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Abstract

In the metric distortion problem, a set of voters and candidates lie in a common metric space, and

a committee of k candidates is to be elected. The goal is to select a committee with a small social

cost, defined as an increasing function of the distances between voters and selected candidates,

but a voting rule only has access to voters’ ordinal preferences. The distortion of a rule is then

defined as the worst-case ratio between the social cost of the selected set and the optimal set,

over all possible preferences and consistent distances.

We initiate the study of metric distortion when voters and candidates coincide, which arises

naturally in peer selection, and provide tight results for various social cost functions on the line

metric. We consider both utilitarian and egalitarian social cost, given by the sum and maximum

of the individual social costs, respectively. For utilitarian social cost, we show that the simple

voting rule that selects the k middle agents achieves a distortion that varies between 1 and 2
as k varies between 1 and n when the cost of an individual is the sum of their distances to

all selected candidates (additive aggregation). When the cost of an individual is their distance

to their qth closest candidate (q-cost), we provide positive results for q = k = 2 but mostly

show that negative results for general elections carry over to our restricted setting: No constant

distortion is possible when q ≤ k/2 and no distortion better than 3/2 is possible for q ≥ k/2+1.
For egalitarian social cost, a rule that selects extreme agents achieves the best-possible distortion

of 2 for additive cost and q-cost with q > k/3, whereas no bounded distortion is possible for

q ≤ k/3. Our results suggest that having a common set of voters and candidates allows for

better constants compared to the general setting, but cases in which no constant is possible in

general remain hard under this restriction.

1 Introduction

A fundamental problem in social choice is the aggregation of individual preferences, expressed as

rankings over a set of candidates, into a social preference consisting of a subset of elected candidates.

For centuries, social choice theorists have proposed desirable properties that these aggregation or voting

rules should guarantee, usually leading to strong impossibility results [5, 20, 32, 50].

As an alternative approach, attempting to quantify the extent to which a certain voting rule is able to

faithfully translate the voter preferences into the selected committee, Procaccia and Rosenschein [47]

introduced the notion of distortion of a rule. The underlying assumption is that a voter’s (dis)affinity

with a candidate can be represented by a certain cost, and voters’ rankings are the expression of these

cardinal preferences. The cost of a committee for a voter is then defined by aggregating the costs of

the committee members, and the overall social cost of the committee by aggregating the costs for all

voters. The distortion then corresponds to the worst-case ratio between the social cost of the selected

committee and that of the optimal committee, over all possible preferences and consistent costs.

The study of the distortion of voting rules has usually focused on two ways of modeling the social cost:

utilitarian and egalitarian [11, 35, 12]. In the utilitarian case, the social cost is defined as the sum of

the individual costs of the voters, ensuring that all voters’ costs contribute equally to the objective. In

contrast, the egalitarian social cost considers the maximum individual cost among all voters, aiming to

capture a notion of fairness where no voter is excessively disadvantaged.

In voting theory, it is common to assume that voters’ preferences are not fully arbitrary but enjoy some

structural properties. A relevant line of work has indeed sought structural restrictions that are natural

and have powerful implications, such as single-peaked [8] or single-crossing [43]; see Elkind et al.
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[23] for a survey. A rather general framework among these is that of spatial or metric voting, where

voters and candidates are assumed to lie in a common low-dimensional metric space and voters’ costs

correspond to their distance to each candidate [6, 37, 24, 42]. For instance, a line metric is commonly

employed to capture political affinity on the left-right spectrum, whereas geographical distances are

represented in a two-dimensional space.

This structural assumption naturally fits in the metric distortion framework: The distances to candidates

fully define the social cost of a committee, but the voting rules only receive their expression as rankings.

Since preferences are restricted in this model, improved bounds on the distortion of voting rules have

been established. Notably, a tight distortion bound of 3 has been shown for single-winner deterministic

voting rules [3, 40, 33]. More generally, an upper bound of 2 + α has been shown when the maximum

ratio between a voter’s distance to their top choice and last choice—also known as decisiveness—is at

most α, which is tight up to O
(
1
m

)
terms for m alternatives [33]. Extending distortion to multi-winner

elections requires defining how a voter’s cost is aggregated over the selected committee. Two ways have

been considered in the literature: the additive cost, where a voter’s cost is the sum of their distances to

all members of the committee [7], and the q-cost, where the cost is determined by their distance to their

q-th closest committee member [14, 19].

Work on metric distortion has so far focused on the case where voters and candidates are disjoint, which

constitutes a natural model for large-scale elections. However, in many decision-making scenarios, a

group of agents aims to elect a subset of their own members. One can think, for example, of a political

organization selecting a committee. Each member ranks others according to their political affinity and

the organization aims to select a committee that represents the variety of preferences of its members.

Since the voting rule only receives ordinal preferences, a small distortion constitutes a suitable objective

to ensure a close-to-optimal outcome under this limited information. In general, this situation arises in

the context of peer selection, where individuals evaluate each other to choose a group for governance,

leadership, or resource allocation. Further examples include academic hiring and promotions, student

representative elections, self-organized committees in cooperatives, and local governance selection.

While peer selection rules have been extensively studied in other contexts, particularly in terms of

the effect of strategic behavior [e.g. 36, 1, 13], little is known regarding their ability to accurately

reflect agents’ ordinal preferences. Previous work on metric distortion for single-selection that uses

decisiveness as a parameter implies a tight bound of 2 on the distortion when voters and candidates

coincide, as this parameter becomes zero [33]. However, no implications are known for the selection

of larger committees, and directly considering a common set of voters and candidates constitutes a

structural modification to the problem that has not been studied so far.

1.1 Our Contributions and Techniques

We initiate the study of metric distortion in committee selection when the set of voters and candidates

coincide. As the study of distortion in committee selection holds significant challenge, we focus on

the line metric as a first step to understand the comparison with the setting with disjoint voters and

alternatives. In this setting, we provide an almost complete picture of the distortion achievable by

voting rules selecting k out of n agents for several social costs; see Table 1 for a summary of our results.

We start by observing a simple yet strong property of metric voting on the line with a single set of

voters and candidates that follows from previous work [22, 7]: We can fully compute the order of the

agents from their rankings. This constitutes a powerful tool for the design of our mechanisms, as in the

following we can always take this order as given.

Utilitarian Social Cost. We first consider the utilitarian social cost, in which the social cost of a

committee is defined as the sum of all individual costs. In Section 3.1, we focus on the case of additive
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Table 1: Our and previous bounds on the distortion that voting rules can achieve in different settings. Values

before and after the semicolon represent lower and upper bounds for the corresponding setting, respectively.

Lower bounds take the worst-case number of agents n. When the lower bound can be made arbitrarily large, we

write∞ for simplicity. The number in square brackets refers to the theorem (T.) or proposition (P.) where this

bound is shown; the letters in square brackets refer to the paper where a bound is taken from: BKSS is Babashah

et al. [7] and CSV is Caragiannis et al. [14]. In particular, bounds in gray correspond to the previously studied

setting with disjoint voters and candidates for comparison, either under a general metric [CSV] or under the line

metric [BKSS]. The upper bound for utilitarian q-cost marked with (∗) is only valid when q ≥ k
2 + 1, which is

slightly stronger than the general condition q > k
2 on that column.

aggregation: The cost of a committee for a voter is given by the sum of all distances from the candidates

to this voter. We consider a rule called Median Alternation, that selects k middle agents and provides

a distortion of at most
2
k

(
n −

√
2n

⌊
n−k
2

⌋)
, which lies between 1 and 2. Despite its simplicity, the

analysis of this rule holds significant challenge. In short, we reduce any metric to another with only

two locations by showing the existence of a non-improving direction of movement for each agent, and

then compute the worst-case distortion for this class.

In Section 3.2, we consider utilitarian q-cost, where the cost of a committee for an agent is given by

the agent’s distance to their qth closest candidate in the committee. We show that no voting rule can

provide a constant distortion when q ≤ k
2 , implying that this known impossibility from the setting with

disjoint voters and candidates and a general metric space [14] remains in place in our restricted setting.

For q > k
2 , the existence of rules with distortion 3 follows from a general result by Caragiannis et al.

[14]. We provide a lower bound that varies between
3
2 and 2 as q varies between k

2 + 1 and 2. We finally

take a closer look at the case with k = q = 2, where the best-possible distortion of 2 can be achieved

by selecting the median agents when k is even. For odd k, we show that a rule selecting a couple of

agents—a pair of agents who prefer each other over all other agents—among the five middle agents

achieves an improved distortion of
4
3 , which is again best-possible. While the principles leveraged by

our Favorite Couple rule, in terms of selecting consecutive agents that are close to each other while

also being close to the median, remain valid for larger k, determining how tightly a group of k agents is

clustered based solely on ordinal rankings becomes more challenging.

Egalitarian Social Cost. In Section 4, we turn our attention to egalitarian social cost, where we focus

on the maximum cost of a committee for a voter. We consider the k-Extremes rule, which selects half

of the committee from each extreme and thus avoids that extreme voters are excessively disadvantaged.

For the additive setting, we show in Section 4.1 that k-Extremes achieves the optimal distortion of

1 for k = 2, a distortion of at most
3
2 −

1
2(k−1) for k ≥ 4 even, and a distortion of at most

3
2 −

1
k(k−1)

for k ≥ 3 odd. We complement these results with an almost matching lower bound of
3
2 −

1
k .

For the case of q-cost with q > k
3 , we prove in Section 4.2 that k-Extremes attains a distortion of 2 and

provide a matching lower bound. When q ≤ k
3 , we show that no constant distortion is possible; once

again, the general impossibility result by Caragiannis et al. [14] holds in our setting.
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1.2 Further Related Work

Distortion of voting rules was first introduced by Procaccia and Rosenschein [47]. Since then, extensive

research has been conducted to bound the distortion of different rules, both within the metric and

non-metric frameworks. For a comprehensive survey, we refer to Anshelevich et al. [4].

Single-Winner Voting. In the non-metric framework, Caragiannis and Procaccia [11] showed that

the distortion of any voting rule is at least Ω(m2) and that simple rules such as Plurality achieve a

distortion of at most O(m2), wherem is the number of candidates.

In the metric framework, Anshelevich et al. [3] established a general lower bound of 3 on the distortion

of any deterministic voting rule. They also analyzed the distortion of common voting rules, in particular

showing that the Copeland rule achieves a distortion of 5. Goel et al. [34] disproved a conjecture by

Anshelevich et al. [3] regarding a better-than-5 distortion of the Ranked Pairs rule and introduced the

notion of fairness ratio of a rule, which captures the egalitarian social cost as a special case. Munagala

and Wang [46] reduced the upper bound to 4.236, and Gkatzelis et al. [33] ultimately closed the gap by

providing a rule with distortion 3, which they showed remains valid for the fairness ratio. A consequence

of their result, parameterized on the decisiveness of an election, is a tight distortion of 2 for the selection
of a single agent when voters and candidates coincide.

Randomized voting rules have also been extensively explored in the metric framework [49, 25]. The

best-known upper bound for a randomized voting rule was recently obtained by Charikar et al. [18],

who showed that a carefully designed randomization over existing and novel voting rules achieves a

distortion of at most 2.753. As of lower bounds, Charikar and Ramakrishnan [17] disproved a conjecture

by Goel et al. [34] regarding the existence of a randomized voting rule with distortion 2, by constructing
instances whose distortion approaches 2.113 as the number of candidates grows.

Multi-Winner Voting. In the study of metric distortion for multi-winner voting, various objective

functions have been proposed to capture the cost incurred by each voter for the elected committee [21,

26]. A foundational result by Goel et al. [35] showed that, for the additive cost function, iterating a

single-winner voting rule for k rounds produces a k-winner committee with the same distortion.

Chen et al. [19] studied the 1-cost objective in the metric framework when each voter casts a vote for a

single candidate. They proposed a deterministic rule with a tight distortion of 3 and a randomized rule

with a distortion of 3− 2
m . More generally, Caragiannis et al. [14] introduced the q-cost objective, where

a voter’s cost for a committee is determined by the distance to their q-th closest member. They showed

that the distortion is unbounded for q ≤ k
3 and linear in n for

k
3 < q ≤ k

2 . For q > k
2 , they presented a

non-polynomial voting rule that achieves a distortion of 3 and a polynomial rule with a distortion of

9. They discussed how these upper bounds for q > k
2 and the unbounded distortion for q ≤ k

3 carry

over to egalitarian social cost, but interestingly showed that a constant distortion is possible for this

objective when
k
3 < q ≤ k

2 . Kizilkaya and Kempe [40] later proposed a polynomial-time rule with

a distortion of 3. Recently, Babashah et al. [7] studied the distortion of multi-winner elections with

additive cost on the line, devising a rule with a distortion of roughly
7
3 .

Caragiannis et al. [12] studied distortion in multi-winner voting for the non-metric framework, defining

a voter’s utility for a committee as the highest utility derived from any of its members. They proposed

a rule achieving a distortion of 1 + m(m−k)
k for deterministic committee selection.

Restricted Voting Settings. A specialized setting in metric voting considers single-peaked prefer-

ences, where both voters and alternatives are embedded on the real line [8, 45, 44, 29, 28, 52, 31]. In

particular, the work of Fotakis et al. [30] investigated the distortion of deterministic algorithms for

k-committee selection on the line under the 1-cost objective, leveraging additional distance queries.

4



Mechanism Design in Committee Selection. Several recent studies have explored alternative

models for committee selection. The concept of stable committees and stable lotteries has been con-

sidered in various settings, focusing on fairness and individual incentives [38, 9]. An active area

of research in the last years has focused on impartial mechanisms, where agents approve a subset

of other agents and the voting rule must incentivize truthful reports while selecting well-evaluated

agents [1, 36, 27, 51, 41, 13, 15, 16, 10]. Finally, another line of work investigates distortion when agents

have known locations, enabling mechanisms to explicitly consider distances in selection [39, 48, 2].

2 Preliminaries

We let N denote the strictly positive integers and, for n ∈ N, we write [n] = {1, . . . , n} for the first n.
A linear order ≻ on a set S is a complete, transitive, and antisymmetric binary relation on S; we denote
the set of all linear orders on [n] by L(n).

Election. An instance of a committee election, or simply an election is described by the triple E =
(A, k,≻), where A = [n] is the set of agents, k ∈ N is the number of agents to be selected, and

≻ = (≻1,≻2, . . . ,≻n) ∈ Ln(n) comprises the agents’ preferences, where ≻a∈ L(n) is a linear order
on [n] for every a ∈ [n]. We let

(
A
k

)
= {S ⊆ A | |S| = k} denote the feasible committees for a given

election; i.e., the set of all subsets of A of size k.

Line metric. A distance metric on A is a function d : A×A→ R+ satisfying (i) d(a, b) = 0 if and
only if a = b, (ii) d(a, b) = d(b, a) for every a, b ∈ A, and (iii) d(a, c) ≤ d(a, b) + d(b, c) for every
a, b, c ∈ A. In this paper, we focus on the line metric: We associate each agent a ∈ A with a position

xa ∈ (−∞,∞), and the metric d is defined by d(a, b) = |xa − xb| for every a, b ∈ A. A metric d is

said to be consistent with a ranking profile ≻ ∈ Ln(n), denoted as d ▷ ≻, if for every triple of agents

a, b, c ∈ A, the condition d(a, b) < d(a, c) implies b ≻a c.1 Since d is fully defined by the position

vector x ∈ (−∞,∞)A, we often refer directly to this vector being consistent with a ranking profile

≻ ∈ Ln(n) and denote it by x ▷ ≻. Likewise, we often exchange d by x in the definitions that follow.

Finally, for a fixed election E = (A, k,≻), consistent vector of locations x ∈ (−∞,∞)n, and interval

I = (y, z) with y < z, we let A(I) = {a ∈ A | xa ∈ I} denote the agents with locations in I . When I
is a single point x̄, we write A(x̄) for the agents located at this point.

Social cost. For a certain set of agents A, a committee size k ∈ N, and a candidate-aggregation

function h : Rk
+ → R+, the cost of S ∈

(
A
k

)
for agent a ∈ A is simply SC(S, a; d) = h((d(a, b))b∈S).

For a set of agents A, a committee size k ∈ N, and a voter-aggregation function g : Rn
+ → R, the

social cost of S ∈
(
A
k

)
is SC(S,A; d) = g((SC(S, a; d))a∈A). In this paper, we study a handful of

candidate- and voter-aggregation functions. In terms of the voter-aggregation function g : Rn → R+,

we focus on the utilitarian social cost, given by g(y) =
∑

i∈[n] yi, and the egalitarian social cost, given

by g(y) = max{yi | i ∈ [n]}. In terms of the candidate-aggregation function h : Rk
+ → R+, we focus

on the additive social cost, given by h(y) =
∑

i∈[k] yi, and the q-cost, given by h(y) = ỹq , where ỹ is

the vector with the entries of y sorted in increasing order. Thus, for example, the 1-cost is given by

h(y) = min{yi | i ∈ [k]}; and the k-cost is given by h(y) = max{yi | i ∈ [k]}.
1

This definition allows for agent-dependent tie-breaking; i.e., when d(a, b) = d(a, c) agent a can rank either b ≻a c or
c ≻a b, independently of other agents. This assumption makes the problem in principle harder, so that our upper bounds on

the distortion remain valid if a common tie-breaking rule is employed, and it allows us to construct simpler examples for

lower bounds. It is not hard to see that the same lower bounds can be obtained without the assumption: Whenever a metric

has ties, distances can be perturbed by a small constant ε so that there are no longer ties and the distortion does not improve.
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Voting rules and distortion. For n, k ∈ N with n ≥ k, an (n, k)-voting rule is a function f that

takes a preference profile ≻ ∈ Ln(n) and returns a subset S ∈
([n]
k

)
, to which we often refer as a

committee. For an election E = ([n], k,≻) and a metric d, the distortion dist(S, E ; d) of S ⊆ A under d
is the ratio between the social cost of the committee and the minimum social cost of any committee; i.e.,

dist(S, E ; d) = SC(S,A; d)

minS′∈(Ak)
SC(S′, A; d)

.

For an election E = (A, k,≻), the distortion dist(S, E) of a committee S ⊆ A is then defined as the

worst-case distortion over all metrics consistent with the ranking profile ≻; i.e.,

dist(S, E) = sup
d▷≻

dist(S, E ; d).

Finally, for an (n, k)-voting rule f , the distortion of f is defined as the worst-case distortion of its

output across all possible elections; i.e.,

dist(f) = sup
≻∈Ln(n)

dist(f(≻), ([n], k,≻)).

Throughout the paper, we study the distortion that voting rules can achieve under different social costs.

2.1 Computing the Order From an Election

An essential property in line metric settings is the ability to determine the order of agents based on their

preferences. This result has been established in prior work. Specifically, Elkind and Faliszewski [22]

and Babashah et al. [7] proved that if the preference lists of voters are pairwise distinct, it is possible

to uniquely determine their ordering on the line, along with the ordering of non-Pareto-dominated

alternatives. While their setting differentiates between voters and alternatives, this result naturally

extends to our context, where agents serve as both voters and candidates. In fact, this follows from a

simpler fact in this context: For any three agents, their relative order on the line can be reconstructed

from their preference rankings. We state this result as a lemma, which serves as a foundation for many

results in this paper as it guarantees that the order of agents in any election can be uniquely identified.

Lemma 2.1 (Elkind and Faliszewski [22], Babashah et al. [7]). For every election E = ([n], k,≻), we
can compute a permutation π : [n] → [n] of the agents such that, for any consistent position vector

x ∈ (−∞,∞)n with x ▷ ≻, we have either xπ(1) ≤ xπ(2) ≤ . . . xπ(n−1) ≤ xπ(n) or xπ(n) ≤ xπ(n−1) ≤
· · · ≤ xπ(2) ≤ xπ(1).

For simplicity, whenever we fix an election throughout the paper we will assume w.l.o.g. that the agents

are already ordered, i.e., that the permutation π stated in the lemma is the identity. Hence, we denote

the ordered agents by 1, . . . , n and informally refer to this order as from left to right.

3 Utilitarian Social Cost

Using Lemma 2.1, we know that the order of agents can be fully determined from the preference

profile ≻. This allows us to compute the median agent, which is optimal when selecting one agent

(k = 1) under the utilitarian objective. We study in this section the selection of larger committees

with two aggregation rules for the individual distances: one that considers the sum of all distances to

selected agents in Section 3.1, and one that considers the distance to the qth closest agent in Section 3.2.
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3.1 Utilitarian Additive Cost

In this section, we focus on the utilitarian additive objective for committee selection. This objective

aims to minimize the total distance from all agents to the selected committee. Formally, the utilitarian

additive social cost of a committee S′ ∈
(
A
k

)
is SC(S′, A; d) =

∑
a∈A

∑
b∈S′ d(a, b). The cost of each

agent a ∈ A is the sum of their distances to all members of the selected committee S′
, and the overall

social cost is the sum of these individual costs across all agents in A.

It is not hard to see that the optimal committee can be directly computed from the preferences for

committee sizes k = 1 and k = 2. This was already discussed for k = 1, while for k = 2 the optimal

committee depends on the parity of n. If n is even, it consists of the two median agents. If n is odd, it

consists of the median agent and the agent closest to them. In any case, these agents can be identified

directly from the input preference profile ≻, without knowledge of the underlying metric. This results

in a voting rule with a distortion of 1.

For selecting a committee of size k ≥ 2, we consider the following voting rule.

Voting Rule 1 (Median Alternation). Compute the order of the agents 1, . . . , n and return S ={⌊
n−k
2

⌋
+ 1, . . . ,

⌊
n
2

⌋
+ 1, . . . ,

⌊
n+k
2

⌋}
.

Not that the rule selects k agents, leaving

⌊
n−k
2

⌋
unselected agents on the left extreme and n−

⌊
n+k
2

⌋
unselected agents on the right extremes. These values are equal if n− k is even; the latter is one unit

larger if n− k is odd. On an intuitive level, the rule can be understood as constructed by going through

the rank list of the median(s) agent(s), selecting agents in the order reported by them but alternating

between those to their left and to their right to ensure a balanced representation of agents on both sides.

An important ingredient for our results is that an optimal committee selecting consecutive agents

always exists. We state this in the following lemma; its simple proof is deferred to Appendix A.1.

Lemma 3.1. For any election E = (A, k,≻) and consistent metric d▷ ≻, there exists i ∈ [n−k+1] such
that, defining S∗ = {i, i+ 1, . . . , i+ k − 1}, we have SC(S∗, A; d) = min

{
SC(S′, A; d) | S′ ∈

(
A
k

)}
.

The following is our main result in terms of utilitarian additive social cost, regarding the distortion

guaranteed by Median Alternation.

Theorem 3.2. The distortion of Median Alternation is at most
2
k

(
n −

√
2
⌊
n−k
2

⌋
n
)
for utilitarian

additive social cost.

The distortion stated in the theorem ranges between 1 and 2, except for the case where k = n − 1
and k is odd, in which it is equal to

2n
n−1 , making it marginally greater than 2. The bound is equal to

2
k

(
n−

√
(n− k)n

)
if n−k is even and to

2
k

(
n−

√
(n− k − 1)n

)
if n−k is odd, so that it is better for

even values than for neighboring odd values, with more prominent differences for small k. Besides these
parity differences, the bound takes values closer to 1 when k is small and closer to 2 as k approaches n.
Figure 1 illustrates the bound for n = 100 and k between 2 and n− 1.

The complete proof of Theorem 3.2 is deferred to Appendix A.2; we now summarize the main ideas

involved. The main ingredient is the existence of a reduction from any metric to another one where all

agents are in one of two locations and the distortion has not decreased. To prove this reduction, we use

the linearity of the social cost to show that an agent (or set of agents at the same location) can always be

moved in one direction such that the distortion does not improve, as long as they do not pass through

other agents’ locations. By iteratively moving agents in non-extreme positions in their non-improving

direction, we can reach a metric where all agents lie in one of the original extreme positions and the

distortion has not improved. We finally compute the worst-case number of agents on each of these

points for the distortion of the Median Alternation rule to conclude the result.
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Figure 1: Distortion of Median Alternation stated in Theorem 3.2 for n = 100 and k ∈ {2, . . . , 99}.

3.2 Utilitarian q-Cost

In this section, we study the distortion of voting rules in the context of utilitarian q-cost, in which the

cost of a committee S′
for an agent is given by its distance to the qth closest agent in S′

, and the social

cost of a committee is the sum of its cost for all agents. Formally, for a set of agents A, a committee size

k, a committee S′ ∈
(
A
k

)
, and a distance metric d, the social cost of the committee is given by

SC(S′, A; d) =
∑
a∈A

d̃(a)q,

where d̃(a) ∈ RS
+ contains the values {d(a, s) | s ∈ S′} in increasing order.

Similarly to the classic setting with disjoint voters and candidates, the distortion of voting rules heavily

depends on the value of q. Indeed, a result by Caragiannis et al. [14] directly implies the existence

of (n, k)-voting rules with distortion 3 for q-cost whenever q > k
2 , since their result holds in a more

general setting with disjoint voters and candidates and general distance metrics. We complement this

result by providing a lower bound that ranges from
3
2 and 2 as q varies between

⌈
k
2

⌉
+ 1 and k. For

q ≤ k
2 , Caragiannis et al. [14] showed that no rule provides a bounded distortion; we prove that this

impossibility still holds in our setting.

Theorem 3.3. For every k ∈ N with k ≥ 2 and q ∈ N with q ≤ k
2 , there exists n ∈ N with n ≥ k such

that, for every (n, k)-voting rule f , dist(f) is unbounded for utilitarian q-cost. For every k ∈ N with

k ≥ 3 and q ∈ N with
k
2 + 1 ≤ q ≤ k, there exists n ∈ N with n ≥ k such that, for every (n, k)-voting

rule f , dist(f) is at least 2− k−q
4q−k−3 for utilitarian q-cost.

These lower bounds are proven in Appendix A.3. To prove the bound for q ≤ k
2 , we partition all but q

agents into

⌊
k
q

⌋
≥ 2 sets and consider two metrics that differ in the position of the remaining q agents:

relatively close to the other agents in one metric; very far in the other. Selecting these q agents leads
to an unbounded distortion in the former case but is necessary for a bounded distortion in the latter.

To prove the bound for q > k
2 , we consider three different metrics consistent with the same rankings

and show that, in one of them, there are q agents in one extreme that cannot be consistently selected.

This bound increases in q and varies between
3
2 + 3

2(k+1) for q = k
2 + 1 and 2 for q = k; Figure 5.(a)

illustrates it for k = 100 and q between 51 and 100.

In the remainder of this section, we study the case where q = k = 2 in further detail and achieve the

best-possible distortions of
4
3 and 2 for odd and even n, respectively, through natural voting rules that

are able to leverage the different objectives involved in the problem. In this setting, the social cost of a

committee S′
for an agent a is determined by the distance to the farthest agent in the committee S′

.

Formally, for a set of agents A and a committee S′ ∈
(
A
2

)
, the social cost is

SC(S′, A; d) =
∑
a∈A

max
s∈S′

d(a, s).

8



1 2 3 4 5 6 7 8 9

(a) Stair diagram for n = 9. The red area corresponds to the

committee {3, 4}; the green area to {6, 7}.

1 2 3 4 5 6 7 8

(b) Stair diagram for n = 8. The red area corresponds to the

committee {4, 5}; the green area to {5, 6}.

Figure 2: Stair diagrams for 9 and 8 agents. The common cost incurred by any committee is shown in gray; the

additional cost of two specific committees is shown in red and green.

On an intuitive level, the goal is to select agents that are both close to each other and close to the

median agent(s). In particular, it is not hard to see that the optimal committee always consists of two

consecutive agents: For any committee of non-consecutive agents, replacing the most extreme agent

among the selected ones with another closer to the median cannot decrease the social cost.

A visual aid for computing the social cost of a committee is what we call stair diagrams, illustrated

in Figure 2. The area below both staircases is a cost that every committee of size k = 2 must incur.

A specific committee {s1, s2} must incur, in addition, a cost equal to the area of the rectangle whose

basis is the line segment between both selected candidates and whose height is n (and potentially an

additional area to reach this point from the median). The figure illustrates the common area incurred by

any committee and the additional cost of two possible committees for each n ∈ {8, 9}. It also provides

an intuition of the difference between the cases with odd and even k. The following lemma bounds

the social cost of any committee from below and provides intuition about this objective. Its proof is

deferred to Appendix A.4.

Lemma 3.4. Let E = (A, k,≻) be an election and d ▷ ≻ a consistent metric. Then, for every committee

S′ = {s1, s2} ∈
(
A
2

)
,

SC(S′, A; d) ≥


∑n−1

2
i=1 d(i, n− i+ 1) + n−1

2 · d(s1, s2) + SC

(
S′,

{
n+1
2

}
; d
)

if n is odd,∑n
2
i=1 d(i, n− i+ 1) + n

2 · d(s1, s2) if n is even.

We now establish tight distortion bounds of
4
3 and 2 for odd and even values of n, respectively. For

n = 3, it is easy to see that the optimal set corresponds to the median agent and the agent that the

median prefers among the others, which yields a simple rule with distortion 1. For n ≥ 5 odd, we

introduce a voting rule called Favorite Couple. For an election E = (A, k,≻), we say that agents

a, b ∈ A are a couple if they rank each other above all other agents; i.e., if b ≻a c and a ≻b c for every
c ∈ A \ {a, b}. Note that each agent can take part in at most one couple. Favorite Couple selects the

closest couple to the median when restricting to the five middle agents.

Voting Rule 2 (Favorite Couple). For a preference profile ≻, compute the order from left to right

1, . . . , n and let m = n+1
2 be the median agent. If there is a couple among the sets {m − 1,m} and

{m,m+ 1}, return it. Else, return {m+ 1,m+ 2} ifm+ 2 ≻m m− 2, and {m− 2,m− 1} otherwise.

On an intuitive level, this voting rule selects two consecutive agents who are both close to each other

and to the median agent. The restriction to middle agents is necessary; simply choosing an arbitrary

couple can lead to a distortion of up to 2. For example, this is the case if there are n agents with distances

d(a, a+1) = 1+ aε for all a ∈ [n− 1] and a small ε > 0, as the only couple is {1, 2} with a social cost

9



of approximately
n2

2 , while the committee consisting of the median agent and any neighbor is close to

n2

4 . This rule provides the best-possible distortion of
4
3 for an odd number of agents.

Theorem 3.5. For every odd n ≥ 5, Favorite Couple achieves a distortion of
4
3 for utilitarian 2-cost.

There exists n ∈ N such that, for every (n, 2)-voting rule f , we have dist(f) ≥ 4
3 for utilitarian 2-cost.

To establish the distortion of Favorite Couple, we address different cases depending on the set selected

by this rule and the optimal set. In each of them, we can use the selection condition of the rule to bound

the social cost of the set selected by it from above and the optimal social cost from below and achieve a

ratio of at most
4
3 between them. Intuitively, in situations like the one illustrated in Figure 2.(a), Favorite

Couple can select a suboptimal committee (e.g. the red one instead of the green one), but this imposes

several restriction on the distances, such as d(3, 4) ≤ min{d(4, 5), d(6, 7)} and 2d(3, 4) ≤ d(5, 7) in
this example. In particular, this implies lower bounds on the common cost incurred by any voting rule.

We study and apply these inequalities carefully to prove our guarantee in Appendix A.5.

When n is even, the voting rule that selects the two median agents attains the best-possible distortion

of 2. The proof can be found in Appendix A.6.

Proposition 3.6. For an even number of agents n, the voting rule that selects the two median agents

achieves a distortion of 2 for utilitarian 2-cost. Moreover, there existsn ∈ N such that, for every (n, 2)-voting
rule f , we have dist(f) ≥ 2 for utilitarian 2-cost.

4 Egalitarian Social Cost

In this section, we study the worst-case distortion achievable by voting rules in the context of egalitarian

social cost. Recall that, in this case, given a set of agents A, a committee size k, and a distance metric d,
the social cost of a committee S′ ∈

(
A
k

)
corresponds to the maximum cost of this committee for some

agent a ∈ A: SC(S′, A; d) = max{SC(S′, a; d) | a ∈ A}. We start with the simple case k = 1 as a

warm-up, where S′ = {s} for some s ∈ A and thus SC(S′, a; d) is simply d(a, s) for every a ∈ A. The

following proposition, proven in Appendix B.1, states a tight distortion of 2 for this case.

Proposition 4.1. For every n ∈ N, any (n, 1)-voting rule has distortion 2 for egalitarian social cost. There
exists n ∈ N such that, for every (n, 1)-voting rule f , dist(f) ≥ 2 for egalitarian social cost.

4.1 Egalitarian Additive Cost

In this section, we study voting rules in the context of egalitarian additive social cost, defined as the

maximum over agents of the sum of the distances from the agent to all selected candidates. That is, for

a set of agents A, a committee size k, and a distance metric d, the social cost of a committee S′ ∈
(
A
k

)
is

SC(S′, A; d) = max

{ ∑
s∈S′

d(a, s)
∣∣∣ a ∈ A

}
.

We begin with a simple observation: When k = 2 candidates are to be selected, a simple rule selecting

both extreme candidates achieves the best-possible distortion of 1. Intuitively, this voting rule makes

sense because, for any selected committee, (1) the cost of the committee is maximized for one of the

extreme agents, and (2) the sum of the costs of the committee for both extreme agents is fixed (and

equal to two times the distance between them). Thus, selecting both extreme agents ensures they incur

the same cost and minimizes the maximum cost between them. This rule and its distortion will be

covered as a special case of the rule and result we introduce in what follows.

For larger k, the above intuition about the cost of any committee being maximized for the extreme

agents remains true. We state this property, which will be exploited in the development and analysis of

a voting rule guaranteeing a constant distortion, in the following lemma.
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Figure 3: Distortion of k-Extremes and lower bound stated in Theorem 4.3 for k ∈ {2, . . . , 99}.

Lemma 4.2. For every set of agents A = [n], committee size k, committee S′ ∈
(
A
k

)
, and distance metric

d, it holds that SC(S′, A; d) = max{SC(S′, 1; d), SC(S′, n; d)}.

Since for any set of agentsA, committee size k, committee S′ ∈
(
A
k

)
, and distance metric d we have that

SC(S′, 1; d) + SC(S′, n; d) =
∑
a∈S′

(d(1, a) + d(a, n)) = kd(1, n), (1)

the previous lemma implies that the optimal committee will be the set that balances the cost for the

extreme agents as much as possible. Thus, it is natural to generalize the rule that selects both extreme

agents to larger committees, by selecting roughly
k
2 agents from each extreme.

Voting Rule 3 (k-Extremes). For a preference profile ≻, compute the order of agents from left to right

1, . . . , n and return S =
{
1, . . . ,

⌊
k
2

⌋}
∪
{
n−

⌈
k
2

⌉
+ 1, . . . , n

}
.

The following theorem states the distortion of this voting rule. It captures the previously claimed

distortion of 1 for k = 2 and approaches
3
2 as k grows, which is best possible up to O

(
1
k

)
terms.

Theorem 4.3. For every n, k ∈ N with n ≥ k ≥ 2, k-Extremes has a distortion for egalitarian additive

social cost of at most
3
2 −

1
2(k−1) if k is even and at most

3
2 −

1
k(k−1) if k is odd. Conversely, for every k ∈ N

with k ≥ 3 there exists n ∈ N with n ≥ k such that, for every (n, k)-voting rule f , dist(f) ≥ 3
2 −

1
k for

egalitarian additive social cost.

The upper and lower bounds stated in this theorem are depicted in Figure 3; its proof is deferred to

Appendix B.3. For the distortion of k-Extremes, we assume w.l.o.g. that agent 1 (and not agent n)
incurs the maximum cost. The result follows easily when agent 1 incurs a small cost; the most involved

part of the proof involves bounding the social cost of any committee from below when this is not the

case. As for the lower bound, our worst-case instances involve k + 1 agents in one extreme, a single

agent in the other extreme, and k agents in the middle, which are selected in the optimal committee but

cannot be detected by any rule when considering two symmetric distance metrics.

4.2 Egalitarian q-cost

In this brief section, we state our results for the egalitarian q-cost objective. The social cost is now the

maximum over agents of the distance from each agent to its qth closest candidate; i.e., SC(S′, A; d) =
max

{
d̃(a)q | a ∈ A

}
. for a set of agents A, a committee size k, a committee S′ ∈

(
A
k

)
, and a distance

metric d, where d̃(a) ∈ RS′
+ contains the values {d(a, s) | s ∈ S′} in increasing order.

The following theorem, proven in Appendix B.4, states that no voting rule can guarantee a constant

distortion for q-cost when q ≤ k
3 , as in the setting of disjoint voters and candidates [14]. To prove it,
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we partition the agents into

⌊
k
q

⌋
sets and consider two symmetric distance metrics where all but one

set are placed at a unit distance from one another and two sets in one extreme are at the same location.

We show that no rule can pick q agents from each location.

Theorem 4.4. For every k, q ∈ N with
k
3 ≥ q, there exists n ∈ N with n ≥ k such that, for every

(n, k)-voting rule f , dist(f) is unbounded for egalitarian q-cost.

In the context of egalitarian q-cost for q > k
3 , much better results are possible. The case with q > k

2
behaves similarly to the setting where a single candidate is to be selected: Any voting rule achieves a

distortion of 2, and this is best possible. When
k
3 < q ≤ k

2 , the best-possible distortion a voting rule

can achieve is again 2, but not any rule does so. We show that k-Extremes attains it. For the upper
bounds, we prove that the social cost of the set selected by this rule is at most the distance from the

agent closest to the center to their nearest extreme, and bound the social cost of the optimal set from

below by half of this distance. The proof is deferred to Appendix B.5.

Theorem 4.5. Let n, k, q ∈ N be such that n ≥ k ≥ 2 and q > k
3 . If q > k

2 , any (n, k)-voting rule

has distortion 2 for egalitarian q-cost. If q > k
3 , k-Extremes has distortion 2 for egalitarian q-cost. For

every k, q ∈ N with q > k
3 ≥ 1, there exists n ∈ N with n ≥ k such that, for every (n, k)-voting rule f ,

dist(f) ≥ 2.

5 Discussion

In this work, we have introduced the study of metric distortion in committee elections where voters

and candidates coincide and provided a first step towards an understanding of this setting by focusing

on the line metric. Our results span a variety of social costs and include both analyses of voting rules

and constructions of negative instances to provide impossibility results. Although most of our results

are tight, an intriguing gap remains for utilitarian q-cost when q is greater than k
2 . We believe that rules

with a distortion better than the current upper bound of 3 exist, and their design may benefit from the

insights provided by our rule for q = k = 2.

The study of the distortion of voting rules in more general metric spaces constitutes another interesting

direction for future work. As the lower bounds presented in this work remain valid and constant upper

bounds for q-cost would still be attainable due to the general result by Caragiannis et al. [14], the design
of voting rules providing a small distortion beyond the line in the case of additive cost is the main open

question in this regard.

Another challenge in the design of elections is preventing strategic behavior. A mild assumption in

the context of peer selection, adopted by the growing literature on impartial selection, is that agents’

primary concern is whether they are selected themselves, and a voting rule is deemed impartial if an

agent cannot affect this fact by changing their reported preferences. On the other hand, a rule is called

strategyproof in the voting literature if no agent can misreport their preferences and lead to a better

outcome with respect to their actual preferences. Both notions—impartiality and strategyproofness–can

be readily applied to our setting, the former being a relaxed version of the latter in this case. Most of the

voting rules developed in this work depend on the order of the agents and are thus strategyproof if one

restricts voters’ deviations to those that are consistent with this order. This constitutes a sensible way

to define these axioms, as inconsistent reports could be easily detected and punished by the designer.

A notable exception is the Favorite Couple rule, which does not depend exclusively on the order

and is not even impartial: For instance, an agent next to the median agent could in some cases modify

their ranking, reporting the median agent immediately after themselves, to create a couple and become

selected. Designing impartial and strategyproof voting rules with bounded distortion for peer selection

constitutes an interesting challenge for future work in the area.
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A Proofs Deferred from Section 3

A.1 Proof of Lemma 3.1

Lemma 3.1. For any election E = (A, k,≻) and consistent metric d▷ ≻, there exists i ∈ [n−k+1] such
that, defining S∗ = {i, i+ 1, . . . , i+ k − 1}, we have SC(S∗, A; d) = min

{
SC(S′, A; d) | S′ ∈

(
A
k

)}
.

Proof. Let E = (A, k,≻) with A = [n] and d be as in the statement, and let also x ▷ ≻ be a consistent

position vector defining d. The result is trivial if k = 1, so we assume that k ≥ 2 in what follows. We

first observe that, by Lemma 2 in Babashah et al. [7], SC(a,A; d) ≤ SC(b, A; d) holds for a, b ∈ A are

such that either (1) a, b ≥ n+1
2 and a − n+1

2 ≤ b − n+1
2 , or (2) a, b ≤ n+1

2 and
n+1
2 − a ≤ n+1

2 − b.
In simple words, if two agents lie on the same side of the median agent(s), the agent closer to them

has a lower cost. Thus, there exist S∗ ∈
(
A
k

)
that minimizes the social cost such that {m1,m2} ⊆ S∗

,

wherem1 =
⌊
n+1
2

⌋
andm2 =

⌈
n+1
2

⌉
denote the median agent(s) (note thatm1 = m2 if n is odd). Now,

suppose that S∗
is not consecutive. Sincem1,m2 ∈ S∗

, there exists an agent a /∈ S∗
and b ∈ S∗

such

that either (1) a, b ≥ n+1
2 and a− n+1

2 ≤ b− n+1
2 , or (2) a, b ≤ n+1

2 and
n+1
2 − a ≤ n+1

2 − b. But then,
using the result by Babashah et al. [7] again, we obtain that SC((S∗ \ {b})∪ {a}, A; d) ≤ SC(S∗, A; d);
i.e., we can exchange b by a and the social cost of the committee does not increase. By repeating this

procedure, we reach a committee with consecutive agents and minimum social cost, as claimed in the

statement.

A.2 Proof of Theorem 3.2

Theorem 3.2. The distortion of Median Alternation is at most
2
k

(
n −

√
2
⌊
n−k
2

⌋
n
)
for utilitarian

additive social cost.

In order to prove Theorem 3.2, we will show that we can reduce any metric to another one where all

agents are in one out of two locations. As a first step, we prove that an agent (or set of agents at the

same location) can always be moved in one direction such that the distortion does not improve, as long

as they do not pass through other agents’ locations. To this end, for a position vector x ∈ (−∞,∞)n,
a position x̄ ∈ (−∞,∞) such that A(x̄) ̸= ∅, and δ > 0, we define the shifted position vectors

x−(x̄, δ), x+(x̄, δ) ∈ (−∞,∞)n as follows:

x−a (x̄, δ) = xa − δ for every a ∈ A(x̄), x−a (x̄, δ) = xa for every a ∈ A \A(x̄),

x+a (x̄, δ) = xa + δ for every a ∈ A(x̄), x+a (x̄, δ) = xa for every a ∈ A \A(x̄).

Lemma A.1. Let E = (A, k,≻) be an election with A = [n], let S ∈
(
A
k

)
be the committee selected by

Median Alternation on this election, and let x ∈ (−∞,∞)n with x ▷ ≻ be a consistent position vector.

Let x̄ ∈ (−∞,∞) be such that A(x̄) ̸= ∅, let δ > 0 be such that A((x̄ − δ, x̄ + δ)) = A(x̄) and let

x− = x−(x̄, δ) and x+ = x+(x̄, δ). Then, for all preference profiles ≻−,≻+
such that x− ▷ ≻−

and

x+ ▷ ≻+
, at least one of the following inequalities holds:

dist(S, (A, k,≻−);x−) ≥ dist(S, E ;x), or dist(S, (A, k,≻+);x+) ≥ dist(S, E ;x).

Proof. Let E = (A, k,≻), S, x, x̄, δ, x−, x+, ≻−
, and ≻+

be as in the statement. We denote by d, d−,
and d+ the distance metrics associated to x, x−, and x+, respectively.

We first consider an arbitrary committee S′ ∈
(
A
k

)
and compute the difference between the social cost of

this committee under metric d and under both of the other metrics. From the definition of the additive
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social cost, for any a ∈ A such that xa < x̄ we have that

SC(S′, a;x−) =
∑

b∈S′∩A(x̄)

d−(a, b) +
∑

b∈S′\A(x̄)

d−(a, b)

=
∑

b∈S′∩A(x̄)

(d(a, b)− δ) +
∑

b∈S′\A(x̄)

d(a, b)

= SC(S′, a;x)− δ |S′ ∩A(x̄)|. (2)

Similarly, for any a ∈ A such that xa > x̄ we have that

SC(S′, a;x−) =
∑

b∈S′∩A(x̄)

d−(a, b) +
∑

b∈S′\A(x̄)

d−(a, b)

=
∑

b∈S′∩A(x̄)

(d(a, b) + δ) +
∑

b∈S′\A(x̄)

d(a, b)

= SC(S′, a;x) + δ |S′ ∩A(x̄)|. (3)

Finally, for every a with xa = x̄, i.e., a ∈ A(x̄), we have that

SC(S′, a;x−) =
∑

b∈S′∩A((−∞,x̄))

d−(a, b) +
∑

b∈S′∩A((x̄,+∞))

d−(a, b)

=
∑

b∈S′∩A((−∞,x̄))

(d(a, b)− δ) +
∑

b∈S′∩A((x̄,+∞))

(d−(a, b) + δ)

= SC(S′, a;x) + δ (|S′ ∩A((x̄,+∞))| − |S′ ∩A((−∞, x̄))|). (4)

Combining eqs. (2) to (4), we obtain from the definition of utilitarian social cost that

SC(S′, A;x−) =
∑
a∈A

SC(S′, a; d−)

= SC(S′, A;x)− δ |S′ ∩A(x̄)|
(
|A(−∞, x̄)| − |A(x̄,+∞)|

)
− δ |A(x̄)|

(
|S′ ∩A((−∞, x̄))| − |S′ ∩A((x̄,+∞))|

)
.

One can proceed analogously for d+ to obtain

SC(S′, A;x+) = SC(S′, A;x) + δ |S′ ∩A(x̄)|
(
|A(−∞, x̄)| − |A(x̄,+∞)|

)
+ δ |A(x̄)|

(
|S′ ∩A((−∞, x̄))| − |S′ ∩A((x̄,+∞))|

)
.

Hence, there exists a value ∆(S′), that only depends on the committee δ, such that

SC(S′, A;x−) = SC(S′, A;x)−∆(S′), SC(S′, A;x+) = SC(S′, A;x) + ∆(S′). (5)

We let S∗
denote an optimal committee for the metric d in what follows, i.e., a committee such that

SC(S∗, A;x) = min
{
SC(S′, A;x) | S′ ∈

(
A
k

)}
. We observe that

dist(S, (A, k,≻−);x−) =
SC(S,A;x−)

minS′∈(Ak)
SC(S′, A;x−)

≥ SC(S,A;x−)

SC(S∗, A;x−)
=

SC(S,A;x)−∆(S)

SC(S∗, A;x)−∆(S∗)
,

(6)

and

dist(S, (A, k,≻−);x+) =
SC(S,A;x+)

minS′∈(Ak)
SC(S′, A;x+)

≥ SC(S,A;x+)

SC(S∗, A;x+)
=

SC(S,A;x) + ∆(S)

SC(S∗, A;x) + ∆(S∗)
.

(7)

If either SC(S∗, A;x) = ∆(S∗) or SC(S∗, A;x) = −∆(S∗) holds, the distortion becomes unbounded

in one of the new instances and the result follows directly. Otherwise, it follows from the simple

property stated in the following claim.
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Claim A.1. For any values y, z ∈ R+ and w ∈ (−z, z), we have either y+w
z+w ≥

y
z or

y−w
z−w ≥

y
z .

Proof. Suppose towards a contradiction that both
y+w
z+w < y

z and
y−w
z−w < y

z hold. Since w < z, the first
inequality is equivalent to

z(y + w) < y(z + w)⇐⇒ zw < yw.

Since w > −z, the second inequality is equivalent to

z(y − w) < y(z − w)⇐⇒ yw < zw.

As the inequalities contradict each other, we conclude.

Applying these properties to inequalities (6) and (7), we obtain that either

dist(S, (A, k,≻−);x+) ≥ SC(S,A;x) + ∆(S)

SC(S∗, A;x) + ∆(S∗)
≥ SC(S,A;x)

SC(S∗, A;x)
= dist(S, E ;x)

or

dist(S, (A, k,≻−);x−) ≥ SC(S,A;x)−∆(S)

SC(S∗, A;x)−∆(S∗)
≥ SC(S,A;x)

SC(S∗, A;x)
= dist(S, E ;x)

holds, concluding the proof.

We can use the previous lemma to conclude that, for every election and consistent metric, Median

Alternation selects a committee such that, under another metric with only two locations, the distortion

does not improve.

Lemma A.2. Let E = (A, k,≻) be an election with A = [n], let S ∈
(
A
k

)
be the committee selected

by Median Alternation on this election, and let x ∈ (−∞,∞)n with x ▷ ≻ be a consistent position

vector. Then, there exists a position vector x′ ∈ (−∞,∞)n such that x′a ∈ {x1, xn} for every a ∈ A
and dist(S′, (A, k,≻′);x′) ≥ dist(S, E , x), where ≻′

is any preference profile such that x′ ▷ ≻′
and

S′ ∈
(
A
k

)
is the committee selected by Median Alternation on the election (A, k,≻′).

Proof. Let E = (A, k,≻) and x be as in the statement, where, as usual, x1 and xn represent the positions

of the two extreme agents. To construct x′ as claimed in the statement, we iteratively move agents

toward the positions of the extreme agents using Lemma A.1. Specifically, we initialize x′ = x and, as

long as x′a ∈ (x1, xn) for some a ∈ A, we fix x̄ = xa, we define

δ∗ = max{δ > 0 | A((x̄− δ, x̄+ δ)) = A(x̄)},

and we update x′b ← x′b ± δ∗ for every b ∈ A(x̄) and the sign that ensures not increasing the distortion

dist(S,A;x′) of S. Note that the definition of δ∗ ensures both the existence of this sign, due to

Lemma A.1, and the fact that the number of different positions |{y ∈ (−∞,∞) | ∃a ∈ [n] : x′a = y}|
is reduced in each step. Thus, the procedure terminates with a vector x′ ∈ (−∞,∞) such that (1)

x′a ∈ {x1, xn} for every a ∈ A, and (2) the distortion of S under the resulting metric has not decreased.

Note that, since the order of the agents has not been changed besides ties, we have either S′ = S
if the committee selected by Median Alternation has not changed or S′ ̸= S but SC(S′, A, x′) =
SC(S,A;x′) if the committee has changed due to a different tie-breaking.

We now proceed with the proof of Theorem 3.2.

Proof of Theorem 3.2. Let E = (A, k,≻) be an arbitrary election, where A = [n] is the set of agents.
Let d ▷ ≻ be any consistent distance metric induced by positions x ∈ (−∞,∞)n, and let S denote

the committee selected by Median Alternation on this election. From Lemma A.2, we know that
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there exists a new position vector x′ ∈ (−∞,∞)n and associated election E ′ = (A, k,≻′), with
x′ ▷ ≻′

, such that where all agents are positioned at the two extreme positions of the original instance

and the distortion in E ′ is at least as bad as the distortion in E ; i.e., x′a ∈ {x1, xn} for every a ∈ A
and dist(S′, (A, k,≻′);x′) ≥ dist(S, E , x), where S′

denotes the committee selected by Median

Alternation on E ′. Thus, it suffices to compute the distortion for this election E ′ to bound the

distortion of the voting rule. As usual, we denote by d′ the metric induced by the position vector x′.

We partition the set of agents into two groups, A = A1∪̇An, where

A1 = {a ∈ A | x′a = x1} and An = {a ∈ A | x′a = xn}

denote the sets of agents located at positions x1 and xn under the position vector x′, respectively. We

let S1 = S′ ∩A1 and S2 = S′ ∩A2 denote the agents selected by Median Alternation on E ′ from
agents in A1 and A2, respectively. Then, the social cost of S

′
is given by

SC(S′, A; d′) =
∑
a∈A1

∑
b∈S′

d′(x1, xb) +
∑
a∈An

∑
b∈S′

d′(xn, xb)

= |A1| · |Sn| · d′(x1, xn) + |An| · |S1| · d′(x1, xn).

On the other hand, the optimal committee S∗
clearly minimizes the total social cost by selecting as

many agents as possible from the larger group between A1 and An, as this cost is only incurred by

agents in the smaller set. We suppose that |An| ≥ |A1| w.l.o.g. We have two cases: either |An| ≥ k or

|An| < k. In the former case,

SC(S∗, A; d) = |A1| · k · d′(x1, xn),

while in the latter case,

SC(S∗, A; d) = |A1| · |An| · d′(x1, xn) + |An| · (k − |An|) · d′(x1, xn).

Since |An| ≥ |A1| implies

|A1| · |An| · d′(x1, xn) + |An| · (k − |An|) · d′(x1, xn) ≥ |A1| · k · d′(x1, xn),

the social cost induced by S∗
is smaller when |An| ≥ k and it suffices to bound the distortion in this

case. Therefore,

dist(f) ≤ SC(S,A; d′)

SC(S∗, A; d′)
=
|A1| · |Sn| · d′(x1, xn) + |An| · |S1| · d′(x1, xn)

|A1| · k · d′(x1, xn)

=
|A1| · |Sn|+ |An| · |S1|

|A1| · k
. (8)

If |Sn| = k, we obtain dist(f) = 1. In what follows, we thus assume S1 ̸= ∅. From the definition

of the Median Alternation voting rule, we know that |An| − |Sn| = |A1| − |S1| if n − k is even,

and either |An| − |Sn| = |A1| − |S1|+ 1 or |An| − |Sn| = |A1| − |S1| − 1 if n− k is odd. Since the

distortion increases in |S1| for fixed n and k due to the assumption that |An| ≥ |A1|, the worst case
is |An| − |Sn| = |A1| − |S1| + 1 when n − k is odd, so we restrict to it in what follows. For ease of

notation, we define a value χ ∈ {0, 1}, such that χ = 0 if n− k is even and χ = 1 if n− k is odd, so

that we can express the previous equations simply as

|An| − |Sn| = |A1| − |S1|+ χ.

From this equality, alongside |A1|+ |An| = n and |S1|+ |Sn| = k, we can express all |A1|, |S1|, and
|Sn| in terms of |An| as follows:

|A1| = n− |An|, |S1| =
n+ k + χ

2
− |An|, |Sn| = |An| −

n− k − χ

2
.
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Replacing in inequality (8), we obtain

dist(f) ≤
(n− |An|)

(
|An| − n−k−χ

2

)
+ |An|

(n+k+χ
2 − |An|

)
(n− |An|)k

=
1

k

(
2|An| −

(n− k − χ)n

2(n− |An|)

)
= h(|An|), (9)

where we have defined a function h :
{⌈

n
2

⌉
, . . . , n− 1

}
→ R, which evaluated at |An| gives the last

expression. Its first and second derivatives are given by

h′(y) =
1

k

(
2− (n− k − χ)n

2(n− y)2

)
, h′′(y) = −(n− k − χ)n

k(n− y)3
.

Since h′′(y) ≤ 0 for every y in the domain of h, an upper bound for the value of h is given by its value

at y∗, where y∗ is such that

h′(y∗) = 0⇐⇒ y∗ = n− 1

2

√
(n− k − χ)n.

Combining this fact with inequality (9), we conclude that

dist(f) ≤ h(y∗) =
1

k

(
2

(
n− 1

2

√
(n− k − χ)n

)
− (n− k − χ)n

2 · 12
√

(n− k − χ)n

)
=

2

k

(
n−

√
(n− k − χ)n

)
,

which is the same as the expression in the statement.

A.3 Proof of Theorem 3.3

Theorem 3.3. For every k ∈ N with k ≥ 2 and q ∈ N with q ≤ k
2 , there exists n ∈ N with n ≥ k such

that, for every (n, k)-voting rule f , dist(f) is unbounded for utilitarian q-cost. For every k ∈ N with

k ≥ 3 and q ∈ N with
k
2 + 1 ≤ q ≤ k, there exists n ∈ N with n ≥ k such that, for every (n, k)-voting

rule f , dist(f) is at least 2− k−q
4q−k−3 for utilitarian q-cost.

We prove the lower bounds in the statement via two separate lemmas; the theorem then follows directly.

Lemma A.3. For every k ∈ N with k ≥ 2 and q ∈ N with q ≤ k
2 , there exists n ∈ N with n ≥ k such

that, for every (n, k)-voting rule f , dist(f) is unbounded for utilitarian q-cost.

Proof. We let k and q be as in the statement, fix n ∈ N to a large value, in particular with n ≥ 2k + q
(we will ultimately take the limit n→∞), and consider an arbitrary (n, k)-voting rule f . We denote

p =
⌊
k
q

⌋
≥ 2 and partition the agents into p+1 setsA =

⋃̇p

i=1Ai∪B, such that |Ai| ∈
{⌊n−q

p

⌋
,
⌈n−q

p

⌉}
for every i ∈ [p] and |B| = q. Note that this is possible since

p

⌊
n− q

p

⌋
+ q ≤ n ≤ p

⌊
n− q

p

⌋
+ q.

We consider the profile ≻∈ Ln(n), where

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some i, j, ℓ ∈ [p] with |i− j| < |i− ℓ|;

(ii) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ B for some i, j ∈ [p];

(iii) b ≻a c whenever a, b ∈ B, c ∈ Ai for some i ∈ [p];
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(iv) b ≻a c whenever a ∈ B, b ∈ Ai, c ∈ Aj for some i, j ∈ [p] with i > j;

and the remaining pairwise comparisons are arbitrary. We consider the election E = (A, k,≻) with
A = [n].

In what follows, we distinguish whether f selects all q agents in B or not and construct appropriate

distance metrics to show that, in either case, the distortion can be arbitrarily large. Intuitively, if f
selects B we will consider this set to be relatively close to Ap, so that picking q agents from each set

A1, . . . , Ap would give a much lower social cost. On the contrary, if f does not select B, we will place

this set extremely far from all others, so that the social cost of the selected set is huge compared to the

social cost of a committee containing B.

Formally, we first consider the case with B ⊆ S and define the distance metric d1 on A given by the

following positions x ∈ (−∞,∞)n: xa = i− 1 for every a ∈ Ai and every i ∈ [p], and xa = 2(p− 1)
for every a ∈ B. It is not hard to see that d1 ▷ ≻; see Figure 4 for an illustration. Since B ⊆ S, we
have that

∣∣S ∩⋃
i∈[p]Ai

∣∣ ≤ k − q. Hence, from an averaging argument, there exists j ∈ [p] with

|S ∩Aj | ≤
k − q

p
=

q

k
(k − q) < q.

From the definition of q-cost, we thus have

SC(S, a; d1) ≥ min{d1(a, b) | b ∈ A \Aj} ≥ 1 for every a ∈ Aj . (10)

On the other hand, consider the set S = ∪i∈[p]Si, where Si ⊆ Ai and |Si| ≥ q for every i ∈ [p]. Note
that this set exists because pq = k and

|Ai| ≥
⌊
n− q

p

⌋
≥

⌊
2k

k
q

⌋
≥ q,

where we used our assumption n ≥ 2k+ q. From the definition of q-cost, we have that SC(S, a; d1) = 0
for every a ∈ Ai and every i ∈ [p]. For each a ∈ B, we have SC(S, a; d1) = p− 1. Combining these

facts with inequality (10), we obtain

dist(f(≻), E) ≥ SC(S,A; d1)

SC(S,A; d1)
≥ |Aj |

(p− 1)|B|
≥

⌊
n− q

p

⌋
1

(p− 1)q
=

⌊
(n− q)q

k

⌋
· 1

k − q
.

We now consider the case with B ̸⊆ S and define the distance metric d2 on A given by the following

positions x ∈ (−∞,∞)n: xa = i − 1 for every a ∈ Ai and every i ∈ [p], and xa = p − 1 +Mn for

every a ∈ B. It is not hard to see that d2 ▷ ≻; see Figure 4 for an illustration. Since B ̸⊆ S, we have
that |S ∩B| < q and thus, by the definition of q-cost, we have

SC(S, a; d2) ≥ min{d2(a, b) | b ∈ A \B} ≥Mn for every a ∈ B. (11)

On the other hand, consider the set T = B ∪ ∪i∈[p−1]Ti, where Ti ⊆ Ai and |Ti| ≥ q for every

i ∈ [p− 1]. Note that this set exists because (p− 1)q = k − q and

|Ai| ≥
⌊
n− q

p

⌋
≥

⌊
2k

k
q

⌋
≥ q,

where we used our assumption n ≥ 2k+q. From the definition of q-cost, we have that SC(T, a; d2) = 0
for every a ∈ Ai and every i ∈ [p − 1] and SC(T, a; d2) = 0 for every a ∈ B. For each a ∈ Ap, we

have SC(T, a; d2) = 1. Combining these facts with inequality (11), we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

SC(T,A; d2)
≥ Mn|B|
|Ap|

≥ 1⌈n−q
p

⌉Mnq =
1⌈ (n−q)q
k

⌉Mnq.
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Metric d1
A1 A2 A3 Ap−1 Ap B

1 1 1 p− 1

Metric d2
A1 A2 A3 Ap−1 Ap B

1 1 1 Mn

Figure 4: Metrics considered in the proof of Lemma A.3. In this and all similar figures throughout the paper, the

(sets of) agents are represented by circles, with the identity of the agents or sets below them, and the distances

between them are written on top of the corresponding line segments. All figures consider indistinguishable

metrics for a certain preference profile of the agents and thus any voting rule must select the same subsets for

any of these metrics.

Since dist(f(≻), E) ≥
⌊ (n−q)q

k

⌋
· 1
k−q if B ⊆ S and dist(f(≻), E) ≥ 1⌈

(n−q)q
k

⌉Mnq otherwise, we

conclude that

dist(f) ≥ min

{⌊
(n− q)q

k

⌋
· 1

k − q
,

1⌈ (n−q)q
k

⌉Mnq

}
,

which can be unbounded by taking n andM arbitrarily large.

Lemma A.4. For every k ∈ N with k ≥ 3 and q ∈ N with
k
2 +1 ≤ q ≤ k, there exists n ∈ N with n ≥ k

such that, for every (n, k)-voting rule f , dist(f) is at least 2− k−q
4q−k−3 for utilitarian q-cost.

Proof. We let k and q be as in the statement and fix n = 2(3q − k − 2), and consider an arbitrary

(n, k)-voting rule f . We partition the agents into four sets A =
⋃̇4

i=1Ai such that |A1| = |A4| = q − 1
and |A2| = |A3| = 2q − k − 1. Note that all these values lie between 1 and q − 1. Indeed, this is
trivial for |A1| and |A4|, whereas for |A2| and |A3| we have 2q − k − 1 ≥ 2

(
k
2 + 1

)
− k − 1 = 1 and

2q − k − 1 ≤ 2q − q − 1 = q − 1, where we have used that q lies between k
2 + 1 and k.

We consider the profile ≻∈ Ln(n), where

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|;

(ii) b ≻a c whenever a ∈ A2, b ∈ A1, c ∈ A3;

(iii) b ≻a c whenever a ∈ A3, b ∈ A4, c ∈ A2;

and the remaining pairwise comparisons are arbitrary. We consider the election E = (A, k,≻) with
A = [n].

In what follows, we distinguish whether f selects q or more agents fromA1∪A2, fromA3∪A4, or from

none of them, and construct appropriate distance metrics to show that, in either case, the distortion is

at least the one claimed in the statement. Intuitively, if f selects less than q agents from both A1 ∪A2

and from A3 ∪A4, we will consider A1 ∪A2 on one extreme and A3 ∪A4 on the other, so that picking

q agents from any of these sets would lead to a lower social cost. If f selects q or more agents from

A1 ∪A2 we will consider a metric where A1 lies in one extreme, A2 in the middle, and both A3 and A4

in the other extreme, so that picking all agents from A4 would lead to a lower social cost. If f selects q
or more agents from A3 ∪A4, we will construct a symmetric instance.

Formally, we first consider the case with |S ∩ (A1 ∪A2)| < q and |S ∩ (A3 ∪A4)| < q and define the

distance metric d1 on A by the following positions x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1 ∪ A2

and xa = 2 for every a ∈ A3 ∪ A4. It is not hard to check that d1 ▷ ≻; see Figure 5.(b) for an

illustration. It is clear that SC(S, a; d1) = 2 for every a ∈ A. If we consider the alternative committee
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S′ = A1 ∪A2 ∈
(
A
k

)
, we have SC(S′, a; d1) = 0 for every a ∈ A1 ∪A2 and SC(S

′, a; d1) = 2 for every
a ∈ A3 ∪A4. We obtain

dist(f(≻), E) ≥ SC(S,A; d1)

SC(S′, A; d1)
=

2 · n
2n
2

= 2.

If |S∩(A3∪A4)| ≥ q, we define the distance metric d2 onA by the following positions x ∈ (−∞,∞)n:
xa = 0 for every a ∈ A1 ∪A2, xa = 1 for every a ∈ A3, and xa = 2 for every a ∈ A4. It is not hard to

check that d2 ▷ ≻; see Figure 5.(b) for an illustration. Since |S ∩ (A1 ∪A2 ∪A3)| ≤ (k − q) + |A3| =
q− 1 < q, we have that SC(S, a; d2) = 2 for every a ∈ A1 ∪A2. Furthermore, since both |A3| < q and
|A4| < q, we have that SC(S, a; d2) = 1 for every a ∈ A3∪A4. If we consider an alternative committee

S′ ⊆ A1 ∪A2 ∈
(
A
k

)
, which exists due to |A1 ∪A2| = 3q − k − 2 ≥ q, we have SC(S′, a; d2) = 0 for

every a ∈ A1 ∪A2, SC(S
′, a; d2) = 1 for every a ∈ A3, and SC(S′, a; d2) = 2 for every a ∈ A4. Thus,

we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

SC(S′, A; d2)

=
2|A1 ∪A2|+ |A3 ∪A4|

|A3|+ 2|A4|

=
3(3q − k − 2)

(2q − k − 1) + 2(q − 1)

= 2− k − q

4q − k − 3
.

Analogously, if |S ∩ (A1 ∪A2)| ≥ q, we define the distance metric d3 on A by the following positions

x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1, xa = 1 for every a ∈ A2, and xa = 2 for every a ∈ A3 ∪A4.

It is not hard to check that d3 ▷ ≻; see Figure 5.(b) for an illustration. Since |S ∩ (A2 ∪A3 ∪A4)| ≤
(k − q) + |A2| = q − 1 < q, we have that SC(S, a; d3) = 2 for every a ∈ A3 ∪A4. Furthermore, since

both |A1| < q and |A2| < q, we have that SC(S, a; d3) = 1 for every a ∈ A1 ∪ A2. If we consider an

alternative committee S′ ⊆ A3 ∪A4 ∈
(
A
k

)
, which exists due to |A3 ∪A4| = 3q − k − 2 ≥ q, we have

SC(S′, a; d3) = 0 for every a ∈ A3 ∪A4, SC(S
′, a; d3) = 1 for every a ∈ A2, and SC(S

′, a; d3) = 2 for
every a ∈ A1. Thus, we obtain

dist(f(≻), E) ≥ SC(S,A; d3)

SC(S′, A; d3)

=
2|A3 ∪A4|+ |A1 ∪A2|

|A2|+ 2|A1|

=
3(3q − k − 2)

(2q − k − 1) + 2(q − 1)

= 2− k − q

4q − k − 3
.

Since dist(f(≻), E) ≥ 2− k−q
4q−k−3 regardless of f(≻), we conclude that dist(f) ≥ 2− k−q

4q−k−3 .

A.4 Proof of Lemma 3.4

Lemma 3.4. Let E = (A, k,≻) be an election and d ▷ ≻ a consistent metric. Then, for every committee

S′ = {s1, s2} ∈
(
A
2

)
,

SC(S′, A; d) ≥


∑n−1

2
i=1 d(i, n− i+ 1) + n−1

2 · d(s1, s2) + SC

(
S′,

{
n+1
2

}
; d
)

if n is odd,∑n
2
i=1 d(i, n− i+ 1) + n

2 · d(s1, s2) if n is even.
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(a) Lower bounds for k = 100, q ∈ {51, . . . , 100}.
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(b)Metrics considered in the proof.

Figure 5: Lower bound on the distortion of any rule for utilitarian q-cost for q > k
2 , as stated in Lemma A.4, and

metrics used to prove it.

Proof. Let E = (A, k,≻) with A = [n] and d be as in the statement and S′ = {s1, s2} ∈
(
A
k

)
an

arbitrary committee. We assume that s1 < s2 w.l.o.g.. Let i ∈ {1, . . . ,
⌊
n
2 ⌋} be a fixed agent. If

i ≤ s1 < s2 ≤ n− i+ 1, we have that the cost of the committee for agents i and n− i+ 1 is at least

SC(S′, i; d) + SC(S′, n− i+ 1; d) = d(i, s2) + d(s1, n− i+ 1) ≥ d(i, n− i+ 1) + d(s1, s2).

Similarly, if s2 < i, we have

SC(S′, i; d) + SC(S′, n− i+ 1; d) = d(s1, i) + d(s1, n− i+ 1) ≥ d(i, n− i+ 1) + d(s1, s2),

and if s1 > n− i+ 1,

SC(S′, i; d) + SC(S′, n− i+ 1; d) = d(i, s2) + d(n− i+ 1, s2) ≥ d(i, n− i+ 1) + d(s1, s2).

Summing up over all agents, we obtain

SC(S′, A; d) =

n
2∑

i=1

(SC(S′, i; d) + SC(S′, n− i+ 1; d)) ≥

n
2∑

i=1

d(i, n− i+ 1) +
n

2
d(s1, s2)

if n is even, and

SC(S′, A; d) =

n−1
2∑

i=1

(SC(S′, i; d) + SC(S′, n− i+ 1; d)) + SC

(
S′,

n+ 1

2
; d

)

≥

n−1
2∑

i=1

d(i, n− i+ 1) +
n− 1

2
d(s1, s2) + SC

(
S′,

n+ 1

2
; d

)
if n is odd.

A.5 Proof of Theorem 3.5

Theorem 3.5. For every odd n ≥ 5, Favorite Couple achieves a distortion of
4
3 for utilitarian 2-cost.

There exists n ∈ N such that, for every (n, 2)-voting rule f , we have dist(f) ≥ 4
3 for utilitarian 2-cost.

Proof. We consider an arbitrary election E = (A, k,≻) with n ≥ 5 and A = [n], and a consistent

metric d ▷ ≻. We denote the five middle agents by a1, . . . , a5 from left to right, with a3 being the

median agent. We let S denote the committee selected by Favorite Couple and S∗
denote the optimal

committee for the metric d. We analyze two main cases, depending on whether the rule selects the

median agent or not.
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Case 1: a3 ∈ S w.l.o.g., we assume that a2 ≻a3 a4, which implies that the selected committee is

S = {a2, a3}. This implies that agents a2 and a3 form a couple, and both d(a2, a3) ≤ d(a1, a2) and
d(a2, a3) ≤ d(a3, a4) hold. Therefore,

d(a1, a5) ≥ 3 · d(a2, a3), d(a2, a4) ≥ 2 · d(a2, a3). (12)

For each i ≤ n−1
2 , the joint cost of S for agents i and n− i+ 1 is given by

SC(S, i; d) + SC(S, n− i+ 1; d) = d(i, a3) + d(a2, n− 1 + 1) = d(i, n− i+ 1) + d(a2, a3).

Since the median agent incurs a cost of SC(A, a3; d) = d(a2, a3), we obtain:

SC(S,A; d) =

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4) +

(
n− 1

2

)
d(a2, a3) + d(a2, a3)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a2, a3) + d(a2, a4).

On the other hand, by Lemma 3.4, we have:

SC(S∗, A; d) ≥

n−1
2∑

i=1

d(i, n− i+ 1) + SC({a3}, A; d)

≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4) + d(a2, a3),

where we used, for the second inequality, that the cost of the median agent is at least d(a2, a3) due to
the assumption that a2 ≻a3 a4. Thus, the distortion is:

dist(f) =
SC(S,A; d)

SC(S∗, A; d)

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n+1
2

)
d(a2, a3) + d(a2, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a3) + d(a2, a4)

≤
(
n−3
2

)
· 3 · d(a2, a3) +

(
n+1
2

)
· d(a2, a3) + 2 · d(a2, a3)(

n−3
2

)
· 3 · d(a2, a3) + d(a2, a3) + 2 · d(a2, a3)

=
4n−8

2 + 2
3n−9

2 + 3
=

4n− 4

3n− 3
=

4

3
,

where the second inequality follows from inequalities (12) and the fact that d(i, n− i+ 1) ≥ d(1, 5)
for every i ≤ n−3

2 . This concludes the proof for this case.

Case 2: a3 /∈ S In this case, we either have S = {a1, a2} or S = {a4, a5}; we assume the former

w.l.o.g.. From the definition of Favorite Couple, this implies that {a2, a3} and {a3, a4} are not couples,
so we must have a1 ≻a2 a3 and a5 ≻a4 a3. It also implies that a1 ≻a3 a5, since {a4, a5} would be

selected otherwise. In terms of distances:

d(a2, a3) ≥ d(a1, a2), d(a3, a4) ≥ d(a4, a5), d(a3, a5) ≥ d(a1, a3). (13)

Similarly as before, the social cost of the selected committee is

SC(S,A; d) =

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n− 3

2

)
d(a1, a2) + d(a1, a2) + d(a1, a3) + d(a1, a4)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 3

2

)
d(a1, a2) + d(a2, a3) + d(a2, a4).
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We now consider two cases depending on whether a3 is in the optimal committee.

Case 2.1: a3 ∈ S∗. If the median agent is selected in the optimal committee, we have from Lemma 3.4

that

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4) +

(
n− 1

2
+ 1

)
min{d(a2, a3), d(a3, a4)}. (14)

We now claim that

(
n−1
2 + 1

)
min{d(a2, a3), d(a3, a4)} ≥ 3

2d(a1, a3). Indeed, if we have

min{d(a2, a3), d(a3, a4)} = d(a2, a3), this holds because
n−1
2 + 1 ≥ 3 and, due to inequalities (13),

3d(a2, a3) ≥ 3
2d(a1, a3). Ifmin{d(a2, a3), d(a3, a4)} = d(a3, a4), this holds because

n−1
2 +1 ≥ 3 and,

due to inequalities (13), 3d(a3, a4) ≥ 3
2d(a3, a5) ≥

3
2d(a1, a3).

Replacing in inequality (14), we obtain

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4) +
3

2
· d(a1, a2) +

3

2
· d(a2, a3).

Thus, the distortion is

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
≤

∑n−3
2

i=1 d(i, n− i+ 1) +
(
n+3
2

)
d(a1, a2) + d(a2, a3) + d(a2, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a4) +

3
2 · d(a1, a2) +

3
2 · d(a2, a3)

≤
(
n−3
2

)
· 4 · d(a1, a2) +

(
n+3
2

)
d(a1, a2) + d(a1, a2) + 2 · d(a1, a2)(

n−3
2

)
· 4 · d(a1, a2) + 2 · d(a1, a2) + 3

2 · d(a1, a2) +
3
2 · d(a1, a2)

≤
(
n−3
2

)
· 4 +

(
n+3
2

)
+ 1 + 2(

n−3
2

)
· 4 + 2 + 3

2 + 3
2

=
4n− 12 + n+ 3 + 2 + 4

4n− 12 + 4 + 3 + 3
=

5n− 3

4n− 2
≤ 5

4
≤ 4

3
,

where the second inequality follows by applying inequalities (13) and the fact that d(i, n−i+1) ≥ d(1, 5)
for every i ≤ n−3

2 . We conclude the distortion bound of
4
3 for this case.

Case 2.2: a3 /∈ S∗. We begin by rewriting the social cost of S more conveniently as

SC(S,A; d) =

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n− 3

2

)
d(a1, a2) + d(a1, a2) + d(a1, a3) + d(a1, a4)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a1, a2) + d(a1, a3) + d(a2, a3) + d(a3, a4)

≤

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a1, a2) + d(a3, a5) + d(a2, a3) + d(a3, a5),

where the last inequality follows from inequalities (13). We distinguish two further cases to bound the

social cost of the optimal committee from below, depending on whether the optimal committee selects

agents from the left or from the right side of the median.
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Case 2.2.1: S∗ ⊆ {a4, a5, . . . , n} If the optimal committee selects an agent on the right side of the

median agent, its social cost satisfies

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n−i+1)+d(a2, a5)+d(a3, a5) =

n−3
2∑

i=1

d(i, n−i+1)+d(a2, a3)+2d(a3, a5).

Thus, the distortion is

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
≤

∑n−3
2

i=1 d(i, n− i+ 1) +
(
n+1
2

)
d(a1, a2) + d(a2, a3) + 2d(a3, a5)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a3) + 2d(a3, a5)

≤
(
n−3
2

)
· 4 · d(a1, a2) +

(
n+1
2

)
d(a1, a2) + d(a1, a2) + 2 · 2 · d(a1, a2)(

n−3
2

)
· 4 · d(a1, a2) + d(a1, a2) + 2 · 2 · d(a1, a2)

≤
(
n−3
2

)
· 4 +

(
n+1
2

)
+ 1 + 4(

n−3
2

)
· 4 + 1 + 4

=
4n− 12 + n+ 1 + 2 + 8

4n− 12 + 2 + 8
=

5n− 1

4n− 2
≤ 4

3
,

where we used inequalities (13) for the second inequality.

Case 2.2.2: S∗ ⊆ {1, . . . , a1, a2}. If S∗ = S, the distortion is trivially 1 and we conclude. Otherwise,

the social cost of S∗
satisfies

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a1, a2) + d(a1, a3) + d(a1, a4).

Thus, the distortion is

dist(f) =
SC(S,A; d)

SC(S∗, A; d)

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n−3
2

)
d(a1, a2) + d(a1, a2) + d(a1, a3) + d(a1, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a1, a2) + d(a1, a3) + d(a1, a4)

≤
(
n−3
2

)
· 4d(a1, a2) +

(
n−3
2

)
d(a1, a2) + d(a1, a2) + 2d(a1, a2) + 3d(a1, a2)(

n−3
2

)
· 4d(a1, a2) + d(a1, a2) + 2d(a1, a2) + 3d(a1, a2)

≤ 4n− 12 + n− 3 + 2 + 4 + 6

4n− 12 + 2 + 4 + 6
=

5n− 3

4n
<

4

3
,

where we used inequalities (13) for the second inequality. This concludes the proof of the distortion of

Favorite Couple.

For the lower bound, we fix n = 5 and an arbitrary (n, 2)-voting rule f , consider the profile ≻∈ L5(5)
defined as

1 ≻1 2 ≻1 3 ≻1 4 ≻1 5,

2 ≻2 1 ≻2 3 ≻2 4 ≻2 5,

3 ≻3 2 ≻3 1 ≻3 4 ≻3 5,

4 ≻4 5 ≻4 3 ≻4 2 ≻4 1,

5 ≻5 4 ≻5 3 ≻5 2 ≻5 1,
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Metric d1
1 2 3 4, 5

1 1 2

Metric d2
1, 2 3 4 5

1 1 1

Figure 6: Metrics considered in the proof of Theorem 3.5.

and consider the election E = (A, 2,≻) with A = [5]. We distinguish two cases depending on the set

of agents S = f(≻) selected by the rule.

Suppose first that S = {1, 2}. We take the distance metric d1 on A given by positions x1 = 0, x2 = 1,
x3 = 2, and x4 = x5 = 4. It is not hard to check that d1 ▷ ≻; see Figure 6 for an illustration. Since

SC({1, 2}, A; d1) = 12, and SC({4, 5}, A; d1) = 9, we obtain

dist(f(≻), E) ≥ SC(S,A; d1)

minS′∈(A2)
SC(S′, A; d1)

≥ 12

9
=

4

3
.

If S ∈ {{2, 3}, {3, 4}, {4, 5}}, we consider the distance metric d2 onA given by positions x1 = x2 = 0,
x3 = 1, x4 = 2, and x5 = 3. It is not hard to check that d2 ▷ ≻; see Figure 6 for an illustration. Since

SC({2, 3}, A; d2) = SC({3, 4}, A; d2) = 8 and SC({4, 5}, A; d2) = 10, whereas SC({1, 2}, A; d2) = 6,
we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

minS′∈(A2)
SC(S′, A; d2)

≥ 8

6
=

4

3
.

Since dist(f(≻), E) ≥ 4
3 in all these cases and sets of non-consecutive agents can only induce a larger

social cost, we conclude that dist(f) ≥ 4
3 .

A.6 Proof of Proposition 3.6

Proposition 3.6. For an even number of agents n, the voting rule that selects the two median agents

achieves a distortion of 2 for utilitarian 2-cost. Moreover, there existsn ∈ N such that, for every (n, 2)-voting
rule f , we have dist(f) ≥ 2 for utilitarian 2-cost.

Proof. We consider an arbitrary election E = (A, k,≻) with even n ≥ 4 and A = [n], and a consistent

metric d ▷ ≻. Note that the assumption n ≥ 4 is w.l.o.g. since, for n = 2, a distortion of 1 is trivially
achieved. We letm1 =

n
2 andm2 =

n
2 +1 denote the left and right median, respectively, S = {m1,m2}

denote the committee selected by the rule, and S∗
denote the optimal committee for the metric d. The

social cost of S is

SC(S,A; d) =

n
2∑

i=1

d(i, n− i+ 1) +
n

2
d(m1,m2),

whereas Lemma 3.4 implies a lower bound on the social cost of the optimal committee of

SC(S∗, A; d) ≥

n
2∑

i=1

d(i, n− i+ 1).

Thus, the distortion of the voting rule is

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
≤

∑n
2
i=1 d(i, n− i+ 1) + n

2d(m1,m2)∑n
2
i=1 d(i, n− i+ 1)

≤
2
∑n

2
i=1 d(i, n− i+ 1)∑n
2
i=1 d(i, n− i+ 1)

= 2,
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Metric d1
1, 2 3 4

1 1

Metric d2
1 2 3, 4

1 1

Metric d3
1, 2 3, 4

2

Figure 7: Metrics considered in the proof of Proposition 3.6 and Proposition 4.1.

where the second inequality follows from the fact that d(m1,m2) ≤ d(i, n − i + 1) for any i ≤ n
2 .

Thus, the voting rule achieves a distortion of at most 2.

For the lower bound, we fix n = 4 and an arbitrary (n, 2)-voting rule f , consider the profile ≻∈ L4(4)
defined as

1 ≻1 2 ≻1 3 ≻1 4,

2 ≻2 1 ≻2 3 ≻2 4,

3 ≻3 4 ≻3 2 ≻3 1,

4 ≻4 3 ≻4 2 ≻4 1,

and consider the election E = (A, 2,≻) with A = [4]. We distinguish three cases depending on the set

of agents S = f(≻) selected by the rule.

Suppose first that S = {3, 4}. We take the distance metric d1 on A given by positions x1 = x2 = 0,
x3 = 1, and x4 = 2. It is not hard to check that d1 ▷ ≻; see Figure 7 for an illustration. Since

SC({3, 4}, A; d1) = 6, and SC({1, 2}, A; d1) = 3, we obtain

dist(f(≻), E) ≥ SC(S,A; d1)

minS′∈(A2)
SC(S′, A; d1)

≥ 6

3
= 2.

If S = {1, 2}, we consider the distance metric d2 on A given by positions x1 = 0, x2 = 1, and x3 =
x4 = 2. It is not hard to check that d2 ▷ ≻; see Figure 7 for an illustration. Since SC({1, 2}, A; d2) = 6
and SC({3, 4}, A; d2) = 3, we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

minS′∈(A2)
SC(S′, A; d2)

≥ 6

3
= 2.

Finally, if S = {2, 3}, we consider the distance metric d3 on A given by positions x1 = x2 = 0
and x3 = x4 = 2. It is not hard to check that d3 ▷ ≻; see Figure 7 for an illustration. Since

SC({2, 3}, A; d3) = 8 and SC({1, 2}, A; d3) = SC({3, 4}, A; d3) = 4, we obtain

dist(f(≻), E) ≥ SC(S,A; d3)

minS′∈(A2)
SC(S′, A; d3)

≥ 8

4
= 2.

Since dist(f(≻), E) ≥ 2 in all these cases and sets of non-consecutive agents can only induce a larger

social cost, we conclude that dist(f) ≥ 2.

B Proofs Deferred from Section 4

B.1 Proof of Proposition 4.1

Proposition 4.1. For every n ∈ N, any (n, 1)-voting rule has distortion 2 for egalitarian social cost. There
exists n ∈ N such that, for every (n, 1)-voting rule f , dist(f) ≥ 2 for egalitarian social cost.
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Proof. Fix n ∈ N and an (n, 1)-voting rule f arbitrarily. Let ≻ ∈ Ln(n) be any preference profile on

A = [n] and let s be the agent that f outputs for this profile, i.e., S = f(≻) and S = {s}. We denote

the agents by {1, . . . , n} from left to right, and we let d ▷ ≻ be any consistent distance metric. It is

clear that, on the one hand, we have

SC({s}, A; d) = max{d(a, s) | a ∈ A} ≤ max{d(a, b) | a, b ∈ A} = d(1, n). (15)

On the other hand, for every agent b ∈ A we have that d(1, b) + d(b, n) = d(1, n) and, therefore,

max{d(1, b), d(b, n)} ≥ d(1,n)
2 . This implies

min
S′∈(A1)

SC(S′, A; d) = min
b∈A

max{d(a, b) | a ∈ A} = min
b∈A

max{d(1, b), d(b, n)} ≥ d(1, n)

2
. (16)

Combining inequalities (15) and (16), we directly obtain that dist(f) ≤ 2.

For the second claim, we denote S = f(≻), and we fix n = 4 and an arbitrary (n, 1)-voting rule f ,
consider the profile ≻∈ L4(4) defined as

1 ≻1 2 ≻1 3 ≻1 4,

2 ≻2 1 ≻2 3 ≻2 4,

3 ≻3 4 ≻3 2 ≻3 1,

4 ≻4 3 ≻4 2 ≻4 1,

and consider the election E = (A, 1,≻) withA = [4]. We distinguish two cases depending on the agent

selected by f .

Suppose first that S ∈ {1, 2}. We take the distance metric d1 on A given by positions x1 = x2 = 0,
x3 = 1, and x4 = 2. It is not hard to check that d1 ▷ ≻; see Figure 7 for an illustration. Since

SC({1}, A; d1) = 2, SC({2}, A; d1) = 2, and SC({3}, A; d1) = 1, we obtain

dist(f(≻), E) ≥ SC(S,A; d1)

mina∈A SC({a}, A; d1)
≥ SC({2}, A; d1)

SC({3}, A; d1)
= 2.

Similarly, if S ∈ {3, 4}, we consider the distance metric d2 on A given by positions x1 = 0, x2 = 1,
x3 = x4 = 2. It is not hard to check that d2 ▷ ≻; see Figure 7 for an illustration. Since SC({3}, A; d2) =
2, SC({4}, A; d2) = 2, and SC({2}, A; d2) = 1, we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

mina∈A SC({a}, A; d2)
≥ SC({3}, A; d2)

SC({2}, A; d2)
= 2.

Since dist(f(≻), E) ≥ 2 both whenS ∈ {1, 2} andwhenS ∈ {3, 4}, we conclude that dist(f) ≥ 2.

B.2 Proof of Lemma 4.2

Lemma 4.2. For every set of agents A = [n], committee size k, committee S′ ∈
(
A
k

)
, and distance metric

d, it holds that SC(S′, A; d) = max{SC(S′, 1; d), SC(S′, n; d)}.

Proof. Let A = [n], k, S′
, and d be as in the statement, and recall that we refer to the agents sorted

from left to right by {1, . . . , n}. We suppose towards a contradiction that there exists a ∈ A such that

SC(S′, a; d) > max{SC(S′, 1; d), SC(S′, n; d)}; i.e.,∑
s∈S′

d(a, s) > max

{ ∑
s∈S′

d(1, s),
∑
s∈S′

d(s, n)

}
. (17)
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We now distinguish two cases. If a has at least as many agents in S′
weakly to its left as strictly to its

right; i.e., |{s ∈ S′ | s ≤ a}| ≥ |{s ∈ S′ | s > a}|, then∑
s∈S′

d(s, n) =
∑

s∈S′:s≤a

(d(a, s) + d(a, n)) +
∑

s∈S′:s>a

(d(a, s)− (d(a, s)− d(s, n)))

≥
∑

s∈S′:s≤a

(d(a, s) + d(a, n)) +
∑

s∈S′:s>a

(d(a, s)− d(a, n))

=
∑
s∈S′

d(a, s) + (|{s ∈ S′ : s ≤ a}| − |{s ∈ S′ : s > a}|)d(a, n)

≥
∑
s∈S′

d(a, s),

a contradiction to inequality (17). Analogously, if |{s ∈ S′ | s ≤ a}| < |{s ∈ S′ | s > a}|, then∑
s∈S′

d(1, s) =
∑

s∈S′:s>a

(d(1, a) + d(a, s)) +
∑

s∈S′:s≤a

(d(a, s)− (d(a, s)− d(1, s)))

≥
∑

s∈S′:s>a

(d(1, a) + d(a, s)) +
∑

s∈S′:s≤a

(d(a, s)− d(1, a))

=
∑
s∈S′

d(a, s) + (|{s ∈ S′ : s > a}| − |{s ∈ S′ : s ≤ a}|)d(1, a)

≥
∑
s∈S′

d(a, s),

a contradiction to inequality (17).

B.3 Proof of Theorem 4.3

Theorem 4.3. For every n, k ∈ N with n ≥ k ≥ 2, k-Extremes has a distortion for egalitarian additive

social cost of at most
3
2 −

1
2(k−1) if k is even and at most

3
2 −

1
k(k−1) if k is odd. Conversely, for every k ∈ N

with k ≥ 3 there exists n ∈ N with n ≥ k such that, for every (n, k)-voting rule f , dist(f) ≥ 3
2 −

1
k for

egalitarian additive social cost.

Proof. We first show the bound on the distortion of k-Extremes. We fix n, k ∈ N with n ≥ k ≥ 2, a
linear order ≻ on A = [n], and a consistent distance metric d ▷ ≻. We write E = (A, k,≻) for the
corresponding election and denote k-Extremes by f and the outcome by S in this part of the proof for

compactness.

We claim that, if d is such that SC(S, 1; d) < SC(S, n; d), there exists an alternative distance metric

d′ with SC(S, 1; d′) ≥ SC(S, n; d′) and dist(f(≻), E ; d′) ≥ dist(f(≻), E ; d). Indeed, consider such
d defined by positions x ∈ (−∞,∞)n, and let d′ be defined by positions x′ ∈ (−∞,∞)n, where
x′a = xn+1−a for every a ∈ [n]. Since f selects

⌊
k
2

⌋
agents closest to the left-most agent and the

⌈
k
2

⌉
agents closest to the right-most agent, we have

SC(S, 1; d′) ≥ SC(S, n; d) > SC(S, 1; d) ≥ SC(S, n; d′).

Furthermore, this chain of inequalities combined with Lemma 4.2 imply that SC(S,A; d′) ≥ SC(S,A; d).
Sincemin

{
SC(S′, A; d′) | S′ ∈

(
A
k

)}
= min

{
SC(S′, A; d) | S′ ∈

(
A
k

)}
, this yields dist(f(≻), E ; d′) ≥

dist(f(≻), E ; d), so the claim follows. Thanks to this claim, we can assume in what follows that

SC(S, 1; d) ≥ SC(S, n; d) and thus, by Lemma 4.2, SC(S,A; d) = SC(S, 1; d).
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We distinguish three cases depending on the distances from agent 1 to other agents and show the

claimed distortion for each of them. We first suppose that d
(
1,
⌊
k
2

⌋)
≤ d(1,n)

2 . In this case,

SC(S, 1; d) =

⌊k/2⌋∑
s=1

d(1, s) +
n∑

s=n−⌈k/2⌉+1

d(1, s)

≤
(⌊

k

2

⌋
− 1

)
d(1, n)

2
+

⌈
k

2

⌉
d(1, n)

=

(
k +

⌈
k

2

⌉
− 1

)
d(1, n)

2
,

where we used the assumption d
(
1,
⌊
k
2

⌋)
≤ d/2 and the fact that d(1, 1) = 0 for the inequality. From

Lemma 4.2 and equality (1) we know that SC(S′, A; d) ≥ kd(1,n)
2 for any S′ ∈

(
A
k

)
, so we obtain

dist(f(≻), E) = SC(S, 1; d)

minS′∈(Ak)
SC(S′, A; d)

≤
(
k +

⌈
k
2

⌉
− 1

)d(1,n)
2

kd(1,n)
2

=
3

2
− 2− k mod 2

2k
,

which is smaller than
3
2 −

1
2(k−1) for even k ≥ 2 and smaller than

3
2 −

1
k(k−1) for odd k ≥ 3. Thus, we

conclude the result in this case.

We next suppose that d
(
1,
⌊
k
2

⌋)
> d(1,n)

2 and

∑⌊k/2⌋
s=2 d(1, s) ≤ k−2−k mod 2

k−1 · kd(1,n)4 . In a similar way

as before, we now have

SC(S, 1; d) =

⌊k/2⌋∑
s=1

d(1, s) +

n∑
s=n−⌈k/2⌉+1

d(1, s)

≤ k − 2− k mod 2

k − 1
· kd(1, n)

4
+

⌈
k

2

⌉
d(1, n)

=

(
3k − k − (k − 2)k mod 2

k − 1

)
d(1, n)

4
,

where the inequality follows from the assumption

∑⌊k/2⌋
s=2 d(1, s) ≤ k−2−k mod 2

k−1 · kd(1,n)4 and the

fact that d(1, 1) = 0. From Lemma 4.2 and equality (1) we know that SC(S′, A; d) ≥ kd(1,n)
2 for any

S′ ∈
(
A
k

)
, so we obtain

dist(f(≻), E) = SC(S, 1; d)

minS′∈(Ak)
SC(S′, A; d)

≤
(
3k − k−(k−2)k mod 2

k−1

)d(1,n)
4

kd(1,n)
2

=
3

2
− k − (k − 2)k mod 2

2k(k − 1)
,

which corresponds to the expression in the statement.

We finally consider the case with d
(
1,
⌊
k
2

⌋)
> d(1,n)

2 and

∑⌊k/2⌋
s=2 d(1, s) > k−2−k mod 2

k−1 · kd(1,n)4 . Since

the distance between 1 and the right-most point among

{
2, . . . ,

⌊
k
2

⌋}
, namely d

(
1,
⌊
k
2

⌋)
, is at least its

average distance to points within this set, we know that

d

(
1,

⌊
k

2

⌋)
≥ 1⌊

k
2

⌋
− 1

⌊k/2⌋∑
s=2

d(1, s) ≥ 1⌊
k
2

⌋
− 1
· k − 2− k mod 2

k − 1
· kd(1, n)

4
=

kd(1, n)

2(k − 1)
. (18)

Let now S′ ∈
(A\{1}

k−1

)
be any set of k− 1 agents without 1. Since

{
2, . . . ,

⌊
k
2

⌋}
are the closest agents to

1, we know that
1

k−1

∑
s∈S′ d(1, s) ≥ 1

⌊k/2⌋−1

∑⌊k/2⌋
s=2 d(1, s). Rearranging this expression and using
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our assumption once again, we obtain

∑
s∈S′

d(1, s) ≥ k − 1⌊
k
2

⌋
− 1

⌊k/2⌋∑
s=2

d(1, s) ≥ kd(1, n)

2
,

where we used inequality (18) for the last inequality. For any committee S′ ∈
(
A
k

)
, this implies that

SC(S′, 1; d) ≥ kd(1,n)
2 , equality (1) implies that SC(S′, 1; d) ≥ SC(S′, n; d), and Lemma 4.2 implies that

SC(S′, A; d) = SC(S′, 1; d). Therefore,

min
S′∈(Ak)

SC(S′, A; d) = min
S′∈(Ak)

SC(S′, 1; d) =
k∑

s=2

d(1, s); (19)

i.e., the optimal set in this case corresponds to {1, . . . , k}. Combining the previous expressions, we

obtain the following chain of inequalities:

dist(f(≻), E) = SC(S, 1; d)

minS′∈(Ak)
SC(S′, A; d)

= 1 +
SC(S, 1; d)−minS′∈(Ak)

SC(S′, A; d)

minS′∈(Ak)
SC(S′, A; d)

≤ 1 +
2

kd(1, n)

(∑
s∈S

d(1, s)−
k∑

s=2

d(1, s)

)

= 1 +
2

kd(1, n)

( n∑
s=n−⌈k/2⌉+1

d(1, s)−
k∑

s=⌊k/2⌋+1

d(1, s)

)

≤ 1 +
2

kd(1, n)
·
⌈
k

2

⌉(
d(1, n)− d

(
1,

⌊
k

2

⌋))
≤ 1 +

2

kd(1, n)
·
⌈
k

2

⌉(
d(1, n)− kd(1, n)

2(k − 1)

)
=

3

2
− k − (k − 2)k mod 2

2k(k − 1)
.

Indeed, the first inequality follows from equality (19) and the fact that SC(S′, A; d) ≥ kd(1,n)
2 for every

S′ ∈
(
A
k

)
due to equality (1), the third equality from the definition of f , the second inequality from

simple bounds on d(1, s) for different values of s, and the last inequality from inequality (18). The other

equalities come from simple calculations. Since the last expression again corresponds to the expression

in the statement, we conclude.

For the lower bound, we consider any k ∈ N with k ≥ 3, we fix n = 2(k+1), and consider an arbitrary

(n, k)-voting rule f . We partition the agents into four sets A =
⋃̇4

i=1Ai such that A1 = {1}, A4 = {n}
and |A2| = |A3| = k. We consider the profile ≻∈ Ln(n), where S = f(≻), and

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|;

(ii) 1 ≻a b whenever a ∈ A2, b ∈ A3 ∪A4;

(iii) n ≻a b whenever a ∈ A3, b ∈ A1 ∪A2;

and the remaining pairwise comparisons are arbitrary. We consider the election E = (A, k,≻) with
A = [n].
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Metric d1
A1 ∪A2 A3 A4

1 1

Metric d2
A1 A2 A3 ∪A4

1 1

Figure 8: Metrics considered in the proof of Theorem 4.3.

In what follows, we distinguish whether f selects more agents from A1 ∪ A2 or from A3 ∪ A4 and

construct appropriate distance metrics to show that, in either case, the distortion is at least the one

claimed in the statement. Intuitively, if f selects more agents from A1 ∪A2 we will consider a metric

where these sets lie on one extreme, A4 = n on the other extreme, and all agents A3 in the middle, so

that picking all agents from A3 would lead to a much lower social cost. In the opposite case, we will

construct a symmetric instance.

Formally, we first consider the case with |S ∩ (A1 ∪A2)| ≥ k
2 and define the distance metric d1 on A by

the following positions x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1 ∪A2, xa = 1 for every a ∈ A3, and

xn = 2. It is not hard to check that d1 ▷ ≻; see Figure 8 for an illustration. Since |S ∩ (A1 ∪A2)| ≥ k
2 ,

we obtain

dist(f(≻), E) ≥ SC(S,A; d1)

SC(A3, A; d1)
≥ SC(S, n; d1)

SC(A3, n; d1)
≥ (k − 1) + |S ∩ (A1 ∪A2)|

k
≥ 3

2
− 1

k
.

Conversely, if |S ∩ (A3 ∪A4)| ≥ k
2 , we define the distance metric d2 on A by the following positions

x ∈ (−∞,∞)n: x1 = 0, xa = 1 for every a ∈ A2, and xa = 2 for every a ∈ A3 ∪A4. It is not hard to

check that d2 ▷ ≻; see Figure 8 for an illustration. Since |S ∩ (A3 ∪A4)| ≥ k
2 , we obtain

dist(f(≻), E) ≥ SC(S,A; d2)

SC(A2, A; d2)
≥ SC(S, 1; d2)

SC(A2, 1; d2)
≥ (k − 1) + |S ∩ (A3 ∪A4)|

k
≥ 3

2
− 1

k
.

Since dist(f(≻), E) ≥ 3
2 −

1
k regardless of f(≻), we conclude that dist(f) ≥ 3

2 −
1
k .

B.4 Proof of Theorem 4.4

Theorem 4.4. For every k, q ∈ N with
k
3 ≥ q, there exists n ∈ N with n ≥ k such that, for every

(n, k)-voting rule f , dist(f) is unbounded for egalitarian q-cost.

Proof. We let k, q ∈ N with
k
3 ≥ q be arbitrary, define p =

⌊
k
q

⌋
, and take n = (p+ 1)q. We partition

the agents into p+ 1 ≥ 4 sets A =
⋃̇

i∈[p+1]Ai such that |Ai| ≥ q for every i ∈ [p+ 1]; note that this

is possible since (p+ 1)q ≤
(
k
q + 1)q = k + q = n. We consider any fixed (n, k)-voting rule f and the

profile ≻∈ Ln(n), where S = f(≻), and

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ with |i− j| < |i− ℓ| for some i, j, ℓ ∈ [p+ 1];

(ii) b ≻a c whenever a ∈ Ai, b ∈ A1, c ∈ Aj with |i− 1| = |i− j| for some i, j ∈ [p];

(iii) b ≻a c whenever a ∈ Ai, b ∈ Ap+1, c ∈ Aj with |i − (p + 1)| = |i − j| for some i, j ∈
{2, . . . , p+ 1};

and the remaining pairwise comparisons are arbitrary. We consider the election E = (A, k,≻) with
A = [n]. Since (p+ 1)q > k

q q = k, we know that there exists j ∈ [p+ 1] such that |S ∩Aj | < q. We

distinguish two cases depending on the identity of j.
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Metric d1
A1 A2 A3 Ap−2 Ap−1 Ap ∪Ap+1

1 1 1 1

Metric d2
A1 ∪A2 A3 A4 Ap−1 Ap Ap+1

1 1 1 1

Figure 9: Metrics considered in the proof of Theorem 4.4.

If j /∈ {p, p + 1}, we consider the distance metric d1 on A given by the following positions x ∈
(−∞,∞)n: xa = i− 1 for every a ∈ Ai and i ∈ [p], and xa = p− 1 for every a ∈ Ap+1. It is not hard

to see that d1 ▷ ≻; see Figure 9 for an illustration. Since |S ∩ Aj | < q for some j /∈ {p, p + 1}, we
have that SC(S,Aj ; d1) = 1. On the other hand, we can define an alternative committee S′ =

⋃
i∈[p] S

′
i

such that |S′
i ∩ Ai| ≥ q for every i ∈ [p], which is possible because |Ai| ≥ q for every i ∈ [p] and

pq ≤ k
q q = k. Since SC(S′, A; d1) = 0 and dist(f(≻), E) ≥ SC(S,A;d1)

SC(S′,A;d1)
, we conclude that dist(f(≻), E)

is unbounded.

If j ∈ {p, p + 1}, we consider the distance metric d2 on A given by the following positions x ∈
(−∞,∞)n: xa = 0 for every a ∈ Aq , and xa = i − 2 for every a ∈ Ai and i ∈ {2, . . . , p + 1}.
It is not hard to see that d2 ▷ ≻; see Figure 9 for an illustration. Since |S ∩ Aj | < q for some

j ∈ {p, p + 1}, we have that SC(S,Aj ; d2) = 1. On the other hand, we can define an alternative

committee S′ =
⋃

i∈{2,...,p+1} S
′
i such that |S′

i ∩Ai| ≥ q for every i ∈ {2, . . . , p+1}, which is possible

because |Ai| ≥ q for every i ∈ {2, . . . , p + 1} and pq ≤ k
q q = k. Since SC(S′, A; d2) = 0 and

dist(f(≻), E) ≥ SC(S,A;d2)
SC(S′,A;d2)

, we conclude that dist(f(≻), E) is unbounded.

Since dist(f(≻), E) is unbounded regardless of f(≻), we conclude that dist(f) is unbounded.

B.5 Proof of Theorem 4.5

Theorem 4.5. Let n, k, q ∈ N be such that n ≥ k ≥ 2 and q > k
3 . If q > k

2 , any (n, k)-voting rule

has distortion 2 for egalitarian q-cost. If q > k
3 , k-Extremes has distortion 2 for egalitarian q-cost. For

every k, q ∈ N with q > k
3 ≥ 1, there exists n ∈ N with n ≥ k such that, for every (n, k)-voting rule f ,

dist(f) ≥ 2.

Proof. Let n, k ∈ N be such that n ≥ k ≥ 2. Let first q ∈ N be such that q > k
2 . Let f be any

(n, k)-voting rule and let≻ ∈ Ln(n) be an arbitrary preference profile on A = [n]. We denote, as usual,

agents by {1, . . . , n} from left to right, S = f(≻), and we let d ▷ ≻ be any consistent distance metric.

For a committee S′ ∈
(
A
k

)
, we let d̃(S′, a) ∈ Rk

+ denote the vector with the values {d(a, s) | s ∈ S′} in
increasing order. It is clear that

SC(S,A; d) = max{d̃(S, a)q | a ∈ A} ≤ max{d(a, b) | a, b ∈ A} = d(1, n). (20)

On the other hand, for every committee S′ ∈
(
A
k

)
, if we denote the agents in S′

in increasing order by

s1, . . . , sk we have that sq > sk−q because q > k
2 . This implies that, for every committee S′ ∈

(
A
k

)
, we

have

d̃(S′, 1)q + d̃(S′, n)q = s(1, sq) + d(sk−q, n) > d(1, n),

and thusmax{d̃(S′, 1)q, d̃(S
′, n)q} ≥ d(1,n)

2 . Therefore,

min
S′∈(Ak)

SC(S′, A; d) = min
S′∈(Ak)

max{d̃(S′, a)q | a ∈ A}

≥ min
S′∈(Ak)

max{d̃(S′, 1)q, d̃(S
′, n)q} ≥

d(1, n)

2
. (21)
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Combining inequalities (20) and (21), we directly obtain that dist(f) ≤ 2.

Let now q ∈ N be such that
k
3 < q ≤ k

2 , ≻ ∈ L
n(n) be an arbitrary preference profile on A = [n],

and d ▷ ≻ be a consistent distance metric; we consider the election E = (A, k,≻). We denote the

outcome of k-Extremes for this profile by S for compactness. We denote agents by {1, . . . , n} from
left to right and, for S′ ∈

(
A
k

)
, we let d̃(S′, a) ∈ Rk

+ denote the vector with the values {d(a, s) | s ∈ S′}
in increasing order. We finally let a∗ ∈ argmax{min{d(1, a), d(a, n)} | a ∈ A} denote the agent
with maximum distance from both extreme agents, assume w.l.o.g. that this is its distance to 1, i.e.,
d(1, a∗) ≤ d(a∗, n), and write d∗ = d(1, a∗) for this distance. Observe that

min{d(a∗, n), d(1, a∗ + 1)} ≥ d(1, n)

2
. (22)

Indeed, d(a∗, n) ≥ d(1,n)
2 follows directly from the inequality d(1, a∗) ≤ d(a∗, n) and the equality

d(1, a∗) + d(a∗, n) = d(1, n). Having d(1, a∗ + 1) < d(1,n)
2 would imply min{d(1, a∗ + 1), d(a∗ +

1, n)} > d∗, a contradiction to the definition of a∗.

We first tackle two simple cases. If a∗ < q, i.e., there are less than q agents between 1 and a∗, then

for any committee S′ ∈
(
A
k

)
we have SC(S′, A; d) ≥ SC(S′, 1; d) ≥ d(1, a∗ + 1) ≥ d(1,n)

2 , where the

second inequality follows from inequality (22). Since SC(S′, A; d) ≤ d(1, n) holds for any committee

S′ ∈
(
A
k

)
, we know that in particular SC(S,A; d) ≤ d(1, n) and thus dist(f) ≤ 2. Similarly, if

n− a∗ < q, i.e., there are less than q agents between a∗ + 1 and n, then for any committee S′ ∈
(
A
k

)
we have SC(S′, A; d) ≥ SC(S′, 1; d) ≥ d(a∗, n) ≥ d(1,n)

2 , where the second inequality follows from

inequality (22). As before, dist(f) ≤ 2 thus follows directly.

If none of the previous cases hold, we have both a∗ ≥ q and n− a∗ ≥ 2, so that from the definition of

k-Extremes we have |S ∪ {1, . . . , a∗}| =
⌊
k
2

⌋
≥ q and |S ∪ {a∗ + 1, . . . , n}| =

⌈
k
2

⌉
≥ q. This implies

that

SC(S,A; d) ≤ max{d(1, a∗), d(a∗ + 1, n)} ≤ d∗. (23)

We claim that, for every S′ ∈
(
A
k

)
, we have SC(S′, A; d) ≥ d∗

2 . Together with inequality (23), this would

immediately imply dist(f) ≤ 2 and conclude the proof. To prove this fact, suppose for the sake of

contradiction that SC(S′, A; d) < d∗

2 for some S′ ∈
(
A
k

)
. This is equivalent to the fact that

SC(S′, a; d) <
d∗

2
⇐⇒

∣∣∣∣S′ ∪
{
b ∈ A : d(a, b) <

d∗

2

}∣∣∣∣ ≥ q

for every a ∈ A. Since the sets

{
b ∈ A | d(a, b) < d∗

2

}
for a ∈ {1, a∗, n} are disjoint, we conclude that

|S′| ≥ 3q > k, a contradiction.

For the lower bound, we consider the same instances as in the proof of Theorem 4.3; we repeat the

construction for completeness. Naturally, the proof of the lower bound in the end differs from the

additive case. We consider any k ∈ N with k ≥ 2, we fix n = 2(k + 1), and consider an arbitrary

(n, k)-voting rule f . We partition the agents into four sets A =
⋃̇4

i=1Ai such that A1 = {1}, A4 = {n}
and |A2| = |A3| = k. We consider the profile ≻∈ Ln(n), where S = f(≻), and

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|;

(ii) 1 ≻a b whenever a ∈ A2, b ∈ A3 ∪A4;

(iii) n ≻a b whenever a ∈ A3, b ∈ A1 ∪A2;

and the remaining pairwise comparisons are arbitrary. We consider the election E = (A, k,≻) with
A = [n].
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In what follows, we distinguish whether f selects more agents from A1 ∪ A2 or from A3 ∪ A4 and

construct appropriate distance metrics to show that, in either case, the distortion is at least the one

claimed in the statement. Intuitively, if f selects more agents from A1 ∪A2 we will consider a metric

where these sets lie on one extreme, A4 = n on the other extreme, and all agents A3 in the middle. This

way, the selected committee gives twice the social cost as picking all agents from A3 In the opposite

case, we will construct a symmetric instance.

Formally, we first consider the case with |S ∩ (A1 ∪A2)| ≥ k
2 and define the distance metric d1 on A by

the following positions x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1 ∪A2, xa = 1 for every a ∈ A3, and

xn = 2. It is not hard to check that d1 ▷ ≻; see Figure 8 for an illustration. Since |S ∩ (A1 ∪A2)| ≥ k
2 ,

we obtain SC(S, n; d1) = 2 and thus

dist(f(≻), E) ≥ SC(S,A; d1)

SC(A3, A; d1)
≥ SC(S, n; d1)

SC(A3, n; d1)
≥ 2.

Conversely, if |S ∩ (A3 ∪A4)| ≥ k
2 , we define the distance metric d2 on A by the following positions

x ∈ (−∞,∞)n: x1 = 0, xa = 1 for every a ∈ A2, and xa = 2 for every a ∈ A3 ∪ A4. It is not

hard to check that d2 ▷ ≻; see Figure 8 for an illustration. Since |S ∩ (A3 ∪ A4)| ≥ k
2 , we obtain

SC(S, 1; d2) = 2 and thus

dist(f(≻), E) ≥ SC(S,A; d2)

SC(A2, A; d2)
≥ SC(S, 1; d2)

SC(A2, 1; d2)
≥ 2.

Since dist(f(≻), E) ≥ 2 regardless of f(≻), we conclude that dist(f) ≥ 2.
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