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Abstract

Issue salience is a major determinant in voters’ decisions. Candidates and political parties
campaign to shift salience to their advantage - a process termed priming. We study the dynamics,
strategies and equilibria of campaign spending for voter priming in multi-issue multi-party settings.
We consider both parliamentary elections, where parties aim to maximize their share of votes,
and various settings for presidential elections, where the winner takes all. For parliamentary
elections, we show that pure equilibrium spending always exists and can be computed in time
linear in the number of voters. For two parties and all settings, a spending equilibrium exists such
that each party invests only in a single issue, and an equilibrium can be computed in time that is
polynomial in the number of issues and linear in the number of voters. We also show that in most
presidential settings no equilibrium exists. Additional properties of optimal campaign strategies
are also studied.

1 Introduction

Political parties and candidates invest substantial resources in campaigns aimed at winning over voters.
Interestingly, research reveals that these campaigns often do not directly alter voters’ views or attitudes
toward candidates and issues. Rather, campaigns tend to influence the relative salience of various topics,
thereby shaping the importance voters assign to these issues [22, 18, 7]. Consequently, an essential
element in political campaigns involves strategically guiding the salience of issues to the candidates’
advantage, a process known in political science as priming [3]. Political campaigns are costly, and
candidates have limited budgets. Thus, from a strategic perspective, the question is how to best invest
the available campaign budget in order to obtain the most beneficial priming for a given candidate, and
whether an equilibrium investment profile exists. From a computational perspective, the question is how
to compute the optimal and equilibrium investments, if they exist. These are the topics of this paper.

The importance of issue salience in voting has recently gained attention in the context of election control
and manipulation [17, 8]. In these works, priming is viewed in the context of election manipulation and
hence assumed to be limited to a single malicious actor. We view priming in the context of campaigning
and study equilibria thereof.

1.1 Summary of Results

We consider two core settings, which we term parliamentary and presidential. In the parliamentary
setting, parties aim to maximize their share of votes. In the presidential case, the primary goal is to be
ranked first. For the presidential setting, we consider several variants, which relate to a possible secondary
goal of increasing the share of votes.> The different variants, formally defined in detail in Section 2, are:
(1) winq: the sole goal is to be ranked first, with no secondary goal, (i1) u,,s: a weighted average the goal
of being ranked first and increasing the share of votes, with the weight highly skewed towards the former,
(ii1) Umqe: the primary goal is to be ranked first, only if this cannot be achieved then increasing the share
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2without such a secondary goal, unnatural behavior can emerge wherein candidates invest against their own good.
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Table 1: Summary of results. Whenever Nash equilibrium is guaranteed to exist, it can be computed in time linear
in the number of voters. For two candidates, the time is also polynomial in the the number of issues.

is considered as a goal, with significantly lesser utility. Throughout, we consider plurality ballot form,
wherein each voter casts one vote for its most favorable candidate/party [20].

For each setting and variant, we consider the question of whether a Nash equilibrium necessarily exists and
whether, knowing the strategies of the other players, a best-response necessarily exists. Our main results
are summarised in Table 1. For the parliamentary setting, both a Nash equilibrium (in pure strategies) and
best-response always exist. When there are only two candidates, it is further the case that in equilibrium
each candidate invests its entire budget in priming of a single issue. For the presidential setting, for both
variants that include a secondary goal, a Nash equilibrium need not exist in the general case, and not
even a best-response. For the variant where the sole goal is winning, with no other considerations, a best
response does exists, and we do not know if a Nash equilibrium necessarily exists. We note, however, that
the Nash equilibria in this variant may be unnatural, in the sense that they require candidates to invest not
for their own good, but rather for the benefit of others. In all presidential variants, if there are only two
candidates, an equilibrium exists wherein each candidate invests its entire budget in priming of a single
issue.

Whenever a Nash equilibrium is guaranteed to exist, we provide an algorithm that is linear in the number
of voters to compute it. For the two candidates case, the algorithms are also polynomial in the number
of issues and candidates. For the general parliamentarian case, the algorithm may be exponential in the
number of issues and candidates.

Due to limited space, the full proofs appear in the appendix. In the main body we mostly provide limited
proofs and outlines.

1.2 Related Work

Campaign management and bribery have been researched extensively in the literature (see [23, 9, 13, 27].
And for extensive review see [26, 12]). Both these terms refer to a setting where individual voters are
influenced to alter their vote, and the main question is how to choose these voters. We consider situations
where changing voters’ decision-making is only possible by general campaign messages, which alter the
importance of different issues.



Ad delivery algorithms also aim to change voters’ actions. They promise to lower the cost of advertising
and increase the efficiency of campaigns through detailed targeting, where advertisers can specify the
users they would like to reach using attributes [5, 15]. However, it was shown (e.g., [1, 4]) that targeting
may not work as intended, and may shape the political ad delivery in ways that may not be beneficial to
the political campaigns and to societal discourse.

Campaign communications that direct voter attention to the considerations that campaigns emphasize
are termed ‘priming’. This phenomenon has been studied repeatedly over the years in many contexts
(from psychology [16, 21] to natural language processing [24, 28]). Regarding elections, Matthews [19]
showed clear evidence of issue priming throughout six US national elections. Macdonald [18] showed
that citizens’ core values are less affected by campaign-related priming effects, supporting our approach
that the effect of investing in priming depends on the issue.

In [11][Chapter. 1] the importance of wedge issues is discussed, showing the possibility to attract attention
to topics that are less important and even those that are not the strongest of the candidates.

There are several works that model the utility of voters, which take issues’ importance into consideration.
For example, in [14]’s model, termed spatial elections, each voter attaches both a weight and an aspired
value to each of the issues, and every candidate has a position on every issue. Each voter votes for the
candidate with minimal weighted Euclidean distance between its positions and the voter’s ideal positions.
They consider the problem of finding the optimal positions for candidates in order to maximize their
votes.

[17] consider issue salience priming/manipulation in the spatial preference framework. assuming a single
primer/manipulator. They consider the case of binary salience, and a manipulator that can determine
which issues the voters care about and which not. Voters vote deterministically to the candidate who is
closest to them (on the salient issues). [17] view priming (which they term control by manipulation) as
a type of attack by a malicious entity, and hence only consider priming by a single entity. The paper
derives strongly negative results, and concludes that computing effective manipulation is hard even for
two candidates, or for a single voter.

[8] extend [17] and consider issue priming in the setting of weighted spatial preferences (rather than
binary), and a manipulator that is constrained by a budget (for shifting the weights). They consider both
the deterministic setting - where the voter necessarily votes for the closest candidate - and stochastic
settings - where the probability of voting for a candidate is monotone in the weighted distance, and
both the parliamentary and the presidential elections (which they term MaxSupport and Majority Vote).
Following [17], [8] consider only a single manipulator. They show that in the most general setting, the
control problem is NP-hard, but that the stochastic setting - which is the more similar to ours - is tractable
if the probability of voting for a candidate is linear in their weighted distance from the voter (there are
also versions of the deterministic setting that are tractable).

Our work differs from [8] and [17] in several ways. Our voter preference model strictly subsumes the
spatial model. On the other hand, we only consider the stochastic case and assume that the probabilities
are linear in the relative weighted distances (which corresponds to the stochastic setting for which the
problem is tractable). More importantly, we consider the strategic setting where priming is performed by
multiple candidates in the race and seek an equilibrium in such a setting - a topic not considered in [8]
and [17] at all.

[6] considers the problem of campaign investment management in a setting where campaigns have two
simultaneous effects: (i) Persuasion: increasing the quality of the policy in the issue as perceived by the
voters through policy advertising and (ii) Priming: making the issue more salient, thereby increasing the
issue’s perceived importance (as in our model). The paper considers only the case of two candidates and
two issues, and does not provide any algorithms. We note that the exact model of how campaigns alter
the salience is somewhat different between our model and that of [6], which leads to different results
concerning the existence of an equilibrium.



2 Model

We consider the following stylized model. There is a set V' of voters, a set C' of candidates/parties, and
aset I = {1,...,n} of issues. For each candidate c, issue ¢, and voter v, there is a quality score ¢} (c),
reflecting voter v’s perception of candidate c¢’s competence in handling issue 7. We assume that all quality
scores are non-negative and ) .~ ¢{ (c) < 1. So, the scores reflect relative competence, and can be
viewed as the probability of v to vote c if issue 7 were the only issue at stake; and 1 — > - ¢/ (c) is the
probability that v does not vote.

The salience of issue ¢ for voter v represents how important this issue is for v. Before the campaign,
this salience is s¥ (0). Since we only care about the relative salience (which is what governs the voting
decision), we assume that ), _; s7(0) = 1 for every v € V, and that s¥(0) > 0 forevery v € Vi € I.

Each candidate c has a total campaign budget W° > 0, which it can distribute among the issues in
order to increase their salience, with w; > 0 denoting the amount invested in promoting issue 7. So,
> icr wi < W€ (where inequality occurs when some of the budget is not used). The total budget of all
candidates is W* = 3" .~ W€ The total investment, over all candidates in issue 7 is denoted w;. The
vectors w® = (wg,...,wy), w = ) .~ w" are ¢’s investment profile and the total investment profile,

= Zc’ #c w
Given a total investment of wj in issue 7, the salience of this issue for voter v is denoted s} (w; ). Investment
in an issue linearly increases its salience:

Cc C

respectively. In addition, w™ " is the total investment vector of all candidates except c.

si (w;) = piw; + s7(0) (1)

Here, p; > 0 reflects the easiness, or difficulty, of increasing the salience of the issue; a large p; means
that it is relatively easy to increase the salience, while a small p; - the opposite. The rationale is that some
issues, say those that seem totally unimportant to the electorate, may require more investment to increase
their salience than others.

Given investment w, quality scores ¢; (c), and the salience scores s} (w;), the relative salience is:

V) = S;}(wl)

jel 5?(“’]’)

The probability that v casts its vote for candidate c is the weighted sum of the candidates’ quality scores
over the different issues, weighted by their relative salience:

pUle,w) = af(e) - st (w) = g% (c) - 8" (w)
il

The following claim provides that the p¥(c, w)’s indeed correspond to the necessary probability structure:

Claim 1. For any possible w, p*(c, w) > 0, for all v, c. In addition, ) - p"(c,w) < 1 for every v.

Note that the probabilities need not sum to 1. The remaining probability is the probability that the voter
chooses not to vote at all. This could happen, for example, if the voter deems all candidates incompetent
in the salient issues. If we wish to avoid such behavior we can further require that ) .~ ¢/ (c) = 1 for
all 2 and v. Hence the total expected number of votes candidate c gets is

p(c, w) = Z pv(cv w)

veV



We consider two settings: parliamentary elections, where each candidate (/party) aims to maximize its
fraction of votes, and presidential elections, where candidates seek to win the elections. It is assumed
throughout that the number of voters is sufficiently large so that the actual number of votes any candidate
gets is essentially the expectation.

The expected fraction of voters voting for candidate c is thus

p(c, w)
rlew)= =——+—"——
’ Yvecp(¢sw)
The victory indicator is:
1 /
ey ¢ € argmax p(c/, w)
v(eaw) = § MEESPEWL T o T

0 otherwise

Parliamentary Elections Here, the utility of c is simply

Uaclw) = (e, ) @

Presidential Elections We consider several versions of presidential setting. The simplest is just taking
the victory indicator:

[

Uina(w) = v(c, w)

This means, however, that candidates with no chance to win are agnostic to the number of votes they
get. This view overlooks the reality that even candidates with little chance of winning care deeply about
their vote count. A strong voter base provides lasting political capital, influencing both the candidate’s
future prospects and their party’s direction [2]. In order to mitigate this, we propose two alternative utility
functions. The first is just the sum of the indicator multiplied by a constant with the relative fraction of
votes:

uglus('w) =V v(c,w) + r(c,w)

Where V' € R determines the importance of the victory indicator, versus that of the votes’ fraction. With
this utility function both the losing and the winning candidates care to maximize their votes’ fraction.

And another one is the maximum between the indicator multiplied by a constant and the number of
relative votes:

Us e (W) = max(V - v(c,w), r(c, w))

With this utility, only losing candidates care to maximize their fraction of votes, while a candidate that
wins alone is agnostic.

It is assumed that V' > |C/, so that even a tie with with all candidates yields higher utility than the highest
votes’ fraction without winning.

The Priming Game. The different utility functions define a game, with the players being the candi-
dates/parties, and the pure strategies being the investment profiles w°. We say that an investment w*
is split if at least two issues get a positive investments: 3¢ # j with w{ > wj > 0. The investment is
focused if it is not split. We denote by S, the investment strategy of c and S = (S.) .. Note that the
S.’s may be mixed. The following is trivial.

Fact 1. The games associated with W fyqc, Wind, Uplus are constant sum games, but not that of wmq;.



2.1 Simplifications

The expression for r, v, and accordingly also for all the different utility functions, involves separate
terms for each voter, each of which is itself rather complex. With potentially millions of voters, this may
seem like a problem, especially if further calculations need to be performed on these expressions (e.g.
computing the equilibria). Fortunately, the following theorems provide that this complexity can be greatly
simplified, as follows.

Lemma 1. When introducing an issue 0 for which all candidates are ranked 0 by all voters (i.e. q§(c) =0
forallv € V,c € C), the utilities of all candidates are identical whether they do not invest part of their
budget or whether they invest it in issue 0.

The above lemma assures us that we can assume all players always invest all their budget, some of it
potentially in issue 0. From now on we will always assume 0 is included in [ and all candidates invest
their entire budget.

Now, we can simplify the problem even further, by aggregating the voters’ rating:

Theorem 1. It holds that,

_Qw
T(C,’LU) - Q* . w
1 ’
m CEarg;maXQc - w
v(c,w) =4 " dec ceC
0 otherwise

For

Qf = Zvev Lier 6(0) 5(0) | > al(e) - pi

wr veV
Q=) Q5

ceC

Since all the different utility functions depend only on (¢, w), v(c, w), we don’t need to actually consider
individual voters after calculating Q€ : Vc € C, and the representation size is independent of the number
of voters.

And we say that,

Definition 2.1. The rank of an issue 7 for candidate c is Q5.

3 Parliamentary Elections

3.1 Best Response Strategies

We start with studying the players’ best response strategies.

Theorem 2. In the parliamentary setting, a best response (against any finite support strategy profile)
always exists.

The proof follows from the continuity of u frqc.



Split investments. While players can split their investment between issues, the following proposition
establishes that doing so is never a better response to pure strategies of the other candidates than focusing
the entire investment on a single issue. The following theorem is key to the existence and computation of
a pure Nash equilibrium in the parliamentary setting.

Theorem 3. For any candidate c, pure investment w=° of the other candidates, and response w® with
strictly positive investment only in a set J of issues: w° is a best response (for c) if and only if for any
issue j € J a focused investment in j (alone) is a best response.

The proof of the theorem rests on two main lemmas.

Lemma 2. Given two feasible investments x,y of ¢, and an investment z =r-x+(1—7r)-y: 0 <r <1
between them, as responses against pure strategies w— ¢ of the other candidates, z is a best response if
and only if x,y are best responses.

. Ou$ e+ (1-r)- .
This follows from the structure of u ¢, and the fact that “frac(” o (1=r)-v) does not change sign for
0<r<1.

Lemma 3. Let z be a feasible investment with a strictly positive investment in a set J C I of issues, and
let x be an investment with positive investments only in issues in J.

There exists € > 0 such that y = z + € - (x — z) is a feasible investment.

We return to the proof of Theorem 3:

Proof. Let z be a best response to w ¢ with a strictly positive investment in a set J C [ of issues, and
let = be a response with positive investments only in issues in J.

By the above lemma, there exists € > 0 such that y = z + ¢ - (x — 2) is a feasible investment.
Since z is between x, y, by Lemma 2 it holds that x, y are also best responses, and in particular  is.

For the other direction, the proof is by induction. We assume that every response involves positive
investment only in up to n issues in J is optimal, and show that every response with positive investment
inup to n + 1 issues in J is optimal.

Let z be an investment in n 4 1 issues in J, assumed without a loss of generality to be the first n 4 1
issues. Let ¢ = (21 + zn+1, 22, 235 -+, 2, 0,0, ...,0) and y = (0, 29, 23, ..., 2n, 21 + 2n+1,0,0,...,0). It
can be seen that z is between x, y, and that x, y each involves positive investments only in a set of n
issues, and must then be best responses. Hence, by Lemma 2 it holds that z is also a best response.

The claim for n = 1 holds by assumption. O

The theorem implies directly that there always exists a best-response which is focused. Accordingly,
finding a best-response strategy is easy: compute the utility of all focused investments and choose the
best.

The best response strategies can further be characterized using the following definition and lemmas.

Proposition 1. The utility of a candidate c from investing in issue i is characterized only by Qf and

/

Qi_c = Zc’;éc Qf .

Proposition 2. For a candidate ¢ and issues i, j, if QF > Q5,Q; ¢ < Q;C, there exists a best response
with no investment in j.

If one of the inequalities is strict, every response with a positive investment in j is not a best response.
In other words, considering issues, candidates care only about their own ranking and the sum of the

ranking of others, not about how this sum is split. With everything else equal, it’s better to invest in issues
for which your ranking is higher, or issues for which the sum of the others’ rankings is lower.



3.2 Nash Equilibrium

Theorem 4. In the parliamentary setting, there always exists a Nash equilibrium with pure strategies
(but possibly split investments).

Proof. The proof is by that of Theorem 1.2 in [10], and similar to the standard proof of the Nash’s
theorem (e.g. Theorem 1.1 in the same work).

The strategies space are indeed convex, as the only constrain for every candidate cis that ) ;. w§ = we,
and it’s easy to see that the utility of every candidate is continuous in the investments of all the candidates.

Although the utility of every candidate is not quasi-concave, this requirement is used in the proof only
to show that the optimal responses of every candidate are convex. Indeed, say that there are two best
responses, one involves a set J of issues with positive investments and the other a set K. Then, by
Theorem 3 every focus investment in any issue in J U K is a best response. Then, by the same theorem
any split investment in these issues is, hence the best responses are convex. O

Finding the Equilibrium. By Theorem 4, a pure equilibrium always exists. We explain how to find it.

In a pure equilibrium, every candidate c strictly invests in a set /¢ C I of issues. By Theorem 3, c is
indifferent to any investment that involves only the issues in /€.

The algorithm is as follows.

Algorithm 1: computing Nash equilibrium. Iterate over all possible (nonempty) sets of strictly
invested issues I¢ C [ : ¢ € C. For every iteration, define the following set of linear equations and
constraints.

The variables are the investment of the different candidates, wy : ¢ € C,¢ € I¢. For ease of illustration,
welet B =3 ., > e Wi - Qi and B* =35 e wiy - Q.

The constraints are:

1. The investments are valid: candidates invest exactly their budget, and the investments are non-
negative.

wazl,wfzo Vee Ciie I

2. Candidates are indifferent between focused investments in issues they (strictly) invest in. Let an
arbitrary i¢ € I be the representative issue of c. For c € C,i¢ # i € I¢:

We. Qi B +W° Q% -B*+ (W% Q% - Q;

¢ 7

:WC-Q;‘C-BC+WC-Q§-B*+(WC)2-Q§-Q*

ic

3. The candidates prefer their current investment rather than any other focus investment. For ¢ € C, a
single representative ¢ € I¢, and every j & I

We-Qp B+ WE Q5 B+ (W2 Q5 - Qf

7

SWe-Qj- B +We-Qf - B" + (W)*- Q- Q]
For every iteration, if the above set of equation has a solution, it is a Nash equilibrium and we can
stop.

The algorithm is exponential in the number of candidates and issues, as we iterate over all possible subsets
of issues for every candidate. However, it is linear in the number of voters, as the simplified problem
representation size is independent of the number of voters (Section 2.1).



3.3 Two Candidates
Best Response Strategies

When there are only two candidates, the structure of the best response strategies can be further refined.

For candidates ¢, ¢ and issues 4, i’ denote w(c + i, ¢’ » i) the investment wherein ¢ investment all and
only in 7 and ¢’ all and only in .

Lemma 4. For candidates c,c and issues 1,7, j, j', if

QF < Q7 (3)
UG pqc(W(e 1, d+j))< UGypqe(w(c » i’ d s ) and, 4)
Whrae(w(e > 7,¢ + ) < ufpge(w(c » 7, ¢+ 1)) )
Then
Wirae(w(c » i,¢ + j1)) < ufpge(w(e i ¢+ j')) (6)

In other words, if one candidate prefers one issue over another, and the other candidate responds, the first
candidate still prefers the first issue over the second, assuming its ranking on it is higher. This lemma will
allow us to compute the Nash equilibrium, as we later show.

Nash Equilibrium

We will show that every 2-candidates game has a pure and focus equilibrium, such that every candidate is
investing all his budget in a single issue. This can be shown by Lemma 4: we let each candidate begin by
investing in the issue on they are ranked the lowest. We then let each, in turns, respond by investing in the
least higher-ranked issue that is a better response than their current investment (if exists). By the above
lemma, this process will necessarily terminate with a Nash equilibrium.

Formally, the algorithm to find an equilibrium, given C' = {¢, ¢}, is as follows:

Algorithm 2: Compute Nash Equilibrium for two candidates.

. . . . /
1. Let 7 < argmin Q,, j < argmin Q;,
irel jel

2. While true:

@ I'={i" €l :uf, (w1, >j))>uf,(wle-icd ) NQH > Qf}
b) J'={j" €l uf,(wlcrid>j))>uf,(wlesid>j)AQ5 > Q5

(c) If I' # 0, i < argmin Q5
el
(d) Elseif J' # (0, j < argmin QS
j/EJ/

(e) Else return (4, j)

Theorem 5. In the parliamentary setting, in the case of 2 candidates there always exists a Nash
equilibrium with pure strategies and focused investments. Algorithm 2 results in such equilibrium with
time complexity of O(|I|> + |V]).



4 Presidential Elections

We consider the various settings of presidential elections.

The following example shows that, in contrast to u f.,.’s Theorem 3, candidates can benefit from splitting
their investment between more than one issue. Here, the only way for ¢; to win (partially) is to invest half
in 1 and half in 2, which is the only best response. This example holds for all three presidential utility
functions - w;nq, Upius, and Upmqz.

C1 2 C3

c
1
c
2

WC

[y S —
O O N
SN O

4.1 Victory Indicator, u;,q
Two Candidates

The case of two candidates is especially important for the presidential case. The following is intuitive.

Theorem 6. For the w;, presidential utility, and the case of two candidates c, ¢/, a dominant strategy for
¢ is to invest all budget in the issue i € I that maximizes Q5 — QS .

As the goal is to be the candidate with the most votes, and in a two-candidate game it is entirely
aligned with candidates maximizing the difference between the votes of themselves and the other. It is
straightforward then that a Nash equilibrium always exists and how to find it.

General Number of Candidates

Theorem 7. For the u;,q presidential utility, a best response (against any finite support strategy profile)
always exists.

Proof. If a best response does not exist, then an infinite series of strictly better responses exists. However,
since the number of possible investment profiles of the other candidates is finite, and for every investment
profile the number of possible utility values for the responding candidate is finite (losing and tie with
another k candidates 0 < k < |C|). Hence, the overall number of outcomes is finite, hence such an
infinite series cannot exist. 0

A possible problem with the w4 utility function is that losing candidates are indifferent to the number of
votes they get, which may result in a counter-intuitive equilibrium. Consider the following example:

C1 Cc2 C3

QG 1 0 0
Q5 0 1 0
Q; 0 0 1
we 101 1

In the above game, the case where all candidates invest all their budget in issue 1 is an equilibrium, as ¢;
still wins regardless if one of the other candidates changes his action. However, this equilibrium looks

10



unnatural since these investments are clearly against their own interest. Although it’s an equilibrium,
we don’t expect real-world campaigns to result in such an equilibrium. In order to make the resulting
equilibria more natural, we will slightly change the utility function such that losing candidates also care
about the number of votes they get.

4.2 Indicator Plus Fraction, u,;,

When summing the victory indicator (multiplied by a constant larger than |C|) with the votes fraction,
both winning and losing candidates still try to maximize their share of votes. Hence, an unnatural Nash
equilibrium such as that discussed in Section 4.1 is not possible.

Two Candidates For two candidates, the game is in fact similar to that of uf;.4., the parliamentary case,
and not to that of w;,,4, the other presidential game.

Theorem 8. Every pure, focused Nash equilibrium for two candidates under uyq. is also a Nash
equilibrium under .

Intuitively, ¢ frqc, Uing are similar in the case of two candidates because, when there is only one candidate
to play against, maximizing the share of votes is entirely aligned with trying to be the candidate with the
most votes.

Based on the above theorem we have:

Corollary 1. For the wupy,s presidential utility, with two candidates, a pure Nash equilibrium with focus
investments always exists, and can be found using Algorithm 2.

General Number of Candidates For a general number of candidates, the situation differs significantly.

Theorem 9. With the uy,,s presidential utility, a best investment need not exist, even when only one
candidate has a positive investment budget.

In the proof we show a game where, for the investing candidate, one issue is better in order to maximize
his share of votes, and any minimal investment in the other issue is required to win. That way, the
investing candidate wants to invest "almost all" in the first and the rest in the other issue. However, since
it’s always possible to invest even more in the first issue and even less in the second, a best investment
does not exist. It is straightforward now that,

Corollary 2. With the uy,s presidential utility, a Nash equilibrium need not exist.

Since with only one investing candidate a Nash equilibrium is characterizes a best response.

4.3 Maximum of Indicator and Fraction, v,

When taking the maximum between the victory indicator (times V') and the votes fraction, only losing
candidates will try to maximize their share of votes.

Two Candidates Similarly to Section 4.2, every equilibrium under v f;.4. is an equilibrium under uy,qz,
and the proof is done in a similar manner.

11



General Number of Candidates The difference between w45 and s is that for the former winning
candidates are agnostic to their fraction of votes. As a result, the case of Theorem 9, where the only
investing candidate wants to invest as much as possible in one issue to maximize his fraction, and any
positive amount in another to ensure his victory, does not happen here. Indeed,

Theorem 10. With the wmq, presidential utility, a best response to pure strategies always exists.

Proof. If, in the best response under u;,,4 (exists by Theorem 7), the responding candidate gets a tie or
wins, it is also a best response under 45, as the responding candidate is indifferent to his fraction of
votes if he doesn’t lose.

Otherwise, the responding candidate cannot win or get a tie, and can only maximize his fraction of votes.
In that case the best response under u ¢, (exists by Theorem 2) is also a best response under ,q,. [

However,

Theorem 11. With the o, presidential utility, a best response need not exist.

As in a case where the responding candidate has a chance to win and to lose, depending on the investments
of the other candidates, the game is similar to that of u,,, as he cares about both the fraction of votes
and whether he wins. Finally, we can see that,

Theorem 12. With the o, presidential utility, a Nash equilibrium need not exist.

For a case similar to the described above.

5 Conclusions and Discussion

This study investigates voter priming strategies and equilibrium in multi-party, multi-issue elections,
providing insights into the computational and strategic aspects of campaign spending. Notably, in
all cases where an equilibrium is guaranteed to exist, it takes the form of a pure equilibrium. This
outcome simplifies theoretical analysis and computational implementation, offering a clear framework for
predicting candidate behavior. Pure equilibria allow candidates to adopt intuitive strategies, eliminating
the need for probabilistic approaches that are harder to interpret and implement.

Despite this, the results reveal certain counterintuitive aspects of the model that merit closer examination.
In particular, the analysis establishes that in the two-candidate setting equilibrium in single-issue invest-
ments always exists. This result, while mathematically sound, diverges from real-world observations
where candidates typically distribute their campaign budget across multiple issues. The divergence may
be due to the linearity assumption in the model, creating incentives for candidates to concentrate all
resources on a single issue. A more realistic model could perhaps postulate diminishing returns on
salience investment, which would encourage a more balanced allocation of resources. We leave the study
of such a model to future research.

Another promising avenue for future work is to consider scenarios where candidates invest resources not
only in priming voter attention on specific issues but also in improving their perceived quality on the
different issues. This addition would provide a richer framework that captures the interplay between issue
salience and perceived candidate quality, reflecting a broader range of campaign strategies observed in
practice.

Acknowledgments

This research has been partially supported by the Israel Science Foundation under grant 2544/24.

12



References

[1] Muhammad Ali, Piotr Sapiezynski, Aleksandra Korolova, Alan Mislove, and Aaron Rieke. Ad
delivery algorithms: The hidden arbiters of political messaging. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, pages 13-21, 2021.

[2] Santosh Anagol and Thomas Fujiwara. The runner-up effect. Journal of Political Economy, 124(4):
927-991, 2016.

[3] L. M. Bartels. Priming and persuasion in presidential campaigns. In Capturing Campaign Effects.
University of Michigan Press, 2006.

[4] Kelley Cotter, Mel Medeiros, Chankyung Pak, and Kjerstin Thorson. “reach the right people”: The
politics of “interests” in facebook’s classification system for ad targeting. Big Data & Society, 8,
2021.

[5] Peter J Danaher. Optimal microtargeting of advertising. Journal of Marketing Research, 60(3):
564-584, 2023.

[6] Philipp Denter. Campaign contests. European Economic Review, 127, 2020.

[7] James N. Druckman. Priming the vote: Campaign effects in a u.s. senate election. Political
Psychology, 25(4):577-594, 2004. ISSN 0162895X, 14679221. URL http://www. jstor.
org/stable/3792410.

[8] Andrew Estornell, Sanmay Das, Edith Elkind, and Yevgeniy Vorobeychik. Election control by
manipulating issue significance. In Conference on Uncertainty in Artificial Intelligence, pages
340-349, 2020.

[9] Piotr Faliszewski, Yannick Reisch, Jorg Rothe, and Lena Schend. Complexity of manipulation,
bribery, and campaign management in bucklin and fallback voting. Autonomous Agents and
Multi-Agent Systems, 29:1091-1124, 2015.

[10] Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

[11] D Sunshine Hillygus and Todd G Shields. The persuadable voter: Wedge issues in presidential
campaigns. Princeton University Press, 2008.

[12] Jamal Islam, Haradhan Mohajan, and Pahlaj Moolio. Methods of voting system and manipulation
of voting. 2010.

[13] DusSan Knop, Martin Koutecky, and Matthias Mnich. Voting and bribing in single-exponential time.
ACM Transactions on Economics and Computation (TEAC), 8(3):1-28, 2020.

[14] Ken Kollman, John H Miller, and Scott E Page. Computational political economy. In The economy
as an evolving complex system II, pages 461-490. CRC Press, 2018.

[15] Daniel Kreiss. Yes we can (profile you): A brief primer on campaigns and political data. Stan. L.
Rev. Online, 64:70, 2011.

[16] Yakov Kuzyakov, JK Friedel, and Karl Stahr. Review of mechanisms and quantification of priming
effects. Soil Biology and Biochemistry, 32(11-12):1485-1498, 2000.

[17] Jasper Lu, David Kai Zhang, Zinovi Rabinovich, Svetlana Obraztsova, and Yevgeniy Vorobeychik.
Manipulating elections by selecting issues. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, page 529-537, 2019.

[18] David Macdonald. Core values and priming effects in electoral campaigns. Political Psychology, 44
(3):515-530, 2023.

[19] J Scott Matthews. Issue priming revisited: Susceptible voters and detectable effects. British Journal
of Political Science, 49(2):513-531, 2019.

[20] Reshef Meir, Maria Polukarov, Jeffrey Rosenschein, and Nicholas Jennings. Convergence to
equilibria in plurality voting. In Proceedings of the AAAI conference on artificial intelligence,
volume 24, pages 823-828, 2010.

[21] Daniel C Molden. Understanding priming effects in social psychology: What is “social priming”
and how does it occur? Social cognition, 32:1-11, 2014.

[22] Philip Moniz and Christopher Wlezien. Issue salience and political decisions, 09 2020. URL
https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.

13


http://www.jstor.org/stable/3792410
http://www.jstor.org/stable/3792410
https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-1361
https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-1361

001.0001/acrefore-9780190228637-e-1361.

[23] Ildik6 Schlotter, Piotr Faliszewski, and Edith Elkind. Campaign management under approval-driven
voting rules. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25, pages
726-731, 2011.

[24] Jonathan Shaki, Sarit Kraus, and Michael Wooldridge. Cognitive effects in large language models.
In ECAI 2023, pages 2105-2112. 10S Press, 2023.

[25] Jonathan Shaki, Yonatan Aumann, and Sarit Kraus. Voter priming campaigns: Strategies, equilibria,
and algorithms. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
14103-14110, 2025.

[26] Alberto Simpser. Why governments and parties manipulate elections: theory, practice, and
implications. Cambridge University Press, 2013.

[27] Avishai Zagoury, Orgad Keller, Avinatan Hassidim, and Noam Hazon. Targeted negative cam-
paigning: Complexity and approximations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 5768-5778, 2021.

[28] Zhenghao Zhou, Robert Frank, and R Thomas McCoy. Is in-context learning a type of gradient-
based learning? evidence from the inverse frequency effect in structural priming. arXiv preprint
arXiv:2406.18501, 2024.

14


https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-1361
https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-1361
https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-1361

6 Appendix

6.1 Proofs from Section 2

Lemma 1. When introducing an issue 0 for which all candidates are ranked 0 by all voters (i.e. q§(c) =0
forallv € V,c € C), the utilities of all candidates are identical whether they do not invest part of their
budget or whether they invest it in issue 0.

We begin by proving the following lemma:

Lemma 5. It holds that,

EC -C .
rew) = 2 +9 1w )
B +Q -w
1 ¢ , AC
—=r—=vc ceargmax B +Q - w
v(c,w) = farg o B+ Q] c'eC

0 otherwise

For all ¢ € C, where B° = Y ovev 2icr 45 (c) - s7(0), @f =2 vev @i (c) - p;and B = Y ocec B¢,
Q* = ZC/EC QC .

Proof. By definition:

p(C,’lU) - va(cvw> - Z ZQZ)(C) ’ Sf(w)

veV veV el

si (wi)
— @’(c) =
g; ‘ Zjel Sg(wj)
piw; + s¥(0
PR Sy
veV i€l jer\PiWj J
piwi + 57 (0)
D) IR
veV iel jeI Pi;
_ >vev 2icr % () (piwi + 57(0))
1+p-w
_ Dvev 2ier(di(©) - piwi + g7 (¢) - 57(0))
1+p-w
= B+ Dicl Wi dpev 4 (€) - pi
1+p-w
_ B+ Dicl Wi @zc
B 1+p - w
B° +w -ac
1+p-w

Hence:
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EC-&-’UJ-QC

r(c,w) = ple,w) = I+pw —;
EC’EC p(c, UJ) Z B +w-Q
cdeC  1+pw
§C+ .0O° — .
B 1+:JU-§ B B'+Q° - w
ZC,GC Bc/+w'éc ZC’GC Bc’ + ac - w
1+pw
. B + éc -w
E* + @* Cw

For the second part of the lemma, we can see that

. B+ 0% w
argmax B + Q° = arg max %
ceC ceC B + Q - w
= arg max r(c,w) = arg max p(c,—'wa
ceC ceC Zc’ec p(d,w)
= arg max p(c, w)
ceC

Hence

1 /
W cc arg/ max p(C ,’LU)
v(c,w) = dec ceC

0 otherwise

cE argmaxEC—i—QC-w

1

—C , ~_C
argmax B +Q -w
‘ ceC | ceC

0 otherwise

And now we go back for the proof of Lemma 1:
Proof. We can see that

Qo= 4a(c)-pi=> 0-p;=0

veV veV

For all ¢ € C. Hence:

G=00%0=>Qr =0

ceC ceC

We know that
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ECJFQC'UJ ECJFZze[@f'

T(Ca ’LU) = =%  —= = —
B + Q - Ww B + ZZGI Q
B + QO wo + 207&26[ QC * Wy

B+ Qo s wo + ZO;&ie[ Q; - w;
. _

B + 30 e Qi - wi

=3 —k

B+ > 0zier Qi - wi

- W;

Hence, all investments into wg does not change the utility of any of the players, exactly like not investing

this amount in the first place.

Theorem 1. It holds that,

_ Q% w
rle.w) = o
1 c’
—————— c€argmax Q° - w
U(C, w) _ \arcg/glcax Q< w| deC
0 otherwise
For
Qc _ ZUEV ZZGI qz + Z
i W* ql
veV
Qr =Y Qs
ceC

Proof. 1t holds that,

Qq _ Z’UGV ZZGI qz + Z ql ) - p;

i
W*
veV

Q=D Q=0+

ceC

And we can see that
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B+ Q% w W*-%—i—ac-w

T( ,’LU) —* 5 p——
+Q - w W*.W*_i_Q - w
—¢  —c —
:(1%'*7%’ 7];*) w+ch
(ﬁ/*a%; ;5/*) w+Q - w
B~ B c

- 0w

The second equation in the theorem is obtained in an identical manner to that of Lemma 5.

6.2 Proofs from Section 3

Theorem 2. In the parliamentary setting, a best response (against any finite support strategy profile)
always exists.

Proof. The utility of a candidate is continuous in his investment, and the constraints for his investment
form a closed set. 0

Lemma 2. Given two feasible investments x,y of ¢, and an investment z =r-x+(1—7r)-y: 0 <r <1
between them, as responses against pure strategies w € of the other candidates, z is a best response if
and only if x,y are best responses.

Proof. Consider, for0 <¢ < 1:

f() = ufpae(2) = ufpge(t -z + (1 - 1) - y)
_Q-(wett-z+(1-1)-y)
Q- (we+t-z+(1-1) y)
attb+(1-t)-d
A+t-B+(1—-t)-D

Fora=Q¢ wb=Q° x,d=Q° - yand A=Q* - w ¢, B=Q* -x,D = Q* - y. Now, it can
be verified that

iy (B+A)d—(D+A) b+ (B-D)-a
S == (D—-B)-t—D— A)?

Hence, the sign of f’(t) is constant, and f is strongly monotonic, or constant.

If «, y are best responses, they must result in identical utility, hence f(0) = f(1), and the function is
constant, hence f(r) = f(0) = f(1) and z is also a best response.

For the other direction, assume z is a best response, and at least one of x, y is not, assuming without a
loss of generality that « is not. Then f(r) > f(0), f(r) > f(1). However, this contradicts monotonicity,
so @, y both must be best responses. O

Lemma 3. Let z be a feasible investment with a strictly positive investment in a set J C I of issues, and
let x be an investment with positive investments only in issues in J.

There exists € > 0 such that y = z + ¢ - (x — z) is a feasible investment.
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Proof. First, we find € > 0 for which the investment in every issue is not negative. Since z; = 0 means
x; = 0, for every ¢ such that z; = 0 it holds that z; + € - (x; — z;) > 0. Now, for every z; > 0, it is
straightforward from the Archimedean property that there exists ¢; > 0 such that for every (5} < 0, it

holds that z; < 5; - (zi —x;) > 0, hence z; + € - (x; — z;) > 0. We then take € = m1n06
Jiz5>

Second, we ensure that the total sum of the investment does not exceed the budget:

Su=Y (e (x—2))

icl el

:Zzﬁ—e-(Zzi—in)

icl icl icl
=We+e- (We=W€°) =WF°
We conclude that y is a feasible investment. O
Proposition 1. The utility of a candidate c from investing in issue i is characterized only by Q) and

—cC = ZC’#C Qf .

Proof. Denoting S the possible investments of the other players, such that every w™°¢ is their total
investment with probability p,,—., the expected utility of c is, for investment w*:

Z Qc'w_c+Qc'w
Py—c Q* -w—c—i-Q* . w¢e

w—eces
BC+ Qf - wt

= 2 e g

w—ees ? ¢

B+ QS - wt

- Z Poyy—c - B+ (3 Qg’) . we

w—ces cdeC ¥ i
S . ErGw

w—ces s B*+(Qf+2c’¢chl)w'Lc

For BY = Q° - w™® + Xyc;y Q- wf and BY = Qw4+ Yy Q5 - u. =

Proposition 2. For a candidate c and issues i, j, if Q5 > Q;, Q; < Qj_c, there exists a best response
with no investment in j.

If one of the inequalities is strict, every response with a positive investment in j is not a best response.

Proof. Denoting S the possible investments of the other players, such that every w™¢ is their total
investment with probability p,,—, the expected utility of c is, for investment w*®:

Lw e+ Q° - we
Wraew19) = Y pume gy

—c * . €
w—ces * Q

> B Qw5
p’w—C Bw—c,wc + Q;k . w;j + Q}k . wc

w—ces

c

For ¥~ 5% = Q¢ . w~° + de,{i’j} Q5. - wy, and BwWTSwW — Q* . w ¢ + Zkelf{i,j} Qj - wy.
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Considering the expected utility from the two possible investments, w

c,1
b

w2, the only difference

is in the last two terms of the numerator and denominator of the fraction for every summand, as

—cC c —cC c .
bv v, BY —%" are independent of wf, w.

c
J

For every w™° € S, we claim that its summand in u%, . (w?|S) is greater than in u5,,,.(w®!|S). To

see this:

It can be easily verified that b~ % < BW™“%° that Q; - wic’1 +Q; w;’l >Q; ¢ wf’2 —Q;w;

—cC c
pw— S w + Qf . wc,2 4 Q;: . wc,Q
—c ape * c,2 * c,2
BwTt w4+ QF - w4+ Q- w;

BT 4 Q5w 4+ Q% w!
Bw™owe Q¥ . wf’l + Q5 - chfl
— (b’w—C,wC + Qlc . wc,2 + Q; . wC,2)
(BT QFwf Q) )
=0T Qw4 Q5w
(BT Qwf? Q) )
—c ,C 1 1
=@+ Q)
—c ,C ) )
+BY W (QF - wi + QF - wfT)
—c c 72 72
BT Qi Q5w
—c c 71 71
- BT Q5w + Q5w
— bw_c,wc
* cl * c,1 * c,2 *
(QF - w; +Qj'wj - Qi w7 =@
+ Bw_‘z,wc
2 2 1
— bw_c,wc

c c

+ bw_ ,w

c ¢l c ¢l c c,2 c
Qw7 +QF wy — QF wpT — Q-
+ Bw—cﬂﬂc

C C,2 C C,2 c C,l C
(QF - wyT + Q- wy” — QF - wy — Q-
_ bw_c,wc

—c c,1 —c c,1
+ (Bw_c,wc _ bw_c,wc)

2 2 1
Q5w+ Q5 wh? — Q5w - Q5

¢l

w

w

w

J

—c .

- 1 - 1 - 2
(chw: "‘Qjc‘ch‘ _Qic'wic - Q;

c,2

J

J

c,1

c,1

J

)

)

)

c,2
i)

_ 2 - 2
Qz‘c'wz‘c _Qjc'ch' )

and that Q - wf’Q + Q- w;’z > Q5w
above equation is positive.

(As b~ Sw?

C ,C
,<w™?

)

@j

—c c,2 . . .
, bW W are identical, we let w*€ be either w®

. chfl (note that wf’l + w;’l

1

, w?)
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Theorem 13. Algorithm I is exponential in the number of candidates and issues, and linear in the number
of voters. The algorithm always returns a pure Nash equilibrium.

Proof. In order to see that the algorithm work, we first examine the constraints.
It’s easy to see that the validness constraints hold iff the investment is a feasible investment.

Next, for the issue indifferent constraints, we can see that:

B¢+ We. Q¢ - BC_'_WC_QZQ

B*+We-Q. B*+We-Q;
(BS+W*- Q) - (B" + W*-Q7)

=(B°+W°-Q5)- (B*"+W°- Qi)
We. Q- B+ We. Z%-B*~|—(Wc)2- < .QF

2© 7

=W Qi B W QB (WO Q5 Q)

=

In the last passage the only non-linear term, B¢ - B*, canceled itself from both sides of the equation. This
condition is necessary and enough by Theorem 3 for an optimal response.

Finally, for the alternative investments constraints:

BE+We-Qf _ B+ We-Qf
B +We-QF ~ B+ We-Q;
(B +W*-Q5)- (B"+W*- Q)

< (BC+We- Qi) - (B"+W*-Qj)

W Qi BE+ W Q5 BT+ (W Q5 Q5
SWe-Qj-BE+W-Qf - B+ (W) Qf - Q;

54

Again in the last passage B¢ - B* cancels itself from both sides of the equation.
Recall that by Theorem 3 there exists an optimal focus investment.

It can be seen that the number of constraints and variables is identical; B*, B : ¢ € C are directly
associated with an equation, and for every candidate c¢ there is one validness equation and |I¢| — 1
indifference equations, result in |I¢| equations at total which is identical to the number of variables
associated with c. No additional variables are presented.

Hence, and since all introduced constraints hold if and only if the solution is an equilibrium, the algorithm
will eventually find a (pure) Nash equilibrium that exists by Theorem 4. U

Lemma 4. For candidates c,c and issues 1,1, j, j', if

Q < Q7 (3)
u}imc('w(c si,c 5 7)) < u?mc(w(c si'.d + §)) and, 4)
Whrae(w(e > i, ¢+ ) < wfpge(w(e > i, > j) (5)
Then
Wirae(w(c +i,¢ + §)) < ufppe(w(c -+ ¢+ 5")) (6)
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Proof. Since candidates are investing in different issues (c only in 7, ¢ and ¢ only in j, j'), we can assume
a budget of 1 for every candidate, by normalizing every issue accordingly (i.e. dividing the ranking of

each player by the original budget).
By negation, we assume eqs. (3) to (5) hold but not eq. (6), hence:

Qi +Qj S
Q*“‘Q* _ufrac( (C#Z,C »]))

C+ C
< Upge(w(c» 7', ¢+ j)) = g* +g* &
(QF +@QF) - (Qy +@5) < (QF +QF) - (@7 +Qj)
h= Qe QI Q QRS
SO Qi - Q - Q@i >0

And:

1 — upge(wlc + i, ¢+ §)) = ufpgo(w(c > ', + 5))
< UGpge(w(c+i,d » §)) =1 — uSpe(w(c i, ¢+ j) &

QC+QC 1 -/
Q*+Q* _ufrac( (C->’i,C 9]))

Qc _|_Qc
<U§frac(w(c->l C éj)) Q* _|_Q*

(@7 + Q) - (Qi + QF) < (@7 +@QF) - (Qy + Q) &
ty = Qi - Q) + QF - Qi + QF - Qy
Qi Q- Q- Qp —Qj Q5 >0

And by negation:

Q+Q

— = w(csi,c +7
Q;(/ n Q;/ frac( ( J ))
Q+Qy

< u;rac(w(c i i: C, i Jl)) Q* i Q*

(@5 +Q5) - (Q +Q3) < (@ +Q5) - (@ + Q))&
ts= Q- Q)+ Q5 - Q + Q5 - Q
QY QE-Q5 Q- Q-Q; 20

By eq. (3) it holds that )5, > Qf. Hence, all the terms in the next equation are positive:

(Qf + Q%) - t1 + (Qf — QF) - t2 + (Qf + QF) - t3

With (Q5 — QF), t2 being strictly positive, the above equation is strictly positive. However, expanding it

reveals it’s algebraically zero.
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Hence, the negation assumption cannot hold, and it must be that u§,.,.(w(c + i,¢' » j')) < uf,,.(w(c »
/] -/
i d > 7).

Theorem 5. In the parliamentary setting, in the case of 2 candidates there always exists a Nash
equilibrium with pure strategies and focused investments. Algorithm 2 results in such equilibrium with
time complexity of O(|1)? + |V]).

Proof. We denote i, jj the k’th issues ¢, ¢ invest in, respectively. i1, j; are the issues on which ¢, ¢ are
ranked the lowest, correspondingly. 751 is the least higher-ranked response of c to ji that yields strictly
higher utility than iz, and similarly j. 1 is the least higher-ranked response of ¢’ to iy, that yields higher
utility than j;. This process terminates when no better response exists for both candidates.

We will prove the next claim by induction:
UG, qe(w(e >, ¢+ ji)) <ufq.(w(e g, ¢ -+ jy)) forall i € I such that i, is higher-ranked than i'.
The claim is trivial for £ = 0. Assuming the claim is true for k, and that the process is not terminated yet:

By assumption, u§,,.(w(c » i, ¢ » ji)) < uf,,.(w(e > ik, ¢ » ji)) forall i’ € I such that @, < Q.
By the process’ definition u%,.,.(w(c » ', ¢ » ji)) < uf,,.(w(c > iki1, ¢ jx)) forall i’ € I such that
7 < Qi < Qj . ,andinaddition uf, . (w(c + ix, "+ jk)) < ufyg.(wlc » i, ¢ > ji)). Together,

we have u§,, . (w(c»i',¢ » ji)) < uf,.(w(c > igr, ¢ » jx)) forall i’ € I such that @, < Q;

Uet1”
By definition, u§,,.(w(c » ik41,¢ + jk)) > uGq.(wlc + igi1, ¢ » jr11)) (since we have a fixed-sum
game) and Q7 < Q;‘-Hl. Now, for every i' : QF, < kaH, we can use lemma 4 and we get that
USpge(w(c » 7' ¢ s Jii1)) < ufppo(w(c » igyr, ¢+ jryr)) forall € I such that Qf < Qx;,,,, and
thus complete the induction step.

The analog proof for the other candidate can be obtained in a similar manner. Together, we can see that
when searching for best responds for some candidate, we indeed need to consider only higher-ranked
issues than the current investment, necessarily terminating in a (pure, focused) Nash equilibrium.

For the complexity, by lemma 5 and theorem 1, computing the simplified version of the problem takes
O(|V]) steps.

The first line of the algorithm takes O(|1|) steps. For the second line, since in every iteration of the loop
we advance either 7 or j and we do not repeat issues, the number of iterations is at most 2 - |1|.

Computing the utility of candidates given focus investments is constant (as there are only two candidates),
and is done for every issue, hence the first two steps in the loop takes O(|I]) time each. Performing
argmax over issues also take O(|I|) time, hence every iteration takes O(/) time, results in total time of
O(|I|?) for the loop. O

6.3 Proofs from Section 4

Theorem 6. For the w;, presidential utility, and the case of two candidates c, ¢/, a dominant strategy for
. . . . . . . /
c is to invest all budget in the issue © € I that maximizes Q5 — Q)5 .

Proof. The difference between the number of votes c,c’ get is f, . (w®) = p(c,w) — p(c,w) =
Qc-wc—i—QC-wC/—QC/-wC—QC‘wCI:b—i—(QC—QCI)-wC
For b = (Q°¢ — QC') - w® . It can be seen that in order to maximize f with a valid w€ it is best to have
w§ = W¢ for i = argmax Q¢ — Q¢

i€l
Now, as the utility of ¢ is monotonic in f (zero for negative value, half for zero, one for one), it is indeed

a best response to invest in argmax ()5 — Qf/. As this expression is independent of the investment of ¢/, it
el
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must be a dominant strategy. O

Theorem 8. Every pure, focused Nash equilibrium for two candidates under uy,q. is also a Nash
equilibrium under .

Proof. Say a Nash equilibrium under .. is not a Nash equilibrium under w,;,s. Then one of the
candidates can improve it’s utility by investing differently. However, by the definition of s, it
means this candidate either improve it’s relative fraction of votes r, or it’s victory indicator v. However,
improving r implies it’s possible to improve the utility under  f,.q., which is a contradiction. Improving
v means that the player was losing and is now on tie or better (hence improving it’s fraction of votes from
less than 0.5 to 0.5 or higher), or that the player was on tie and is now winning alone, (hence improving
it’s share from 0.5 to higher that this). Either way, we get that one candidate can improve its fraction of
votes and hence its utility under v f.q., which is a contradiction. ]

Theorem 9. With the s presidential utility, a best investment need not exist, even when only one
candidate has a positive investment budget.

Proof. Consider the following game.

C1 Cc2 C3

Q 10 0 11
Q5 10 9 9
we 10 0

Denoting w(z) = (2,1 —z) : 0 < z < 1 an investment of = in issue 1 and of 1 — z in issue 2, we get
that:

p(e1,w(z)) =10
plez, w(z)) =9- (1 —x)
ples,w(x))=11-2+9- (1 —x)

It can be seen that c; wins alone if and only if x < 0.5, hence in every best response it must hold.
However:

B 10
112418 (1 —2)

r(c, w(z))

Which is monotonic in z (within the boundary). Hence, the best investment is m%x5a:, which clearly does
z<0.

not exist.

g

Theorem 10. With the g, presidential utility, a best response to pure strategies always exists.

Proof. 1f, in the best response under u;,4 (exists by Theorem 7), the responding candidate gets a tie or
wins, it is also a best response under 45, as the responding candidate is indifferent to his fraction of
votes if he doesn’t lose.

Otherwise, the responding candidate cannot win or get a tie, and can only maximize his fraction of votes.
In that case the best response under u ¢, (exists by Theorem 2) is also a best response under ,q,. U
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Theorem 11. With the um,q, presidential utility, a best response need not exist.

Proved together with:

Theorem 12. With the oy presidential utility, a Nash equilibrium need not exist.

Proof. Consider the following game:

C1 C2 C3 Cq4
Q5 1 1 1-¢ 1
Q5 1 1—-€¢ 1+4€¢ 0
we 1 1 0 0

We will show that there exists an € > 0 such that the game has no equilibrium.

We first claim that for small enough €, when considering only the fraction of votes, r, investing in issue 2
strictly dominates investing in 1 for both ¢, c2. This can be seen for € = 0 by Proposition 2. Now, since
the fraction of votes is a continuous function, it must be true for positive small enough ¢ too.

If ¢; invests deterministically all its budget in 1, then the only best response for c; it to invest all in 1 and
get a tie. However, in that case investing all in 1 is not a best response for c; (e.g. it is better to invest 0.9
in 1 and 0.1 in 2 and win alone), hence it cannot be an equilibrium.

If ¢; invests deterministically all its budget in 2, then the only best response for ¢ it to invest all in 2.
However, in that case investing all in 1 is a better response for c1, hence it cannot be an equilibrium.

If ¢5 invests deterministically all its budget in 1, then the only best response for c; is to invest part of its
budget in 1 and part in 2, in order to be the only winner. However, in that case cy loses and it’s utility is
determine only by its fraction of votes, a case in which he would prefer to invest in 2 instead. Hence, this
case too cannot be an equilibrium.

Similarly, it can be seen that in an equilibrium c3 is not investing part of it’s budget in 1 and part in 2,
because in this case he is losing and would prefer to invest all in 2.

Denoting x > 0,1 — x > 1 the probabilities of cy to invest all in 1, 2 correspondingly, the utility of c; is:

z- ¥ + (1 —x)-V when investing all in 1.

x-V+(1—x) r(c1,(a,2 —a)) when investing 0 < a < 1in 1 and a positive amount in 2.

z- ¥ +(1—2)-r(c1, (0,2)) when investing all in 2, which is strictly dominated by the first option.

Since the only options that are not strictly dominated by others are the first two, and since as was claimed
before in an equilibrium it cannot be that c; invests deterministically in 1, it must be that c; has a positive
chance to invest 0 < a < 1in 1 and a the rest in 2, with expected utility of z-V + (1 —x)-r(c1, (a,2—a)).

However, from Proposition 2, it can be seen that 7(c, (a,2 — a)) is strongly monotonic in a, and no
maximum limited to 0 < a < 1 exists. Hence, no equilibrium exists.

It can be seen that for some z, a best response does not exist too; i.e., for every z, a close enough to 1 it
must be that x - V + (1 — ) - r(c1, (a,2 — a)) is greater than x - % + (1 —z) - V, however there is still
no maximum since a < 1, hence no best response exists.

d
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