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Abstract

In the metric distortion problem, a set of voters and candidates lie in a common metric space, and
a committee of k candidates is to be elected. The goal is to select a committee with a small social
cost, defined as an increasing function of the distances between voters and selected candidates,
but a voting rule only has access to voters’ ordinal preferences. The distortion of a rule is then
defined as the worst-case ratio between the social cost of the selected set and the optimal set,
over all possible preferences and consistent distances.

We initiate the study of metric distortion when voters and candidates coincide, which arises
naturally in peer selection, and provide tight results for various social cost functions on the line
metric. We consider both utilitarian and egalitarian social cost, given by the sum and maximum
of the individual social costs, respectively. For utilitarian social cost, we show that the simple
voting rule that selects the £ middle agents achieves a distortion that varies between 1 and 2
as k varies between 1 and n when the cost of an individual is the sum of their distances to
all selected candidates (additive aggregation). When the cost of an individual is their distance
to their gth closest candidate (g-cost), we provide positive results for ¢ = £ = 2 but mostly
show that negative results for general elections carry over to our restricted setting: No constant
distortion is possible when ¢ < k/2 and no distortion better than 3/2 is possible for ¢ > k/2+ 1.
For egalitarian social cost, a rule that selects extreme agents achieves the best-possible distortion
of 2 for additive cost and g-cost with ¢ > k/3, whereas no bounded distortion is possible for
g < k/3. Our results suggest that having a common set of voters and candidates allows for
better constants compared to the general setting, but cases in which no constant is possible in
general remain hard under this restriction.

1 Introduction

A fundamental problem in social choice is the aggregation of individual preferences, expressed as
rankings over a set of candidates, into a social preference consisting of a subset of elected candidates.
For centuries, social choice theorists have proposed desirable properties that these aggregation or voting
rules should guarantee, usually leading to strong impossibility results [5, 20, 32, 50].

As an alternative approach, attempting to quantify the extent to which a certain voting rule is able to
faithfully translate the voter preferences into the selected committee, Procaccia and Rosenschein [47]
introduced the notion of distortion of a rule. The underlying assumption is that a voter’s (dis)affinity
with a candidate can be represented by a certain cost, and voters’ rankings are the expression of these
cardinal preferences. The cost of a committee for a voter is then defined by aggregating the costs of
the committee members, and the overall social cost of the committee by aggregating the costs for all
voters. The distortion then corresponds to the worst-case ratio between the social cost of the selected
committee and that of the optimal committee, over all possible preferences and consistent costs.

The study of the distortion of voting rules has usually focused on two ways of modeling the social cost:
utilitarian and egalitarian [11, 35, 12]. In the utilitarian case, the social cost is defined as the sum of
the individual costs of the voters, ensuring that all voters’ costs contribute equally to the objective. In
contrast, the egalitarian social cost considers the maximum individual cost among all voters, aiming to
capture a notion of fairness where no voter is excessively disadvantaged.

In voting theory, it is common to assume that voters’ preferences are not fully arbitrary but enjoy some
structural properties. A relevant line of work has indeed sought structural restrictions that are natural
and have powerful implications, such as single-peaked [8] or single-crossing [43]; see Elkind et al.



[23] for a survey. A rather general framework among these is that of spatial or metric voting, where
voters and candidates are assumed to lie in a common low-dimensional metric space and voters’ costs
correspond to their distance to each candidate [6, 37, 24, 42]. For instance, a line metric is commonly
employed to capture political affinity on the left-right spectrum, whereas geographical distances are
represented in a two-dimensional space.

This structural assumption naturally fits in the metric distortion framework: The distances to candidates
fully define the social cost of a committee, but the voting rules only receive their expression as rankings.
Since preferences are restricted in this model, improved bounds on the distortion of voting rules have
been established. Notably, a tight distortion bound of 3 has been shown for single-winner deterministic
voting rules [3, 40, 33]. More generally, an upper bound of 2 + « has been shown when the maximum
ratio between a voter’s distance to their top choice and last choice—also known as decisiveness—is at
most a, which is tight up to O(%) terms for m alternatives [33]. Extending distortion to multi-winner
elections requires defining how a voter’s cost is aggregated over the selected committee. Two ways have
been considered in the literature: the additive cost, where a voter’s cost is the sum of their distances to
all members of the committee [7], and the g-cost, where the cost is determined by their distance to their

g-th closest committee member [14, 19].

Work on metric distortion has so far focused on the case where voters and candidates are disjoint, which
constitutes a natural model for large-scale elections. However, in many decision-making scenarios, a
group of agents aims to elect a subset of their own members. One can think, for example, of a political
organization selecting a committee. Each member ranks others according to their political affinity and
the organization aims to select a committee that represents the variety of preferences of its members.
Since the voting rule only receives ordinal preferences, a small distortion constitutes a suitable objective
to ensure a close-to-optimal outcome under this limited information. In general, this situation arises in
the context of peer selection, where individuals evaluate each other to choose a group for governance,
leadership, or resource allocation. Further examples include academic hiring and promotions, student
representative elections, self-organized committees in cooperatives, and local governance selection.

While peer selection rules have been extensively studied in other contexts, particularly in terms of
the effect of strategic behavior [e.g. 36, 1, 13], little is known regarding their ability to accurately
reflect agents’ ordinal preferences. Previous work on metric distortion for single-selection that uses
decisiveness as a parameter implies a tight bound of 2 on the distortion when voters and candidates
coincide, as this parameter becomes zero [33]. However, no implications are known for the selection
of larger committees, and directly considering a common set of voters and candidates constitutes a
structural modification to the problem that has not been studied so far.

1.1 Our Contributions and Techniques

We initiate the study of metric distortion in committee selection when the set of voters and candidates
coincide. As the study of distortion in committee selection holds significant challenge, we focus on
the line metric as a first step to understand the comparison with the setting with disjoint voters and
alternatives. In this setting, we provide an almost complete picture of the distortion achievable by
voting rules selecting k out of n agents for several social costs; see Table 1 for a summary of our results.

We start by observing a simple yet strong property of metric voting on the line with a single set of
voters and candidates that follows from previous work [22, 7]: We can fully compute the order of the
agents from their rankings. This constitutes a powerful tool for the design of our mechanisms, as in the
following we can always take this order as given.

Utilitarian Social Cost. We first consider the utilitarian social cost, in which the social cost of a
committee is defined as the sum of all individual costs. In Section 3.1, we focus on the case of additive
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Table 1: Our and previous bounds on the distortion that voting rules can achieve in different settings. Values
before and after the semicolon represent lower and upper bounds for the corresponding setting, respectively.
Lower bounds take the worst-case number of agents n. When the lower bound can be made arbitrarily large, we
write oo for simplicity. The number in square brackets refers to the theorem (T.) or proposition (P.) where this
bound is shown; the letters in square brackets refer to the paper where a bound is taken from: BKSS is Babashah
et al. [7] and CSV is Caragiannis et al. [14]. In particular, bounds in gray correspond to the previously studied
setting with disjoint voters and candidates for comparison, either under a general metric [CSV] or under the line
metric [BKSS]. The upper bound for utilitarian ¢-cost marked with (k) is only valid when g > % + 1, which is
slightly stronger than the general condition ¢ > g on that column.

aggregation: The cost of a committee for a voter is given by the sum of all distances from the candidates
to this voter. We consider a rule called MEDIAN ALTERNATION, that selects k£ middle agents and provides

a distortion of at most %(n —1/2n L"Q;kj) which lies between 1 and 2. Despite its simplicity, the

analysis of this rule holds significant challenge. In short, we reduce any metric to another with only
two locations by showing the existence of a non-improving direction of movement for each agent, and
then compute the worst-case distortion for this class.

In Section 3.2, we consider utilitarian g-cost, where the cost of a committee for an agent is given by
the agent’s distance to their gth closest candidate in the committee. We show that no voting rule can
provide a constant distortion when ¢ < g implying that this known impossibility from the setting with
disjoint voters and candidates and a general metric space [14] remains in place in our restricted setting.
For q > % the existence of rules with distortion 3 follows from a general result by Caragiannis et al.
[14]. We provide a lower bound that varies between % and 2 as g varies between % + 1 and 2. We finally
take a closer look at the case with k£ = ¢ = 2, where the best-possible distortion of 2 can be achieved
by selecting the median agents when k is even. For odd k, we show that a rule selecting a couple of
agents—a pair of agents who prefer each other over all other agents—among the five middle agents
achieves an improved distortion of %, which is again best-possible. While the principles leveraged by
our FAvorITE COUPLE rule, in terms of selecting consecutive agents that are close to each other while
also being close to the median, remain valid for larger k, determining how tightly a group of k£ agents is
clustered based solely on ordinal rankings becomes more challenging.

Egalitarian Social Cost. In Section 4, we turn our attention to egalitarian social cost, where we focus
on the maximum cost of a committee for a voter. We consider the k-EXTREMES rule, which selects half
of the committee from each extreme and thus avoids that extreme voters are excessively disadvantaged.
For the additive setting, we show in Section 4.1 that k-ExTREMES achieves the optimal distortion of

1 for k = 2, a distortion of at most % — ﬁ for k > 4 even, and a distortion of at most % — m

for k > 3 odd. We complement these results with an almost matching lower bound of % — %

For the case of ¢-cost with ¢ > % we prove in Section 4.2 that k-EXTREMES attains a distortion of 2 and
provide a matching lower bound. When ¢ < k we show that no constant distortion is possible; once
again, the general impossibility result by Caragiannis et al. [14] holds in our setting.



1.2 Further Related Work

Distortion of voting rules was first introduced by Procaccia and Rosenschein [47]. Since then, extensive
research has been conducted to bound the distortion of different rules, both within the metric and
non-metric frameworks. For a comprehensive survey, we refer to Anshelevich et al. [4].

Single-Winner Voting. In the non-metric framework, Caragiannis and Procaccia [11] showed that
the distortion of any voting rule is at least {(m?) and that simple rules such as Plurality achieve a
distortion of at most O(m?), where m is the number of candidates.

In the metric framework, Anshelevich et al. [3] established a general lower bound of 3 on the distortion
of any deterministic voting rule. They also analyzed the distortion of common voting rules, in particular
showing that the Copeland rule achieves a distortion of 5. Goel et al. [34] disproved a conjecture by
Anshelevich et al. [3] regarding a better-than-5 distortion of the Ranked Pairs rule and introduced the
notion of fairness ratio of a rule, which captures the egalitarian social cost as a special case. Munagala
and Wang [46] reduced the upper bound to 4.236, and Gkatzelis et al. [33] ultimately closed the gap by
providing a rule with distortion 3, which they showed remains valid for the fairness ratio. A consequence
of their result, parameterized on the decisiveness of an election, is a tight distortion of 2 for the selection
of a single agent when voters and candidates coincide.

Randomized voting rules have also been extensively explored in the metric framework [49, 25]. The
best-known upper bound for a randomized voting rule was recently obtained by Charikar et al. [18],
who showed that a carefully designed randomization over existing and novel voting rules achieves a
distortion of at most 2.753. As of lower bounds, Charikar and Ramakrishnan [17] disproved a conjecture
by Goel et al. [34] regarding the existence of a randomized voting rule with distortion 2, by constructing
instances whose distortion approaches 2.113 as the number of candidates grows.

Multi-Winner Voting. In the study of metric distortion for multi-winner voting, various objective
functions have been proposed to capture the cost incurred by each voter for the elected committee [21,
26]. A foundational result by Goel et al. [35] showed that, for the additive cost function, iterating a
single-winner voting rule for k rounds produces a k-winner committee with the same distortion.

Chen et al. [19] studied the 1-cost objective in the metric framework when each voter casts a vote for a
single candidate. They proposed a deterministic rule with a tight distortion of 3 and a randomized rule
with a distortion of 3 — % More generally, Caragiannis et al. [14] introduced the g-cost objective, where
a voter’s cost for a committee is determined by the distance to their g-th closest member. They showed
that the distortion is unbounded for ¢ < % and linear in n for % <qg< g For q > %, they presented a
non-polynomial voting rule that achieves a distortion of 3 and a polynomial rule with a distortion of
9. They discussed how these upper bounds for ¢ > % and the unbounded distortion for ¢ < % carry
over to egalitarian social cost, but interestingly showed that a constant distortion is possible for this
objective when % <qg< % Kizilkaya and Kempe [40] later proposed a polynomial-time rule with
a distortion of 3. Recently, Babashah et al. [7] studied the distortion of multi-winner elections with
additive cost on the line, devising a rule with a distortion of roughly %

Caragiannis et al. [12] studied distortion in multi-winner voting for the non-metric framework, defining
a voter’s utility for a committee as the highest utility derived from any of its members. They proposed

a rule achieving a distortion of 1 4 M for deterministic committee selection.

Restricted Voting Settings. A specialized setting in metric voting considers single-peaked prefer-
ences, where both voters and alternatives are embedded on the real line [8, 45, 44, 29, 28, 52, 31]. In
particular, the work of Fotakis et al. [30] investigated the distortion of deterministic algorithms for
k-committee selection on the line under the 1-cost objective, leveraging additional distance queries.



Mechanism Design in Committee Selection. Several recent studies have explored alternative
models for committee selection. The concept of stable committees and stable lotteries has been con-
sidered in various settings, focusing on fairness and individual incentives [38, 9]. An active area
of research in the last years has focused on impartial mechanisms, where agents approve a subset
of other agents and the voting rule must incentivize truthful reports while selecting well-evaluated
agents [1, 36, 27, 51, 41, 13, 15, 16, 10]. Finally, another line of work investigates distortion when agents
have known locations, enabling mechanisms to explicitly consider distances in selection [39, 48, 2].

2 Preliminaries

We let N denote the strictly positive integers and, for n € N, we write [n] = {1,...,n} for the first n.
A linear order > on a set S is a complete, transitive, and antisymmetric binary relation on S; we denote
the set of all linear orders on [n] by L£(n).

Election. An instance of a committee election, or simply an election is described by the triple £ =
(A, k,>), where A = [n] is the set of agents, k& € N is the number of agents to be selected, and
== (>1,>2,...,>n) € L"(n) comprises the agents’ preferences, where -,€ £(n) is a linear order
on [n] for every a € [n]. We let (‘2) = {S C A | |S| = k} denote the feasible committees for a given
election; i.e., the set of all subsets of A of size k.

Line metric. A distance metric on A is a function d: A x A — R, satisfying (i) d(a, b) = 0 if and
only if a = b, (ii) d(a,b) = d(b,a) for every a,b € A, and (iii) d(a,c) < d(a,b) + d(b, c) for every
a,b, c € A. In this paper, we focus on the line metric: We associate each agent a € A with a position
xq € (—00,00), and the metric d is defined by d(a,b) = |z, — xp| for every a,b € A. A metric d is
said to be consistent with a ranking profile > € £"(n), denoted as d > >, if for every triple of agents
a,b,c € A, the condition d(a,b) < d(a,c) implies b >, c.! Since d is fully defined by the position
vector x € (—00,00)*, we often refer directly to this vector being consistent with a ranking profile
> € L™(n) and denote it by = > . Likewise, we often exchange d by z in the definitions that follow.
Finally, for a fixed election & = (A, k, >), consistent vector of locations x € (—o0, 00)", and interval
I =(y,z)withy < z,welet A(I) = {a € A |z, € I} denote the agents with locations in I. When I
is a single point Z, we write A(Z) for the agents located at this point.

Social cost. For a certain set of agents A, a committee size k € N, and a candidate-aggregation
function h: R — R, the cost of S € (‘]3) for agent a € A is simply SC(S, a;d) = h((d(a,b))pes)-
For a set of agents A, a committee size k& € N, and a voter-aggregation function g: R"} — R, the
social cost of S € (‘2) is SC(S, A;d) = g((SC(S,a;d))aca). In this paper, we study a handful of
candidate- and voter-aggregation functions. In terms of the voter-aggregation function g: R® — R,
we focus on the utilitarian social cost, given by g(y) = Zie[n] i, and the egalitarian social cost, given
by g(y) = max{y; | i € [n]}. In terms of the candidate-aggregation function h: R%¥ — R, we focus
on the additive social cost, given by h(y) = >_;c () ¥i» and the g-cost, given by h(y) = 74, where § is
the vector with the entries of y sorted in increasing order. Thus, for example, the 1-cost is given by
h(y) = min{y; | ¢ € [k]}; and the k-cost is given by h(y) = max{y; | i € [k]}.

"This definition allows for agent-dependent tie-breaking; i.e., when d(a, b) = d(a, c) agent a can rank either b >, c or
¢ >4 b, independently of other agents. This assumption makes the problem in principle harder, so that our upper bounds on
the distortion remain valid if a common tie-breaking rule is employed, and it allows us to construct simpler examples for
lower bounds. It is not hard to see that the same lower bounds can be obtained without the assumption: Whenever a metric
has ties, distances can be perturbed by a small constant ¢ so that there are no longer ties and the distortion does not improve.



Voting rules and distortion. For n,k € N with n > k, an (n, k)-voting rule is a function f that
takes a preference profile > € £"(n) and returns a subset S € ([Z]), to which we often refer as a
committee. For an election & = ([n], k, >) and a metric d, the distortion dist(S, £;d) of S C A underd
is the ratio between the social cost of the committee and the minimum social cost of any committee; i.e.,

SC(S, A;d)
mins,e(A) SC(S7, A;d)’
k

dist(S, &;d) =

For an election & = (A, k, ), the distortion dist(S, E) of a committee S C A is then defined as the
worst-case distortion over all metrics consistent with the ranking profile >; i.e.,

dist(S, €) = sup dist(S, &; d).
>

Finally, for an (n, k)-voting rule f, the distortion of f is defined as the worst-case distortion of its
output across all possible elections; i.e.,

dist(f) = >ESEP( )dist(f(>), ([n], k,>)).

Throughout the paper, we study the distortion that voting rules can achieve under different social costs.

2.1 Computing the Order From an Election

An essential property in line metric settings is the ability to determine the order of agents based on their
preferences. This result has been established in prior work. Specifically, Elkind and Faliszewski [22]
and Babashah et al. [7] proved that if the preference lists of voters are pairwise distinct, it is possible
to uniquely determine their ordering on the line, along with the ordering of non-Pareto-dominated
alternatives. While their setting differentiates between voters and alternatives, this result naturally
extends to our context, where agents serve as both voters and candidates. In fact, this follows from a
simpler fact in this context: For any three agents, their relative order on the line can be reconstructed
from their preference rankings. We state this result as a lemma, which serves as a foundation for many
results in this paper as it guarantees that the order of agents in any election can be uniquely identified.

Lemma 2.1 (Elkind and Faliszewski [22], Babashah et al. [7]). For every election & = (|n], k, ), we
can compute a permutation 7: [n] — [n] of the agents such that, for any consistent position vector
x € (—00,00)" withx > =, we have either 1,1y < Tr2) < ... Tr(n—1) < Tr(n) OF Tr(n) < Ta(n—1) <
S Tr(2) S Tr(1)-

For simplicity, whenever we fix an election throughout the paper we will assume w.Lo.g. that the agents
are already ordered, i.e., that the permutation 7 stated in the lemma is the identity. Hence, we denote
the ordered agents by 1, ..., n and informally refer to this order as from left to right.

3 Utilitarian Social Cost

Using Lemma 2.1, we know that the order of agents can be fully determined from the preference
profile >. This allows us to compute the median agent, which is optimal when selecting one agent
(k = 1) under the utilitarian objective. We study in this section the selection of larger committees
with two aggregation rules for the individual distances: one that considers the sum of all distances to
selected agents in Section 3.1, and one that considers the distance to the gth closest agent in Section 3.2.



3.1 Utilitarian Additive Cost

In this section, we focus on the utilitarian additive objective for committee selection. This objective
aims to minimize the total distance from all agents to the selected committee. Formally, the utilitarian
additive social cost of a committee S’ € (‘2) is SC(S", A;d) = 3" ,c 4 D pes d(a, D). The cost of each
agent a € A is the sum of their distances to all members of the selected committee S’, and the overall
social cost is the sum of these individual costs across all agents in A.

It is not hard to see that the optimal committee can be directly computed from the preferences for
committee sizes kK = 1 and k& = 2. This was already discussed for k = 1, while for £ = 2 the optimal
committee depends on the parity of n. If n is even, it consists of the two median agents. If n is odd, it
consists of the median agent and the agent closest to them. In any case, these agents can be identified
directly from the input preference profile >, without knowledge of the underlying metric. This results
in a voting rule with a distortion of 1.

For selecting a committee of size k£ > 2, we consider the following voting rule.

Voting Rule 1 (MEDIAN ALTERNATION). Compute the order of the agents 1,...,n and return S =
{55+ 1 B+ 1 252 )

Not that the rule selects k agents, leaving L"Tfkj unselected agents on the left extreme and n — L
unselected agents on the right extremes. These values are equal if n — k is even; the latter is one unit
larger if n — k is odd. On an intuitive level, the rule can be understood as constructed by going through
the rank list of the median(s) agent(s), selecting agents in the order reported by them but alternating
between those to their left and to their right to ensure a balanced representation of agents on both sides.

=l

An important ingredient for our results is that an optimal committee selecting consecutive agents
always exists. We state this in the following lemma; its simple proof is deferred to Appendix A.1.

Lemma 3.1. For any election £ = (A, k, =) and consistent metric d > , there existsi € [n— k + 1] such
that, defining S* = {i,i+1,...,i+ k — 1}, we have SC(S*, A;d) = min {SC(5’, A;d) | S’ € (‘2)}

The following is our main result in terms of utilitarian additive social cost, regarding the distortion
guaranteed by MEDIAN ALTERNATION.

Theorem 3.2. The distortion of MEDIAN ALTERNATION is at most %(n — /2 L%"“J n) for utilitarian

additive social cost.

The distortion stated in the theorem ranges between 1 and 2, except for the case where k = n — 1
and k is odd, in which it is equal to %, making it marginally greater than 2. The bound is equal to
2(n—+/(n—k)n) if n— k is even and to %(n —/(n— k —1)n) if n — k is odd, so that it is better for
even values than for neighboring odd values, with more prominent differences for small £. Besides these
parity differences, the bound takes values closer to 1 when k is small and closer to 2 as k approaches n.

Figure 1 illustrates the bound for n = 100 and £ between 2 and n — 1.

The complete proof of Theorem 3.2 is deferred to Appendix A.2; we now summarize the main ideas
involved. The main ingredient is the existence of a reduction from any metric to another one where all
agents are in one of two locations and the distortion has not decreased. To prove this reduction, we use
the linearity of the social cost to show that an agent (or set of agents at the same location) can always be
moved in one direction such that the distortion does not improve, as long as they do not pass through
other agents’ locations. By iteratively moving agents in non-extreme positions in their non-improving
direction, we can reach a metric where all agents lie in one of the original extreme positions and the
distortion has not improved. We finally compute the worst-case number of agents on each of these
points for the distortion of the MEDIAN ALTERNATION rule to conclude the result.
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Figure 1: Distortion of MEDIAN ALTERNATION stated in Theorem 3.2 for n = 100 and k € {2,...,99}.

3.2 Utilitarian g-Cost

In this section, we study the distortion of voting rules in the context of utilitarian g-cost, in which the
cost of a committee S’ for an agent is given by its distance to the gth closest agent in S’, and the social
cost of a committee is the sum of its cost for all agents. Formally, for a set of agents A, a committee size
k, a committee S’ € (’2), and a distance metric d, the social cost of the committee is given by

C(S', A;d) = Zd

acA
where d(a) € R contains the values {d(a, s) | s € S'} in increasing order.

Similarly to the classic setting with disjoint voters and candidates, the distortion of voting rules heavily
depends on the value of ¢. Indeed, a result by Caragiannis et al. [14] directly implies the existence
of (n, k)-voting rules with distortion 3 for ¢-cost whenever ¢ > %, since their result holds in a more
general setting with disjoint voters and candidates and general distance metrics. We complement this
result by providing a lower bound that ranges from % and 2 as q varies between [%] + 1 and k. For
q < %, Caragiannis et al. [14] showed that no rule provides a bounded distortion; we prove that this
impossibility still holds in our setting.

Theorem 3.3. Foreveryk € N withk > 2 andq € N withq < g, there existsn € N withn > k such
that, for every (n, k)-voting rule f, dist(f) is unbounded for utilitarian g-cost. For every k € N with

k > 3 and q € N with g + 1 < q <k, there existsn € N withn > k such that, for every (n, k)-voting
rule f, dist(f) is at least 2 — Mﬁ% for utilitarian q-cost.

These lower bounds are proven in Appendix A.3. To prove the bound for ¢ < %, we partition all but ¢
agents into L%J > 2 sets and consider two metrics that differ in the position of the remaining ¢ agents:
relatively close to the other agents in one metric; very far in the other. Selecting these ¢ agents leads
to an unbounded distortion in the former case but is necessary for a bounded distortion in the latter.
To prove the bound for ¢ > %, we consider three different metrics consistent with the same rankings
and show that, in one of them, there are g agents in one extreme that cannot be consistently selected.
This bound increases in ¢ and varies between % + 2t for g = 2 + 1 and 2 for ¢ = k; Figure 5.(a)

k+1)
illustrates it for & = 100 and ¢ between 51 and 100.

In the remainder of this section, we study the case where ¢ = k = 2 in further detail and achieve the
best-possible distortions of % and 2 for odd and even n, respectively, through natural voting rules that
are able to leverage the different objectives involved in the problem. In this setting, the social cost of a
committee S’ for an agent a is determined by the distance to the farthest agent in the committee S’.
Formally, for a set of agents A and a committee S’ € (13) the social cost is

C(S', A;d) = d(
grsréax a,s)
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(a) Stair diagram for n = 9. The red area corresponds to the (b) Stair diagram for n = 8. The red area corresponds to the
committee {3,4}; the green area to {6, 7}. committee {4, 5}; the green area to {5, 6}.

Figure 2: Stair diagrams for 9 and 8 agents. The common cost incurred by any committee is shown in gray; the
additional cost of two specific committees is shown in red and green.

On an intuitive level, the goal is to select agents that are both close to each other and close to the
median agent(s). In particular, it is not hard to see that the optimal committee always consists of two
consecutive agents: For any committee of non-consecutive agents, replacing the most extreme agent
among the selected ones with another closer to the median cannot decrease the social cost.

A visual aid for computing the social cost of a committee is what we call stair diagrams, illustrated
in Figure 2. The area below both staircases is a cost that every committee of size & = 2 must incur.
A specific committee {s1, s2} must incur, in addition, a cost equal to the area of the rectangle whose
basis is the line segment between both selected candidates and whose height is n (and potentially an
additional area to reach this point from the median). The figure illustrates the common area incurred by
any committee and the additional cost of two possible committees for each n € {8,9}. It also provides
an intuition of the difference between the cases with odd and even k. The following lemma bounds
the social cost of any committee from below and provides intuition about this objective. Its proof is
deferred to Appendix A.4.

Lemma 3.4. Let £ = (A, k, ) be an election and d > - a consistent metric. Then, for every committee
A
S = {s1,s2} € (5),

n—1

Yol dEi,n—i+ 1)+ "T_l -d(s1, s2) + SC(S', {%“},d) if n is odd,

SC(S', A d) >

n

?:1 d(i,n —i+1) + 5 - d(s1,s2) ifn is even.

We now establish tight distortion bounds of % and 2 for odd and even values of n, respectively. For
n = 3, it is easy to see that the optimal set corresponds to the median agent and the agent that the
median prefers among the others, which yields a simple rule with distortion 1. For n > 5 odd, we
introduce a voting rule called FavoriTE CoupLE. For an election £ = (A, k, ), we say that agents
a,b € A are a couple if they rank each other above all other agents; i.e., if b >, c and a > c for every
¢ € A\ {a,b}. Note that each agent can take part in at most one couple. FAvoriTE COUPLE selects the
closest couple to the median when restricting to the five middle agents.

Voting Rule 2 (FavoriTE CoUPLE). For a preference profile >, compute the order from left to right
1,...,nand let m = "TH be the median agent. If there is a couple among the sets {m — 1, m} and
{m,m + 1}, return it. Else, return {m + 1, m + 2} if m + 2 ., m — 2, and {m — 2, m — 1} otherwise.

On an intuitive level, this voting rule selects two consecutive agents who are both close to each other
and to the median agent. The restriction to middle agents is necessary; simply choosing an arbitrary
couple can lead to a distortion of up to 2. For example, this is the case if there are n agents with distances
d(a,a+1) =1+acforalla € [n— 1] and a small € > 0, as the only couple is {1, 2} with a social cost



of approximately %2, while the committee consisting of the median agent and any neighbor is close to

”72. This rule provides the best-possible distortion of % for an odd number of agents.

Theorem 3.5. For every odd n > 5, FAVORITE COUPLE achieves a distortion of% for utilitarian 2-cost.
There exists n € N such that, for every (n, 2)-voting rule f, we have dist(f) > %for utilitarian 2-cost.

To establish the distortion of FavoriTE COUPLE, we address different cases depending on the set selected
by this rule and the optimal set. In each of them, we can use the selection condition of the rule to bound
the social cost of the set selected by it from above and the optimal social cost from below and achieve a
ratio of at most % between them. Intuitively, in situations like the one illustrated in Figure 2.(a), FAVORITE
CoUPLE can select a suboptimal committee (e.g. the red one instead of the green one), but this imposes
several restriction on the distances, such as d(3,4) < min{d(4,5),d(6,7)} and 2d(3,4) < d(5,7) in
this example. In particular, this implies lower bounds on the common cost incurred by any voting rule.
We study and apply these inequalities carefully to prove our guarantee in Appendix A.5.

When n is even, the voting rule that selects the two median agents attains the best-possible distortion
of 2. The proof can be found in Appendix A.6.

Proposition 3.6. For an even number of agents n, the voting rule that selects the two median agents
achieves a distortion of 2 for utilitarian 2-cost. Moreover, there existsn € N such that, for every (n, 2)-voting
rule f, we have dist(f) > 2 for utilitarian 2-cost.

4 Egalitarian Social Cost

In this section, we study the worst-case distortion achievable by voting rules in the context of egalitarian
social cost. Recall that, in this case, given a set of agents A, a committee size k, and a distance metric d,
the social cost of a committee S’ € (‘2) corresponds to the maximum cost of this committee for some
agent a € A: SC(5’, A;d) = max{SC(5’,a;d) | a € A}. We start with the simple case k = 1 as a
warm-up, where S’ = {s} for some s € A and thus SC(5’, a; d) is simply d(a, s) for every a € A. The
following proposition, proven in Appendix B.1, states a tight distortion of 2 for this case.

Proposition 4.1. Foreveryn € N, any (n, 1)-voting rule has distortion 2 for egalitarian social cost. There
existsn € N such that, for every (n, 1)-voting rule f, dist(f) > 2 for egalitarian social cost.

4.1 Egalitarian Additive Cost

In this section, we study voting rules in the context of egalitarian additive social cost, defined as the
maximum over agents of the sum of the distances from the agent to all selected candidates. That is, for
a set of agents A, a committee size k, and a distance metric d, the social cost of a committee S’ € (f) is

SC(S', A; d) = max{ 3 d(a, s) ‘ ac A}.

ses’

We begin with a simple observation: When k£ = 2 candidates are to be selected, a simple rule selecting
both extreme candidates achieves the best-possible distortion of 1. Intuitively, this voting rule makes
sense because, for any selected committee, (1) the cost of the committee is maximized for one of the
extreme agents, and (2) the sum of the costs of the committee for both extreme agents is fixed (and
equal to two times the distance between them). Thus, selecting both extreme agents ensures they incur
the same cost and minimizes the maximum cost between them. This rule and its distortion will be
covered as a special case of the rule and result we introduce in what follows.

For larger k, the above intuition about the cost of any committee being maximized for the extreme
agents remains true. We state this property, which will be exploited in the development and analysis of
a voting rule guaranteeing a constant distortion, in the following lemma.
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Figure 3: Distortion of k-ExTREMES and lower bound stated in Theorem 4.3 for k € {2,...,99}.

Lemma 4.2. For every set of agents A = [n], committee size k, committee S e (12), and distance metric

d, it holds that SC(S’, A; d) = max{SC(S’,1;d), SC(S’,n;d)}.
Since for any set of agents A, committee size k, committee S’ € (‘2) and distance metric d we have that

SC(S', 1;d) +SC(S',n;d) = (d(1,a) + d(a,n)) = kd(1,n), (1)
a€es’

the previous lemma implies that the optimal committee will be the set that balances the cost for the
extreme agents as much as possible. Thus, it is natural to generalize the rule that selects both extreme
agents to larger committees, by selecting roughly % agents from each extreme.

Voting Rule 3 (k-EXTREMES). For a preference profile -, compute the order of agents from left to right
1,...,nandreturn S = {1,..., L%J}U{n— (%W —i—l,...,n}.

The following theorem states the distortion of this voting rule. It captures the previously claimed
distortion of 1 for k¥ = 2 and approaches % as k grows, which is best possible up to O(%) terms.

Theorem 4.3. Foreveryn,k € N withn > k > 2, k-EXTREMES has a distortion for egalitarian additive
social cost of at most % — ﬂ%—l) if k is even and at most % — ﬁ if k is odd. Conversely, for every k € N

with k > 3 there existsn € N withn > k such that, for every (n, k)-voting rule f, dist(f) > 2 — 1 for
egalitarian additive social cost.

The upper and lower bounds stated in this theorem are depicted in Figure 3; its proof is deferred to
Appendix B.3. For the distortion of k-EXTREMES, we assume w.l.o.g. that agent 1 (and not agent n)
incurs the maximum cost. The result follows easily when agent 1 incurs a small cost; the most involved
part of the proof involves bounding the social cost of any committee from below when this is not the
case. As for the lower bound, our worst-case instances involve k£ 4 1 agents in one extreme, a single
agent in the other extreme, and % agents in the middle, which are selected in the optimal committee but
cannot be detected by any rule when considering two symmetric distance metrics.

4.2 Egalitarian g-cost

In this brief section, we state our results for the egalitarian g-cost objective. The social cost is now the
maximum over agents of the distance from each agent to its gth closest candidate; i.e., SC(S’, A;d) =
max {d(a)y | a € A}. for a set of agents A, a committee size k, a committee S’ € (’2), and a distance

metric d, where d(a) € Rfl/ contains the values {d(a, s) | s € S’} in increasing order.

The following theorem, proven in Appendix B.4, states that no voting rule can guarantee a constant
distortion for g-cost when ¢ < £, as in the setting of disjoint voters and candidates [14]. To prove it,
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we partition the agents into L%J sets and consider two symmetric distance metrics where all but one
set are placed at a unit distance from one another and two sets in one extreme are at the same location.
We show that no rule can pick g agents from each location.

Theorem 4.4. For every k,q € N with g > q, there exists n € N withn > k such that, for every
(n, k)-voting rule f, dist(f) is unbounded for egalitarian q-cost.

In the context of egalitarian ¢-cost for g > %, much better results are possible. The case with ¢ > %
behaves similarly to the setting where a single candidate is to be selected: Any voting rule achieves a
distortion of 2, and this is best possible. When % < ¢ < %, the best-possible distortion a voting rule
can achieve is again 2, but not any rule does so. We show that k-EXTREMEs attains it. For the upper
bounds, we prove that the social cost of the set selected by this rule is at most the distance from the
agent closest to the center to their nearest extreme, and bound the social cost of the optimal set from
below by half of this distance. The proof is deferred to Appendix B.5.

Theorem 4.5. Letn,k,q € N be such thatn > k > 2 and q > % Ifq > % any (n, k)-voting rule
has distortion 2 for egalitarian q-cost. If ¢ > %, k-ExTREMES has distortion 2 for egalitarian q-cost. For
everyk,q € N with g > g > 1, there existsn € N withn > k such that, for every (n, k)-voting rule f,
dist(f) > 2.

5 Discussion

In this work, we have introduced the study of metric distortion in committee elections where voters
and candidates coincide and provided a first step towards an understanding of this setting by focusing
on the line metric. Our results span a variety of social costs and include both analyses of voting rules
and constructions of negative instances to provide impossibility results. Although most of our results
are tight, an intriguing gap remains for utilitarian g-cost when ¢ is greater than g We believe that rules
with a distortion better than the current upper bound of 3 exist, and their design may benefit from the
insights provided by our rule for ¢ = k£ = 2.

The study of the distortion of voting rules in more general metric spaces constitutes another interesting
direction for future work. As the lower bounds presented in this work remain valid and constant upper
bounds for g-cost would still be attainable due to the general result by Caragiannis et al. [14], the design
of voting rules providing a small distortion beyond the line in the case of additive cost is the main open
question in this regard.

Another challenge in the design of elections is preventing strategic behavior. A mild assumption in
the context of peer selection, adopted by the growing literature on impartial selection, is that agents’
primary concern is whether they are selected themselves, and a voting rule is deemed impartial if an
agent cannot affect this fact by changing their reported preferences. On the other hand, a rule is called
strategyproof in the voting literature if no agent can misreport their preferences and lead to a better
outcome with respect to their actual preferences. Both notions—impartiality and strategyproofness—can
be readily applied to our setting, the former being a relaxed version of the latter in this case. Most of the
voting rules developed in this work depend on the order of the agents and are thus strategyproof if one
restricts voters’ deviations to those that are consistent with this order. This constitutes a sensible way
to define these axioms, as inconsistent reports could be easily detected and punished by the designer.
A notable exception is the FAvoriTE CoUPLE rule, which does not depend exclusively on the order
and is not even impartial: For instance, an agent next to the median agent could in some cases modify
their ranking, reporting the median agent immediately after themselves, to create a couple and become
selected. Designing impartial and strategyproof voting rules with bounded distortion for peer selection
constitutes an interesting challenge for future work in the area.
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A Proofs Deferred from Section 3

A.1 Proof of Lemma 3.1

Lemma 3.1. For any election £ = (A, k, =) and consistent metric d > >, there existsi € [n— k + 1] such
that, defining S* = {i,i+1,...,i+ k — 1}, we have SC(S*, A; d) = min {SC(5’, A;d) | S’ € (’2) }

Proof. Let £ = (A, k,>) with A = [n] and d be as in the statement, and let also x > > be a consistent
position vector defining d. The result is trivial if £ = 1, so we assume that k£ > 2 in what follows. We
first observe that, by Lemma 2 in Babashah et al. [7], SC(a, A; d) < SC(b, A; d) holds for a,b € A are
such that either (1) a,b > ”TH and a — "TH <b- "7“ or (2) a,b < "TH and"T‘"1 —a < "TH —b.
In simple words, if two agents lie on the same side of the median agent(s), the agent closer to them
has a lower cost. Thus, there exist S* € (‘2) that minimizes the social cost such that {mj, ms} C S*,
where mq = L"T‘HJ and mo = ["T‘H] denote the median agent(s) (note that m; = mg if n is odd). Now,
suppose that S* is not consecutive. Since my, mg € S*, there exists an agent a ¢ S* and b € S* such
that either (1) a, b > ”T‘H and a — ”T‘H <b-— ”‘2*'1,or(2)a,b < "T‘H and"T+1 —a< "TH — b. But then,
using the result by Babashah et al. [7] again, we obtain that SC((S* \ {b}) U{a}, A;d) < SC(S*, A;d);
i.e., we can exchange b by a and the social cost of the committee does not increase. By repeating this
procedure, we reach a committee with consecutive agents and minimum social cost, as claimed in the

statement. O

A.2 Proof of Theorem 3.2

Theorem 3.2. The distortion of MEDIAN ALTERNATION is at most %(n — /2 L%_kj n) for utilitarian

additive social cost.

In order to prove Theorem 3.2, we will show that we can reduce any metric to another one where all
agents are in one out of two locations. As a first step, we prove that an agent (or set of agents at the
same location) can always be moved in one direction such that the distortion does not improve, as long
as they do not pass through other agents’ locations. To this end, for a position vector z € (—o0, 00)",
a position T € (—00,00) such that A(Z) # 0, and 6 > 0, we define the shifted position vectors
z=(Z,0), 27 (Z,8) € (—00,00)™ as follows:

o (Z,0) =24 —dforeverya € A(Z), z,(%,0)=uxz,foreveryac A\ A(Z),
1 (Z,0) = x4 + 6 for every a € A(Z), x5 (Z,0) =z, foreverya € A\ A(%).

X

Lemma A.1. Let £ = (A, k,>) be an election with A = [n], let S € (’,3) be the committee selected by
MEDIAN ALTERNATION on this election, and let © € (—o00, 00)™ with x > > be a consistent position vector.
Let T € (—00,00) be such that A(z) # 0, let 5 > 0 be such that A((Z — 0,Z + 9)) = A(Z) and let
x~ =27 (%,9) and x™ = 27 (Z,6). Then, for all preference profiles =, =" such that v~ > =~ and
xt > =7, at least one of the following inequalities holds:

dist(S, (A, k,=");27) > dist(S,&;x), or dist(S, (A, k,=T);27) > dist(S, &; x).

Proof. Let £ = (A, k,=),S,x,Z,8,z—,x", =, and = be as in the statement. We denote by d, d~,
and d* the distance metrics associated to z, x—, and =™, respectively.

We first consider an arbitrary committee S’ € (‘2) and compute the difference between the social cost of
this committee under metric d and under both of the other metrics. From the definition of the additive
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social cost, for any a € A such that z, < ¥ we have that

SC(S",a;x7) = Z d (a,b) + Z d (a,b)

beS'NA(z) beS\A(Z)
= > (dab—-6+ Y dab)

beS'NA(Z) beS'\A(Z)
=SC(S,a;x) — 615" N A(Z)|. (2)

Similarly, for any a € A such that z, > Z we have that

SC(S,a;27) = Z d (a,b) + Z d” (a,b)

beS'NA(%) beS/\A(%)

= > (dab)+8)+ > dab)

beSNA(z) beSN\A(z)
=SC(S,a;x) + &S N A(z)|. (3)

Finally, for every a with z, = 7, i.e., a € A(Z), we have that

SC(S, a;a”) = > d~(a,b) + > d~(a,b)

beS'NA((—00,Z)) beS'NA((Z,+00))
= Yoo (dab) =6+ > (d(a,b)+9)
beS'NA((—00,T)) beS'NA((Z,+00))

= SC(S, a;2) + 8 (|S" N A((Z, +00))| — 8" N A((—o00, T))|). (4)

Combining egs. (2) to (4), we obtain from the definition of utilitarian social cost that

SC(S, A;27) =) SC(S'
acA
— SC(S', A;z) — 615 N A(®)| (JA(—o00, )| — |A(Z, +0)))
— 6| A(@)] (18" N A((—00,2))| = [S" N A((Z, +00))|).

One can proceed analogously for d* to obtain

SC(S, A;2T) = SC(S, A;z) + 6|5’ N A(z)| (JA(—00,7)| — | A%, +00)))
+8|A@)] (15" N A((—00, 7)) — |S' N A((Z, +00))]).-

Hence, there exists a value A(S’), that only depends on the committee §, such that

SC(S', A;27) = SC(S', A;x) — A(S), SC(S', A;xt) =SC(S', A; x) + A(S). (5)

We let S* denote an optimal committee for the metric d in what follows, i.e., a committee such that
SC(S*, A;z) = min {SC(9', A;z) | 8 € (’g) }. We observe that

. . SC(S, A;z7) SC(S, A;z7) SC(S, A;x) — A(S)
. — > =
dlSt(Sv (A7k7> )7x ) minsle(A) SC(SI,A; l‘*) — SC(S*,A;.%‘*) SC(S*,A; :E) _A(S*)a
k
(6)
and
. _ SC(S, 4;x) SC(S, A;z) SC(S, A; x) + A(S)
A .o+ — > ) I — i ) .
dist(S, (A, k, =7); ™) ming, (4 SC(S', A;a™) = SC(S*, Az¥) — SC(S*, Az) + A(SY)
(7)

If either SC(S*, A;z) = A(S*) or SC(S*, A; x) = —A(S™) holds, the distortion becomes unbounded
in one of the new instances and the result follows directly. Otherwise, it follows from the simple
property stated in the following claim.
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Claim A.1. For any valuesy,z € Ry andw € (—z, z), we have either % > Yorf=2 >

RS

S

Proof. Suppose towards a contradiction that both % < ¥and == < Y hold. Since w < z, the first

zZ—w
inequality is equivalent to

2(y+w) <y(z+w) <= 2w < yw.

Since w > —z, the second inequality is equivalent to
2(y —w) < y(z —w) <= yw < zw.

As the inequalities contradict each other, we conclude. O

Applying these properties to inequalities (6) and (7), we obtain that either
SC(S, A; x) + A(S) S SC(S, A; x)

: - 2T) > R .
dist(S, (A, k, =" );2™) > SC(S*, A z) £ A(SY) = 5C(S*, A7) dist(S, &; z)
o SC(S, A;z) — A(S) _ SC(S, A: )
) — .
. =N p2) > ) £y > [ — di .
dist(S, (A, k, =" );27) > SC(S™, A z) — A(SY) = 5C(S*. Aia) dist(S, &; z)
holds, concluding the proof. O

We can use the previous lemma to conclude that, for every election and consistent metric, MEDIAN
ALTERNATION selects a committee such that, under another metric with only two locations, the distortion
does not improve.

Lemma A.2. Let £ = (A, k,>) be an election with A = [n], let S € (’2) be the committee selected

by MEDIAN ALTERNATION on this election, and let x € (—00,00)"™ with x I> > be a consistent position
vector. Then, there exists a position vector ' € (—00,00)" such that x!, € {x1,2,} for everya € A
and dist(S’, (A, k,>"); ') > dist(S, &, z), where =’ is any preference profile such that 2’ > >’ and
S’ e (‘2) is the committee selected by MEDIAN ALTERNATION on the election (A, k, >").

Proof. Let £ = (A, k, =) and z be as in the statement, where, as usual, x; and x,, represent the positions
of the two extreme agents. To construct 2’ as claimed in the statement, we iteratively move agents
toward the positions of the extreme agents using Lemma A.1. Specifically, we initialize ' = z and, as
long as z}, € (21, xy,) for some a € A, we fix T = x,, we define

§* =max{d > 0| A((Z — 6,7 + ) = A(Z)},

and we update xj < x} & ¢* for every b € A(Z) and the sign that ensures not increasing the distortion
dist(S, A;2’) of S. Note that the definition of ¢* ensures both the existence of this sign, due to
Lemma A.1, and the fact that the number of different positions |{y € (—o0,00) | Ja € [n] : 2}, = y}|
is reduced in each step. Thus, the procedure terminates with a vector 2’ € (—o0, c0) such that (1)
xl, € {x1,x,} for every a € A, and (2) the distortion of S under the resulting metric has not decreased.
Note that, since the order of the agents has not been changed besides ties, we have either S' =
if the committee selected by MEDIAN ALTERNATION has not changed or S’ # S but SC(5’, A4, ')
SC(S, A; z') if the committee has changed due to a different tie-breaking.

Ol

We now proceed with the proof of Theorem 3.2.
Proof of Theorem 3.2. Let £ = (A, k, =) be an arbitrary election, where A = [n] is the set of agents.

Let d > > be any consistent distance metric induced by positions x € (—00,00)", and let S denote
the committee selected by MEDIAN ALTERNATION on this election. From Lemma A.2, we know that
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there exists a new position vector 2’ € (—o0,00)" and associated election &' = (A4, k,>'), with
a2’ > =/, such that where all agents are positioned at the two extreme positions of the original instance
and the distortion in &’ is at least as bad as the distortion in &; i.e., 2/, € {z1,2,} foreverya € A
and dist(S’, (A, k,>");2") > dist(S, &, x), where S’ denotes the committee selected by MEDIAN
ALTERNATION on &’. Thus, it suffices to compute the distortion for this election £’ to bound the
distortion of the voting rule. As usual, we denote by d’ the metric induced by the position vector z’.

We partition the set of agents into two groups, A = A;UA,,, where
Ai={a€cA|z, =x1}and A, ={a € A |2, =x,}

denote the sets of agents located at positions 21 and x,, under the position vector 2/, respectively. We
let S; = S’ N Ay and Sy = S’ N A, denote the agents selected by MEDIAN ALTERNATION on &’ from
agents in A; and Ay, respectively. Then, the social cost of S’ is given by

C(S' A;d) = Z Zd x1,xp) Z Zd’(aﬁn,aﬁb)

a€Aq beS’ acA, bes’
= |A1] - [Snl| - d'(z1,20) + [An| - [S1] - d' (21, 20).

On the other hand, the optimal committee S* clearly minimizes the total social cost by selecting as
many agents as possible from the larger group between A; and A,, as this cost is only incurred by
agents in the smaller set. We suppose that |A,,| > | 41| w.l.o.g. We have two cases: either |[A,,| > k or
|Ap| < k. In the former case,

SC(S*, A;d) = |Ay| - k- d'(x1, xp),
while in the latter case,
SC(S™, Asd) = |A1] - [An| - d' (w1, 20) + [An| - (k = [An]) - d' (21, 20).
Since |A,| > |A1| implies
A1l - [An| - d'(z1,20) + |An| - (k = |Anl) - d' (21, 20) > [A1] - k- d (21, 20),

the social cost induced by S* is smaller when |A,,| > k and it suffices to bound the distortion in this
case. Therefore,

dlSt(f) SC<S A; d/) _ ‘A1’ ‘ ‘ d/($1,xn) + ‘A ‘ ’Sl‘ .’El,xn)
SC(5*, A;d') [Ar] - - d' (w1, 20)
|A1] - [Sn] + [An] - [S1]
= . 8
|A1] - k 8)

If |S,| = k, we obtain dist(f) = 1. In what follows, we thus assume S; # (). From the definition
of the MEDIAN ALTERNATION voting rule, we know that |4,,| — |S,| = |41] — |S1] if n — k is even,
and either |A,| — |Sn| = |A1] — |S1] + 1 or |Ayn| — |Sn| = |A1] — |S1| — 1 if n — k is odd. Since the
distortion increases in |S;| for fixed n and k due to the assumption that | 4,,| > | 44|,
is |An| — [Sn| = |A1] — |S1]| + 1 when n — k is odd, so we restrict to it in what follows. For ease of
notation, we define a value y € {0, 1}, such that x = 0if n — k is even and x = 1 if n — k is odd, so
that we can express the previous equations simply as

[Anl = 5n] = [A1] = |S1] + X

From this equality, alongside |A1| 4+ |A,,| = n and |S1| + |Sy| = k, we can express all | A1), |S1
|Sp| in terms of |A,,| as follows:

n+k+x n—k—x

|A1| =n — Ayl |S1| = B — |Axl, |Sn| = |An| —
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Replacing in inequality (8), we obtain

: (n = |An]) (J4n] = "=57%) + [An| (55 — | 44)) 1( (n—k—x)n )
dist(f) < 214, - — 2
o (o TAuDF A S T
h(|Anl), ©)
where we have defined a function h: { [%w N 1} — R, which evaluated at |A,,| gives the last

expression. Its first and second derivatives are given by

/ 1 (n—k—x)n " _ (n—k—x)n
’”y)‘k<2‘ 2n 9 ) S e

Since h”(y) < 0 for every y in the domain of &, an upper bound for the value of h is given by its value

at y*, where y* is such that

* * 1
Wy ) =0y =n-—3 (n—Fk—x)n.

Combining this fact with inequality (9), we conclude that

deﬁ§M¢%=i@<n—; m—k—xm>—

2o V)

which is the same as the expression in the statement. O

(
2.2/ (n—k—x)n

A.3 Proof of Theorem 3.3

Theorem 3.3. Foreveryk € N withk > 2 andq € N withq < %, there existsn € N withn > k such
that, for every (n, k)-voting rule f, dist(f) is unbounded for utilitarian q-cost. For every k € N with
k > 3 and g € N with % + 1 < q <k, there existsn € N withn > k such that, for every (n, k)-voting

rule f, dist(f) is at least 2 — 4(1]‘;% for utilitarian q-cost.
We prove the lower bounds in the statement via two separate lemmas; the theorem then follows directly.
Lemma A.3. Foreveryk € N withk > 2 and q € N withq < %, there existsn € N withn > k such

that, for every (n, k)-voting rule f, dist(f) is unbounded for utilitarian q-cost.

Proof. We let k and g be as in the statement, fix n € N to a large value, in particular with n > 2k + ¢
(we will ultimately take the limit n — 00), and consider an arbitrary (n, k)-voting rule f. We denote

p= LqJ > 2 and partition the agents into p+1 sets A = UZ 1A;UB, such that | 4;| € {Ln 1], [npq}
for every i € [p] and | B| = q. Note that this is possible since

n_ —
p{qJ+q<n<p{ qJ+(1~
D D

We consider the profile =€ £"(n), where

(i) b >4 c whenevera € A;,b € Aj,c € Ay for some i, j,¢ € [p]

(ii) b >, c whenever a € A;,b € Aj,c € B for some i, j € [pl;

(iii) b >, c whenever a,b € B, c € A; for some i € [p];
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(iv) b >4 c whenever a € B,b € A;,c € A; for some i, j € [p] with i > j;

and the remaining pairwise comparisons are arbitrary. We consider the election £ = (A, k, ) with

A =n].

In what follows, we distinguish whether f selects all ¢ agents in B or not and construct appropriate
distance metrics to show that, in either case, the distortion can be arbitrarily large. Intuitively, if f
selects B we will consider this set to be relatively close to A,, so that picking g agents from each set
A1, ..., Ay would give a much lower social cost. On the contrary, if f does not select B, we will place
this set extremely far from all others, so that the social cost of the selected set is huge compared to the
social cost of a committee containing B.

Formally, we first consider the case with B C S and define the distance metric d; on A given by the
following positions x € (—00, 00)™: x, =i — 1 for every a € A; and every i € [p], and z, = 2(p — 1)
for every a € B. It is not hard to see that dy > >; see Figure 4 for an illustration. Since B C S, we
have that ‘S N Uz‘e[p} Ai‘ < k — q. Hence, from an averaging argument, there exists j € [p] with

k—q q
NA| < —— = =(k — )
sna) <t =ik -a) <q
From the definition of ¢-cost, we thus have

SC(S,a;d1) > min{di(a,b) |be A\ A;} >1 foreverya € Aj. (10)

On the other hand, consider the set S = U;c[,S;, where S; C A; and |S;| > ¢ for every i € [p]. Note
that this set exists because pqg = k and

n — 2k
|A;| > { qu > th > q,

where we used our assumption n > 2k + g. From the definition of g-cost, we have that SC(S, a;d;) = 0
for every a € A; and every i € [p|. For each a € B, we have SC(S,a;d;) = p — 1. Combining these
facts with inequality (10), we obtain

N SC(S, A; dy) |4, n—gq|_ 1 _|(n-gq| _1
d t(-’((H’&ZSC(S,ILX;dl)Z(p—l)lB\Z{ p J(P—l)q { k J k—aq

We now consider the case with B Z S and define the distance metric d2 on A given by the following
positions x € (—00,00)": x, =i — 1 for every a € A; and every i € [p], and 2, = p — 1 + Mn for
every a € B. It is not hard to see that dy > >; see Figure 4 for an illustration. Since B ¢ S, we have
that |S N B| < ¢ and thus, by the definition of g-cost, we have

SC(S, a;dz) > min{da(a,b) | b€ A\ B} > Mn foreverya € B. (11)

On the other hand, consider the set T = B U Uie[p—uTz” where T; C A; and |T;| > ¢ for every
i € [p — 1]. Note that this set exists because (p — 1)¢ = k — g and

n— 2k
4] > { qJ > {qJ >q,
P k
where we used our assumption n > 2k + g. From the definition of g-cost, we have that SC(T, a; d3) = 0

for every a € A; and every i € [p — 1] and SC(T', a; d2) = 0 for every a € B. For each a € A, we
have SC(T, a; d2) = 1. Combining these facts with inequality (11), we obtain

Mn|B] 1 1
> Mng= ———
4, = o] =

dist(f(=), &) > oS Aidz)

>
B SC(T, A; dg) -

Mng.
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. 1 1 1 p—1
Metric d; e—o—o - - - @ ® ®
Ay A As Ap—1 Ay B
. 1 1 1 Mn
Metric do o——o o - - - @ e T __ - o
Aq Az As Ap—1 Ay B

Figure 4: Metrics considered in the proof of Lemma A.3. In this and all similar figures throughout the paper, the
(sets of) agents are represented by circles, with the identity of the agents or sets below them, and the distances
between them are written on top of the corresponding line segments. All figures consider indistinguishable
metrics for a certain preference profile of the agents and thus any voting rule must select the same subsets for
any of these metrics.

Since dist(f(>),&) > L@J . ﬁ if B C S and dist(f(>),&) > WMTLQ otherwise, we
=

conclude that

which can be unbounded by taking n and M arbitrarily large. O

Lemma A.4. Foreveryk € N withk > 3 and ¢ € N with % +1 < g <k, there existsn € Nwithn > k
such that, for every (n, k)-voting rule f, dist(f) is at least 2 — Mﬁ% for utilitarian q-cost.

Proof. We let k and ¢ be as in the statement and fix n = 2(3¢ — k — 2), and consider an arbitrary

(n, k)-voting rule f. We partition the agents into four sets A = U?ZlAi such that |A;| = |A4] =q¢—1
and |As| = |A3| = 2q — k — 1. Note that all these values lie between 1 and ¢ — 1. Indeed, this is
trivial for |A1| and | A4|, whereas for | As| and |A3| we have 2¢ —k —1>2(5 +1) —k—1=1and
2g—k—1<2g—q—1=q— 1, where we have used that ¢ lies between % + 1 and k.

We consider the profile =€ L£"(n), where

(i) b >4 c whenevera € A;,b € A;,c € Ay for some i, j, ¢ € [4] with |i — j| < |t — £];
(ii) b >, c whenever a € Ay, b € Aq,c € As;

(iii) b >4 c whenever a € A3, b € Ay, c € Ag;

and the remaining pairwise comparisons are arbitrary. We consider the election £ = (A, k, ) with

A =n].

In what follows, we distinguish whether f selects ¢ or more agents from A; U As, from A3 U Ay, or from
none of them, and construct appropriate distance metrics to show that, in either case, the distortion is
at least the one claimed in the statement. Intuitively, if f selects less than ¢ agents from both A; U A
and from Az U A4, we will consider A; U Ay on one extreme and Az U A4 on the other, so that picking
q agents from any of these sets would lead to a lower social cost. If f selects g or more agents from
A1 U Ay we will consider a metric where Aj lies in one extreme, Ao in the middle, and both A3 and A4
in the other extreme, so that picking all agents from A4 would lead to a lower social cost. If f selects ¢
or more agents from A3 U A4, we will construct a symmetric instance.

Formally, we first consider the case with |S N (A; U A2)| < gand |S N (A3 U A4)| < ¢ and define the
distance metric d; on A by the following positions z € (—o0, 00)™: x, = 0 for every a € A; U Ay
and x, = 2 for every a € A3 U Ay. It is not hard to check that d; > >; see Figure 5.(b) for an
illustration. It is clear that SC(S, a; d;) = 2 for every a € A. If we consider the alternative committee
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S'=A1UA; € (’2), we have SC(S’,a;dy) = 0 for every a € Ay U Ag and SC(S’, a;d;) = 2 for every
a € A3 U Ay. We obtain
SC(S,A;d1)  2-n

' > _ — 9.
dist(f(-), £) 2 SC(S, Ajdy) 2%

If|[SN(A3UA,)| > g, we define the distance metric d2 on A by the following positions x € (—o0, 00)™:
x4, = O foreverya € A; U Ag, z, = 1 for every a € As, and x, = 2 for every a € Ay. It is not hard to
check that do > >; see Figure 5.(b) for an illustration. Since |S N (A1 U Ay U A3)| < (k —q) + |As| =
g —1 < g, we have that SC(S, a; d2) = 2 for every a € A; U As. Furthermore, since both |A3| < ¢ and
|A4| < g, we have that SC(S, a; da2) = 1 for every a € A3U Ay. If we consider an alternative committee
S'C AjUAy € (’2), which exists due to |A; U Ag| = 3¢ — k — 2 > ¢, we have SC(5’, a; d2) = 0 for
every a € Ay U Ao, SC(S’,a;dy) = 1 for every a € As, and SC(S’, a;dy) = 2 for every a € Ay. Thus,
we obtain
, SC(S, A; d2)
dist(f(>),&) > SC(S, A; d)
B 2’141 U AQ‘ + ‘Ag U A4‘
|A3| + 2| A4
3(3g —k—2)
(2¢q—k—1)+2(¢g—1)
k—q
C4g—k-3

Analogously, if |S N (A1 U A2)| > ¢, we define the distance metric d3 on A by the following positions
x € (—00,00)": x, = 0 foreverya € Ay, z, = 1for every a € Ay, and z, = 2 for every a € A3 U Ay.
It is not hard to check that d3 > >-; see Figure 5.(b) for an illustration. Since |S N (As U A3 U Ay)| <
(k —q) + |A2| = ¢ — 1 < g, we have that SC(S, a; d3) = 2 for every a € A3 U Ay. Furthermore, since
both |[A1| < g and |A2| < g, we have that SC(S, a; d3) = 1 for every a € A; U As. If we consider an
alternative committee S’ C A3 U Ay € (?) which exists due to | A3 U Ay| = 3¢ — k — 2 > ¢, we have
SC(5’,a;ds) = 0 forevery a € A3 U Ay, SC(S’,a;d3) = 1for every a € Ay, and SC(S’, a;d3) = 2 for
every a € Aj. Thus, we obtain
SC(S, A;ds)
SC(S’, A; d3)
B 2’143 U A4| + ‘Al U A2|
|Ag| + 2| A4
3(3¢g — k —2)
(2¢g—k—-1)+2(¢g—1)
k—q
S dg—k-—3

dist(f(>),€)

Since dist(f(>),€) > 2 — 4q]i_kq73 regardless of f(>), we conclude that dist(f) > 2 — 4q]i;‘i3. O

A.4 Proof of Lemma 3.4

Lemma 3.4. Let £ = (A, k, ) be an election and d > - a consistent metric. Then, for every committee
S = {81,82} € (g),

n—1
S22 d(i,n —i+ 1) + 251 - d(sy, s2) + SC(S', {251 }:d)  ifn is odd,

n

Zidi,n—i+1)+ 3% -d(s1,s2) if n is even.

SC(S’, A; d) >
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distortion

A
21 2
1 Metric d [
1.9 YA, U A, Az U Ay
1.8 1
) 1 1
1.7 1 Metricd, @ ° °
AL U As As Ay
1.6 1
1 1
1.5 7 Metric ds ® o @
ﬁ_/\ A1 A2 A3 ] A4
——t——t+—+——+—+>(
50 60 70 80 90 100
(a) Lower bounds for £ = 100, ¢ € {51,...,100}. (b) Metrics considered in the proof.

Figure 5: Lower bound on the distortion of any rule for utilitarian g-cost for ¢ > g as stated in Lemma A.4, and
metrics used to prove it.

Proof. Let £ = (A, k,>) with A = [n] and d be as in the statement and S’ = {s1,s2} € (’2) an
arbitrary committee. We assume that s; < sy w.lo.g. Leti € {1,..., L%J} be a fixed agent. If
1 < 81 < 82 <n — i+ 1, we have that the cost of the committee for agents ¢ and n — ¢ + 1 is at least

SC(5,i;d) + SC(S',n — i+ 1;d) = d(i, s2) + d(s1,m — i + 1) > d(i,n — i + 1) + d(s1, s2).
Similarly, if so < i, we have

SC(S',4;d) +SC(S",n — i+ 1;d) = d(s1,i) + d(s1,n —i+1) > d(i,n —i+ 1) + d(s1, s2),
andif sy >n—1+1,

SC(S,i;d) + SC(S',n — i+ 1;d) = d(i, s2) + d(n — i+ 1,59) > d(i,n — i+ 1) + d(s1, 52).

Summing up over all agents, we obtain

' M w3
[

SC(S', Ayd) = S (SC(S,isd) + SC(S,n— i+ 1;d) > > d(i,n—i+1)+ gd(sl, 52)
i=1 i=1
if n is even, and
n—1
- n+1
SC(S', A;d) = Y (SC(S',45d) +SC(S",n —i+1;d)) + SC (S’, 5 ;d>

<
Il
-

3

1 1
>3 d(in—i+ 1)+ an(sl,SQ) +sc<5’, "; ;d)
=1

if n is odd. O

A.5 Proof of Theorem 3.5

Theorem 3.5. For every oddn > 5, FAVORITE COUPLE achieves a distortion of% for utilitarian 2-cost.
There existsn € N such that, for every (n,2)-voting rule f, we have dist(f) > % for utilitarian 2-cost.

Proof. We consider an arbitrary election & = (A, k,>) withn > 5 and A = [n], and a consistent
metric d > >. We denote the five middle agents by aq, ..., as from left to right, with a3 being the
median agent. We let S denote the committee selected by FAvorITE CouPLE and S* denote the optimal
committee for the metric d. We analyze two main cases, depending on whether the rule selects the
median agent or not.
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Case 1: a3 € S wlo.g., we assume that as >,,; a4, which implies that the selected committee is
S = {aga, as}. This implies that agents as and ag form a couple, and both d(a2, a3) < d(ai,as) and
d(ag,a3) < d(as, as) hold. Therefore,

d(ai,as) > 3-d(az,a3), d(az,as)>2-d(ag,as). (12)

For each i < "5+ L. the joint cost of S for agents i and n — i + 1 is given by
SC(S,i;d) +SC(S,n — i+ 1;d) = d(i,a3) + d(az,n — 1+ 1) =d(i,n — i+ 1) + d(az, a3).

Since the median agent incurs a cost of SC(A, as; d) = d(asg, az), we obtain:

n—3

2 1
SC(S, A;d) = d(i,n—i+1)+ d(az, as) + (”2> d(az, as) + d(az, as)
=1

> . ) n+1
= Zd(z,n—z+1)+ 5 d(az,a3) + d(az, as).
i=1

On the other hand, by Lemma 3.4, we have:

n—1

SC(S*, Aid) > Y " d(i,n —i+ 1) + SC({as}, A; d)
i=1
n—3
2
> > d(i,n—i+1)+d(as, as) + d(a2, a3),

i=1
where we used, for the second inequality, that the cost of the median agent is at least d(asg, a3) due to
the assumption that ap ., a4. Thus, the distortion is:

SC(S, A;d)
SC(S*, A;d)
n—3
- S d(i,n—i+ 1)+ (%) d(ag, ag) + d(az, as)

= n—

iz d(i,n—i+1) +d(az, a3) + d(az, as)
<(”T_3)'3'd(a2aa3 (251) - d(ag,a3) +2- d(a2,a3):4”2;8+2:4n—4
~ (%5?) -3 d(az,a3) +d(az, a3) + 2 d(az, as) 39 43" 3n-3

where the second inequality follows from inequalities (12) and the fact that d(i,n —i 4+ 1) > d(1,5)
for every ¢ < ”Tf?’ This concludes the proof for this case.

dist(f) =

w

Case 2: a3 ¢ S In this case, we either have S = {a1, a2} or S = {a4, as}; we assume the former
w.l.o.g.. From the definition of FAvORITE COUPLE, this implies that {a9, a3} and {as, a4} are not couples,
so we must have a1 >, asg and a5 >, as. It also implies that a; >,, as, since {a4,as} would be
selected otherwise. In terms of distances:

d(az,a3) > d(a1,a2), d(as,as)> d(as,as), d(asz,as) > d(ar,as). (13)

Similarly as before, the social cost of the selected committee is

- -3
SC(S, A;d) = Z d(i,n—i+1)+ (n ) d(ai,a2) + d(ay,az) + d(a1,a3) + d(ai, as)
i=1

3
) d(ay,a2) + d(ag, as) + d(az, as).

n—3
2

— S din—i+1)+ ("+
i=1
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We now consider two cases depending on whether a3 is in the optimal committee.

Case 2.1: a3 € S*. If the median agent is selected in the optimal committee, we have from Lemma 3.4
that

n—3

SC(S’"7 A; d) > 22: d(’i, n—1i+ 1) + d(ag, a4) + <n21 + 1> min{d(ag, ag), d(ag, a4)}. (14)
=1

We now claim that (%! + 1) min{d(as,as),d(as,as)} > 3d(ai,as). Indeed, if we have
min{d(as, a3), d(as,as)} = d(as, as), this holds because 251 + 1 > 3 and, due to inequalities (13),
3d(az, az) > 3d(a1,a3). f min{d(as, as), d(as, as)} = d(as, as), this holds because 251 +1 > 3 and,
due to inequalities (13), 3d(as, as) > 3d(as,as) > 3d(a1,as).

Replacing in inequality (14), we obtain

n—3

S ) 3 3
SC(S*, A;d) > > d(i,n —i+1) + d(az, as) + 5 " dla1,a2) + 5 - d(az, as).
i=1
Thus, the distortion is
n—3
dist(f) = SC(S, Asd) _ iy dlin—i+1) + (242) d(ay, az) + d(ag, az) + d(ag, as)
- * A — n—3
SC(5*, A;d) o2 di,n—i+1) +d(ag,as) + % ~d(ay,az) + % -d(ag,as)

]
w

—~ |

‘5

(V]

w
~— ~—[~—
NN TS

|
Wl

~d(ar, a2) + (2) d(a1, a2) + d(a1,a2) + 2 - d(a1, as)
-d(al,a2)+2~d(a1,a2)+%-d(al,ag)—{—%-d(al,az)
> + (M2 +1+2
R
:4n—12+n+3+2+4:5n—3 <§<%

n —-124+44+3+3 dn—2 4= 3

<

| (™

]
w

where the second inequality follows by applying inequalities (13) and the fact that d(i, n—i+1) > d(1,5)
for every ¢ < "773 We conclude the distortion bound of % for this case.

Case 2.2: a3 ¢ S*. We begin by rewriting the social cost of S more conveniently as

3
w

2
SC(S, A;d) = Z d(i,n—i+1) + (n > d(a1,a2) + d(a1,a2) + d(ay, a3) + d(ay, as)
i=1
n—3
~ : n+1
= Z d(i,n—i+1)+ d(ay,a2) + d(a1,as3) + d(az,a3) + d(as, as)
i=1
n—3
~ . n+1
< Z d(i,n—i+1)+ d(ay,a2) + d(as, as) + d(az, a3) + d(as, as),

i=1

where the last inequality follows from inequalities (13). We distinguish two further cases to bound the
social cost of the optimal committee from below, depending on whether the optimal committee selects
agents from the left or from the right side of the median.
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Case 2.2.1: S* C {a4,as,...,n} If the optimal committee selects an agent on the right side of the
median agent, its social cost satisfies

n-3 n=3
2 2
SC(S*vAa d) > Zd(i,n—i+1)+d(a2,a5)+d(a3,a5) = Zd(ian_i+1)+d(a27a3)+2d(a37a5)'
i=1 =1

Thus, the distortion is

—3

SC(S, A4;d) < ZZ L di,n—i+1)+ (”TH) d(a1,a2) + d(ag, as) + 2d(as, as)

dist(f) = I s
()4 d(ah% ( ) (a1,a2) + d(ar, az) + 2 - 2 - d(ay, as)
B (n23) 4-d(ar,a2) +d(ai,a2) +2-2-d(a, az)

("3%) 4+ (%) +1+4
(%52) 4+1+4
An—-124n+1+2+48 Sn—1 4
B 3

IN

= <
dn—12+2+8 4dn — 2 —

where we used inequalities (13) for the second inequality.

Case 2.2.2: S* C {1,...,a1,a2}. IfS* =S, the distortion is trivially 1 and we conclude. Otherwise,
the social cost of S* satisfies

n—3
5
SC(S*, A;d) > Z d(i,n —i+1)+d(a1,a2) + d(ai,a3) + d(ay, as).
i=1
Thus, the distortion is
. _ SC(S,A;d)
Bist(f) = 5c(se, 4 a)
- ZZ d(i,n —i+1) + (252) d(a1, a2) + d(a1, az) + d(a1, a3) + d(a1, aq)
> n=3
o2 d(i,n—i+1) +d(ar, a2) + d(ar,a3) + d(a, aq)
< (252) - 4d(a1, a) + ( 2) d(ay, az) + d(a1, a2) + 2d(a1, az) + 3d(a1, a)

- (%52) - 4d(a1, a) + d(ay, az) + 2d(a1, az) + 3d(ay, az)
dn—12+n-3+2+4+6_5n-3 4
dn—12+2+4+6  4n 3’

where we used inequalities (13) for the second inequality. This concludes the proof of the distortion of
FAVORITE COUPLE.

For the lower bound, we fix n = 5 and an arbitrary (n, 2)-voting rule f, consider the profile =€ £°(5)
defined as

1>12>13>=14>15,
2>91>93%>=94%>25,
3>32>31>34>35,
4454342 >41,
D>54>53>52>51,
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Metric d; ® @ @ ®
1 2 3 4,5
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Metric do ® L @ L )
1,2 3 4 5

Figure 6: Metrics considered in the proof of Theorem 3.5.

and consider the election £ = (4, 2, >) with A = [5]. We distinguish two cases depending on the set
of agents S = f(-) selected by the rule.

Suppose first that S = {1, 2}. We take the distance metric d; on A given by positions z; = 0, 3 = 1,
x3 = 2, and x4 = x5 = 4. It is not hard to check that d; > >; see Figure 6 for an illustration. Since
SC({1,2}, A;dy) = 12, and SC({4, 5}, A;d;) = 9, we obtain

SC(S, A;dy) 12 4

dist(f(>),&) > mins/e(’;) SC(S", A; dy) >~ =

9 3

IfS € {{2,3},{3,4},{4,5}}, we consider the distance metric d2 on A given by positions 21 = x3 = 0,
x3 = 1,24 = 2, and x5 = 3. It is not hard to check that dy I> >; see Figure 6 for an illustration. Since
SC({2,3}, A;d2) = SC({3,4}, A;d2) = 8 and SC({4, 5}, A; d2) = 10, whereas SC({1, 2}, A;d2) = 6,

we obtain

SC(S, A; d2)
mins,e(A) SC(S5", A; d2)
2

4

3

dist(f(>),€) =

A%

8 _
- =

Since dist(f(>), &) > % in all these cases and sets of non-consecutive agents can only induce a larger
social cost, we conclude that dist(f) > %. O

A.6 Proof of Proposition 3.6

Proposition 3.6. For an even number of agents n, the voting rule that selects the two median agents
achieves a distortion of 2 for utilitarian 2-cost. Moreover, there existsn € N such that, for every (n, 2)-voting
rule f, we have dist(f) > 2 for utilitarian 2-cost.

Proof. We consider an arbitrary election & = (A, k, =) with even n > 4 and A = [n], and a consistent
metric d > >. Note that the assumption n > 4 is w.l.o.g. since, for n = 2, a distortion of 1 is trivially
achieved. We let m; = 5 and my = 5 41 denote the left and right median, respectively, S = {my, ma}
denote the committee selected by the rule, and S* denote the optimal committee for the metric d. The
social cost of S’ is

SC(S,A;d) =

'Mw\:

dii,n—i+1)+ %d(mh ma),
1

]

whereas Lemma 3.4 implies a lower bound on the social cost of the optimal committee of

SC(S*, A;d) > d(i,n—i+1).

[

i=1

Thus, the distortion of the voting rule is

dist(f) = oA, iy dlisn =it 1) + yd(mimg) _ 2552, d(in—i+1)

= =2
SC(S*, A;d) — ’

Zyd(i,n—i+1) 2 di,n—i+1)
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Figure 7: Metrics considered in the proof of Proposition 3.6 and Proposition 4.1.

where the second inequality follows from the fact that d(m1,mo) < d(i,n — i+ 1) for any i < 3.
Thus, the voting rule achieves a distortion of at most 2.

For the lower bound, we fix n = 4 and an arbitrary (n, 2)-voting rule f, consider the profile =€ £%(4)
defined as

1>=12%>13>14,

2>91>93>94,

353432031,

4>43>42%41,

and consider the election £ = (A, 2, >) with A = [4]. We distinguish three cases depending on the set
of agents S = f(-) selected by the rule.

Suppose first that S = {3,4}. We take the distance metric d; on A given by positions 1 = x5 = 0,
x3 = 1, and x4 = 2. It is not hard to check that d; > >; see Figure 7 for an illustration. Since
SC({3,4}, A;d;) = 6,and SC({1, 2}, A;d;) = 3, we obtain

SC(S, A; dl)

)8 2 S A

6
> - =2
-3

If S = {1, 2}, we consider the distance metric dz on A given by positions z; = 0, z2 = 1, and x3 =
x4 = 2. It is not hard to check that da > >; see Figure 7 for an illustration. Since SC({1, 2}, A;d2) = 6
and SC({3,4}, A; d2) = 3, we obtain

SC(S, A;da)

dist(f(~). &) 2 mins/e(g) SCLS, 4 d2)

>0 2
-3

Finally, if S = {2, 3}, we consider the distance metric d3 on A given by positions 1 = x93 = 0
and v3 = x4 = 2. It is not hard to check that d3 > >; see Figure 7 for an illustration. Since
SC({2,3}, A;ds) = 8 and SC({1, 2}, A;ds) = SC({3,4}, A;d3) = 4, we obtain

SC(S, A; dg) 8

- > - =2
ming, ¢ (4) SC(S’, A;dg) — 4

dist(f(=),E) >

Since dist(f(>),£) > 2 in all these cases and sets of non-consecutive agents can only induce a larger
social cost, we conclude that dist(f) > 2. O

B Proofs Deferred from Section 4

B.1 Proof of Proposition 4.1

Proposition 4.1. For everyn € N, any (n, 1)-voting rule has distortion 2 for egalitarian social cost. There
existsn € N such that, for every (n, 1)-voting rule f, dist(f) > 2 for egalitarian social cost.
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Proof. Fix n € N and an (n, 1)-voting rule f arbitrarily. Let = € L£™(n) be any preference profile on
A = [n] and let s be the agent that f outputs for this profile, i.e, S = f(>) and S = {s}. We denote
the agents by {1,...,n} from left to right, and we let d > > be any consistent distance metric. It is
clear that, on the one hand, we have

SC({s}, A;d) = max{d(a, s) | a € A} < max{d(a,b) | a,b € A} =d(1,n). (15)

On the other hand, for every agent b € A we have that d(1,b) + d(b,n) = d(1,n) and, therefore,
max{d(1,b),d(b,n)} > @ This implies

d(1,n)
5

min SC(S’, A;d) = minmax{d(a,b) | a € A} = min max{d(1,b),d(b,n)} >
S/G(f) beA beA

Combining inequalities (15) and (16), we directly obtain that dist(f) < 2.

(16)

For the second claim, we denote S = f(>), and we fix n = 4 and an arbitrary (n, 1)-voting rule f,
consider the profile =€ £*(4) defined as

1>12>13>14,
2>91>93 24,
3>34%>32>31,
44342241,

and consider the election £ = (A4, 1, ) with A = [4]. We distinguish two cases depending on the agent
selected by f.

Suppose first that S € {1,2}. We take the distance metric d; on A given by positions x; = z9 = 0,
x3 = 1, and x4 = 2. It is not hard to check that d; > >; see Figure 7 for an illustration. Since
SC({1}, A;dy) = 2,SC({2}, A;dy) = 2, and SC({3}, A;d1) = 1, we obtain

SC(S, Asdi) _ SC({2}, Asdh)

mingea SC({a}, Aidy) = SC({3), Avdy) >

dist(f(>),&) >

Similarly, if S € {3, 4}, we consider the distance metric dy on A given by positions x; = 0, 3 = 1,
x3 = x4 = 2. Itis not hard to check that dy > >; see Figure 7 for an illustration. Since SC({3}, A;d2) =
2,SC({4}, A;ds) = 2,and SC({2}, A; d2) = 1, we obtain

SC(S, A; d2) S SC({3}, A; da)

mingea SC({a}, Aidy) = SC({2}, Aidy) >

dist(f(>),€) =
Since dist(f(>),E) > 2bothwhen S € {1,2} andwhen S € {3, 4}, we conclude that dist(f) > 2. O

B.2 Proof of Lemma 4.2

Lemma 4.2. For every set of agents A = [n], committee size k, committee S e (12), and distance metric

d, it holds that SC(S’, A; d) = max{SC(S’,1;d), SC(S’,n;d)}.

Proof. Let A = [n], k, S’, and d be as in the statement, and recall that we refer to the agents sorted
from left to right by {1,...,n}. We suppose towards a contradiction that there exists a € A such that
SC(S’,a;d) > max{SC(S’,1;d),SC(S",n;d)}; ie.,

Z d(a,s) > max{ Z d(1,s), Z d(s,n)}. (17)

seS’ seS’ seS’
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We now distinguish two cases. If a has at least as many agents in S’ weakly to its left as strictly to its
[s<al>|{ses

Y d(s,n)= > (dla,s)+d(a,n)+ Y (d(a,s) = (d(a,s) —d(s,n)))

seS’ s€S":s<a s€S’:s>a
Z Z (d(a7 S) + d(a7 n)) + Z (d(a7 8) - d(a7 n))
seS":s<a seS’:s>a
=Y da,s)+({s€S :s<a}|—|{s€S 5> a}|)d(a,n)
ses’!
> d(a,s),
ses’!

a contradiction to inequality (17). Analogously, if [{s € S" | s < a}| < |[{s € 5’

Y d(ls)= Y (d(1,a)+da,s)+ > (dla,s)— (d(a,s) —d(L,s)))

ses’ s€eS":s>a seS":s<a

> Z (d(la a) + d(av S)) + Z (d(aa S) - d(lv (I))
s€S":s>a s€S":s<a

=Y da,s)+({s€8 :s>a}|—|{s€S :s<a}|)d(1,a)
ses’

> Z d(a,s
seS’

a contradiction to inequality (17). O

B.3 Proof of Theorem 4.3

Theorem 4.3. For everyn,k € N withn > k > 2, k—EXTREMES has a distortion for egalitarian additive
social cost of at most % — ﬁ if k is even and at most % k FE=T) ifk is odd. Conversely, for everyk € N

with k > 3 there existsn € N withn > k such that, for every (n, k)-voting rule f, dist(f) > 3 — 1 for
egalitarian additive social cost.

Proof. We first show the bound on the distortion of k-EXTREMES. We fix n, k € Nwithn > k> 2,a
linear order > on A = [n], and a consistent distance metric d > >. We write £ = (A, k, >) for the
corresponding election and denote k-EXTREMES by f and the outcome by .S in this part of the proof for
compactness.

We claim that, if d is such that SC(S, 1; d) < SC(S, n;d), there exists an alternative distance metric
d' with SC(S,1;d") > SC(S,n;d’) and dist(f(>),&;d") > dist(f(>),E; d). Indeed, consider such
d defined by positions x € (—00,00)™, and let d’ be defined by positions 2/ € (—o0, 00)", where
&l = Tpy1—q for every a € [n]. Since f selects LfJ agents closest to the left-most agent and the F]
agents closest to the right-most agent, we have

SC(S,1;d’) > SC(S,n;d) > SC(S,1;d) > SC(S,n;d').
Furthermore, this chain of inequalities combined with Lemma 4.2 imply that SC(S, A; d’) > SC(S, A; d).
Since min {SC(S", A;d') | S’ € (‘2)} =min {SC(5", A;d) | §' € (Q)},this yields dist(f(>),&;d") >

dist(f(>),&;d), so the claim follows. Thanks to this claim, we can assume in what follows that
SC(S,1;d) > SC(S, n;d) and thus, by Lemma 4.2, SC(S, A;d) = SC(S5, 1;d).
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We distinguish three cases depending on the distances from agent 1 to other agents and show the
claimed distortion for each of them. We first suppose that d(l, L%J) < @ In this case,

Lk/2] n
(S, 1;d) = Y d( Y. dlLs)
s=1 s=n—[k/2]+1

IA

Q’SJ ) = e[l
gy

where we used the assumption d(1, L%J ) < d/2 and the fact that d(1,1) = 0 for the inequality. From

Lemma 4.2 and equality (1) we know that SC(S’, A;d) > kd(l ") for any S’ € ( ), so we obtain
SC(S, 1; o+ 5] —1)ddn) 9 d2
st (), £) = Gitid) (k[ “UT 3 2-kmed2
ming, () SC(S57, A; d) (2,71) 2 2k
which is smaller than 2(k 301 for even k > 2 and smaller than (k ) for odd k£ > 3. Thus, we

conclude the result in thls case.

We next suppose that d(1, L%J) d(l ") and ZL /2] d(1,s) < k=2 kk Iln‘)d 2 kd(i’n). In a similar way
as before, we now have

Lk/2] n
C(S,1;d) = Zdu Yo d(,s)
s=n—[k/2]+1
k—2—kmod2 kd(l,n) k
< P T + ’72“(1(1,77,)
_ <3k— k— (k —2)k mod 2)d(1,n)
E—1 4

where the inequality follows from the assumption yi/fj d(l,s) < k=2=kmod2. kd(i’") and the
fact that d(1,1) = 0. From Lemma 4.2 and equality (1) we know that SC(S’, A;d) > M for any
S e (’2), so we obtain

SC(S; 1;d)

dist(f(>),€) = ming, (1) SC(S", A;d)
k—

_ (8- CEm) UG 3k (k— 2)k mod 2
= D) 2 Uk —1)

which corresponds to the expression in the statement.

We finally consider the case with d(1, L%J) > @ and ZLZ/ZZJ d(1,s) > k=2 k oo 2 kd(l ") Since
the distance between 1 and the right-most point among {2, ce L%J } namely d( L J) is at least its
average distance to points within this set, we know that

Lk/2]
k 1 1 k—2—Fkmod2 kd(1, kd(1,
d<17\‘2J>Z§ E d(las)ZL%J_l' k_lmo . (4%):2(]{5_71))' (18)

Let now S’ € (A\{l}) be any setof &k — 1 agents without 1. Since {2 LkJ } are the closest agents to
1, we know that 2= " ¢ d(1,s) > ToR=1 /2 = Ztk/ 2] d(1, s). Rearranging this expression and using
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our assumption once again, we obtain

S da,s) > ];_1 Zd(l,s)zkd(;’n)7

seS’ LﬁJ -1 s=2

where we used inequality (18) for the last inequality. For any committee S’ € (‘,3), this implies that
SC(S',1;d) > M, equality (1) implies that SC(S’, 1;d) > SC(S’, n; d), and Lemma 4.2 implies that
SC(S’, A;d) = SC(5’, 1;d). Therefore,

k
min SC(S', A;d) = min SC(S',1;d) = > _d(1, s); (19)
s'e(y) sre(y) =2
i.e., the optimal set in this case corresponds to {1,...,k}. Combining the previous expressions, we

obtain the following chain of inequalities:
SC(S,1;d)
minS,E(A) SC(S57, A;d)
k
I AU A
SC(S,l,d) mlns,e(ﬁ) SC(S ,A, d)
ming, ¢ (4) SC(57, A;d)

9 k
<1+ 2T - Yds)
’ seS

dist(f(~), &) =

s=2
9 n k
=1 1,s) — 1
tea (X e Y du)
s=n—[k/2]+1 s=|k/2]+1
2 k k
<1 A dt,n) —df 1, | =
2] (02 [2])
2 k kd(1,n)
<1 l=1ld(ln) — ——=
" kd(1,n) M( (L7) 2<k:—1>>
3 k—(k—2)kmod 2
2 2k(k —1)
Indeed, the first inequality follows from equality (19) and the fact that SC(S’, A; d) > M for every

S e (‘2) due to equality (1), the third equality from the definition of f, the second inequality from
simple bounds on d(1, s) for different values of s, and the last inequality from inequality (18). The other
equalities come from simple calculations. Since the last expression again corresponds to the expression
in the statement, we conclude.

For the lower bound, we consider any k € N with k£ > 3, we fix n = 2(k + 1), and consider an arbitrary
-4

(n, k)-voting rule f. We partition the agents into four sets A = | J,_, A4; such that Ay = {1}, A4 = {n}

and |As| = |A3| = k. We consider the profile =€ L"(n), where S = f(>), and

(i) b >4 c whenevera € A;,b € Aj,c € Ay for some i, j,¢ € [4] with |i — j| < |i — £

(i) 1 >4 bwhenevera € As,b € A3 U Ay;

(iii) n >, b whenever a € A3, b € A1 U Ag;

and the remaining pairwise comparisons are arbitrary. We consider the election £ = (A, k, =) with

A =n].
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Figure 8: Metrics considered in the proof of Theorem 4.3.

In what follows, we distinguish whether f selects more agents from A; U A or from A3 U A4 and
construct appropriate distance metrics to show that, in either case, the distortion is at least the one
claimed in the statement. Intuitively, if f selects more agents from A; U Ay we will consider a metric
where these sets lie on one extreme, A4 = n on the other extreme, and all agents A3 in the middle, so
that picking all agents from A3 would lead to a much lower social cost. In the opposite case, we will
construct a symmetric instance.

Formally, we first consider the case with |S N (A; U Ay)| > g and define the distance metric d; on A by
the following positions x € (—o00,00)": z, = 0 for every a € A1 U Ay, 2, = 1 for every a € A, and
&y, = 2. It is not hard to check that d; > >; see Figure 8 for an illustration. Since |S N (A; U A2)| > %,
we obtain

. SC(S, A; dl) SC(S, n; dl) (k - 1) + |S N (A1 U A2)|
> >
WS 8) 2 50y, Ady) = SCUAs,nich) — k

53
-2

el

Conversely, if |S N (A3 U Ay)| > £, we define the distance metric dy on A by the following positions
x € (—00,00)": 1 =0, 2, = 1 for every a € Ag, and x, = 2 for every a € A3 U Ay. It is not hard to
check that da > >; see Figure 8 for an illustration. Since |S N (A3 U A4)| > % we obtain

SC(S,A; dg) > SC(S, 1; dg) > (k — 1) + ’S N (Ag U A4)’

3
. > 2
dist(f(=),€) > SC(As, A;ds) ~ SC(As,1;d>) F o

1
s

Since dist(f(>),&) > 3 — % regardless of f(>), we conclude that dist(f) > 3 —

=

B.4 Proof of Theorem 4.4

Theorem 4.4. For every k,q € N with % > q, there exists n € N withn > k such that, for every
(n, k)-voting rule f, dist(f) is unbounded for egalitarian q-cost.

q
the agents into p + 1 > 4 sets A = {J;¢(,,41)Ai such that [A;] > ¢ for every i € [p + 1]; note that this
is possible since (p + 1)g < (g +1)q = k + ¢ = n. We consider any fixed (n, k)-voting rule f and the
profile =€ L"(n), where S = f(>), and

Proof. We let k,q € N with % > q be arbitrary, define p = LEJ, and take n = (p + 1)g. We partition

(i) b >4 c whenevera € A;,b € Aj,c € Ay with |i — j| < |i — ¢| for some i, 7,0 € [p + 1];
(i) b >, c whenevera € A;,b € Ay,c € Aj with |[i — 1| = |i — j| for some i, j € [p];

(iii) b >, ¢ whenever a € A;,b € Api1,c € Aj with |i — (p+ 1)| = |i — j| for some 7,5 €
{2,...,p+ 1}

and the remaining pairwise comparisons are arbitrary. We consider the election £ = (A, k, ) with
A = [n]. Since (p+1)q > %q = k, we know that there exists j € [p + 1] such that [S N A4;| < ¢. We
distinguish two cases depending on the identity of j.
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Metric d; ® L ® - - - @ @ L
A Ao Az Apfz Ap71 Ap U AP+1
1 1 1 1
Metric d2 ® L ® - - - @ @ L J
AL U Ay Az Ay Apfl Ap Ap+1

Figure 9: Metrics considered in the proof of Theorem 4.4.

If j ¢ {p,p+ 1}, we consider the distance metric d; on A given by the following positions = €
(—00,00)": x4 =1 — 1foreverya € A;and i € [p], and x, = p — 1 for every a € Ap;1. It is not hard
to see that d; > >; see Figure 9 for an illustration. Since |S N A;| < ¢ for some j ¢ {p,p+ 1}, we
have that SC(S, A;; dy) = 1. On the other hand, we can define an alternative committee S’ = Ui S!
such that |S] N A;| > ¢ for every ¢ € [p], which is possible because |4;| > ¢ for every i € [p| and
pq < %q = k. Since SC(S’, A;dy) = Oand dist(f(>), &) > %,We conclude that dist(f(>), E)
is unbounded.

If j € {p,p+ 1}, we consider the distance metric d2 on A given by the following positions = €

(—00,00)": &, = 0 for every a € Ay, and x, = i — 2 for everya € A;andi € {2,...,p+ 1}

It is not hard to see that dy > ~; see Figure 9 for an illustration. Since |S N A;| < ¢ for some

J € {p,p + 1}, we have that SC(S, A;;d2) = 1. On the other hand, we can define an alternative

committee S = J;c(o, 413 57 such that [S] N A;[ > g forevery i € {2,...,p+ 1}, which is possible

because |A4;| > g for everyi € {2,...,p+ 1} and pqg < gq = k. Since SC(S’, A;ds) = 0 and
>

dist(f(>),&) > %, we conclude that dist(f(>-), £) is unbounded.

Since dist(f(>), ) is unbounded regardless of f(>), we conclude that dist(f) is unbounded. O

B.5 Proof of Theorem 4.5

Theorem 4.5. Letn,k,q € N be such thatn > k > 2 and q > % Ifq > % any (n, k)-voting rule
has distortion 2 for egalitarian q-cost. If ¢ > %, k-ExTREMES has distortion 2 for egalitarian q-cost. For
everyk,q € N withq > g > 1, there existsn € N withn > k such that, for every (n, k)-voting rule f,
dist(f) > 2.

Proof. Let n,k € N be such that n > k > 2. Let first ¢ € N be such that ¢ > g Let f be any
(n, k)-voting rule and let = € £"(n) be an arbitrary preference profile on A = [n]. We denote, as usual,
agents by {1,...,n} from left to right, S = f(-), and we let d > > be any consistent distance metric.
For a committee S’ € (f) we let d(5,a) € R¥ denote the vector with the values {d(a, s) | s € S'} in

increasing order. It is clear that

SC(S, A;d) = max{d(S,a) | a € A} < max{d(a,b) | a,b € A} = d(1,n). (20)
On the other hand, for every committee S” € (‘2) if we denote the agents in S’ in increasing order by
s1,...,5% we have that s, > s;_, because ¢ > % This implies that, for every committee S’ € (f) we
have

d(S', 1)y +d(S',n)g = s(1,8) + d(sk_g,m) > d(1,n),
and thus max{d(S’,1),,d(S",n),} > @ Therefore,

min SC(S’, A;d) = min max{d(S’,a), | a € A}

s'e(%) s'e (i)
> min max{d(S, 1), d(S,n)y} > dl,n) (21)
s'e (i) 2
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Combining inequalities (20) and (21), we directly obtain that dist(f) < 2.

Let now ¢ € N be such that < q < £, € L™(n) be an arbitrary preference profile on A = [n],
and d > >~ be a consistent distance metrlc we consider the election & = (A, k, >). We denote the
outcome of k-EXTREMEs for this profile by S for compactness. We denote agents by {1,...,n} from
left to right and, for S” € (2‘) we let d(S',a) € RE denote the vector with the values {d(a, s) | s € S'}
in increasing order. We finally let ¢* € arg max{min{d(1,a),d(a,n)} | a € A} denote the agent
with maximum distance from both extreme agents, assume w.l.o.g. that this is its distance to 1, i.e.,
d(1,a*) < d(a*,n), and write d* = d(1, a*) for this distance. Observe that

d(1,n)
5

min{d(a*,n),d(1,a* + 1)} > (22)
Indeed, d(a*,n) > @ follows directly from the inequality d(1,a*) < d(a*,n) and the equality
d(1,a*) + d(a*,n) = d(1,n). Having d(1,a* + 1) < (12") would imply min{d(1,a* + 1),d(a* +
1,n)} > d*, a contradiction to the definition of a*.

We first tackle two simple cases. If a* < g, i.e., there are less than ¢ agents between 1 and a*, then
for any committee S’ € (‘2) we have SC(S’, A;d) > SC(S',1;d) > d(1,a* + 1) > d(g’n), where the
second inequality follows from inequality (22). Since SC(S’, A; d) < d(1,n) holds for any committee
S e (’g) we know that in particular SC(S, A;d) < d(1,n) and thus dist(f) < 2. Similarly, if

n — a* < g, i.e., there are less than g agents between a* + 1 and n, then for any committee S’ € (’,3)

we have SC(S’, A;d) > SC(5,1;d) > d(a*,n) > d(é’”), where the second inequality follows from
inequality (22). As before, dist(f) < 2 thus follows directly.

If none of the previous cases hold, we have both a* > g and n — a* > 2, so that from the definition of
k-ExTREMES we have |[SU{1,...,a*}| = |£| > gand |SU{a* +1,...,n}| = [£] > q¢. This implies
that

SC(S, A;d) < max{d(1,a"),d(a* +1,n)} < d*. (23)

We claim that, for every S’ € (’2), we have SC(5’, 4;d) > dz—*. Together with inequality (23), this would
immediately imply dist(f) < 2 and conclude the proof. To prove this fact, suppose for the sake of
contradiction that SC(5’, A;d) < dg—* for some S’ € (’2) This is equivalent to the fact that

*

SC(S,a;d) < — < S’U{beA:d(a,b) < C;H >q

for every a € A. Since the sets {b € A | d(a,b) < d—;} for a € {1, a*, n} are disjoint, we conclude that
|S’| > 3q > k, a contradiction.

For the lower bound, we consider the same instances as in the proof of Theorem 4.3; we repeat the
construction for completeness. Naturally, the proof of the lower bound in the end differs from the
additive case. We consider any £ € N with k£ > 2, we fix n = 2(/<: + 1), and consider an arbitrary
(n, k)-voting rule f. We partition the agents into four sets A = UZ 1A; such that Ay = {1}, Ay = {n}
and |Aa| = |As| = k. We consider the profile =€ L"(n), where S = f(>), and

(i) b >4 c whenevera € A;,b € Aj,c € Ay for some i, j,¢ € [4]

(ii) 1 >4 bwhenevera € Ag,b € A3 U Ay;

(iii) n >, b whenever a € A3, b € A1 U Ag;

and the remaining pairwise comparisons are arbitrary. We consider the election £ = (A, k, =) with

A =n].
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In what follows, we distinguish whether f selects more agents from A; U Ay or from A3z U A4 and
construct appropriate distance metrics to show that, in either case, the distortion is at least the one
claimed in the statement. Intuitively, if f selects more agents from A; U Ay we will consider a metric
where these sets lie on one extreme, A4 = n on the other extreme, and all agents A3 in the middle. This
way, the selected committee gives twice the social cost as picking all agents from As In the opposite
case, we will construct a symmetric instance.

Formally, we first consider the case with |S N (A1 U As)| > % and define the distance metric d; on A by
the following positions x € (—00,00)": 2, = 0 for every a € Ay U Ag, x, = 1 for every a € A3, and
Zn, = 2. It is not hard to check that d; > >; see Figure 8 for an illustration. Since |S N (A; U A2)| > %
we obtain SC(S, n;d;) = 2 and thus

' SC(S, A;dr) _ SC(S,n;di)
S > > 2.
dist(f(>),&) > SC(As, A;dy) — SC(As,n;dy) — ?

Conversely, if |S N (A3 U Ay)| > %, we define the distance metric dz on A by the following positions
x € (—o0,00)" 21 = 0, x, = 1 for every a € Ay, and z, = 2 for every a € Az U Ay. It is not
hard to check that dy > ~; see Figure 8 for an illustration. Since |S N (A3 U A4)| > %, we obtain
SC(S,1;d2) = 2 and thus

) SC(S, A;da) SC(S,1;d2)
> > > 2.
dlSt(f(F),g) - SC(AQ,A; d2) - SC(AQ,l;dQ) 22

Since dist(f(>), &) > 2 regardless of f(>-), we conclude that dist(f) > 2. O
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