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Abstract

We introduce the class of Continuous Thiele’s Rules that generalize the familiarThiele’s rules [25]
of multi-winner voting to divisible Participatory Budgeting. Each rule in that class maximizes∑

i f(π
i) where πi is an agent i’s satisfaction and f could be any twice differentiable, increasing

and concave real function. Based on a single parameter we call the ’Inequality Aversion’ of
f (elsewhere known as "Relative Risk Aversion" ), we derive bounds on the egalitarian and
utilitarian welfare loss, and the approximation of individual and group Fair Share. This leads
to a quantifiable, continuous presentation of their inevitable trade-offs. In particular, we show
that many of these rules satisfy Individual Fair Share, and that the Nash Product Rule satisfies
Average Fair Share in our setting.

1 Introduction

We study the problem of reaching a collective decision concerning the division of a continuous public
resource into different channels, e.g. the public budget allocated between various objectives ; time
or land allocated between different activities; etc, known as ’divisible Participatory Budgeting’ (PB)
[3, 19, 27, 23]. The important defining feature is that we allocate a public resource, meaning that all
alternatives serve, in principle, everyone, albeit to variable extents according to personal taste or needs.
This is in contrast to other branches of Social Choice, e.g. Cake cutting [31] or Fair Division [29], where
we allocate resources among agents which enjoy them individually as private goods. The collective
decision is reached via some voting rule or ’mechanism’ that inputs everyone’s preference regarding
the different possible outcomes and outputs a sole budget division.

1.1 Preference Modeling

General preferences over the set of possible distributions can be quite complex to represent, and
impractical for elicitation. In divisible PB, it seems reasonable to ask every agent for her most favorable
budget allocation, and nothing further. Thus, as in other Social Choice domains, “single-peaked"
preferences where an agent’s optimal outcome entails the complete description of her preferences over
the decision space, are many times favored as a reasonable compromise between the accuracy and
applicability [28, 13]. Moreover, such models typically perform better in terms of strategy-proofness.
Specifically, the ℓ1-norm preference where an agent (dis)satisfaction is expressed as the distance∥∥xi − x

∥∥
1
between her preferred distribution xi to the one implemented x, is among the most prevailing

choices [19, 24, 23]. In our work we adopt this model, albeit adhering to its equivalent, less common
representation that was introduced in [24] of Overlap utilities. An agent with preferable allocation
xi enjoys an overlap satisfaction of |xi ∩ x| =

∑
j min(xij , xj) in allocation x, where j covers the

set of alternatives. This formulation has several advantages. From a practitioner’s view [37, 32], PB
is about increased engagement and consent over public policies no less than it is a crowd sourcing
for better policy making. Thus, a comprehensible and easily justifiable presentation of the goals our
mechanism seeks is crucial. The overlap model relates more conveniently to satisfaction rather than
dissatisfaction, and intuitively expresses the level to which an outcome matches an individual’s proposal.
E.g., if xi = (0.3, 0.3, 0.4) and x = (0.5, 0, 0.5) then |xi ∩ x| = 0.7, in other words a 70% match.

Moreover, the Overlap mirrors the canonical approval utilities from discrete PB [35, 3] and multi-
winner voting [5], where an agent satisfaction equals the number of winning projects/candidates she
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approved. Thanks to that, proportional fairness demands, that have become a gold standard in related
fields [7, 8, 5, 33, 9, 27, 36, 30] fit naturally in our setting. However, previous works that assumed ℓ1
preferences in its conventional form have not applied these straight-forward extensions, and relate to
proportional fairness in only a very weak sense [19, 23, 16, 22].

1.2 The three welfares

Awell known fact that dates back as far as to Arrow’s Theorem [1] is that desired axiomatic properties of
social choice rules are often contradictory, which motivates a quantitative investigation of the inevitable
trade-offs between them[36, 27, 21, 22]. In this paper we are particularly interested in three different
notions of ’social welfare’, namely, the utilitarian welfare

∑
i π

i, egalitarian welfare mini π
i, and

Nash welfare
∑

i ln
(
πi
)
, where πi indicates the satisfaction of agent i. The maximizers of these sums

— UTIL, EGAL and NASH, respectively — are canonical, massively studied examples of PB rules and
Social Choice rules in general [12, 3], each advocating a different view of distributive justice. While
justifications for UTIL and EGAL are quite self-explainatory, NASH owes its popularity for typically
admitting strong proportional fairness demands [7, 14], offering a somewhat middle-ground between
utilitarianism and egalitarianism.

Example 1. Assume a divisible PB instance with two alternatives a and b, where population is divided
into two disjoint groups A and B, consisting 70% and 30% of the population, respectively. Voters in each
group wish to allocate the full budget to the corresponding alternative a or b. Then, UTIL allocates the
full budget to option a in this case, EGAL splits the budget equally between a and b, and NASH divides it
proportionally as 0.7 on a and 0.3 on b.

As illustrated in the above example, each of the rules designed to maximize a different welfare performs
quite poorly in terms of the other two. Commonly, such inevitable trade-offs are treated via comparing
axiomatic or approximative guarantees of familiar rules, or approximating a certain property conditional
on admitting another [19, 22, 36, 27, 7]. However, these are merely isolated points in a much wider
range of compromising possibilities.

Example 2. Consider parliamentary elections with three parties (a, b, c), that won 500, 300, and 250 votes,
respectively. Many parliamentary democracies apply the NASH rule (up to fractional remainders), which
gives the proportional seat allocation of ∼ (0.48, 0.28, 0.24). However, we may favor some disproportional
bias towards more popular parties, to increase chances of forming a stable coalition. Maximizing

∑
i

√
πi,

for example, yields∼ (0.62, 0.22, 0.16). On the contrary, we may want to favor the smaller ones to contract
political power inequality, for example if the chosen assembly makes all decisions via a simple majority
vote. We may thus choose, e.g., to maximize

∑
i
−1
πi which gives ∼ (0.4.0.31, 0.29) in this case.

1.3 contribution

In this work, we offer a non-axiomatic approach for compromising between utilitarianism, egalitarianism
and proportional fairness in a divisible Participatory Budgeting context. We introduce the class of
Continuous Thiele’s Rules (CTR), that maximize

∑
i f(π

i)where f could be any concave real function. For
every CTR we showworst case bounds for utilitarian welfare, egalitarian welfare, and the approximation
of the proportionality axiom Average Fair Share (AFS) [7]. In particular, many of these rules fully satisfy
Individiual Fair Share [7] and NASH satisfies a slightly stronger demand than AFS in our setting.
Importantly, these bounds can be derived from a specific characterizing parameter of the function of
choice f , that we call the ’Inequality Aversion’ of f (elsewhere known as ’Relative Risk Aversion’ [18]).
Thus, figuratively speaking, the CTR class forms a continuum of rules that spread ’in between’ UTIL,
NASH and EGAL, each offering a different concrete balance between the three aforementioned concepts.
In relation to existing literature, our work implements proportional fairness in an ℓ1 preference model,
merging into one framework these two important paradigms in the PB research that were almost
parallel before.
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1.4 Related Work

The original Thiele’s Voting Rules [25] are a well known class of multi-winner voting rules, each
characterized by a function f , that choose the winning setW to maximize

∑
i f
(
|Ai ∩W |

)
. In affinity

to the discussion above, this class includes some cannonical multi-winner voting rules, e.g. the welfare
maximizing k-approval where f is the identity function, the egalitarian Chamberlin-Courant with
f = 1|Ai∩W |≥1 , and PAV where f

(
|Ai ∩W |

)
= 1 + 1

2 + 1
3 + · · · + 1

|Ai∩W | that satisfies Extended
Justified Representation (EJR) [6]. When applied to our continuous setting, much resemblance is found
between the corresponding rules and their guarantees. However, continuity allows for a much finer
characterization of other rules that do not fully satisfy either of the demands. [15] studies the application
of Theiele’s Rules as apportionment methods, which is a particular case of our model where every voter
approves a single alternative, as in our above examples.

Compared to its neighboring branches of Social Choice, the literature on divisible PB is not abundant.
While Participatory Budgeting has been drawing increased attention in late years, the literature mainly
focuses on the discrete form where each project has a fixed cost [30, 4, 35], which is in compliance with
the vast majority of PB instances in reality.

Although ℓ1-norm preferences are common in divisible PB, the approach and technical analysis most
similar to this work is actually found in a line of works that assumed binary (’approval’) preferences
[7, 10, 36, 27], where agents only approve or disapprove each alternative. Conceptually, that model
seems less suited for generic PB cases (although certainly applicable in some [7]), where voters could
favor a specific allocation that expresses a more complex prioritization over alternatives, and that
moreover takes budget limits into account. Technically, the Overlap model does not generalize the
binary model, however, all of the results presented here apply to binary preferences too, as we did
not explicitly use the assumption that {xi}i are normalized to 1 in any of the proofs. [7] shows that
NASH satisfies Core Stability (CS) in the binary model, which does not carry over to our model
where it satisfies AFS only. [27] and [36] study the trade-off between proportional fairness and
utilitarian or egalitarian efficiency, respectively. Each of them introduces several worst-case bounds for
approximating one demand under forcing the other, and bounds of different mechanisms. Moreover,
[27] also studies the utilitarian/proportionality trade-off within the CTR class ("f -UTIL" mechanisms
by their terminology). In that area they show some results quite similar to the corresponding here,
however our work does expand on it. Beyond the superior generality of the model mentioned above,
we also consider egalitarian loss, and there is our IAV characterization of the results (in fact, their
results are only relevant for IAV ≤ 1).

Fairness/welfare trade-offs, in the sense that we address them here, have not been seriously studied
under ℓ1 preferences prior to our work. The (not too vast) literature in that area mainly focuses on
comparing different mechanisms and the axioms they may or may not hold, and only considers very
weak proportional-fairness notions [19, 23, 11]. In some works [23, 16, 17], the ℓ1 distance of an outcome
to the average allocation of all votes is taken as a fairness proxy. As for other preference models, [20]
presents a mechanism that satisfies Core stability for scalar-separable utilities, and, notably, [14] and
[11] shows that NASH is moreover strategy-proof if Minimal Quotient preferences are assumed.

2 Preliminaries

Let [n] be a set of agents and [m] be a set of alternatives, where [k] := {1, . . . , k} for every positive
integer k. Subsets of [n] are denoted by lowercase letters e.g. s ⊂ [n], and in many places we abuse this
notation to also represent the subset’s size. We use the following notations for vectors in Rm

≥ := {y ∈
Rm|yj ≥ 0 ∀j ∈ [m]}. For two vectors x, y we define their overlap x ∩ y as (x ∩ y)j = min(xj , yj).
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This is naturally generalized to sets of vectors, i.e., for a setX ,
(⋂

x∈X
)
j
= minx∈X xj . For all x ∈ Rm,

we denote by |x| the ℓ1 norm of x, |x| :=
∑

j |xj |. An allocation x ∈ ∆m := {y ∈ Rm
≥ ||y| = 1} is

a distribution of some continuously divisible resource (e.g. money, time) among the m alternatives,
where we normalize the overall budget to 1.

The preferences of every agent i are encoded a single allocation xi ∈ ∆m that she would like to be
implemented ideally, and x⃗ := (x1, . . . , xn) is the preferences profile. We call a profile x⃗ single-minded
[23] if xi is a unit vector for all i, i.e., every agent allocates the full budget to a single alternative of
her choice. x⃗−i denotes the partial profile consisting of all agents’ ideal allocations, excluding i, and
x⃗−s is used accordingly for a subset s ⊂ [n]. The Overlap satisfaction [24] of agent i in allocation x is
πi
x := |xi ∩ x| =

∑
j min(xij , xj). Or, just πi when specifying the allocation is unnecessary.

2.1 Aggregation rules and their properties

Definition 1. An aggregation rule is a function F : (∆m)n → ∆m that inputs the preferences profile x⃗
and outputs an allocation x ∈ ∆m.

We survey here several properties that may or may not be satisfied by an allocation x given a profile x⃗.
We say that an aggregation rule F satisfies any of these properties if for all x⃗ ∈ (∆m)n, F (x⃗) satisfies
the corresponding property with respect to x⃗.

• Efficiency (EFF): An allocation x is efficient if no other allocation y ∈ ∆m exists such that
πi
x ≥ πi

y ∀i ∈ [n], with at least one agent for which that inequality is strict.

• Range Respecting (RR) [23]: An allocation x is Range Respecting ifmini x
i
j ≤ xj ≤ maxi x

i
j ∀j ∈

[m].

It is not difficult to see that RR is a weaker demand under Overlap preferences.

Proposition 3. EFF =⇒ RR.

The proof, as well as all other missing proofs throughout the paper, is deferred to the appendix.

In principle, proportional fairness [27, 15, 9, 5] means that if a subgroup of agents with shared interests
consists a q fraction of population, they are entitled for a proportional influence over collective decisions.
In our case, power over at least q of the budget. This translates into many different axioms, including
these three that we study in this paper.

• Individual Fair Share (IFS) [7]: An allocation x satisfies Individual Fair Share if πi
x ≥ 1

n ∀i ∈ [n].
From an agents’ individual perspective, that means that x allocates at least 1/n of the budget
according to her desire.

• Average Fair Share (AFS):1 A subset of agents s ⊆ [n] is called α-cohesive for some 0 < α ≤ |s|
n ,

if
∣∣⋂

i∈s x
i
∣∣ ≥ α. An allocation x satisfies Average Fair Share if for every α ∈ (0, 1], if s ⊆ [n] is

α-cohesive then 1
|s|
∑

i∈s π
i
x ≥ α.

• Core Stability (CS)[20]: An allocation x satisfies Core Stability if for every s ⊆ [n], no y ∈ Rm
+

exists such that |y| = |s|
n and πi

y ≥ πi
x ∀i ∈ s with strict inequality for at least one member of s.

1Under binary preferences [7], AFS is formulated as 1
|s|

∑
i∈s π

i
x ≥ s

n
, as cohesiveness does not mean a lot in that model.

However, the natural extension from approval voting [34] would be 1
|s|

∑
i∈s π

i
x ≥ α, as we put it here.
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• single-minded Proportionality (smPR)[23]: This much weaker demand essentially requires the
fulfillment of all the fairness axioms above (IFS, AFS, CS) but only for single-minded profiles
(under which they all coincide). If x⃗ is single-minded, satisfying them simply means that x must
be the average of proposed allocations, x = 1

n

∑
i x

i.

The next two properties refer directly to rules rather than allocations.

• Participation (PAR): Aggregation rule F satisfies participation if, for all x⃗ ∈ (∆m)n and i ∈ [n],
y = F (x⃗) and z = F (x⃗−i), πi

y ≥ πi
z . Meaning, agents should always (weakly) prefer voting over

abstaining.

• Strategyproofness (SP): Aggregation rule F is strategyproof if for all x⃗ ∈ (∆m)n and i ∈ [n],
y = F (xi, x⃗−i) and z = F (w, x⃗−i) for some w ̸= xi, πi

y ≥ πi
z . Meaning, no agnet i can increase

her satisfaction by misreporting some w ∈ ∆m instead of her true preference xi.

3 Continuous Theile’s Rules

In this paper, we study this class of aggregation rules.
Definition 2 (Continuous Thiele’s Rules). For any increasing, twice differentiable and strictly concave
function f : [0, 1]→ R, we define the corresponding Continuous Thiele’s Rule, CTRf , by

CTRf (x⃗) ∈ arg max
x∈∆m

n∑
i=1

f(πi
x) (1)

3.1 Axiomatic Properties

Before presenting our main results that concern approximation guarantees of CTRs, we open this
section with an overview of their axiomatic properties. The following are immediate by definition.
Proposition 4. Every rule in the CTR class satisfies EFF, PAR, and is computed efficiently via convex
optimization.

We dismiss a formal proof of this statement. EFF and PAR are straight forward since f is in-
creasing. The efficient computation is due to

∑n
i=1 f(π

i
x) being a concave function of x (note that

πi
x =

∑
j min(xij , xj) is in itself a sum of concave functions). On the downside, this negative result is

also easy to verify.
Proposition 5. No CTR satisfies SP.

In the proportional fairness area, the only CTR showing any group representation guarantees (for
m > 2) is NASH where f = ln, that satisfies the relatively strong AFS.
Corollary 6. NASH satisfies AFS.

The proof is dismissed here as a particular case of Theorem 19 (that in fact shows a slightly stronger
property). On the contrary, we show that no other CTR satisfies even the much weaker smPR.
Proposition 7. Form > 2, NASH is the only CTR that satisfies smPR.

Moreover, NASH itself does not satisfy CS. Since smPR is weaker than CS, we have the following
result.
Proposition 8. No CTR satisfies CS.2

2Interestingly, the Nash product does output a core solution under the binary model [7]. Whether the core is always
non-empty for ℓ1, and what rule can find core solutions when and if they exist, remains, to the best of our knowledge, an
open question.
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Figure 1: An illustration withm = 3 and n = 2. x1 = (0.3, 0.5, 0.2), x2 = (0, 0.6, 0.4). At x = (0.2, 0.5, 0.3),
π1
x = 0.2 + 0.5 + 0.2 = 0.9, π2

x = 0 + 0.5 + 0.3 = 0.8, and: mc↑1 = mc↓1 = f ′(π1
x), mc↑2 = f ′(π2

x), mc↓2 =
f ′(π1

x) + f ′(π2
x), mc↑3 = mc↓3 = f ′(π2

x).

3.2 Optimal Allocations

Thanks to Proposition 4, optimal allocations can be conveniently characterized by KKT conditions.
Next, we formalize these constraints that will help us derive much of our later results.

Definition 3. Let x ∈ ∆m. For each j ∈ [m],

s↑
j(x) := {i ∈ [n]|xij > xj} ; s↓

j(x) := {i ∈ [n]|xij ≥ xj}

That is, s↑
j(x) consists of all agents i ∈ [n] for which increasing (or reducing, for s↓

j(x)) xj while keeping
all other {xk}k ̸=j fixed will increase (reduce) their satisfaction πi

x. Note that s
↑
j(x) ⊆ s↓

j(x). If xij = xj
for some agent i, she suffers from a reduction in xj while not gaining if we increase it, meaning she is
included in s↓

j(x) but not in s↑
j(x). If no such agent exist, the sets coincide and we can just write sj .

We also do that for the sake of abbreviation in many places, where the intention should be clear or the
distinction is not crucial. For every agent i and allocation x, we write

σ↑(↓)
x (i) := {j ∈ [m]|i ∈ s↑(↓)

j (x)}

Next, we want to define the partial derivative of
∑n

i=1 f(π
i
x) w.r.t. alternative j ∈ [m].

Definition 4 (marginal contributions). Let x ∈ ∆m. For every j ∈ [m],

mc↑(↓)j (x) :=
∑

i∈s↑(↓)j (x)

f ′(πi
x)

Note that mcj(x) depends on xj only through sj , however the contribution of each member to the
sum is a function of their overall satisfaction πi

x :=
∑

j min(xij , xj). In case xik = xk for some k ∈ [m]

(whether k = j or other), f ′(πi
x) does not exist, and we take the right or left derivative accordingly.

Figure 1 shows an example.

Proposition 9 (Marginal Rate of Substitution (MRS) condition). For x ∈ argmaxy∈∆m

∑
i f(π

i
y),

mc↑j(x) ≤ mc↓k(x) ∀j, k ∈ [m]

Mathematically, these are the KKT conditions for maximizing
∑

i f(π
i
x). From an economic perspective,

optimal allocations must admit the MRS demand because if mc↑j(x) > mc↓k(x) for some j and k,
increasing xj at the expense of xk would increase

∑
i f(π

i), up to the point where the MRS condition
is satisfied (and, every local maximum of a concave function is also a global one). When s↑

j = s↓
j and

s↑
k = s↓

k, marginal contributions also coincide and the two inequalities for j and k are reduced to the
equationmcj = mck.
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3.3 Inequality Aversion

CTRs are defined by the choice of the function f . In this part, we develop a characterization for such
functions we call Inequality Aversion. All of our upcoming results will depend on this sole factor. That
is, the approximative guarantees we will provide for different CTRs with respect to utilitarian welfare,
egalitarian welfare, Individual Fare Share and Avergae Fair Share, are all expressed in terms of the
Inequality Aversion of the corresponding function f .

Definition 5 (Inequality Aversion3). For any increasing, strictly concave function f : [0, 1] → R, the
Inequality Aversion of f , IAVf : (0, 1]→ R is IAVf (t) := − tf ′(t)

f ′′(t) .

Here are some examples of functions f and their corresponding IAVf .

f(t) : −e−t −t−p, p>0 ln(t) tp, 1>p>0 t(2− t)
IAVf (t) : t 1 + p 1 1− p t(t− 1)

Putting it roughly, IAVf "measures the concavity" of f , meaning, the extent to which f
(

1
n

∑
i π

i
x

)
exceeds 1

n

∑
i f(π

i
x). The higher it is, the less dispersed is the optimal distribution of {πi}i. For our

needs, however, the following implication is what’s important.

Lemma 10. For any twice differentiable concave function f : [0, 1]→ R, IAVf

(≤)

≥ λ for some λ > 0 iff

∀α > 1, f ′(t)
f ′(αt)

(≤)

≥ αλ.

This interpretation of the IAV will come handy in our later analysis. The example below demonstrates
the basic idea.

Example 11. Letm = 2. Consider a single-minded profile where the second alternative has higher support,
i.e., s2 > s1 in the notations of Definition 3. Note that in single minded profiles, s↑

j = s↓
j ∀j and we thus

only write sj and mcj . Also, for i ∈ sj , π
i
x = xj . Thus,

mc1 =
∑
i∈s1

f ′(πi
x) = s1f

′(x1) ; mc2 =
∑
i∈s2

f ′(πi
x) = s2f

′(x2)

For any rule CTRf we may apply. At the optimum x = CTRf (x⃗), the MRS conditions give mc1 =

mc2 =⇒ f ′(x1)
f ′(x2)

= s2
s1
. Now if λ bounds IAVf , it also bounds the extent to which CTRf favors the

majority s2. If IAVf ≥ λ,
(
x2
x1

)λ ≤ f ′(x1)
f ′(x2)

= s2
s1

=⇒ x2
x1
≤
(
s2
s1

)1/λ. In particular, for λ → ∞ we
get the egalitarian maxmin allocation x1 = x2. For IAVf ≤ λ we will have the inequalities reversed:(
x2
x1

)λ ≥ f ′(x1)
f ′(x2)

= s2
s1

=⇒ x2
x1
≥
(
s2
s1

)1/λ, so that at the limit λ→ 0 the welfare maximizing allocation
x = (0, 1) is approached. Finally, if IAV = 1 (meaning f = ln) the budget is allocated proportionally as
x2
x1

= f ′(x1)
f ′(x2)

= s2
s1
.

Presented in the next section, our main results build on the idea demonstrated in Example 11 to provide
egalitarian, utilitarian and proportionality guarantees within the CTR class.

We can figuratively map this class to (0,∞) based on the IAV parameter, as demonstrated in Figure
2. UTIL marks the left boundary where IAV → 0, at IAV = 1 we have NASH, and at the right limit
IAV → ∞ there is EGAL. Every CTR thus represents a different compromise between these three

3More commonly, − tf ′(t)
f ′′(t) is known as the "Relative Risk Aversion" of f , a major concept in decision making under

uncertainty [18]. While the two contexts are unrelated, the mathematical similarity is comprehensible [26, 2].
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IAV = 1 (f = ln)

proportional fairness
IAV →∞

egalitarian welfare
0← IAV

utilitarian welfare

Figure 2: The CTR class continuum.

contractors and the objectives they represent. In general,maxt∈(0,1) IAVf (t) determines worst case
utilitarian loss of CTRf (Theorem 12),mint∈(0,1) IAVf (t) determines its egalitarian loss (Theorem 17),
and maxt∈(0,1) |IAVf (t)− 1| the proportionality approximation (Theorem 19). In particular, if f has
a homogeneous derivative, e.g. tp,−t−p, ln(t), then IAVf is constant, and CTRf is represented in a
single point. Moreover, for every point p ∈ (0,∞) there exits such corresponding CTR, meaning that
the full range of possibilities is available through these elementary functions.

4 Trade-Offs In The CTR Class

4.1 Utilitarian Welfare Loss

We will now show how utilitarian welfare loss is diminished with IAV. Formally, the Utilitarian
Welfare in allocation x is UW (x) :=

∑
i π

i
x, and:

Definition 6. The utilitarian loss in allocation x isUL(x) := 1− UW (x)
UW (y) , where y = UTIL(x⃗).

Theorem 12 bounds welfare loss, as a function of the IAV, for m ≥ 3. Following it, Theorem 13 (of
which the proof is deferred to the appendix) gives the complementary result form = 2.

Theorem 12. Let x = CTRf (x⃗) such that IAVf ≤ λ. Then, form ≥ 3,

UL(x) ≤ 1−
( 1

m

)λ
We just need the following notation before proceeding with the proof. Given two allocations x and y,
we write:

Jx,y := {j ∈ [m]|xj ≥ yj} ; Jy,x := {j ∈ [m]|xj < yj}

δj := |xj − yj | ∀j ∈ [m] ; and, δ :=
∑

j∈Jx,y

δj =
∑

j∈Jy,x

δj

Proof. Let y = UTIL(x⃗). When shifting from x to y, the increase in welfare cannot exceed∑
k∈Jy,x

s↑
k(x)(yk − xk)−

∑
j∈Jx,y

s↓
j(x)(xj − yj) ≤ s↑

max

∑
k∈Jy,x

(yk − xk)−
∑

j∈Jx,y

s↓
j(x)(xj − yj)

=
∑

j∈Jx,y

(s↑
max − s↓

j(x))(xj − yj) ≤
∑

j∈Jx,y

(s↑
max − s↓

j(x))xj

where s↑
max := maxk∈Jy,x s

↑
k and we used

∑
k∈Jy,x(yk − xk) =

∑
j∈Jx,y(xj − yj). Now, by MRS and

IAVf ≤ λ we have for all j, k ∈ [m]:

s↑
kf

′(1) ≤ mc↑k ≤ mc↓j ≤ s↓
jf

′(xj) =⇒ s↑
k ≤ s↓

j

f ′(xj)

f ′(1)
≤ s↓

j

( 1
xj

)λ
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and therefore
∑

j∈Jx,y(s
↑
max − s↓

j(x))xj ≤ s↑
max

∑
j∈Jx,y(1 − xλj )xj . On the other hand, let k ∈ [m]

such that sk = s↑
max, and then

UW (x) =
∑
i

πi
x ≥

∑
i

∑
j∈σ(i)

xj =
∑
j

s↓
jxj ≥ s↑

maxxk +
∑
j ̸=k

s↓
jxj ≥ s↑

max

(
xk +

∑
j ̸=k

xλj · xj
)

= s↑
max

(
1−

∑
j ̸=k

xj +
∑
j ̸=k

xλj · xj
)
= s↑

max

(
1−

∑
j ̸=k

(1− xλj )xj

)
Therefore,

UW (y)− UW (x)

UW (x)
≤

s↑
max

∑
j ̸=k(1− xλj )xj

s↑
max

(
1−

∑
j ̸=k(1− xλj )xj

)
=⇒ UW (y)− UW (x)

UW (y)
≤
∑
j ̸=k

(1− xλj )xj ≤

(
1−

(
1− xk
m− 1

)λ
)
(1− xk)

Due to the concavity of (1− xλj )xj . Form ≥ 4, the function gm(t) = (1− ( t
m−1)

λ)t is increasing in
[0,1], therefore

UL(x) ≤ gm(1) = 1−
(

1

m− 1

)λ

,

as required. For m = 3 just take g4(t) ≥ g3(t) instead to bound UL(x), yielding the stated result.

Theorem 13. Let m = 2, and x = CTRf (x⃗) such that IAVf ≤ λ. ThenUL(x) ≤ λ(λ+ 1)−
λ+1
λ .

4.1.1 Lower Bound

Theorem 14. Let CTRf be a CTR such that IAVf = λ. Then for every m ≥ 2 there exists a profile x⃗
such that

UL
(
CTRf (x⃗)

)
= max

xk∈(0,1)

(
1−

(
1− xk

xk(m− 1)

)λ
)(

1− xk
)

As it turns out, the lower boundwe found is also an upper bound for welfare loss in single-minded profiles.
(A short explanation of this corollary is given in the appendix as well).

Corollary 15 (Tight bound for single-minded profiles). In any single minded profile x⃗,

UL
(
CTRf (x⃗)

)
≤ max

xk∈(0,1)

(
1−

(
1− xk

xk(m− 1)

)λ
)(

1− xk
)

and this bound is tight.

4.2 Individual Fairness and Egalitarian Loss

We now want to explore the egalitarian welfare guarantees of CTR’s. The less demanding interpretation
of that would be looking atmini π

i
x a rule can guarantee.

Theorem 16. Let x = CTRf (x⃗) such that λ ≤ IAVf . Then,

πmin
x ≥


1
λ√n

λ ≤ 1

max
(

1
n ,

1
m λ√n

)
λ > 1

In particular, x satisfies IFS whenever IAVf ≥ 1.

9



For λ→∞, Theorem 16 gives 1/m, which is indeed the guarantee of EGAL. However, this is only its
worst case guarantee. The following definition formalizes egalitarian welfare approximation by its full
meaning.

Definition 7. The egalitarian loss of allocation x is EL(x) := 1− mini π
i
x

mini πi
y
, where y = EGAL(x⃗).

Theorem 16 alone provides a trivial bound of 1− πmin
x for both utilitarian and egalitarian losses, which

is an improvement on Theorems 12 and 17 (that will follow shortly), but only in the ’very bad’ cases,
meaning utilitarian loss for high IAV and egaitarian loss for small IAV. Bounding EL(x) in general, is,
however, much more challenging. The proof of Theorem 17 can be roughly sketched as follows. While
the egalitarian allocation enables no improvement on all argmin agents, CTR’s exhibit a relaxation of
that impossibility, that exacerbates as the IAV increases. As the proof will show, an improvement for
the argmin set implies the existence of an agent that suffers from the change and has satisfaction close
to minimal. Formalizing this requires the following definition.

Definition 8 (Directional Derivative). For every agent i an two allocations x, y ∈ ∆m, define the
derivative of πi towards y at x as

∂πi
x

∂(y − x)
:=

d

dα
πi(αy + (1− α)x)

∣∣∣
α=0

Note that

∂πi
x

∂(y − x)
=

d

dα

[∑
l

min(αyl + (1− α)xl, x
i
l)
]
=

∑
k∈Jy,x∩σ↑

x(i)

δk −
∑

j∈Jx,y∩σ↓
x(i)

δj ≥ πi
y − πi

x

The inequality stems from the fact that agents might lose some of δj for j ∈ Jx,y even if j /∈ σ↓
x(i), that

is if yj < xij < xj , and similarly, gain less then the full δk gap when xk < xik < yk. Now we ready for
this part’s main result.

Theorem 17. Let x = CTRf (x⃗) such that IAVf ≥ λ. Then

m(n− 1) ≥

(
1

1−EL(x)

)λ

·EL(x)

Note that this means EL −−−→
λ→∞

0.

Proof. Let y = EGAL(x⃗). Since x is an optimum of
∑

i f(π
i),

0 ≥ ∂

∂(y − x)

[∑
i

f(πi)

]
=
∑
i

f ′(πi)
∂πi

x

∂(y − x)

Let α := min{i:πi
x≤πi

y}
πi
x

πmin
x

. Note that all agents j ∈ argmini π
i
x must have higher satisfaction in y,

thus α > 1. Moreover, ∂πi
x

∂(y−x) ≤ |y− x| ≤ 1 for all agents. Lastly, denote µ := ∂πi
x

∂(y−x) for some agent i
in the argmin set. Thus,

0 ≥ ∂

∂(y − x)

[∑
i

f(πi)

]
≥ f ′(πmin

x ) · µ− (n− 1)f ′(απmin
x )

=⇒ n− 1 ≥ µ
f ′(πmin

x )

f ′(απmin
x )

≥ µαλ

10



Since we have an agent for which πi
y ≤ πi

x = απmin
x , EL(x) = 1 − πmin

x

πmin
y
≤ 1 − 1

α . And, as there
exists an agent for which µ ≥ πi

y − πi
x = πi

y − πmin
x ≥ πmin

y − πmin
x , and πmin

y ≥ 1
m , we also have

EL ≤ µ
πmin
y
≤ mµ. Thus,

m(n− 1) ≥

(
1

1−EL(x)

)λ

·EL(x)

4.2.1 Lower Bound

Here too, we provide lower bound via looking at the worst single minded profile, as they are more
convenient to deal with. But unlike in section 4.1 where we discussed utilitarian loss, calculating the
egalitarian loss upper bound in single minded profiles is straight forward. We thus combine the two
results.

Theorem 18. Let x⃗ be single-minded profile x = CTRf (x⃗) such that IAVf ≤ λ. Then,

EL
(
CTRf (x⃗)

)
≤ 1− 2

1 + (n− 1)
1
λ

In particular, this bound is tight when IAVf = λ.

4.3 Utilitarian Vs. Egalitarian Welfare

Figure 3 provides the meaning of our so far results in terms of trading possibilities. It shows upper
and lower bounds on utilitarian and egalitarian loss for different settings of m and n, as a function
of the IAV . Note that deriving a welfare loss bound requires an upper bound on the IAV , while for
egalitarian loss we need an IAV lower bound, thus a concrete choice of f may correspond to an interval
rather than a single value of λ. However, functions with homogeneous derivatives such as logarithmic
and power functions have a constant IAV , and for every λ ∈ (0,∞) we have the corresponding
function that guarantees the exact bounds we see on the y-axis in each plot. Moreover, note that our
results only relate to the worst case with respect to either welfare, which are generically not the same
preferences profiles, meaning that the bounds for a given λ certainly do not mean that achieving both of
them in some instances is possible. For example, consider NASH executed on the single minded profile
with m = 2, s1 = 1, s2 = n− 1. This profile implements the tight egalitarian bound for single-minded
profiles from Theorem 18, of EL = 1− 2

1+(n−1)
1
λ
, in this case 1− 2

n . As NASH outputs ( 1n ,
n−1
n ), the

utilitarian loss is
UL = 1−

1
n + (n− 1)n−1

n

n− 1
=

n− 2

n(n− 1)
≈ 1

n
,

which is far below 1/4, the upper bound by Theorem 13.

4.4 Group Representation

Lastly, we proceed now to explore proportional fairness. With the IAV characterization, the results
presented in this section highlight the fact that we may interpret proportional fairness as the ’middle-
ground’ between utilitarian and egalitarian welfare. The next and final result shows the proportionality
approximation for IAV in the neighboorhood of 1.

Theorem 19 (λ-AFS). Let x = CTRf (x⃗) such that IAVf ∈ [λ1, λ2] for some λ1 ≤ 1 ≤ λ2. Then, for

every α-cohesive set s ∈ [n], either πi
x ≥ α ∀i ∈ s, or 1

|s|
∑

i∈s π
i
x ≥

λ2
√
s

λ1
√
n
.

11



(a) m = 4, n = 20 (b)m = 4, n = 100 (c) m = 12, n = 20 (d) m = 12, n = 100

Figure 3: Utilitarian and egalitarian loss bounds as a function of the IAV. Each graph shows upper and lower
bounds as the IAV goes from 10−2 to 102, for different values of m and n. Red lines show welfare loss, green
showing egalitarian loss. Solid lines are for upper bounds, dashed for lower bounds.

For NASH, this means a slightly stronger guarantee then AFS.

Corollary 20. Let x = NASH(x⃗). Then, for every α-cohesive set s ∈ [n], either πi
x ≥ α ∀i ∈ s, or

1
|s|
∑

i∈s π
i
x ≥ s

n .

Proof. Let s ⊂ [n] an α-cohesive group and let πs :=
∑

i∈s π
i
x. Since |

⋂
i∈s x

i| ≥ α, if
⋂

i∈s x
i is

covered by x we are done. Otherwise, there exists j ∈ [m] such that mini∈s x
i
j > xj and, since f ′ is

convex,
mc↑j =

∑
i∈s↑j

f ′(πi
x) ≥

∑
i∈s

f ′(πi
x) ≥ sf ′(πs)

Thus, sf ′(πs) ≤ mink mc↓k ≤
∑

i π
if ′(πi). (See proof of Theorem 16). Now,

s ≤
∑
i

πi f
′(πi)

f ′(πs)
=
∑
i

πi f ′(πi)

f ′(πmin)

f ′(πmin)

f ′(πs)
≤
∑
i

(πi)1−λ1(πmin
x )λ1−λ2(πs)λ2

≤ n(πmin
x )λ1−λ2(πs)λ2

and now using Theorem 16, s ≤ n
(

1
n

)λ1−λ2
λ1 (πs)λ2 =⇒ πs ≥ s

1
λ2

n
1
λ1

, as required.

5 Concluding Remarks

We presented the class of Continious Thiele’s Rules (CTR) for distribution aggregation problems. Each
rule in this class is defined by a real function f , which are characterized in turn by their ’Inequality
Aversion’ (IAV) measure. We gave some positive and negative bounds on the approximations of different
rules for utilitarian optimality, Average Fair Share, Individual Fare Share and egalitarian optimality, all
depending on the IAV . In general, smaller IAV corresponds to favoring utilitarian welfare, large IAV
to egalitarian welfare, and IAV around 1 to proportional fairness. From a practical point of view, such
presentation of the range of possibilities might be appealing and convenient to work with for social
planners.
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Appendix: Missing proofs

Proposition 3. EFF =⇒ RR.

Proof. Let x ∈ ∆m that violates Range-Respecting. We show that x must fail Pareto-efficiency (EFF).
If xj > maxi x

i
j , reducing xj down to maxi x

i
j affects the satisfaction of no agent, and the excess

xj −maxi x
i
j can surely be distributed to benefit at least one agent. If xj < mini x

i
j , then increasing xj

up tomini x
i
j benefits all agents, while the necessary reduction in other alternatives can surely be done

so that at least one agent is not harmed by it.

Proposition 5. No CTR satisfies SP.

Proof. Consider the following counter example. Let n = m = 2, x1 = (.5, .5) and x2 = (0, 1). Let
x = CTRf (x⃗). Since CTRf satisfies RR, we know that x = (y, 1− y) for some y ∈ [0, 0.5], so that
s1 = 1, s2 = 2, π1

x = y + 0.5 and π2
x = 1− y. Thus,

f ′(y + 0.5) = mc1 = mc2 = f ′(1− y) =⇒ y = .25

(f ′ is strictly decreasing, thus injective). Now assume agent 1 misreports x̂1 = (1, 0) instead, and call
the new outcome (z, 1− z). Then

f ′(z) = mc1 = mc2 = f ′(1− z) =⇒ z = .5

and agent 1’s satisfaction has increased from 0.75 to 1.

Proposition 7. Form > 2, The logarithmic CTR CTRln is the only CTR that satisfies PROP.

Proof. Let x⃗ be a single-minded preferences vector, and Tf (x⃗) = x. By MRS, sjf ′(xj) = skf
′(xk)∀j, k

(note that under single-minded profiles mc↑j = mc↓j for all j such that 0 < xj < 1). If x satisfies PROP
then xj =

sj
n , yielding

sjf
′(
sj
n
) = skf

′(
sk
n
) =⇒ sj

n
f ′(

sj
n
) =

sk
n
f ′(

sk
n
)

Satisfying this for general n, 1 ≤ sj , sk ≤ nmeans that xf ′(x) is a constant function, thus f = ln.

Proposition 8. No CTR satisfies CS.

Proof. We give an example of the Nash rule CTRln violating CS. Since CS implies PROP, the above
Lemma completes the proof. Let m = 3 and [n] consisting of 3 disjoint sets of sizes n1, n2, n3,
such that n1 = n2 = 0.3n, n3 = 0.4n. Each of the subsets is homogeneous with preferences
x1 = (1, 0, 0), x2 = (.5, .5, 0), x3 = (0, 0, 1) respectively. Then CTRln(x⃗) = x = (.5, 0, .5). However,
with y = (0.55, 0.05), |y| = n1+n2

n , every agent i ∈ n1 ∪ n2 has πi
y = 0.55 > πi

x = 0.5.

Lemma 10. The following are equivalent for any twice differentiable concave function f : [0, 1]→ R:

• IAVf

(≤)

≥ λ for some λ > 0.
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• ∀α > 1, f ′(t)
f ′(αt)

(≤)

≥ αλ

Proof. Essentially, − tf ′′(t)
f ′(t)

(≤)

≥ λ means that f ′(t) decreases faster (slower) than t−λ:

d

dt

[
tλf ′(t)

]
= tλ−1

(
λf ′(t) + tf ′′(t)

)
≤ 0 ⇐⇒ − tf ′′(t)

f ′(t)
≥ λ

And if tλf ′(t) is non-increasing (non-decreasing), then

∀α > 1, tλf ′(t)
(≤)

≥ (αt)λf ′(αt) ⇐⇒ f ′(t)

f ′(αt)

(≤)

≥ αλ

Theorem 13. Let m = 2, and x = CTRf (x⃗) such that IAVf ≤ λ. ThenUL(x) ≤ λ(λ+ 1)−
λ+1
λ .

Proof. The proof is almost identical to that of Theorem 12. The difference comes near the end when we
bound gm(t) = (1− ( t

m−1)
λ)t. g2(t) has global maximum at t∗ = (λ+ 1)

−1
λ < 1 and thus

UL(x) ≤ g2(t
∗) = λ(λ+ 1)−

λ+1
λ .

Theorem 14. Let CTRf be a CTR such that IAVf = λ. Then for everym ≥ 2 there exists a profile x⃗
such that

UL
(
CTRf (x⃗)

)
= max

xk∈(0,1)

(
1−

(
1− xk

xk(m− 1)

)λ
)(

1− xk
)

Proof. Let x⃗ be a single minded profile such that sk = maxj∈[m] sj and sj = sℓ ∀l, j ̸= k. In single-
minded profiles, the utilitarian allocation puts all the budget on the alternatives with maximal support,
i.e. maxy∈∆m UW (y) = sk in our case. As it must be that xj = xℓ for all j, ℓ ̸= k, the welfare loss in x
is

UL(x) =
sk −

(
(m− 1)sj · 1−xk

m−1 + sk · xk
)

sk
=

(sk − sj)(1− xk)

sk
=
(
1− sj

sk

)
(1− xk)

where j ̸= k. By MRS condition,

sj
sk

=
f ′(xk)

f ′(xj)
=

(
xj
xk

)λ

=⇒ 1− xk =
∑
j ̸=k

xj = (m− 1)

(
sj
sk

) 1
λ

xk

=⇒ sj
sk

=

(
1− xk

xk(m− 1)

)λ

which yields the result.
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Corollary 15. In any single minded profile x⃗,

UL
(
CTRf (x⃗)

)
≤ max

xk∈(0,1)

(
1−

(
1− xk

xk(m− 1)

)λ
)(

1− xk
)

and this bound is tight.

To see why, we need to look back at the proof of Theorem 12. When we bounded s↓j

s↑k
using the MRS

(second equation in the proof), for single-minded profiles we can replace f ′(1) with f ′(xk), as we know
that πi

x = xk for all i ∈ sk. Thus we will have

skf
′(xk) ≤ mck ≤ mcj ≤ sjf

′(xj) =⇒ sj
sk
≥
(xj
xk

)λ
This 1

xk
factor would drag along as the proof proceeds, ultimately resulting in

UW (y)− UW (x)

UW (y)
≤
∑
j ̸=k

(1− (xj/xk)
λ)xj ≤

(
1−

(
1− xk

xk(m− 1)

)λ
)
(1− xk)

Theorem 16. Let x = CTRf (x⃗) such that λ ≤ IAVf . Then,

πmin
x ≥


1
λ√n

λ ≤ 1

max
(

1
n ,

1
m λ√n

)
λ > 1

In particular, x satisfies IFS whenever IAVf ≥ 1.

Proof. Let j ∈ [m] such that the voter with minimal πi
x is in mc↑j , so that mc↑j ≥ f ′(πmin

x ) (if no such j

exists then πmin
x = 1). Sincemc↓k ≥ mc↑j ∀k, we now want to boundmink mc↓k. Indeed,∑

k

mck · xk =
∑
k

xk
∑
i∈sk

f ′(πi
x) =

∑
i

∑
k∈σ(i)

xkf
′(πi) ≤

∑
i

πif ′(πi)

Thus, since
∑

k xk = 1 we have that f ′(πmin
x ) ≤ mink mc↓k ≤

∑
i π

if ′(πi). Hence,

1 ≤
∑
i

πi f ′(πi)

f ′(πmin
x )

≤
∑
i

πi
(πmin

x

πi
x

)λ
= (πmin

x )λ
∑
i

(πi
x)

1−λ

Now if λ ≤ 1 then (πi
x)

1−λ ≤ 1 ∀i, and thus 1 ≤ (πmin
x )λ · n, as needed. If λ > 1,= then (πi

x)
1−λ ≤

(πmin
x )1−λ ∀i, and thus 1 ≤ (πmin

x )λ · n(πmin
x )1−λ = nπmin

x . Moreover, mc↓k ≤ nf ′(xk) ∀k, and since
there exist xk such that xk ≥ 1/m, we will have f ′(πmin

x ) ≤ nf ′(1/m) =⇒ πmin
x ≥ 1

m λ√n
(note that

if xj ≥ 1/m then πmin
x ≥ 1/m).

Theorem 18. Let x⃗ be single-minded profile and x = CTRf (x⃗) such that IAVf ≥ λ. Then,

EL(x) ≤ 1− 2

1 + (n− 1)
1
λ

In particular, this bound is tight when IAVf = λ.
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Proof. Let k = |{j ∈ [m] : sj > 0}| be the number of projects that has non-empty support in x⃗. Then
maxy∈∆m mini π

i
y = 1

k , making the egalitarian loss in x EL(x) = 1− kminxj . Assume w.l.o.g. that
s1 = minj:sj>0 sj . It is not difficult (See for example the proof of Theorem 14) to calculate that, given
that IAVf ≥ λ,

x1 ≥
s

1
λ
1∑
j s

1
λ
j

≥ 1

1 +
∑

j>1 s
1
λ
j

which gives

for λ ≥ 1, kx1 ≥
k

1 + (k − 1)
(
n−1
k−1

) 1
λ

≥ 2

1 + (n− 1)
1
λ

for λ < 1, kx1 ≥
k

1 + (n− 1)
1
λ

≥ 2

1 + (n− 1)
1
λ

and thus
EL(x) ≤ 1− 2

1 + (n− 1)
1
λ

And indeed, if IAVf = λ and s1 = 1, s2 = n− 1 we get that exact result.
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