consider the setting where algorithms should perform well regardless of a fixed arrival order
but where algorithms can dissolve coalitions. In this setting, there exists a deterministic online matching
algorithm achieving a competitive ratio of 1

3+2
√
2
[25, 11].7 We can apply Theorem 4.1 to obtain an

algorithmic guarantee for FHGs.

Theorem 5.1. There exists a deterministic online coalition formation algorithm operating under free
dissolution with a competitive ratio of at least 1

6+4
√
2
.

The algorithm mentioned above is optimal for the matching domain in the tree domain [4]. By Theo-
rem 4.3, no deterministic online algorithm is better than 1

3+2
√
2
-competitive. We can, however, improve

upon this result by proving a bound matching Theorem 5.1.

We illustrate here the main ideas for its proof and defer the full proof to Appendix B. The proof technique
is similar to the proof by Badanidiyuru Varadaraja [4] in the matching domain. However, we construct
an enhanced version of the adversarial instance, where the partitions produced by an algorithm continue
to be matchings, but the partition with the highest welfare is better than the best matching by a factor
of about 2. We remark that our construction only uses instances with rational valuations, even though
we also exclude irrational competitive ratios higher than 1

6+4
√
2
.

Theorem 5.2. No deterministic online coalition formation algorithm operating under free dissolution has
a competitive ratio of more than 1

6+4
√
2
for symmetric FHGs.

Proof sketch. The crucial idea is to use an algorithm that allegedly beats a competitive ratio of 1
6+4

√
2

to construct a sequence of real numbers (xi)i∈N with x1 = 1, xi ≥ 0 for i ≥ 2, and such that for all
6These constructions usually contain 0-weights, which can be replaced with large negative weights.
7McGregor [25] achieves this competitive ratio in the much related edge arrival model. In the full version of their paper,

Bullinger and Romen [11] showed that it is preserved in a vertex arrival model.
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Figure 1: Illustration of Phase i in the construction of the adversarial instance in the proof of Theorem 5.2. Each
star attached to ai and bi contains ℓi leaves.

i ∈ N, it holds that

xi ≥ β

xi+1 +
i+1∑
j=1

xj

 (1)

where β > 1
3+2

√
2
. The proof of Theorem 2 by Badanidiyuru Varadaraja [4] for the case of k = 2 and

f = 0 shows that such a sequence of numbers does not exist.

The adversarial instance is established in phases, and in each phase, we determine a new element of a
sequence (yi)i∈N of rational numbers that satisfies an inequality of the type of Inequality 1.8

Throughout the execution of the instance, the algorithm can only maintain a single coalition with
positive welfare of yi containing exactly two agents, say {ai, bi}. We now illustrate a Phase i for some
fixed i ∈ N. A visualization is provided in Figure 1. All agents that newly appear have a mutual positive
valuation with exactly one of ai and bi, a valuation of 0 for some other agents, and a high negative
valuation for most agents, in particular for the other agent in {ai, bi}. The new agents form “star”
coalitions with ai and bi. In the first part of a stage, we achieve a situation where stars with ℓi leaves
have arrived for both endpoints, where all of their positive valuations are yi. These are the leftmost
stars attached to ai and bi in Figure 1.

Then, we let new star coalitions arrive while incrementing their positive valuations by a specifically
tailored rational value ϵi in each step. Eventually, the algorithm has to dissolve {ai, bi} and form a new
coalition with one of these agents and a new agent of valuation yi + j∗ϵi for some positive integer j∗.
This has to happen as otherwise, edges of unbounded weight arrive, which would lead to an unbounded
competitive ratio.

In the previous step, i.e., when agents with valuations of yi + k∗ϵi, where k∗ = j∗ − 1 were arriving,
we had two “star” coalitions with ai and bi, which we now call Ci andDi, respectively. Then, a version
of Inequality 1 can be established with two differences: (1) instead of β, we have 2γ, where γ is the
competitive ratio of our algorithm, and (2) there is an error term dependent on ϵi. For this, we compare
yi, i.e., the social welfare of {ai, bi}, with the social welfare of the partition containing Di and Cj for
1 ≤ j ≤ i, where the Cj evolve from earlier phases. Note that Ci and Di have a welfare of about
2(yi + j∗ϵi).

A crucial idea is to control the error terms to be very small in sum by having ϵi decay exponentially for
i tending to infinity, while the number of leaves ℓi grows as 1−ϵi

ϵi
. This allows to prove Inequality 1 for

β = γ + 1
6+4

√
2
.

8It is easy to eventually transform this sequence to the exact desired form of (xi)i∈N.
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6 FHGs with Random Arrival

Based on Section 4, a reasonable strategy to obtain good online algorithms for FHGs is to consider good
online matching algorithms. For the matching setting under random arrival, Ezra et al. [17] provide an
algorithm that achieves a competitive ratio of 5

12 −O( 1n) if the algorithm has access to the number of
arriving agents n. Knowledge of n is relevant for achieving this competitive ratio. In the first phase of
the algorithm, a subset of k agents is not matched at all, and the optimal competitive ratio is achieved
for k :=

⌊
n
2

⌋
. However, one can also apply their algorithm by setting k to a fixed constant. By setting

k = 3, one obtains an online matching algorithm that is 1
3 −O( 1n)-competitive. We obtain the following

theorem.

Theorem 6.1. There exists a randomized online matching algorithm with a competitive ratio under
random arrival of at least 1

3 −O( 1n).

Proof. Consider Algorithm 1 as defined by Ezra et al. [17]. We refer to this algorithm as ALG . Note
that the algorithm is parameterized by a positive integer k.

Consider an arbitrary FHG G = (N, v). Let µ∗ be a maximum weight matching and ALG(G) be the
matching computed by ALG . For a matchingM , we denote by v(M) :=

∑
e∈M v(e) its weight. In the

proof of their Theorem 3.1, Ezra et al. [17] obtain the following inequality:

Eσ∼Σ(N) [v(ALG(G))]]

v(π∗(G))
≥ 1

3
+

k2

n2
− 4k3

3n3
−O

(
1

n

)
.

Setting k = 3, this implies that the competitive ratio of ALG is at least

inf
G

Eσ∼Σ(N) [v(ALG(G))]]

v(π∗(G))
≥ 1

3
−O

(
1

n

)
.

By applying Theorem 4.1, we can interpret this algorithm as a coalition formation algorithm, which
implies the following corollary.

Corollary 6.2. There exists a randomized online coalition formation algorithm with a competitive ratio
under random arrival of at least 1

6 −O( 1n).

Ezra et al. [17] show that the competitive ratio of their matching algorithm for known n is asymptotically
optimal, i.e., no algorithm achieves a competitive ratio of more than 5

12 . However, if n is unknown, a
competitive ratio of 5

12 is off limits. As we show next, a competitive ratio of 1
3 is asymptotically optimal

in the matching domain.

Since the proof is rather long, we start by informally describing key steps to give the reader a road map.
In essence, our construction relies on a careful interplay of two sets of instances whose positive edges
form stars and bi-stars, i.e., a union of two stars whose centers are connected by an additional edge.
This is already a significant difference from Ezra et al. [17] whose adversarial instances evolve from
complete graphs. This change is inevitable if we want to use instances on the tree domain in order
to apply Theorem 4.3. Moreover, we use two sets of instances because this forces an algorithm to an
undesired trade-off. The optimal matching in a star is to match the edge with the largest weight. In our
bi-stars, the largest weight is the edge connecting the two centers, so the optimal matching contains
exactly this edge. Our crucial idea is the interplay of both sets of instances. By design of our instances,
until both centers have arrived, an algorithm cannot distinguish whether its input is a star or a bi-star.
The key step is to show that a competitive ratio of 1

3 on a star can only be achieved if matching an edge
with roughly a probability of at least 2

3 . However, this means that when we are in a bi-star, which is
only revealed to the algorithm when the second center arrives, then the algorithm can only succeed
with a probability of about 1

3 . This leads to a bound of the competitive ratio by 1
3 .
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The first part of our proof concerns showing that a good competitive ratio on a star is essentially
equivalent to matching the maximum weight edge with a high probability. This is similar to the
conversion of the problem from a cardinal to an ordinal setting as performed by Ezra et al. [17]. We
then want bounds for the probability of matching any edge in a star instance, only dependent on the
already arrived vertices. While Ezra et al. [17], inspired by Correa et al. [15], carry out such a step by
applying an infinite version of Ramsey’s theorem, we perform a direct computation of the probabilities
using induction.

We are ready to present our proof. Tomake it accessiblemore quickly, we defer the proofs of intermediary
lemmas to Appendix C.

Theorem 6.3. No randomized online matching algorithm has a competitive ratio under random arrival of
more than 1

3 on the tree domain.

Proof. In the following proof, we assume that all algorithms are randomized and operate under random
arrival.

Let I, J ⊆ N with |I|, |J | < ∞, I ∩ J = ∅ and I ̸= ∅, i.e., they are finite and disjoint, and I is
nonempty. We design a family of instances with n = 2 + |I| + |J | agents based on two symmetric
valuation functions, one for stars and one for bi-stars, dependent on I, J . Additionally, the instance
depends on a value for weights of negative edges, parameterized by x, and an error threshold ϵ, as
specified below. Given such I and J , we define tB := max I ∪ J , i.e., tB is the largest number in
I ∪ J . We arbitrarily select an integer x > tB + 2 and let ϵ > 0 be a rational constant with ϵ ≤ 1

2 . Let
N = {a, b} ∪ {di : i ∈ I} ∪ {dj : j ∈ J} be the set of agents.

First, we define a star instance Sx,ϵ
I,J by setting the following symmetric valuations:9 For all i ∈ I , we

set v(a, di) =
(
1
ϵ

)i. All remaining valuations are set to −
(
1
ϵ

)x. We set tS := max I , i.e., the edge of
maximum weight is {a, dtS} with a weight of

(
1
ϵ

)tS . Note that tS > 0 as I ̸= ∅.

Moreover, we define a bi-star instance Bx,ϵ
I,J with the following symmetric valuations: Recall that

tB = max I ∪ J . For all i ∈ I and j ∈ J , we set v(a, di) =
(
1
ϵ

)i and v(b, dj) =
(
1
ϵ

)j . We set
v(a, b) =

(
1
ϵ

)tB+1. Finally, all remaining valuations are set to −
(
1
ϵ

)x. Note that the pair {a, b} has the
highest valuation of

(
1
ϵ

)tB+1. Note that, since ϵ is rational, all valuations in star and bi-star instances
are rational.

Hence, given the same set of parameters, a star and bi-star instance only differ with respect to the
valuations of b with a and agents in {dj : j ∈ J}. We denote the set of all star instances with any
permissible parameter combination of I , J , x, and ϵ as S . Similarly, we denote the set of all bi-star
instances as B.

Note that the algorithm can only distinguish star and bi-star instances once a and b have arrived in
a bi-star instance. In fact, once a has arrived in a star instance, or one of a and b has arrived in a
bi-star instance, an algorithm sees the star with one of these agents. However, all other agents, and
in particular b if we are in a star instance, are only connected by large constant negative valuations
and are indistinguishable. Furthermore, the optimal matching for star instances matches {a, dtS} and
leaves all other agents alone with a social welfare of

(
1
ϵ

)tS . Similarly, in bi-stars, the optimal matching
matches {a, b} and leaves all other agents as singletons with a social welfare of

(
1
ϵ

)tB+1.

Additionally, by the choice of x, both types of instances belong to the tree domain. Indeed, positive
valuations are

(
1
ϵ

)i for some i ≤ x− 2 and occur at most once each. Hence, since ϵ ≤ 1
2 , we have that

the sum of valuations is at most
∑x−2

i=1

(
1
ϵ

)i ≤ (1ϵ )x−1
<
(
1
ϵ

)x.
Given an algorithmALG , wewant to find a relationship between its competitive ratio and the probability

9We omit references to parameters from the names of the valuation functions to avoid overloading notation.
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of matching the highest edge in star and bi-star instances. We say that an algorithm is c-competitive for
matching the maximum weight edge if it matches the maximum weight edge with probability at least c
in star and bi-star instances. We obtain the following relationship. Its proof relies on a separate analysis
of stars and bi-stars.

Lemma 6.4. If there exists no algorithm for matching the maximum weight edge with a competitive ratio
of more than 1

3 , then there exists no online matching algorithm on the tree domain with a competitive ratio
of more than 1

3 .

Hence, in the following, we prove the nonexistence of such algorithms for matching the maximum
weight edge. We can assume that all instances are defined for the same, i.e., fixed and sufficiently small
ϵ. In the following steps, we want to achieve certain conditions under which our algorithms operate
without loss of generality. This is similar to the reduction by Ezra et al. [17] to an “ordinal” setting. As
a first step, we observe that we can restrict attention to algorithms that, if at all, match the current
maximum weight edge in each step.

Lemma 6.5. For every star instance, we may assume without loss of generality that only the current
maximum weight edge and no negative weight edges are matched.

Proof. Consider an algorithm ALG for matching the maximum weight edge. We modify this algorithm
such that whenever it performs a randomized decision to match an edge, it sets probabilities to 0 for
matching edges that are not currently the maximum weight edge or have negative weight. It then
continues executing ALG as if the decision of ALG had been performed. This algorithm has the
desired form, i.e., it only matches the current maximum weight edge and no negative weight edges.
Moreover, since negative weight edges and edges that are not currently the maximum weight are never
the maximum weight edge in star and bi-star instances, the modified algorithm matches the maximum
weight edge with the same probability.

Consequently, we can restrict attention to algorithms that, at each step, face the decision to match the
current maximum weight edge, if possible, or do nothing. From now on, we will only consider such
algorithms.

We go one step further and show that when a matching decision is performed (to match a current
maximum weight edge), this can be assumed to be independent of how the current state is achieved.

Lemma 6.6. For every star instance, we may assume without loss of generality that our algorithm’s
decisions only depend on which agents have arrived, whether a has arrived and is matched, and whether
the last arrived agent is part of the current maximum weight edge.

From now on, we consider algorithms as per Lemma 6.6. Finally, we show that algorithmic decisions
can be made independently of b and agents associated with J .

Lemma 6.7. For every star instance, we may assume without loss of generality that our algorithms
decisions are independent of agents b and agents associated with J .

From now on, we consider algorithms that, additionally, fulfill the independence of decisions of b and
agents associated with J .

The combination of Lemmas 6.6 and 6.7 implies that an algorithm is fully specified by the matching
probabilities dependent on the observed weights but not the arrival orders. From now on, we consider
a fixed algorithm ALG and assume for contradiction that it is cALG -competitive for matching the
maximum weight edge with cALG > 1

3 . It is fully specified by a function f : 2N × N → [0, 1], where f
takes as input a subset I ⊆ N (specifying the leaf weights in a star instance) and a positive integer x
(specifying the parameter for negative edges). The value f(I, x) equals the probability of matching the
current maximum weight edge provided that a has arrived, is unmatched, the last arrived agent is part
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of the maximum edge, a has revealed edges precisely to agents corresponding to the set I , and x is the
parameter for negative edges.

Now, consider a star instance S ∈ S based on parameters I , J , and x (at this point, ϵ is irrelevant). We
define

h(S) := P ({a, di} ∈ ALG(S) for some i ∈ I) ,

i.e., the probability to match a. The key step is to estimate this quantity.

Lemma 6.8. Let S ∈ S with |I| = k − 1. Then it holds that h(S) > 2
3 − 2

3k for all S ∈ S .

Finally, we want to use the performance on stars to bound the performance on bi-stars. We essentially
use that the prefix of every arrival order in every bi-star is indistinguishable from a star instance until
both a and b arrive.

Consider a bi-star instance B ∈ B defined by I , J , and x (x defines its negative weights), and assume
that |I| = |J |. As usual, the number of agents is n, i.e., n = 2+ |I|+ |J |. Let Y be the random variable
that counts the number of agents from I that arrive before b if b arrives after a and the number of
agents from J that arrive before a if a arrives after b. Moreover, let YI be the random variable that
counts the number of agents from I that arrive before b and YJ be the random variable that counts the
number of agents from J that arrive before a.

We compute

P({a, b} ∈ ALG(B) | Y ≥ y)

= P({a, b} ∈ ALG(B) | Y ≥ y, σ−1(a) < σ−1(b)) · P(σ−1(a) < σ−1(b) | Y ≥ y)

+ P({a, b} ∈ ALG(B) | Y ≥ y, σ−1(b) < σ−1(a)) · P(σ−1(b) < σ−1(a) | Y ≥ y)

=
1

2
· P({a, b} ∈ ALG(B) | YI ≥ y, σ−1(a) < σ−1(b))

+
1

2
· P({a, b} ∈ ALG(B) | YJ ≥ y, σ−1(b) < σ−1(a))

= P({a, b} ∈ ALG(B) | YI ≥ y, σ−1(a) < σ−1(b))

In the last step, we use symmetry between a and b together with I and J , which works because |I| = |J |.
We thus want to estimate the latter probability.

Note that if a arrives before b, then the agents arriving before b form a star instance where the subset of
agents of I that has arrived is a uniformly random subset of size YI . Hence, by Lemma 6.8, we have that

P(a matched when b arrives | YI ≥ y, σ−1(a) < σ−1(b)) >
2

3
− 2

3(y + 1)
.

There, we bound with the worst case where YI = y, i.e., k = y + 1 in Lemma 6.8. It follows that

P({a, b} ∈ ALG(B) | YI ≥ y, σ−1(a) < σ−1(b))

≤ 1− P(a matched when b arrives | YI ≥ y, σ−1(a) < σ−1(b)) <
1

3
+

2

3(y + 1)
.

Clearly, there exists N ∈ N such that for all y ≥ N , it holds that 2
3(y+1) ≤

1
3

(
cALG − 1

3

)
. Together, for

all y ≥ N , we obtain that

P({a, b} ∈ ALG(B) | Y ≥ y) <
1

3
+

1

3

(
cALG − 1

3

)
. (2)

Second, we want to estimate P(Y < N). Clearly, whenever Y < N , then we have that YI < N or
YJ < N . Hence, by a union bound,

P(Y < N) ≤ P(YI < N or YJ < N) ≤ P(YI < N) + P(YJ < N) = 2P(YI < N) (3)
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We now want to bound P(YI < N). Note that b arrives with equal probability in every fixed position
among the agents in I ∪{b}. Hence, YI < N to happen is equal to b arriving in a position in {1, . . . , N}
among I ∪ {b}. We conclude that P(YI < N) = N

n
2
= 2N

n .

Note that this tends to 0 for n tending to infinity. Therefore, there exists N ′ ≥ N such that P(YI <
N) ≤ 1

6

(
cALG − 1

3

)
for all n ≥ N ′. Combining this with Equation (3), for all n ≥ N ′, we obtain

P(Y < N) ≤ 1

3

(
cALG − 1

3

)
. (4)

For n ≥ N ′, we conclude that

P({a, b} ∈ ALG(B))

= P({a, b} ∈ ALG(B) | Y < N)P(Y < N) + P({a, b} ∈ ALG(B) | Y ≥ N)P(Y ≥ N)

≤ P(Y < N) + P({a, b} ∈ ALG(B) | Y ≥ N)
Eqs. (2,4)
≤ 1

3

(
cALG − 1

3

)
+

(
1

3
+

1

3

(
cALG − 1

3

))
≤ 1

3
+

2

3

(
cALG − 1

3

)
=

2

3
cALG +

1

9
< cALG .

This contradicts our assumption that ALG was cALG -competitive.

Combining Theorem 6.3 with Theorem 4.3, we conclude that no online coalition formation algorithm
has a competitive ratio under random arrival of more than 1

3 .

Corollary 6.9. No randomized online coalition formation algorithm has a competitive ratio under random
arrival of more than 1

3 .

7 Conclusion

We have studied two different models for online coalition formation in FHGs to maximize social welfare,
a goal that does not allow for bounded competitive ratios in the standard model with an adversarial
arrival order. Designing good online coalition formation algorithms is deeply related to designing good
online matching algorithms. It is possible to leverage matching algorithms with little welfare loss, while
limitations for matching algorithms can be preserved if they hold on the tree domain.

In the coalition dissolution model, we showed that the optimal competitive ratio is 1
6+4

√
2
. Moreover,

under random arrival, without the power to dissolve coalitions, we proved a tight bound of 1
3 on the

competitive ratio of any algorithm in the matching domain for an unknown number of agents. This
then directly implies an 1

3 upper bound for the FHG domain. Furthermore, the obtained matching
algorithm is 1

6 -competitive in the FHG domain. Closing the gap for FHGs in the random arrival model
remains an open problem.

An intriguing question is whether forming coalitions larger than 2 can be beneficial. In fact, our paper
reinforces the opposing view that matching algorithms exhibit optimal (or near-optimal) performance.
Thus, from an algorithmic perspective, larger coalitions are often unnecessary. In contrast, requiring
algorithms to form larger coalitions can be problematic as such algorithmsmay fail to provide guarantees
regarding approximate social welfare. For example, partitions that include a coalition of size at least
three result in a negative welfare for instances on the tree domain. However, this depends on the
presence of large negative valuations. In contrast, Flammini et al. [19, Theorems 4.4 and 4.5] present
an algorithm that forms larger coalitions for FHGs with non-negative valuations. Nevertheless, the
competitive ratio they achieve depends on the range of the involved valuations. It would be interesting
to explore whether this dependency can be eliminated under coalition dissolution or random arrival.
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Appendix

A Simple proof of Theorem 4.1

In this section, we provide a new proof for Theorem 4.1 which was first proved by Flammini et al.
[18, Theorem 1]. The proof by Flammini et al. [18] is based on a comparison of the maximum weight
matching and the optimal partition by deriving connections of edges not contained in the matching. By
contrast, we present a very simple proof based on a folklore result about matchings that states that the
maximum weight of a matching exceeds the weight of a “uniform fractional” matching where each edge
is fractionally matched with probability 1

n , if n is the number of vertices. This immediately yields the
result because the social welfare of a coalition is twice the weight of the “uniform fractional” matching.

Theorem 4.1. [Flammini et al. [18]] Every MWM is a 1
2 -approximation of social welfare in symmetric

FHGs.

Proof. Assume that we are given an FHG G = (N, v) and let π∗ be a partition maximizing social
welfare. Let C ⊆ N be a coalition and µ∗(C) be a maximum weight matching on the subgraph of
(N, v) induced by C . For a matchingM , we denote by v(M) :=

∑
e∈M v(e) its weight.

A folklore theorem in matching [see, e.g., 11, Lemma 15] says that

1

|C|
∑

{i,j}⊆C,i̸=j

v(i, j) ≤ v(µ∗(C)). (5)

We conclude that

SW(π∗) =
∑
C∈π∗

SW(C) =
∑
C∈π∗

∑
i∈C

∑
j∈C\{i}

vi(j)

|C|

=
∑
C∈π∗

1

|C|
∑

{i,j}⊆C,i̸=j

2v(i, j)

Eq. (5)
≤

∑
C∈π∗

2v(µ∗(C))

≤ 2v(µ∗(N))

= 2SW(µ∗(N)).

The second line uses that each valuation occurs twice in a symmetric game, once for each endpoint. The
second-to-last line uses that

⋃
C∈π∗ µ∗(C) is a matching on N , and, therefore, its weight is bounded by

the maximum weight matching of N . The last line uses that each nonsingleton coalition C = {i, j} in
µ∗(N) consists of two agents, i.e., SW(C) = ui(C) + uj(C) = 1

2v(i, j) +
1
2v(i, j) = v(i, j).

B Full proof of Theorem 5.2

Our proof of Theorem 5.2 relies on a similar idea as the proof by Badanidiyuru Varadaraja [4], showing
that there does not exist an online matching algorithm (in an edge arrival setting) operating under free
dissolution for which the competitive ratio is better than 1

3+2
√
2
. His proof relies on two steps. First, he

shows that a particular sequence of real numbers cannot exist based on a recursive set of inequalities.
Second, he shows that the existence of an algorithm with a competitive ratio of better than 1

3+2
√
2

implies the existence of just such a sequence. We will use his first step as a black box and then use an
adversarial instance of online FHGs to construct the sequence utilizing an online coalition formation
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algorithm that achieves a competitive ratio of better than 1
6+4

√
2
. The construction of our adversarial

instance is similar to the one by Badanidiyuru Varadaraja [4]. Still, while his optimal partition is a
matching consisting of coalitions of size 2, we construct the instance in a way such that the optimal
instance consists of coalitions that form stars (i.e., we have symmetric valuations that are equal to some
constant if they involve a special center agent and are 0, otherwise). This accounts for the improvement
of about a factor of 2 in the welfare of the optimal partition.

We start by stating the lemma that captures the nonexistence of the sequence.

Lemma B.1 (Badanidiyuru Varadaraja [4]). Let β > 1
3+2

√
2
. Then there exists no sequence (xi)i∈N with

x1 = 1 and xi ≥ 0 for i ≥ 2 such that for all i ∈ N, it holds that

xi ≥ β

xi+1 +

i+1∑
j=1

xj

 . (6)

Next, we evaluate the social welfare of a “star” coalition.

Lemma B.2. Let x ∈ R. Consider a set of agentsC such that there exists a ∈ C with symmetric valuations
v(a, b) = x for all b ∈ C \ {a} and v(b, b′) = 0 for all b, b′ ∈ C \ {a} with b ̸= b′. Then it holds that
SW(C) = 2 |C|−1

|C| x.

Proof. Assume that we are in the lemma’s situation. Then, ua(C) = |C|−1
|C| x, and for all b ∈ C \ {a}, it

holds that ub(C) = 1
|C|x. The assertion follows by summing up utilities.

We are ready to prove our theorem.

Theorem 5.2. No deterministic online coalition formation algorithm operating under free dissolution has
a competitive ratio of more than 1

6+4
√
2
for symmetric FHGs.

Proof. Let c := 1
6+4

√
2
. Assume for contradiction that ALG is an online coalition formation algorithm

operating under free dissolution that achieves a competitive ratio of γ > c for symmetric FHGs. Without
loss of generality, we may assume that c

γ is rational.10 We want this property to assure that all instances
we construct exclusively use rational numbers.

Let
β := 2

(
c+

1

2
(γ − c)

)
= γ + c, (7)

i.e., it holds that β > 2c = 1
3+2

√
2
. We will eventually derive a contraction to Lemma B.1 by constructing

a sequence for this β.

We construct an adversarial instance for this algorithm by constructing a symmetric graph G = (N, v),
i.e., we specify the symmetric weights underlying the valuations of an FHG.

The construction maintains the property that the algorithm’s current partition can only contain a single
coalition with positive welfare and that coalition contains exactly two agents. The adversarial instance
is constructed in a sequence of phases, where in every phase, we grow star-like structures around each
of the endpoints of the currently maintained nonsingleton coalition. In the first part of Phase i, we
achieve a star with ℓi leaves, while the algorithm does not change the matched edges. In the second

10Indeed, otherwise, we can just perform the proof for a γ′ in the open interval (c, γ) with this property. Such a γ′ exists as
the function f : [c, γ] → R, f(x) = c

x
is continuous and hence, by the density of the rational numbers in the real numbers,

attains rational numbers in the open interval (c, γ).
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Figure 2: Illustration of the construction in the proof of Theorem 5.2 for an exemplary algorithm ALG . We
display all positive valuations. The remaining valuations within the leaf sets La

1 , Lb
1, La

2 , and Lb
2 are zero, and all

other valuations are large negative numbers. We start with two agents, a1 and b1. We first attempt to dispatch a
set Lb

1 of leaves towards b1. However, our algorithm might immediately decide to dissolve {a1, b1} and create a
new coalition {a′1, b′1}. We then might be able to have all the leaf agents in La

1 and Lb
1 arrive. This completes

the first part of Phase 1. Now, we start the second part, in which we subsequently increment the valuations.
ALG might decide to immediately dissolve {a′1, b′1} when the next agent arrives. This defines agents a2, b2, and
coalition C1. We start with Phase 2. In the first part, the leaf agents La

2 and Lb
2 might arrive without further

interruption. Now assume that ALG would dissolve {a2, b2} when the next agent arrives (their edge is indicated
in bold). This would give rise to the definition of C2 and D2, and we would obtain an inequality for y2 by
comparing with the guarantee for the coalition structure containing the nonempty coalitions C1, C2, and D2.
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part of Phase i, we iteratively increase the weight on the edges of the stars by ϵi until the algorithm
changes the matched edge. This has to happen eventually because the algorithm achieves a bounded
competitive ratio.

We now specify the two parameters of the construction. For i ∈ N, define

ϵi :=
γ − c

2γ
2−i and ℓi :=

⌈
1− ϵi
ϵi

⌉
. (8)

Note that, since c
γ is rational, ϵi =

(
1
2 − c

γ

)
2−i is also rational. Moreover, the definition of ℓi immedi-

ately implies that
ℓi

ℓi + 1
≥ 1− ϵi. (9)

We now specify the instance. Our whole construction is illustrated in Figure 2.

The first two agents that arrive are a1 and b1 such that v(a1, b1) = 1. Clearly, ALG has to form the
coalition {a1, b1} as otherwise, its competitive ratio would be unbounded. For i ≥ 1, at the beginning
of Phase i, there is a single coalition with nonzero welfare containing precisely agents ai and bi.

Moreover, throughout the execution of the instance, all arriving agents will have a positive (mutual)
valuation for precisely one agent—one of the agents that presently is in a coalition of positive welfare—,
a zero valuation for some agents, and a large negative valuation for all other agents. In particular, the
second agent in the coalition of positive welfare yields a large negative valuation, and thus, joining
this coalition leads to an overall negative welfare, which cannot be performed by any algorithm with
a positive competitive ratio. Hence, the new agent only forms a coalition of positive welfare if the
previously existing coalition with positive welfare is dissolved.

Now let i ≥ 1 and assume that we are at the beginning of Phase i, i.e., so far ALG has constructed a
partition containing a single coalition with positive welfare containing ai and bi. We set

yi := v(ai, bi). (10)

In the first part of Phase 1, we want to guarantee that at the end of this part, there is a single coalition
of positive welfare C = {a′i, b′i} such that for each of a′i and b′i, ℓi agents have arrived such that there
are 0-valuations among these agents and a valuation of yi towards a′i or b′i. In other words, the instance
contains a bi-star as a substructure where all edges weigh yi.

We start by setting a′i := ai and b′i := bi. Now, we let arrive a set Lb
i of up to ℓi agents that have a

valuation of yi for bi, 0 for already arrived agents in Lb
i , and a sufficiently large negative valuation for all

other agents, e.g., a negative value larger in absolute value than the sum of positive valuations of already
existing agents. As we argued before, the only way that ALG puts an agent in Lb

i into a coalition of
positive welfare is if the coalition of a′i and b′i is dissolved and the new agent forms a coalition with b′i.
In this case, we update agent labels: b′i becomes the new a′i, and the newly arrived agent is the new b′i.

We repeat this until ℓi agents have arrived. Note that this has to happen at some point as we would
otherwise have a path of unbounded length with edge weights equal to yi, which would give rise to a
partition of social welfare more than 1

γ yi, a contradiction.

Now, we repeat the same procedure with a′i: we let arrive a setLa
i of up to ℓi agents that have a valuation

of yi for ai, 0 for already arrived agents in La
i , and a sufficiently large negative valuation for all other

agents. If the algorithm decides to dissolve {a′i, b′i} to form a coalition of a′i with a newly arrived agent,
we update agent labels: a′i stays the new a′i, and the newly arrived agent is the new b′i. Note that this
part must eventually end with all ℓi agents having arrived. Otherwise, we have an unbounded number
of agents that at some point had the role of b′i, and each of them can form a coalition with an agent in
their set Lb

i , which yields unbounded welfare.
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We reach the end of the first part of Phase i and have established a pair of agents {a′i, b′i} together with
their sets La

i and Lb
i . Note that the coalitions {a′i} ∪ La

i and {b′i} ∪ Lb
i are “star” coalitions as in the

prerequisites of Lemma B.2.

We now start the second part of Phase i. In this part, further agents arrive that are new leaves to a′i and
b′i. Compared to yi, the weight on their connecting edges is increased by ϵi. We continue until for each
of a′i and b′i, further sets of ℓi agents have arrived. This means that we have now grown starts with a
slightly larger value. We repeat the same with increasingly larger valuations in further increments of ϵi.
The second part of Phase i ends once throughout this procedure, the edge {a′i, b′i} gets dissolved.

We now formalize this idea. Set La,0
i := La

i and Lb,0
i := Lb

i . We proceed as follows until the algorithm
dissolves a coalition and forms a new coalition of positive welfare. For each j ≥ 1, once all agents in the
sets La,j−1

i and Lb,j−1
i have arrived, we proceed as follows. We let a set La,j

i with ℓi agents arrive that
have a valuation of yi + jϵi for ai, 0 for already arrived agents in La,j

i , and a sufficiently large negative
valuation for all other agents. These agents arrive one by one, so the phase can end before all agents in
La,j
i have arrived. Then we let a set Lb,j

i with ℓi agents arrive that have a valuation of yi + jϵi for bi, 0
for already arrived agents in Lb,j

i , and a sufficiently large negative valuation for all other agents.

Note that this part also has to terminate at some point as otherwise agents with an unbounded valuation
arrive, leading to a partition of welfare higher than 1

γ yi.

Once the algorithm forms a new coalition—say this happens when the j∗th sets of agents arrive—
we distinguish two cases: If a′i remains in a nonsingleton coalition with the new agent z, we define
Ci := {b′i} ∪ Lb,j∗−1

i and Di := {a′i} ∪ La,j∗−1
i and set ai+1 = a′i and bi+1 = z. Otherwise, if

b′i remains in a nonsingleton coalition with the new agent z, we define Ci := {a′i} ∪ La,j∗−1
i and

Di := {b′i} ∪ Lb,j∗−1
i and set ai+1 = b′i and bi+1 = z.

Then, the new agents ai+1 and bi+1 are the only agents in a coalition of positive welfare yi+1 =
v(ai+1, bi+1). Moreover, Ci and Di are “star” coalitions that are disjoint from all previous coalitions
Ck for k < i and where all nonzero valuations are yi+1 − ϵi. By Lemma B.2, we obtain

SW(Ci) = SW(Di) = 2
ℓi

ℓi + 1
(yi+1 − ϵi). (11)

Consider the partition πi containing the coalitionsDi, Cj for 1 ≤ j ≤ i, and singleton coalitions for all
agents not contained in these. This coalition already exists right before the arrival of the agent such
that the coalition {a′i, b′i} is dissolved. Note that at this point, the social welfare of the partition created
by ALG is yi, where we add yi

2 for each of a′i and b′i. Since ALG is γ-competitive, we obtain

yi ≥ γ · SW(πi)

= γ

SW(Di) +
i∑

j=1

SW(Cj)


(11)
= γ

2
ℓi

ℓi + 1
(yi+1 − ϵi) +

i∑
j=1

2
ℓj

ℓj + 1
(yj+1 − ϵj)


(9)
≥ γ

2(1− ϵi)(yi+1 − ϵi) +

i∑
j=1

2(1− ϵj)(yj+1 − ϵj)


≥ γ

2(yi+1 − 2yi+1ϵi) +

i∑
j=1

2(yj+1 − 2yj+1ϵj)


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≥ γ

2(yi+1 − 2yi+1ϵi) +
i∑

j=1

2(yj+1 − 2yi+1ϵj)


= 2γ

yi+1 +
i∑

j=1

yj+1

− 2γyi+1

ϵi +
i∑

j=1

ϵj


(7), (8)
= (β + (γ − c))

yi+1 +
i∑

j=1

yj+1


− 2γyi+1

γ − c

2γ
2−i +

i∑
j=1

γ − c

2γ
2−j


≥ β

yi+1 +

i∑
j=1

yj+1


+ (γ − c)yi+1 − (γ − c)yi+1

2−i +

i∑
j=1

2−j


= β

yi+1 +
i∑

j=1

yj+1

 .

We obtain our desired sequence by scaling the yi and starting with y2. Formally, for i ∈ N, we set
xi :=

yi+1

y2
. Then, x1 = y2

y2
= 1 and for i ≥ 2, it holds that xi ≥ 0. Moreover, for i ≥ 1, our previous

calculation implies that

xi =
yi+1

y2
≥ 1

y2
β

yi+2 +
i+2∑
j=2

yj


= β

yi+2

y2
+

i+2∑
j=2

yj
y2

 = β

xi+1 +
i+2∑
j=2

xj−1


= β

xi+1 +
i+1∑
j=1

xj

 .

Hence, we have constructed the desired sequence and obtained a contradiction by applying Lemma B.1.

C Missing proofs in Section 6

In this section, we prove auxiliary lemmas in the proof of Theorem 6.3. We start with the proof of
Lemma 6.4. Its proof relies on two auxiliary statements concerning stars and bi-stars.

We first consider stars and want to estimate infS∈S P({a, dtS} ∈ ALG(S)), i.e., the infimum of the
probability with which the maximum weight edge is matched in stars. We show a connection with the
competitive ratio of ALG .

Lemma C.1. For every online matching algorithm ALG , it holds that infS∈S P({a, dtS} ∈ ALG(S)) ≥
cALG − ϵ for every ϵ > 0.
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Proof. Consider some star instance S ∈ S . Then, by definition of the competitive ratio,

E[SW(ALG(S))]

SW(π∗(S))
=

E[SW(ALG(S))](
1
ϵ

)tS ≥ cALG ,

where π∗(S) denotes the maximum weight matching. We compute

cALG

(
1

ϵ

)tS

≤ E[SW(ALG(S))]

=
∑

x,y∈N
P({x, y} ∈ ALG(S))v(x, y)

≤
∑
i∈I

P({a, di} ∈ ALG(S))v(a, di)

=
∑

i∈I\{tS}

P({a, di} ∈ ALG(S))

(
1

ϵ

)i

+ P({a, dtS} ∈ ALG(S))

(
1

ϵ

)tS

In the second line, we express the expectation over matchings in terms of single edges. The third line
follows from the fact that only the valuations between a and the agents associated with I are positive.
Dividing both sides by

(
1
ϵ

)tS > 0, we get

cALG ≤ P({a, dtS} ∈ ALG(S))

+
∑

i∈I\{tS}

P({a, di} ∈ ALG(S))

(
1
ϵ

)i(
1
ϵ

)tS
≤ P({a, dtS} ∈ ALG(S))

+
∑

i∈I\{tS}

P({a, di} ∈ ALG(S))ϵ

≤ P({a, dtS} ∈ ALG(S)) + ϵ.

The last inequality follows since P({a, x} ∈ ALG(S)) for x ∈ N forms a probability distribution since
a cannot be matched with probability more than one. Since S ∈ S was chosen arbitrarily, we obtain
infS∈S P({a, dtS} ∈ ALG(S)) ≥ cALG − ϵ.

Next, we show that cALG − 2ϵ is a lower bound on the probability with which ALG matches the two
centers in bi-star instances. The proof is similar to that of Lemma C.1.

Lemma C.2. For every online matching algorithm ALG , it holds that infB∈B P({a, b} ∈ ALG(B)) ≥
cALG − 2ϵ for every ϵ > 0.

Proof. Consider a bi-star instance B ∈ B. Then, by definition of the competitive ratio, it holds that

E[SW(ALG(B))]

SW(π∗(B))
=

E[SW(ALG(B))](
1
ϵ

)tB ≥ cALG ,

where π∗(B) denotes the maximum weight matching. We compute

cALG

(
1

ϵ

)tB+1

≤ E[SW(ALG(B))]
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=
∑

x,y∈N
P({x, y} ∈ ALG(B))v(x, y)

≤
∑
i∈I

P({a, di} ∈ ALG(B))v(a, di)

+
∑
j∈J

P({b, dj} ∈ ALG(B))v(b, dj)

+ P({a, b} ∈ ALG(B))v(a, b)

=
∑
i∈I

P({a, di} ∈ ALG(B)

(
1

ϵ

)i

+
∑
j∈J

P({b, dj} ∈ ALG(B))

(
1

ϵ

)j

+ P({a, b} ∈ ALG(B))

(
1

ϵ

)tB+1

In the second line, we express the expectation over matchings in terms of single edges. In the subsequent
step, we omit edges with large negative weight. Dividing both sides by

(
1
ϵ

)tB+1
> 0, we get

cALG ≤ P({a, b} ∈ ALG(B))

+
∑
i∈I

P({a, di} ∈ ALG(B))

(
1
ϵ

)i(
1
ϵ

)tB+1

+
∑
j∈J

P({b, dj} ∈ ALG(B))

(
1
ϵ

)j(
1
ϵ

)tB+1

≤ P({a, b} ∈ ALG(B))

+
∑
i∈I

P({a, di} ∈ ALG(B))ϵ

+
∑
j∈J

P({b, dj} ∈ ALG(B))ϵ

≤ P({a, b} ∈ ALG(B)) + 2ϵ.

The third inequality follows since P({a, x} ∈ ALG(B)) and P({b, x} ∈ ALG(B)) for x ∈ N form
probability distributions since a and b cannot be matched with probability more than one. Since B ∈ B
was chosen arbitrarily, we obtain infB∈B P({a, b} ∈ ALG(B)) ≥ cALG − 2ϵ.

We can combine Lemmas C.1 and C.2 to transition to the goal of proving that there is no algorithm
matching the maximum weight edge that is better than 1

3 -competitive.

Lemmas C.1 and C.2, we can transition to the goal to prove that there is no algorithm matching the
maximum weight edge that is better than 1

3 -competitive.

Lemma 6.4. If there exists no algorithm for matching the maximum weight edge with a competitive ratio
of more than 1

3 , then there exists no online matching algorithm on the tree domain with a competitive ratio
of more than 1

3 .

Proof. Assume that there is a c-competitive online matching algorithm ALG on the tree domain with
a competitive ratio of c > 1

3 . Define ϵ := 1
3

(
c− 1

3

)
and consider c′ = c − 2ϵ > 1

3 . By Lemmas C.1
and C.2, ALG is c′-competitive for matching the maximum weight edge.

Next, we prove our lemma concerning history independence.
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Lemma 6.6. For every star instance, we may assume without loss of generality that our algorithm’s
decisions only depend on which agents have arrived, whether a has arrived and is matched, and whether
the last arrived agent is part of the current maximum weight edge.

Proof. Consider an algorithmALG restricted as per Lemma 6.5. We transform this algorithm as follows:
Consider the arrival of an agent and assume that the algorithm wants to match with positive probability.
This means that the currently arrived agent is a or the agent of the maximum weight edge. Assume
that, so far, agents in the set A have arrived. Let H(A) be the history of the algorithm so far, which
captures the arrival order of agents in A as well as all previous algorithmic decisions. Let H(A) be the
set of all histories where the agents in A arrive such that the last arrived agent is part of the current
maximum weight edge, and a is unmatched at the arrival of the last agent.

We obtain a new algorithm ALG ′ as follows. Upon the arrival of an agent that leads to a matching
decision inALG involving agentsA, the algorithmALG ′ ignores the historyH(A). Instead, it samples
a history H ′(A) ∼ H(A) according to the probabilities of this history occurring in ALG .11 Note that
this is well-defined as we are operating on a finite game, for which there is only a finite set of histories,
and the probabilities of each of the histories occurring only depends on algorithmic (randomized)
decisions on all possible histories. Then, it matches the current maximum weight edge if and only if
ALG would do so given the history H ′(A).

By design, we have that ALG ′ performs for H(A) like ALG performs for H ′(A). Moreover, the
distribution of the sampled histories is identical to the distribution of the real histories. Hence, the
performance of ALG ′ in terms of matching the maximum weight edge is identical to the performance
of ALG . However, the decisions of ALG ′ only depend on the set of agents that has arrived, whether a
has arrived and is matched, and whether the last agent is part of the current maximum weight edge.

Now, we prove that decisions can be assumed to be independent of b and J .

Lemma 6.7. For every star instance, we may assume without loss of generality that our algorithms
decisions are independent of agents b and agents associated with J .

Proof. Consider an algorithm ALG restricted as per Lemma 6.5. Then, ALG never matches a negative
weight edge. Hence, the first matching decision can happen when a arrives, and subsequently, ALG
can only match the current maximum weight edge. Moreover, once a has arrived, it is revealed which
present agents belong to I . We transform ALG so that every matching decision if it is still possible to
match, is made as if b and agents associated with J have not yet arrived. In other words, ALG behaves
on a star instance with respect to parameters I , J , x, and ϵ, as if J was the empty set. Note that the
case of the same instance where J really is the empty set is another star instance, and it achieves the
same performance as ALG achieved on this instance. Hence, its competitive ratio can only improve as
it now only depends on a smaller set of star instances.

Finally, we provide the bound on h(S).

Lemma 6.8. Let S ∈ S with |I| = k − 1. Then it holds that h(S) > 2
3 − 2

3k for all S ∈ S .

Proof. Given a star S ∈ S , we additionally define

r(S) := P({a, dtS} ∈ ALG(S))

for all S ∈ S , i.e., the probability to match a with dtS .
11Note that we are not concerned about the computational complexity for designing this algorithm. Instead, we simply

define an algorithm based on the potential randomizations of ALG . Note that this technique even applies when ALG is an
“inefficient” algorithm, i.e., performs computations of any length.
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We now show recursive formulas for h(S) and r(S) assuming that we are given a star instance S ∈ S
with |I| = k − 1. To this end, we partition all arrival orders in Σ({a} ∪ {di : i ∈ I}), i.e., of the agents
relevant to matching, into three sets based on the last arriving agent. The first two are the arrival
orders σ in which a or dtS arrive last, i.e., σ(k) = a or σ(k) = dtS , respectively. They each make up
a 1

k fraction of all arrival orders, i.e., P(σ(k) = a) = 1
k and P(σ(k) = dtS ) = 1

k . In the remaining
orders, one of the other alternatives arrives last. We have P(σ(k) ̸= a ∧ σ(k) ̸= dtS ) =

k−2
k . Note that

for i ̸= tS , if di arrives last, then the algorithm cannot match, so it is matched only if it has matched
already. Furthermore, if dtS arrives last, then we need to consider two cases. Either a could already be
matched or if it is unmatched then we match with probability f(I, x). Finally, if a arrives last, then we
match with probability f(I, x).

h(S) = P({a, di} ∈ ALG(S) for some i ∈ I)

= P({a, di} ∈ ALG(S) for some i ∈ I|σ(k) ̸= a ∧ σ(k) ̸= dtS )

· P(σ(k) ̸= a ∧ σ(k) ̸= dtS )

+ P({a, di} ∈ ALG(S) for some i ∈ I|σ(k) = dtS )P(σ(k) = dtS )

+ P({a, di} ∈ ALG(S) for some i ∈ I|σ(k) = a)P(σ(k) = a)

=
1

k

∑
i∈I\{dtS }

h(S[N \ {di}])

+
1

k
[h(S[N \ {dtS}]) + (1− h(S[N \ {dtS}]))f(I, x)] +

1

k
f(I, x)

=
1

k

∑
i∈I

h(S[N \ {di}])−
f(I, x)

k
h(S[N \ {dtS}]) +

2f(I, x)

k

Furthermore, we have h(Sx,ϵ
{di},J) = f({a, di}, x) for all i ∈ I and the star where the only leaf from a

is towards di and J is arbitrary. We continue by calculating our second term. We have

r(S) = P({a, dtS} ∈ ALG(S))

= P({a, dtS} ∈ ALG(S)|σ(k) ̸= a ∧ σ(k) ̸= dtS )

· P(σ(k) ̸= a ∧ σ(k) ̸= dtS )

+ P({a, dtS} ∈ ALG(S)|σ(k) = dtS )P(σ(k) = dtS )

+ P({a, dtS} ∈ ALG(S)|σ(k) = a)P(σ(k) = a)

=
1

k

∑
i∈I\{dtS }

r(S[N \ {di}]) +
1

k
f(I, x)(1− h(S[N \ {dtS}])) +

1

k
f(I, x)

=
1

k

∑
i∈I\{dtS }

r(S[N \ {di}])−
f(I, x)

k
h(S[N \ {dtS}]) +

2f(I, x)

k

In addition, it holds that r(Sx,ϵ
{di},J) = f({a, di}, x) since if ALG matches in this case, then it matches

the optimal edge.

Next, we compute h(S)− r(S), i.e., the probability of matching a suboptimal valuation in a star. Some
terms will cancel out because the probabilities of matching optimally (r(S)) and matching at all (h(S))
only differ if the last agent to arrive is not a or dtS .

h(S)− r(S) =
1

k

∑
i∈I

h(S[N \ {di}])−
f(I, x)

k
h(S[N \ {dtS}]) +

2f(I, x)

k

− 1

k

∑
i∈I\{dtS }

r(S[N \ {di}]) +
f(I, x)

k
h(S[N \ {dtS}])−

2f(I, x)

k
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=
1

k

∑
i∈I

h(S[N \ {di}])−
1

k

∑
i∈I\{dtS }

r(S[N \ {di}])

=
1

k
h(S[N \ {dtS}]) +

1

k

∑
i∈I\{dtS }

h(S[N \ {di}])− r(S[N \ {di}])

We can repeatedly apply the recursive equation that we just derived. On the right side, this amounts to
summing

1

k

(k − 1− |Ĩ|)!|Ĩ|!
(k − 1)!

h(S[N \ ({dtS ∪ Ĩ)}])

for all Ĩ ⊊ I \{dtS}. The factor
(k−1−|Ĩ|)!
(k−1)! collects the accumulated prefactors of all steps, and the factor

|Ĩ|! accounts for the fact that we can arrive at the same term by removing the alternatives in Ĩ in any order.
Finally, the remaining difference after removing all elements in I\{dtS} is h(S

x,ϵ

{dtS },Ĩ)−r(Sx,ϵ

{dtS },Ĩ) = 0,

which cancels out. We can rewrite (k−1−|Ĩ|)!|Ĩ|!
(k−1)! = 1

(k−1
|Ĩ| )

. This yields:

h(S)− r(S) =
1

k

∑
Ĩ⊊I\{dtS }

1(k−1
|Ĩ|
)h(S[N \ ({dtS ∪ Ĩ)}]) (12)

Define ||S|| := |I|+ 1 if S is a star defined by I , i.e., ||S|| = |I ∪ {a}|. Hence, we have that ||S|| = k.

We now show the lemma by strong induction over ||S||. Note that I ̸= ∅ and, therefore, ||S|| ≥ 2 in all
star instances. If ||S|| = 2, then h(S) = r(S). Thus,

h(S) = r(S) ≥ cALG >
1

3
=

2

3
− 2

3 · 2
.

Now assume for all stars S with ||S|| ≤ k − 1, it holds that h(S) > 2
3 − 2

3||S|| . In the following, we use
the binomial identity (

n− 1

k

)
=

n− k

n

(
n

k

)
. (13)

Recall that |I| = k − 1 and, therefore, |I \ {dtS}| = k − 2. We compute

h(S)
Eq. (12)

= r(S) +
1

k

∑
Ĩ⊊I\{dtS }

1(k−1
|Ĩ|
)h(S[N \ ({dtS ∪ Ĩ)}])

>
1

3
+

1

k

∑
Ĩ⊊I\{dtS }

1(k−1
|Ĩ|
) (2

3
− 2

3(k − 1− |Ĩ|)

)

=
1

3
+

1

k

k−3∑
i=0

(
k−2
i

)(
k−1
i

) (2

3
− 2

3(k − 1− i)

)
Eq. (13)

=
1

3
+

1

k

k−3∑
i=0

(
k−1
i

)(
k−1
i

) k − 1− i

k − 1

(
2

3
− 2

3(k − 1− i)

)

=
1

3
+

1

k

k−3∑
i=0

(
k − 1

k − 1
− i

k − 1

)(
2

3
− 2

3(k − 1− i)

)

=
1

3
+

1

k

k−3∑
i=0

(
1− i

k − 1

)(
2

3
− 2

3(k − 1− i)

)
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=
1

3
+

1

k

k−2∑
i=0

(
1− i

k − 1

)(
2

3
− 2

3(k − 1− i)

)
.

In the last step, we inserted the term for i = k − 2, which evaluates to 0 as 2
3(k−1−(k−2)) =

2
3 .

We finally simplify the two parts of the equation individually. For the first term, we obtain

1

k

k−2∑
i=0

(
1− i

k − 1

)
2

3
=

2

3k

(
k−2∑
i=0

1−
k−2∑
i=0

i

k − 1

)

=
2

3k

(
k − 1− 1

k − 1

(k − 1)(k − 2)

2

)
=

2

3k

2k − 2− k + 2

2
=

2

3k

k

2
=

1

3

For the second term, we obtain

1

k

k−2∑
i=0

(
1− i

k − 1

)
2

3(k − 1− i)
=

2

3k

k−2∑
i=0

1− i
k−1

k − 1− i

=
2

3k

k−2∑
i=0

k−1−i
k−1

k − 1− i
=

2

3k

k−2∑
i=0

1

k − 1
=

2

3k

Inserting back into our equation we get

h(S) >
1

3
+

1

k

k−2∑
i=0

(
1− i

k − 1

)(
2

3
− 2

3(k − 1− i)

)
=

1

3
+

1

3
− 2

3k
=

2

3
− 2

3k
.

This completes the proof.
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