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Abstract

This paper proposes a formal model of sociotropic voting, where voters’ ballots are based on
the preferences of their peers in a group rather than their individual preferences. This behavior,
prevalent in social settings and elections, can paradoxically lead to inferior outcomes for the
group. We assume that voters have perfect knowledge of others’ preferences and use an internal
aggregation rule to construct their ballots, which may be distinct from the external voting rule.
We find that sociotropic voting can alter outcomes in ordinal single-winner and in approval-based
multi-winner elections, but not in single-winner elections under the classical approval voting
rule. Our theoretical and experimental results show that sociotropic voting can be harmful when
external voting rules are designed for consensus and fairness, such as Condorcet consistent rules.
However, it can enhance equity in settings using simple voting rules like plurality.

1 Introduction

Suppose that a group of friends tries to pick a movie, and everyone—being polite and socially aware—
votes for what they think the others would prefer. This ends with them watching a movie that no
one actually wants to see. This behavior, where individuals aim to align with the group’s perceived
preferences, is known as sociotropic [5]. Note a crucial difference from altruism [23]: a sociotropic actor
completely disregards her own preferences, while an altruist does not. Such a tendency is not limited
to friendly gatherings; strong evidence shows that sociotropic behavior occurs in political elections,
affecting choices on a national level [19, 22], a phenomenon that has intrigued political scientists for
more than 40 years [18].

We propose the first formal model of sociotropic voting and explore its paradoxical effects. Example 1
illustrates a simple case where sociotropic voting changes the outcome. We will later see that the
outcome may worsen, even with voters who aim to benefit the group, have perfect knowledge of others’
preferences, and use a sophisticated rule to form their ballots.

Example 1. Consider four voters deciding between four candidates (a, b, c, d) in an election employing
the famous Borda rule as follows: each voter reports a ranking of the candidates, each candidate receives
3 (respectively 2, 1, and 0) points when appearing in the first (respectively second, third, and last)
position of a voter’s ranking, and the candidate with the most total points wins. Suppose voters 1 and 2
individually prefer a to c to d to b, while voters 3 and 4 individually prefer b to c to d to a. The Borda
rule here would choose c as the unique winner. Suppose, however, that all voters engage in sociotropic
behavior—instead of reporting their individual preferences, they try to please their peers. To do so,
they compute the popularity of each candidate via simple plurality. Excluding herself from the group,
voter 1 (and similarly voter 2) sees candidate b as the most popular (being at the top for 2/3 of the others’
preferences), followed by a, c, and d. Analogously, voters 3 and 4 end up ranking a first, followed by b,
c, and d. The Borda rule applied to these sociotropic ballots would now select a and b as tied winners. △

We base our model of sociotropic voting on a question that has been studied extensively in both
economics and computer science: the impact that the voters’ misrepresentation of preferences has on
the outcome of an election [3, 11]. In particular, we follow the standard model of strategic manipulation
and assume that voters have full knowledge of the other voters’ preferences. However, a sociotropic
voter does not aim at a better outcome for herself—instead, her ballot captures what is best for the rest
of the group. Thus to form a ballot, sociotropic voters need to aggregate the others’ preferences. To do
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so, we assume that they emlpoy an internal aggregation rule that might be different from the rule used
to make the final group decision.

We study sociotropic voting within the two most prominent election frameworks in the (computational)
social choice literature, namely ordinal elections [28] and approval voting [20]. In the former we
examine only single-winner elections, while in the latter we consider both single- and multi-winner
elections. For all models we first study whether sociotropic voting can change the outcome of an
election at all. We find that this holds for ordinal single-winner voting and approval-based multi-winner
voting but not for single-winner approval voting, at least under the standard voting rule AV and certain
behavioral assumptions on sociotropic voters. Then, we investigate the situations in which sociotropic
voting can lead to inferior or superior outcomes. We provide both general theoretical results and
simulation experiments. Broadly speaking, we observe that sociotropic voting can be harmful if the
external voting rule used to make the collective decision is already designed to provide a consensus
outcome and satisfies desirable properties like Condorcet consistency or justified representation; but if
the external voting rule is a simple majoritarian rule like plurality or AV, sociotropic voting can, under
some conditions, help deliver a more equitable outcome. Omitted proofs can be found in the appendix.

Related work. Strategic behavior in elections has long been central to the social choice literature [16,
24]. The topic gained interest among computer scientists after it was shown that computational
complexity theory can be used to gain new insights into the issue [4]. However, to the best of our
knowledge, this literature so far has only focused on voters trying to improve the outcome according to
their own preferences.

Public-spirited voting is also closely related to our model. The main difference is that voters in public-
spirited voting have cardinal utilities, which are only translated into ordinal ballots after the public-
spirited voters aggregate them. While this is very natural in the study of distortion [15, 2], the assumption
of full knowledge of cardinal utility functions is much stronger than our assumption that voters know
each others ordinal or approval preferences. Moreover we do not focus on distortion but study outcome
changes more generally.

Finally, in the model of decision-making in social networks, some authors have considered scenarios
where voters are influenced by the preferences of their neighbors [27, 10, 12, 26, 17]. While related in
spirit, this framework is technically distinct from ours. Moreover, in this setting, most work has focused
on the problem of electoral control, which we do not consider.

2 Model

This section formally introduces sociotropic voting in elections with approval and ordinal preferences.

2.1 Elections with Approval Preferences

In this model we are interested in electing a committee of (at most) k candidates, and voters express
their preferences by approving a subset of the candidates.1 Let N and X be the (finite) sets of voters
and candidates, respectively. Voters are numbered from 1 to n and candidates are denoted by letters
(a, b, . . . or x, y, . . .). Each voter i ∈ N is endowed with a nonempty set Ai ⊆ X , called her individual
preference, and casts a nonempty ballot Bi ⊆ X , which might deviate from her individual preference.
We indicate as A = (A1, . . . , An) and B = (B1, . . . , Bn) the profiles of individual preferences and
ballots, respectively. Let A−i = (A1, . . . , Ai−1, Ai+1, . . . , An) be the profile obtained by excluding
Ai from the profile A. To compute the outcome of an election, we use an external aggregation rule F ext

1Output committees can contain less than k candidates for technical reasons but, ideally, we want committees to be of size
k.
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that maps each profile B to a nonempty set of (tied) committees of size at most k (for some k ∈ N), i.e.,
F ext(B) ⊆ {C ⊆ X : |C| ≤ k}.

We designate a subset Soc ⊆ N as the sociotropic voters, while voters in the set N \ Soc are called
individualistic. Each individualistic voter reports a ballot identical to her individual preference, i.e.,
Bi = Ai. Each sociotropic voter forms her ballot based on the individual preferences of all other
voters. Formally, each i ∈ Soc first applies a (shared) internal aggregation rule F int toA−i such that
F int(A−i) ⊆ {C ⊆ X : |C| ≤ k} and F int(A−i) ̸= ∅. Observe that the amount of representation any
group of voters deserves is dependent on k. It is thus natural to assume that sociotropic voters use the
same k for their internal aggregation as is used for the external aggregation.

Note that, in the case of ties, the output of the internal aggregation can be a set of committees, while a
ballot is a set of candidates. We propose two ways in which sociotropic voters can handle ties, which
we call ballot functions B:2

• lexicographic: B(C) is the lexicographically minimal committee in C (assuming some linear
ordering over X).

• union: B(C) =
⋃

C∈C C , i.e., Bi is the set of all the co-winning candidates in C.

For each sociotropic voter, we set Bi = B(F int(A−i)). See Example 2 for an illustration of this. Finally,
unless stated otherwise, we focus on the extreme case where every voter is sociotropic—we assume
Soc = N .

We now introduce axioms and related notions. In multi-winner voting, one of the main requirements is
proportionality, i.e., the idea that, if a group is large enough to deserve a certain amount of candidates
in the committee, it should receive them. Many formalizations of this have been proposed [20, Chapter
4]. We present here a relatively weak axiom, which we use in our theoretical results. In the sequel, we
write F to indicate either F ext or F int.

Definition 1 (Cohesive Groups). A set of votersN ′ ⊆ N is ℓ-cohesive if |N ′| ≥ ℓ ·n/k and |
⋂

i∈N ′ Ai| ≥
ℓ.

Definition 2 (Justified Representation). A rule F satisfies Justified Representation (JR) if, for every
profileA, committee C ∈ F (A) and each 1-cohesive groupN ′, there is some i ∈ N ′ with |C ∩Ai| ≥ 1.

In the experiments, we also use a stronger notion.

Definition 3 (EJR+). A rule F satisfies EJR+ if, for every profile A and committee C ∈ F (A), there is
no candidate x ∈ X \ C , group N ′ ⊆ N , and ℓ ∈ N with |N ′| ≥ ℓ · n/k such that x ∈

⋂
i∈N ′ Ai and,

for all i ∈ N ′, |Ai ∩ C| < ℓ.

Observe that EJR+ [9] implies JR [1]. We also consider the following mild conditions, where A is
quantified universally over profiles:

• Rule F is neutral if, for every permutation π : X → X and committee C ⊆ X , we have
C ∈ F (A) iff π(C) ∈ F (π(A)).3

• Rule F is unanimous if |
⋂

i∈N Ai| ≤ k (resp. >) implies
(⋂

i∈N Ai

)
⊆ C (resp. ⊇) for all

C ∈ F (A).
2Because F int might return an empty committee, for both ballot functions we assume B({∅}) = X . This does not affect

our results.
3Here, π(A) is the profile obtained by replacing every occurrence of every candiate x inA with π(x). The set π(C) (with

C ⊆ X) is defined analogously.
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• Rule F is exhaustive if |C| = k for all C ∈ F (A).

For some of our results, we will focus on the well-behaved special case of party-list profiles, which
resemble parliamentary elections in countries with proportional representation systems. Here, for each
voters i, j ∈ N , we have either Ai ∩Aj = ∅ or Ai = Aj .

Finally, in this setting, one of the most natural rules is approval voting (AV), where we select all sets
of k candidates that maximize the total number of approvals. Besides AV, we consider the following
rules: sequential proportional approval voting (seqPAV), sequential Chamberlin-Courant (seqCC), and
the Method of Equal Shares (MES) without completion [20, Chapter 2]. In the interest of space, we
defer their definition to the appendix. Observe that, of these rules, only seqCC and MES satisfy JR [20,
Chapter 4], and only the latter satisfies EJR+ [9].

Example 2. Consider a profile A with 3 voters with individual preferences A1 = {a, b}, A2 = {a, c},
and A3 = {c, d}. Let k = 2 and suppose F int is AV. We have F int(A−1) = {{a, c}, {c, d}}. Therefore,
if B is lexicographic, B1 = {a, c}; if B is union, B1 = {a, c, d}. Moreover, if Soc = N and B is
lexicographic, then B = ({a, c}, {a, b}, {a, b}) and the final outcome for F ext being AV is AV(B) =
{a, b}. △

2.2 Elections with Ordinal Preferences

As a second model we consider the case that voters express their preferences via strict rankings. For
this setting we only consider single-winner elections.

Similarly to before, we have a set of voters N and of candidates X . Preferences and ballots are now in
the form of strict linear orders over X . The set of all such orders is indicated as L(X). To distinguish
from the previous model, we write the individual preference of a voter i ∈ N as Ri ∈ L(X) and the
profile of individual preferences as R. Again, we indicate as Bi ∈ L(X) and B ballots and ballot
profiles, respectively. If voter i prefers candidate x over candidate y, we write xRiy (similarly for Bi);
when clear from the context, we may simply write x ≻i y or x ≻ y.

Here we have an external aggregation ruleF ext that maps each profileB of ordinal ballots to a nonempty
subset of X , and an internal aggregation rule F int that maps each R−i to a nonempty subset of L(X).
To form her ballot from the linear orders in F int(R−i), each sociotropic voter i ∈ Soc uses a different
ballot function Bi that maximizes agreement with her individual preference Ri. Formally:

Bi ∈ argmax
B∈F int(R−i)

|{(x, y) ∈ X2 : xBy and xRiy}|

Note that for all specific rules studied in this paper, Bi is uniquely determined4 and the above is well
defined. Again, unless otherwise stated, we assume Soc = N .

We now introduce more notation. For a profile R and candidates x, y ∈ X , let nR
xy be the number

of voters preferring x over y. When clear from the context, we omit the profile in the superscript. If
nxy > nyx (resp., nxy = nyx) we say that x wins (resp., ties) in the pairwise contest against y. We say
that x is the Condorcet winner of R if x wins the pairwise majority contest against all other candidates.
When it exists, the Condorcet winner is unique. Moreover, we define the set of weak Condorcet winners
of R, called CW(R), as the set of candidates that never lose a pairwise majority contest. If x is the
Condorcet winner, then CW(R) = {x} (but the converse might not hold). The set CW(R) might also
be empty.

An external rule F ext (resp. an internal rule F int) is Condorcet consistent if, wheneverR has a Condorcet
winner x, then F ext(R) = {x} (resp., x is ranked first in every order in F int(R)). Furthermore, F ext is

4As we explain later, all rules we consider work by first computing some weak order and then returning all its refining
linear orders. Among these, there is always exactly one order that maximizes agreement with Ri.
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weak-Condorcet consistent if, whenever CW(R) ̸= ∅, then F ext(R) = CW(R). Similarly, F int is weak-
Condorcet consistent if, whenever CW(R) ̸= ∅, for any order ≻ ∈ F int(R), all candidates in CW(R)
are ranked above all other candidates and π(≻) ∈ F int(R) for all permutations π : CW(R) → CW(R).5

We also say that x is the unanimous winner of R if all voters rank x first. The rule F ext is unanimous if,
whenever x is a unanimous winner of R, then F ext(R) = {x}.

A popular family of rules in single-winner elections with ordinal preferences consists of positional
scoring rules, where every rule is defined by a non-increasing vector

α = (α(1), . . . , α(|X|)) ∈ R|X|
≥0 with α(1) > α(|X|).

In words, every voter assigns to each candidate x she ranks at position ℓ from the top of her linear
order exactly α(ℓ) points, and the total score of x is the sum of points received by all voters. Then,
based on α,

• the corresponding external rule F ext outputs as winners the candidate(s) with maximal score.

• the corresponding internal rule F int weakly ranks the candidates according to their score, and
outputs all linear orders that are refinements of that weak ranking.

Notable positional scoring rules include the Borda rule, plurality, and veto (or anti-plurality). These are
defined by the vectors (|X| − 1, |X| − 2, . . . , 0), (1, 0, . . . , 0), and (1, . . . , 1, 0), respectively. No
positional scoring rule is Condorcet consistent [28], but plurality and Borda are unanimous.

Example 3. Suppose that both the external aggregation rule F ext and the internal aggregation rule F int

are plurality. Consider the profile of individual preferencesR = (a ≻ b ≻ c, b ≻ c ≻ a, c ≻ b ≻ a).
Assume all voters are sociotropic. Then, the ballot profile isB = (b ≻ c ≻ a, c ≻ a ≻ b, b ≻ a ≻ c).
For example, voter 1 looks at the preferences of the other voters, b ≻ c ≻ a and c ≻ b ≻ a. Then, she
ranks the candidates (according to their plurality score inR−i) as follows: b and c tie for the highest
score, whereas a has the lowest score. Since she prefers b over c, she computes her ballot as b ≻ c ≻ a.
Thus, we have F ext(B) = {b} ⊊ F ext(R) = {a, b, c}. △

We then consider the next two internal aggregation rules.

Definition 4 (Copeland). The aggregation rule F int called Copeland works as follows. Every candi-
date x ∈ X gets +1 point for each pairwise majority contest it wins and −1 point for each pairwise
majority contest it loses. The candidates are weakly ranked according to their points, and the rule
outputs all linear orders that refine that weak ranking.

Definition 5 (Simple Condorcet). The aggregation rule F int called simple Condorcet works as follows.
If CW(R) = ∅, then F int(R) = L(X). Otherwise, F int(R) = {≻ ∈ L(X) : x ≻ y for all x ∈
CW(R) and y ∈ X \ CW(R)}.

Both are Condorcet consistent, and simple Condorcet is also weak-Condorcet consistent. When used as
an internal aggregation rule by sociotropic voters, simple Condorcet has the following effect in Bi for
each i ∈ Soc: the relative ordering of the candidates in CW(R−i) and in X \ CW(R−i) is the same as
in Ri, but all candidates in CW(R−i) are ranked above the candidates in X \ CW(R−i).

After defining sociotropic behavior in elections, our next goal is to scrutinize its effects.
5Here, π(≻) is the order obtained by replacing in ≻ all occurrences of every candidate x (included in the domain of π) by

π(x).
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3 Does Sociotropic Voting Change the Outcome?

We have already seen in Example 1 that sociotropic behavior may change the outcome of an election.
In this section, we study more closely under which conditions this is possible.

3.1 Approval Preferences

First of all, we show that there is at least one important case in which sociotropic behavior can never
change the outcome of an election. Namely, single-winner approval voting (when k = 1) where both
the external rule and internal aggregation rule are AV and the ballot function is union.

Theorem 1. Let both F ext
and F int

be AV, and let the ballot function be union. Moreover, assume k = 1.
Then, for every profileA of approval preferences, F ext(A) = F ext(B).

Importantly, Theorem 1 requires that all voters are sociotropic and fails otherwise. Moreover, observe
that, if k = 1, most reasonable voting rules are equivalent to AV, so this result is rather general; still, it
fails for approval-based rules that are distinct from AV for k = 1, e.g., SAV [8]. Finally, this result also
fails if the ballot function is lexicographic, and not union. We present all the relevant examples in the
appendix.

Let us now look at the general case where k ≥ 1. Here, we do not know of any reasonable rules F ext

and F int guaranteeing that F ext(A) = F ext(B) for every profileA. Specifically, contrary to Theorem 1,
if both F ext and F int are AV, the outcome can change even for the union ballot function and if voters
approve of at least k candidates. See Example 4.

Example 4. Let k = 2 and consider profileA = ({a, b, e}, {c, d}, {a, b, c}). Here, the AV winners
are {a, b}, {a, c}, and {c, b}. If the voters use AV internally and the union ballot function, then
B = ({a, b, c, d}, {a, b}, {a, b, c, d, e}). Here, the AV winner is only {a, b}. △

3.2 Ordinal Preferences

In this setting, contra Theorem 1, Proposition 2 shows that, if the external aggregation rule is a positional
scoring rule, sociotropic behavior may change the outcome whenever voters also use a positional scoring
rule to form their ballots.

Proposition 2. Let F ext
and F int

be positional scoring rules. Then, there exists a profile R such that

F ext(R) ̸= F ext(B).

Notice that this does not show how F ext(R) and F ext(B) relate to each other, only that they might
differ; they could be either fully disjoint or overlap significantly. For plurality, we prove that a new
winner is never introduced; moreover, this holds independently of the number of sociotropic voters.

Proposition 3. Let F ext
and F int

be plurality. Then, for every Soc ⊆ N and profile R we have that

F ext(B) ⊆ F ext(R).

Proof (Sketch). Let px(R) indicate the plurality score of candidate x in profileR and top(R) the top-
ranked candidate in R. In appendix, we prove the following useful fact.

Fact 1. If F ext and F int are plurality and i ∈ Soc then top(Bi) ∈ F ext(R).

Next, for a candidate x ∈ X and profileR, let

sx(R) = |{i ∈ Soc : x = top(Ri)}| and ex(R) = |{i ∈ N \ Soc : x = top(Ri)}|.
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Clearly px(R) = sx(R) + ex(R) and ex(R) = ex(B) for all x. By Fact 1,∑
x∈F ext(R)

sx(B) = |Soc| ≥
∑

x∈F ext(R)

sx(R).

Hence, there is some x⋆ ∈ F ext(R) such that sx⋆(B) ≥ sx⋆(R). Crucially, this implies px⋆(B) ≥
px⋆(R). For any y ∈ X \ F ext(R), we get px⋆(B) ≥ px⋆(R) > py(R) ≥ ey(R) = py(B), where the
strict inequality follows because x⋆ is in F ext(R) while y is not, and the equality by Fact 1. Lastly, the
above implies y ̸∈ F ext(B) and, thus, F ext(B) ⊆ F ext(R).

Proposition 3 does not hold for arbitrary positional scoring rules. For example, if F ext and F int are
the Borda rule, then for R = (a ≻ b ≻ c ≻ d, d ≻ b ≻ a ≻ c, d ≻ c ≻ a ≻ b) we have that
F ext(R) = {d} ̸⊆ {a} = F ext(B).

Observe that plurality essentially corresponds to (single-winner) AV with singleton preferences; hence,
one might expect a result analogous to Theorem 1 for plurality, rather than Proposition 3. The intuition
behind this discrepancy lies in the ballot functions: Theorem 1 hinges on the union ballot function,
which is not well-defined in the context of plurality (as it would allow voters to vote for multiple
candidates).

4 The Disadvantages of Sociotropic Voting

In this section we focus on cases where sociotropic voting can alter the results of the election and study
the disadvantages this may have for the group.

4.1 Approval Preferences

Let us begin with approval-based multi-winner voting, where we get the following result.

Proposition 4. Let F ext
and F int

be unanimous rules, F ext
be neutral, and F int

be exhaustive. Moreover,

let B be either lexicographic or union. Then, there exists a party-list profile A and a committee size k
such that F ext(B) does not satisfy JR with respect to the individual preferences inA.

Proof. Consider profile A = ({a, b}, {c}) and set k = 2. By unanimity of F int, we have that
F int(A−2) = {{a, b}} and that c must be in every C ∈ F int(A−1). Thus, by exhaustiveness of F int,
we have three cases:

1. F int(A−1) = {{a, c}}. Independently of the ballot function, B = ({a, c}, {a, b}). By
unanimity of F ext, a must be in any C ∈ F ext(B). If {a, c} ̸∈ F ext(B), we violate JR w.r.t. A.
Thus, assume {a, c} ∈ F ext(B). By neutrality of F ext, this implies {a, b} ∈ F ext({a, b}, {a, c}).
But then we can considerA′ = ({c}, {a, b}) as our initial profile and obtain {a, b} ∈ F ext(B′),
a JR violation w.r.t. A′.

2. F int(A−1) = {{c, b}}. Independently of the ballot function,B = ({c, b}, {a, b}). The analysis
of this case is analogous to the previous one.

3. F int(A−1) = {{a, c}, {b, c}}. Now, if B is lexicographic, we have B = ({a, c}, {a, b}), and
we are in the first case. If B is union, we have B = ({a, b, c}, {a, b}). By unanimity of F ext,
we have F ext(B) = {{a, b}}, which violates JR w.r.tA.

Note that, disturbingly, this implies that sociotropic behavior can make the outcome unproportional
(w.r.t. the true individual preferences) even if F ext satisfies JR. Still, the proof of this quite general result
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hinges on the fact that F int is exhaustive, and on some voter approving less than k candidates. We show
next that, under additional assumptions, these two aspects are not required, at least for the union ballot
function.

Proposition 5. Let F ext
and F int

be neutral rules and let F int
also satisfy JR. Let B be union. Then, there

exists a party-list profileA and a committee size k where all voters approve of at least k candidates such

that F ext(B) does not satisfy JR with respect to the individual preferences inA.

4.2 Ordinal Preferences

Proposition 6 generalizes Examples 1 and 3.

Proposition 6. Let F int
be a positional scoring rule. Then, there exists a profileR such that the Condorcet

winner of B differs from the Condorcet winner ofR.

We immediately get Corollary 7, showing that sociotropic voting might cause the removal of a Con-
dorcet winner from the outcome. If one values Condorcet consistency, this can be seen as a negative
consequence of sociotropic behavior.

Corollary 7. Let F ext
be a Condorcet consistent rule and F int

a positional scoring rule. Then, there exists

a profile R such that R has a Condorcet winner but F ext(R) ∩ F ext(B) = ∅.

5 The Advantages of Sociotropic Voting

We have seen that not only can sociotropic behavior change the voting outcome, but it can also lead to
outcomes that are arguably less desirable. However, improvements are also possible, as the following
example shows.

Example 5. Consider a profile R where two voters have preference a ≻ b ≻ c, two voters b ≻ a ≻ c,
and three voters c ≻ b ≻ a. Here, plurality elects c, which is the Condorcet loser (i.e., c loses all majority
contests). However, suppose that F int is Borda. One can verify that all voters rank b first inB. Hence,
inB, plurality elects b, which is the Condorcet winner w.r.t. the individual preferences. △

In light of this, we investigate how sociotropic behavior can improve the outcome for the group.

5.1 Approval Preferences

Proposition 4 has demonstrated instances where a proportional rule might return an unproportional
outcome due to sociotropic behavior. Despite this worst-case result, we will now argue that sociotropic
behavior can be beneficial.

Theorem 8. Let F ext
be AV, F int

be MES without any completion method, and the ballot function be

lexicographic. IfR is a party-list profile and n ≥ k + 1, then F ext(B) satisfies JR.

Observe that the condition n ≥ k + 1 rules out the example used to prove Proposition 4. Moreover, a
similar result is ruled out for the union ballot function by Proposition 5. Intuitively, the advantage of
the lexicographic ballot function here is that it allows the sociotropic voters to coordinate on which
candidates supported by a cohesive group to approve. Thus, from a theoretical perspective, successful
sociotropic voting requires some coordination between the voters. We complement our theoretical
findings experimentally.
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Internal Ballot func. Improvement Damage
AV lex. 15% / 16% 0% / 0.1%
AV union 0.1% / 0.2% 0.2% / 0%
seqPAV lex. 100% / 100% 0% / 0%
seqPAV union 88% / 94% 2% / 0.1%
seqCC lex. 100% / 100% 0% / 0%
seqCC union 52% / 66% 9% / 9%
MES lex. 100% / 100% 0% / 0%
MES union 88% / 94% 2% / 0.1%

Table 1: EJR+ experiments. Sampling: 1D / 2D-Euclidean.

Experimental questions. The objective is to quantify how often sociotropic behavior can be ben-
eficial. To that end we consider the external rule to be AV paired with lexicographic tiebreaking,
which fails basic proportionality requirements. Then, we investigate whether certain kinds of internal
aggregation rules employed by the sociotropic voters can improve the proportionality of the outcome.
By “improvement" we mean that the AV outcome over the individual preferencesR does not satisfy
some proportionality axiom, whereas the sociotropic outcome, i.e., the AV outcome over the ballot
profile B, does (and the other way around for “damage").

Experimental setup. To capture the desired property of the collective outcome, we encode propor-
tionality via the EJR+ axiom. This is a strong notion but also poly-time verifiable [9], contrary to other
strong proportionality axioms such as EJR [1].

For the internal rule F int, we consider AV, seqPAV, seqCC, and MES. We employ AV as a baseline,
and compare it to rules that aim to achieve proportional results. Focusing on sequential rules is
computationally convenient, but also seems like a reasonable restriction: otherwise, we would require
sociotropic voters to solve a hard computational problem to construct their ballots. We additionally
consider the lexicographic and union ballot functions. For robustness and to minimize the assumptions
on the behavior of sociotropic voters, we also ran the experiments pairing F int with a randomized ballot
function, i.e., where Bi is selected uniformly at random from F int(A−i). This did not have a significant
impact on our conclusions. See appendix for details.

Our sample is generated with the Euclidean model [25], where each voter and candidate is a point
sampled uniformly at random from [0, 1]D , and where each voter has a radius r. A voter approves of
any candidate at a Euclidean distance smaller or equal than r. In particular, we use the 1D-Euclidean
model with r = 0.05 and the 2D-Euclidean model with r = 0.2, we set 50 voters and 50 candidates,
and k equal to 5. Our setup is deliberate: According to recent work on the “map of elections” [13], these
parameters provide a substantial chance of EJR (and thus EJR+) being violated by AV, which we need
for our results to be meaningful.6 For each of the two models, we generate with rejection sampling
1000 profiles where the AV outcome satisfies EJR+ and 1000 where it does not.7

Experimental observations. Our results are presented in Table 6. Here 15% improvement means
that among the 1000 profiles in which the AV outcome over the individual preferences violates EJR+,
there are 150 profiles in which the AV outcome over the sociotropic ballots satisfies EJR+. Overall,
it seems that sociotropic behavior can be beneficial regarding proportionality. Indeed, almost no
damage was registered, meaning that the risk involved with sociotropic behavior is low. One slight
exception is seqCC with the union ballot function. Moreover, when the internal aggregation rule is

6This work [13] considers profiles with 100 voters and 100 candidates, and sets k = 10; we focus on a smaller setting for
computational limitations, but keep the size of the elections sufficiently large to ensure enough profiles failing EJR+.

7We are grateful to the abcvoting Python package [21] that we used in our experiments.
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pSoc Improvement Damage
0.5 100% / 100% 0% / 0%
0.25 99.9% / 99.9% 0% / 0%
0.1 97% / 97% 0% / 0%
0.05 80% / 81% 0% / 0%
0.01 26% / 26% 0% / 0%

Table 2: Probabilistic EJR+ experiments, where F int is seqPAV and B is lexicographic. Sampling: 1D / 2D-
Euclidean.

proportional (seqPAV, seqCC, MES) the outcome can often become more proportional. If the internal
rule is unproportional (AV), then we see only slight improvements. Specifically, it seems like seqPAV
and MES help improve the outcome independently of the ballot function used, and with low risk. SeqCC
seems to drop significantly in performance if paired with the union ballot function. Generally, the
union ballot function performs worse than the lexicographic function. This is reasonable, because the
lexicographic function (as mentioned) can be seen as a form of coordination among voters.

Clearly, it is a simplification to assume that Soc = N . Thus, to test the robustness of our results,
we performed the following experiment. We assume that each voter has probability pSoc of being
sociotropic. If they are, they compute their ballot as described above. Otherwise, they just submit their
individual preference. We ran this experiment for the case where F int is seqPAV with lexicographic

ballot function, as in this case sociotropic behavior seems quite beneficial.

The results are shown in Table 2. From this, we can draw two conclusions. First, it seems like, our
previous observations about the low risk of sociotropic behavior are quite robust. Secondly, it seems
that sociotropic behavior can be beneficial even if a large portion of the population is individualistic,
assuming that the sociotropic voters construct their ballot in a proportional way. In the most extreme
case, even if on average one voter out of 100 is sociotropic, we still get an improvement rate of 26%.

This last result is remarkable; to explain it, we manually inspected some profiles we sampled. We noted
that, often, there is a candidate x ∈ X such that (1) x is not in the outcome, (2) the inclusion of x in the
outcome would satisfy EJR+, and (3) x has quite high approval score (e.g., it could have maximal score
but be excluded from the outcome by tiebreaking). Hence, a small change in the input in favor of x can
make x win, and thus satisfy EJR+. It seems that, if sociotropic voters construct their ballots using a
proportional rule, they often include an alternative such as x in their ballots.

These experiments suggest that if the external rule is not fair but sociotropic voters use a proportional
rule to form their ballots, then this can often positively impact the outcome (in terms of proportionality).
Given our negative theoretical results (Section 4.1), one might wonder if the opposite also holds: If
the external rule is proportional but sociotropic voters use AV internally, do we just as often lose
proportional guarantees (e.g., EJR+)? We ran further experiments to check this, but found it untrue: we
rarely lose proportional guarantees due to sociotropic behavior even if sociotropic voters use a simple
rule like AV. We show this experiment in appendix.

5.2 Ordinal Preferences

Let us now turn to ordinal preferences. We again focus on Condorcet consistency and start with internal
aggregation rules that are weak-Condorcet consistent.

Proposition 9. Let F int
be a weak-Condorcet consistent rule. IfR has a strict Condorcet winner x, then x

is the unanimous winner ofB.

Proof. Let x be strict Condorcet winner in R and fix i ∈ N . First, observe that x must be a weak
Condorcet winner in R−i, because for any y ∈ X \ {x} we have that nR−i

xy ≥ nR
xy − 1 ≥ nR

yx ≥ n
R−i
yx ,
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where the second inequality follows from the fact that x is the Condorcet winner in R. Hence, by
weak-Condorcet consistency, candidate x is ranked above any y ̸∈ CW(R−i) in all orders in F int(R−i).

Next, observe that, ifR−i has some weak Condorcet winner y distinct from x, then we must have xRiy.
To see this, note that nR

xy > nR
yx but nR−i

xy = n
R−i
yx ; this is possible only if i prefers x over y. Thus, by

weak-Condorcet consistency of F int and the definition of Bi, x is ranked first in Bi.

Since this holds for an arbitrary i ∈ N , we have that x is ranked first by all voters, completing the
proof.

A straightforward consequence of this is the following. Suppose that F ext satisfies the quite innocuous
property of unanimity. Then, a certain kind of sociotropic behavior (corresponding to F int being
weak-Condorcet consistent) guarantees that, if a Condorcet winner exists, it will be elected. If one
values Condorcet consistency, this can be seen as a positive effect of (a certain kind of) sociotropic
behavior. The following result follows immediately from Proposition 9.

Corollary 10. Let F ext
be a unanimous and F int

a weak-Condorcet consistent rule. Then, for every profile

R with a strict Condorcet winner x, we have that F (B) = {x}.

Note that the last two results do not hold if we consider x to be a weak Condorcet winner instead of a
strict one, even if it is the unique such winner (see appendix for details). Next, we study the case where
the internal rule used for sociotropic voting is a specific weak-Condorcet consistent rule, namely simple
Condorcet. Here, we show that the weak Condorcet winners under sociotropic voting are among the
weak Condorcet winners of the individual preference profile.

Proposition 11. Let F int
be simple Condorcet. Then, for every Soc ⊆ N and profileR with CW(R) ̸= ∅,

we have that ∅ ⊊ CW(B) ⊆ CW(R).

For other weak-Condorcet consistent rules beyond simple Condorcet, Proposition 11 does not necessarily
hold. Proposition 11 also implies the following result.

Corollary 12. LetF int
be simple Condorcet andF ext

be weak-Condorcet consistent. Then, for any Soc ⊆ N
and profileR with CW(R) ̸= ∅, we have F ext(B) ⊆ F ext(R).

As for multi-winner voting, we complement the theoretical analysis with some brief experimental
observations.

Experimental questions. To quantify the benefits of sociotropic behavior in ordinal elections, we
focus on Condorcet consistency. Here, by “improvement" we mean that the outcome of an external rule
F ext over the individual preferencesR does not elect an existing strict Condorcet winner x, whereas the
outcome of F ext over the sociotropic ballotsB does elect x (and the other way around for “damage").

Experimental setup. For the external rule F ext, we consider two basic positional scoring rules,
plurality and Borda, since no positional scoring rule is Condorcet consistent. For the internal rule
F int, we consider two Condorcet consistent rules, Copeland and simple Condorcet.

Our sample is generated with two complementary models. First, the impartial culture (IC) distribution
that samples profiles uniformly at random is taken as the baseline. Second, Mallow’s model with a
rel-ϕ parameter (sampled uniformly at random), is found to be the most appropriate distribution for
capturing real-world elections [7].8 We sample profiles with 30 candidates and 31 voters, having a
Condorcet winner (we do not consider larger profiles because such instances with a Condorcet winner
are rare). We generate with rejection sampling 1000 profiles where F ext elects the Condorcet winner
(possibly together with other candidates), and 1000 profiles where F ext does not.

8We are grateful to the pref_voting Python package (pref-voting.readthedocs.io) that we used in our experiments.
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External Internal Improvement Damage
Plurality Copeland 98% / 99% 2% / 0%
Plurality Simple Condorcet 88% / 78% 12% / 5%
Borda Copeland 89% / 98% 0% / 0%
Borda Simple Condorcet 90% / 92% 0% / 0%

Table 3: Condorcet experiments. Sampling: IC / rel-ϕ Mallows.

pSoc Improvement Damage
0.5 60% / 74% 6% / 0%
0.25 53% / 62% 8% / 2%
0.1 35% / 43% 8% / 1%
0.05 27% / 26% 6% / 0%
0.01 8% / 8% 2% / 0%

Table 4: Probabilistic Condorcet experiments, where F ext is Borda and F int is simple Condorcet. Sampling: IC /
rel-ϕ Mallows.

Experimental observations. See Table 3. Table 4 presents the results of the corresponding exper-
iment focusing on Borda and simple Condorcet, where we consider varying probabilities of a voter
being sociotropic (denoted by pSoc). For example, a 98% improvement means that, among the 1000
profiles in which the F ext outcome over the individual preferences does not elect the Condorcet winner
(say, x), there are 980 profiles in which the F ext outcome over the sociotropic ballots elects x. Overall,
improvements are prevailing, especially when the internal rule F int is Copeland. Damages are rather
negligible (usually 0%), with the strongest ones (12%) being observed when the external and internal
rules are plurality and simple Condorcet, respectively. Notably, for F ext being Borda and F int being
simple Condorcet, we have substantial improvements even when only 10% of the voters are sociotropic
(see the row with p = 0.1 in Table 4, where improvements are 43% for the Mallows distribution.)

6 Conclusion

We introduced a first formal model of sociotropic voting for three of the most common settings in
computational social choice: single- and multi-winner voting with approval preferences and single-
winner voting with ordinal preferences. We identified one important case where sociotropic behavior
cannot affect the outcome, single-winner approval voting with AV, at least under the union ballot
function that is natural for this setting. For the other cases, our results suggest that sociotropic behavior
can have negative consequences, especially if the voting rule used in the election already embodies some
form of fairness (i.e., Condorcet consistency, JR). However, if the rule is not geared towards fairness
(e.g., AV, plurality), then both theory and simulations show that sociotropic behavior can lead to more
equitable outcomes for the group, especially when sociotropic voters use proportional rules like MES or
seqPAV for their internal aggregation.

Our paper is a first step in the formal study of sociotropic voting. An interesting future direction would
be to investigate what happens when sociotropic voters have only limited or imprecise knowledge about
the preferences of their peers. Next, one could investigate what happens when different sociotropic
voters use different internal rules to compute their ballots.
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A Omitted Rule Definitions

In this section, we define some rules we employ in this paper for the multi-winner setting.

We only consider sequential rules, i.e., we select candidates sequentially in (at most) k rounds. For each
round r, let Cr be the set of candidates selected before this round. Note that, at each step, one might
have several candidates to pick from (i.e., ties might occur). We assume that each rule returns the set of
all committees that result from the described sequential process given some tiebreaking rule.

SeqPAV. Here, there are exacly k rounds. For each round r, we select some candidate x maximizing
the following score:

x ∈ argmax
x∈X\Cr

∑
i∈N

satr(i, x)∑
ℓ=1

1/ℓ, where satr(i, x) = |Ai ∩ ({x} ∪ Cr)|.
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SeqCC. This rule is analogous to seqPAV; the only difference is the score to be maximized:

x ∈ argmax
x∈X\Cr

∑
i∈N

1[satr(i, x) ≥ 1],

where 1[·] is the indicator function (i.e., 1[p] = 1 if p is true and 1[p] = 0 otherwise).

MES. Initially, all voters are assigned a budget of k/n. Let br(i) be the budget of voter i before round
r (hence, b1(i) = k/n for all i ∈ N ). Let N(x) ⊆ N be the set of voters approving of x. In round r, we
consider the set Xr ⊆ X of all candidates in X \ Cr such that

∑
i∈N(x) br(i) ≥ 1. If Xr is empty, the

rule terminates and returns Cr . Otherwise, we compute α(x) for each x ∈ Xr as

α(x) = min

α ∈ R |
∑

i∈N(x)

min(α, br(i)) = 1

 .

We select a candidate x⋆ with minimal α(x⋆) and set br+1(i) = max(0, br(i) − α(x⋆)) if i ∈ N(x⋆)
and br+1(i) = br(i) otherwise.

Note that MES might terminate in less than k rounds, and thus return a committee with fewer than
k candidates. To enforce output committees to have size exactly k, one need to extend MES with a
so-called completion method [20, Chapter 2]. However, in this paper, we only consider MES without
completion methods.

B Further Examples

B.1 Approval Preferences

We first show that Theorem 1 does not hold if Soc ⊊ N . Consider profileA = ({a}, {a}, {b}, {b})
and let k = 1. Here, the AV winners are a and b. Now, assume that only voter 2 is sociotropic. Then,
for any ballot function we getB = ({a}, {b}, {b}, {b}) and lose the approval winner a.

Moving on, besides AV, a popular single-winner approval-based rule is Satisfaction Approval Voting
(SAV) [8], defined as

SAV(A) = argmax
x∈X

∑
i∈N

|{x} ∩Ai|
|Ai|

,

Not only does Theorem 1 cease to hold if at least one of F ext and F int is SAV, but it might also hold that
F ext(A) ∩ F ext(B) = ∅, even if Soc = N .

Example 6. Let F ext and F int be SAV. Take a profile A =
({a}, {b, c}, {a, d, e}, {b, c, e}, {b, c, e}, {b, c, e}). Then, F ext(A) = {b, c} but F ext(B) = {a}.
The same holds if F ext is SAV and F int is AV, or vice versa. △

Finally, suppose that the ballot function Bi is lexicographic, and not union. Again, Theorem 1 ceases
to hold. Indeed, consider a profile with three voters, tiebreaking order a > b, and approvals {a}, {b}
and {b}. Here, the approval winner is b. However, the ballot profile becomes {b}, {a} and {a}, with
approval winner a.

B.2 Ordinal Preferences

We show that Proposition 9 and Corollary 10 fail for the case of weak Condorcet winners (even if only
one weak Condorcet winner exists). Consider the following weak-Condorcet consistent rule F int: If
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there are weak Condorcet winners, rank them first together, and the other candidates tie in the second
place. Otherwise, apply Borda.9 (This is a weak variant of Black’s rule [14].) Consider profileR:

R1 : a ≻ b ≻ c,

R2 : c ≻ a ≻ b,

R3 : c ≻ a ≻ b,

R4 : b ≻ c ≻ a,

R5 : b ≻ c ≻ a,

R6 : b ≻ c ≻ a.

One can verify the following. The (only) weak Condorcet winner here is b, but inB, the weak Condorcet
winners are both b and c.

Next, we show that Proposition 9 fails for general (i.e., non-weakly) Condorcet consistent rules. Consider
the following rule F int: If there is a strict Condorcet winner, rank it first, and all other candidates tie in
the second place; otherwise, apply Borda. (This is Black’s rule [6].) Consider profile R = (a ≻ b ≻
c, a ≻ b ≻ c, b ≻ c ≻ a). One can verify the following: Here, the Condorcet winner is a, but inB, the
Condorcet winner is b.

C Omitted Experiments

In Tables 5 and 6 we report the omitted experiments.

Internal Ballot func. Improvement Damage
AV random 26% / 29% 0% / 0.1%
seqPAV random 99% / 99% 0.1% / 0%
seqCC random 86% / 93% 1% / 0.2%
MES random 98% / 99% 0% / 0%

Table 5: EJR+ experiments for the random ballot function. Sampling: 1D-Euclidean (left) and 2D-Euclidean
(right).

External Internal Ballot func. Damage
seqPAV AV lex. 0.1% / 0.9%
seqPAV AV union 0.3% / 1.1%
seqPAV AV random 0.1% / 0.9%
seqCC AV lex. 4.0% / 8.3%
seqCC AV union 5.9% / 11%
seqCC AV random 2.8% / 7.3%
MES AV lex. 0.1% / 0.9%
MES AV union 0.3% / 1.1%
MES AV random 0.1% / 0.9%

Table 6: Additional EJR+ experiments. Here, we sampled 1000 profiles (per statistical culture) where seqPAV,
seqCC and MES all satisfied EJR+. The “damage” percentage refers to the percentage of profiles such that, if all
voters are sociotropic and sociotropic voters form their ballot with AV, then the outcome does not satisfy EJR+
anymore. Sampling: 1D / 2D-Euclidean.

9Of course, the procedure we describe returns a weak order. One can unambiguously transform such weak order into a set
of (tied) linear orders.
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D Omitted Proofs

Theorem 1. Let both F ext
and F int

be AV, and let the ballot function be union. Moreover, assume k = 1.
Then, for every profileA of approval preferences, F ext(A) = F ext(B).

Proof. In the following, given a profileA and two subsets of candidates Y, Z ⊆ X , let

AA(Y +, Z−) = |{i ∈ N : Y ⊆ Ai ⊆ X \ Z}|.

Moreover, given a set S ⊆ 2X , let
⊔S =

⋃
S∈S

S.

In particular, ⊔F ext(A) are all the cowinners of F ext(A). Next, let {x} ∈ F ext(A). Note thatAA({x}+)
andAB({x}+) are the approval scores of x inA andB, respectively. Moving fromA toB, the approval
winner x will be additionally approved by every voter i with Ai ∩ (⊔F ext(A)) = ∅, and also by every
voter i such that x ̸∈ Ai but Ai ∩ (⊔F ext(A)) ̸= ∅. This holds because when the voter excludes herself
from A, {x} will be an approval winner of F ext(A−i). However, x will lose the approval of every
voter i such that x ∈ Ai but y ̸∈ Ai for some {y} ∈ F ext(A) (if any). This holds because when the
voter excludes herself from profile A, {x} will not be an approval winner of F ext(A−i), as it loses to y.
So, we have the following:

AB({x}+) = AA({x}+) +AA((⊔F ext(A))−)

+
∑

{y}∈F ext(A)

AA({x}−, {y}+) −
∑

{y}∈F ext(A)

AA({x}+, {y}−).

Note that {x} ∈ F ext(A) and {y} ∈ F ext(A) implies that AA({x}−, {y}+) = AA({x}+, {y}−).
Hence,

AB({x}+) = AA({x}+) +AA((⊔F ext(A))−). (1)

Now, consider an arbitrary {z} /∈ F ext(A). We know that z may be approved inB only by a voter i
such that z ̸∈ Ai but ⊔F ext(A) ⊆ Ai. This is because when such a voter (and only such a voter)
excludes herself from A, all approval cowinners of A will have their score decreased by one point,
while z, preserving its score, may become an approval cowinner of F ext(A−i). Therefore,

AB({z}+) ≤ AA((⊔F ext(A))+, {z}−). (2)

Because we have assumed that {x} ∈ F ext(A), it also holds that AA((⊔F ext(A))+, {z}−) ≤
AA({x}+), and thus

AB({z}+) ≤ AA((⊔F ext(A))+, {z}−) ≤ AA({x}+) ≤ AB({x}+), (3)

with the first inequality following from Inequality (2) and the last from Equation (1). ThusAB({z}+) ≤
AB({x}+).

Suppose, aiming for a contradiction, that this is an equality for all {x} ∈ F ext(A). Then, it must hold
that AA((⊔F ext(A))+, {z}−) = AA({x}+) for all {x} ∈ F ext(A) and that AA((⊔F ext(A))−) = 0.
In detail:

• AA((⊔F ext(A))+, {z}−) = AA({x}+) for all {x} ∈ F ext(A) means that every voter i with
Ai ∩ (⊔F ext(A)) ̸= ∅ will have (⊔F ext(A)) ⊆ Ai and z ̸∈ Ai.

• AA(⊔(F ext(A))−) = 0 means that for every voter i it holds that Ai ∩ (⊔F ext(A)) ̸= ∅.
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Combining the two, every voter must approve all cowinners of F ext(A) and must not approve z (where
{z} ̸∈ F ext(A)). Because n ≥ 2, we have that AA({x}+) ≥ 2, but AA({z}+) = 0. This means that
when a voter i who approves all cowinners in F ext(A) excludes herself from A, the candidates in
⊔F ext(A) will still have a higher approval score than z inA−i and thus voter i will not include z in
Bi. Thus, AB({z}+) = 0. From Equation (1), AB({x}+) = AA({x}+) ≥ 2 > 0 = AB({z}+), a
contradiction.

We conclude that one of the inequalities in (3) must be strict. So, z has strictly smaller approval score in
B than some x with {x} ∈ F ext(A), and it cannot be an approval winner. Because {z} /∈ F ext(A) was
arbitrary, we have that F ext(B) ⊆ F ext(A). Moreover, from Equation (1) we know that all approval
winners of A will have the same approval score inB, implying that F ext(B) = F ext(A).

Proposition 2. Let F ext
and F int

be positional scoring rules. Then, there exists a profile R such that

F ext(R) ̸= F ext(B).

Proof. Take a set of three candidates X = {a, b, c}. W.l.o.g., we can assume F ext to be defined by some
score vector (s1 + s2, s1, 0) such that s1, s2 ≥ 0 and s1 + s2 > 0. Likewise, let us assume that F int is
defined by a vector (t1 + t2, t1, 0) such that t1, t2 ≥ 0 and t1 + t2 > 0.

First, let us assume that s2 > 0, that is, F ext is not the veto rule (we will analyse the case where F ext is
the veto rule after). Consider profileR:

R1 : a ≻ b ≻ c,

R2 : b ≻ c ≻ a,

R3 : c ≻ a ≻ b,

R4 : b ≻ c ≻ a,

R5 : c ≻ b ≻ a.

Let f(x) indicate the score of candidate x under F ext inR. We have that f(b) = f(c) = 4s1 + 2s2 >
f(a) = 2s1 + s2. Thus, F ext(R) = {b, c}. Next, let gi(x) be the score of candidate x under F int in
R−i. We have:

g1(a) = t1, g1(b) = 3t1 + 2t2, g1(c) = 4t1 + 2t2,

g2(a) = 2t1 + t2, g2(b) = 3t1 + t2, g2(c) = 3t1 + 2t2,

g3(a) = t1 + t2, g4(b) = 4t1 + 2t2, g4(c) = 3t1 + t2,

g4(a) = 2t1 + t2, g3(b) = 3t1 + t2, g3(c) = 3t1 + 2t2,

g5(a) = 2t1 + t2, g5(b) = 3t1 + 2t2, g5(c) = 3t1 + t2.

Using these scores, as well as the ballot function, we can determine the profile B. There are three
subcases.

1. t1, t2 > 0. Then, we have:

B1 : c ≻ b ≻ a,

B2 : c ≻ b ≻ a,

B3 : b ≻ c ≻ a,

B4 : c ≻ b ≻ a,

B5 : b ≻ c ≻ a.

Since s2 > 0, we have F ext(B) = {c} ≠ {b, c} = F ext(R).
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2. t1 > t2 = 0. Then (by the ballot function), we have:

B1 : c ≻ b ≻ a,

B2 : b ≻ c ≻ a,

B3 : b ≻ c ≻ a,

B4 : b ≻ c ≻ a,

B5 : c ≻ b ≻ a.

Since s2 > 0, we have F ext(B) = {b} ≠ {b, c} = F ext(R).

3. t2 > t1 = 0. Then (by the ballot function), we have:

B1 : b ≻ c ≻ a,

B2 : c ≻ b ≻ a,

B3 : b ≻ c ≻ a,

B4 : c ≻ b ≻ a,

B5 : b ≻ c ≻ a.

Since s2 > 0, we have F ext(B) = {b} ≠ {b, c} = F ext(P ).

In all cases, we get that F ext(B) ̸= F ext(R). This shows that if F ext is not the veto rule, our statement
holds. Now, let F ext be the veto rule, and consider profileR:

R1 : a ≻ b ≻ c,

R2 : a ≻ b ≻ c,

R3 : c ≻ b ≻ a.

We have F ext(R) = {b}. Again, let gi(x) be the score of candidate x under F int inR−i. We have:

g1(a) = t1 + t2, g1(b) = 2t1, g1(c) = t1 + t2,

g2(a) = t1 + t2, g2(b) = 2t1, g2(c) = t1 + t2,

g3(a) = 2t1 + 2t2, g4(b) = 2t1, g4(c) = 0.

Now, there are five subcases.

1. t1 > t2 > 0. Then, we have (by the ballot function):

B1 : b ≻ a ≻ c,

B2 : b ≻ a ≻ c,

B3 : a ≻ b ≻ c.

We have F ext(B) = {b, a} ≠ {b} = F ext(R).

2. t2 > t1 > 0. Then, we have (by the ballot function):

B1 : a ≻ c ≻ b,

B2 : a ≻ c ≻ b,

B3 : a ≻ b ≻ c.

We have F ext(B) = {a} ≠ {b} = F ext(R).
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3. t1 = t2 > 0. Then, we have (by the ballot function):

B1 : a ≻ b ≻ c,

B2 : a ≻ b ≻ c,

B3 : a ≻ b ≻ c.

We have F ext(B) = {a, b} ≠ {b} = F ext(R).

4. t1 > t2 = 0. Then, we have (by the ballot function):

B1 : b ≻ a ≻ c,

B2 : b ≻ a ≻ c,

B3 : b ≻ a ≻ c.

We have F ext(B) = {a, b} ≠ {b} = F ext(R).

5. t2 > t1 = 0. Then, we have (by the ballot function):

B1 : a ≻ c ≻ b,

B2 : a ≻ c ≻ b,

B3 : a ≻ c ≻ b.

We have F ext(B) = {a, b} ≠ {b} = F ext(R).

In no case, F ext(B) = {b}. This concludes the proof.

Proposition 3. Let F ext
and F int

be plurality. Then, for every Soc ⊆ N and profile R we have that

F ext(B) ⊆ F ext(R).

Proof. Let px(R) indicate the plurality score of candidate x in profile R and top(R) the top-ranked
candidate in R. We first show the following useful fact.

Fact 1. If F ext and F int are plurality and i ∈ Soc then top(Bi) ∈ F ext(R).

To show this, fix a profileR, a sociotropic voter i ∈ Soc, and let t = top(Ri). There are two cases.

1. F ext(R) ̸= {t}. Here, for all x ∈ F ext(R) and y ∈ X \ F ext(R) with t ̸∈ {x, y}, we have

px(R−i) = px(R) > py(R) = py(R−i) and px(R) ≥ pt(R) > pt(R−i).

Thus, the plurality winners of R−i are F ext(R) \ {t}. Hence, for all ≻ ∈ F int(R−i) we have
top(≻) ∈ F ext(R) \ {t}, which implies top(Bi) ∈ F ext(R).

2. F ext(R) = {t}. Here, for all x ∈ X \ {t}, we have

pt(R−i) = pt(R)− 1 ≥ px(R) = px(R−i),

where the inequality holds because t is the sole plurality winner inR. Thus, t ∈ F ext(R−i). By
definition of Bi, since top(Ri) = t, we get top(Bi) = t ∈ F ext(R).

This concludes the proof of Fact 1. Next, for a candidate x ∈ X and profileR, let

sx(R) = |{i ∈ Soc : x = top(Ri)}| and ex(R) = |{i ∈ N \ Soc : x = top(Ri)}|.
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Clearly px(R) = sx(R) + ex(R) and ex(R) = ex(B) for all x. By Fact 1,∑
x∈F ext(R)

sx(B) = |Soc| ≥
∑

x∈F ext(R)

sx(R).

Hence, there exists some x⋆ ∈ F ext(R) such that sx⋆(B) ≥ sx⋆(R). Crucially, this implies px⋆(B) ≥
px⋆(R). For any y ∈ X \ F ext(R), we get

px⋆(B) ≥ px⋆(R) > py(R) ≥ ey(R) = py(B),

where the strict inequality follows because x⋆ is in F ext(R) while y is not, and the equality by Fact 1.
Lastly, the above implies y ̸∈ F ext(B) and, thus, F ext(B) ⊆ F ext(R).

Proposition 5. Let F ext
and F int

be neutral rules and let F int
also satisfy JR. Let B be union. Then, there

exists a party-list profileA and a committee size k where all voters approve of at least k candidates such

that F ext(B) does not satisfy JR with respect to the individual preferences inA.

Proof. Let k = 3 and suppose that two voters approve of {a, b, c} and two of {d, e, f}. Since F int

satisfies JR, for any i ∈ N , all C ∈ F int(A−i) must include one candidate from {a, b, c} and one from
{d, e, f}. By neutrality of F int and by the union ballot function, this gives Bi = {a, . . . , f} for all
i ∈ N . Thus, by neutrality of F ext, there must be some C ∈ F ext(B) violating JR w.r.t. A.

Proposition 6. Let F int
be a positional scoring rule. Then, there exists a profileR such that the Condorcet

winner of B differs from the Condorcet winner ofR.

Proof. Let X = {a1, . . . , am} with m ≥ 3. Let α = (α(1), . . . , α(m)) (with α(1) > α(m)) be the
score vector defining F int. There are three cases.

1. α(1) = α(2). Here, let ℓ indicate the largest number such that α(ℓ) = α(1). Consider profile R:

R1 : a1 ≻ a2 ≻ · · · ≻ am,

R2 : a1 ≻ a2 ≻ · · · ≻ am,

R3 : a2 ≻ · · ·︸︷︷︸
ℓ− 1 canidates

≻ a1 ≻ · · · ≻ am.

Where left unspecified, we assume any ordering of the candidates (it is not essential to the proof).
Here, a1 is the Condorcet winner. Consider voter 1. In profile R−1, candidates a1 and a2 receive
α(1) + α(ℓ+ 1) and α(1) + α(2) points, respectively. By assumption, α(1) = α(2) > α(ℓ+ 1);
hence, here a2 receives a larger score than a1. Moreover, α(1) + α(2) = 2α(1) is the highest
score achievable in a two-voter profile. This, together with the fact that, for any candidate
x ∈ X \ {a1, a2} we have a2 ≻1 x, implies that a2 is ranked first in B1. A similar argument
shows that a2 is ranked first in B2. Hence, a2, and not a1, is the strict Condorcet winner inB.

2. α(1) > α(2) = α(3). Consider profileR:

R1 : a1 ≻ a2 ≻ a3 ≻ · · · ≻ am,

R2 : a1 ≻ a2 ≻ a3 ≻ · · · ≻ am,

R3 : a2 ≻ a3 ≻ a1 ≻ · · · ≻ am,

R4 : a3 ≻ a2 ≻ a1 ≻ · · · ≻ am,

R5 : a3 ≻ a2 ≻ a1 ≻ · · · ≻ am.

Here, a2 is the strict Condorcet winner. We show that in both B1 and B2 candidate a3 is ranked
first. We focus on voter 1 (for voter 2, we have an analogous argument). InR−1, candidate a3
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gets a score of 2α(1) + α(2) + α(3). Alternative a1, on the other hand, only gets a score of
α(1)+3α(3), and similarly a2 receives a score of α(1)+3α(2). By assumption, a3 has the largest
score of the three candidates; obviously also a greater score than any other candidate. Hence,
a3 is ranked first in B1 and B2. Furthermore, in subprofile R−3, we have that a1 and a3 have
the same score, namely 2α(1) + 2α(3); this is strictly larger than the score of a2, which is only
4α(2). Again, any other candidate has a strictly smaller score. Hence, since a3 ≻3 a1, we get
that a3 is ranked first in B3. This is enough to show that a3, and not a2, is the strict Condorcet
winner ofB.

3. α(1) > α(2) > α(3). Consider profileR:

R1 : a1 ≻ a2 ≻ a3 ≻ · · · ≻ am,

R2 : a1 ≻ a2 ≻ a3 ≻ · · · ≻ am,

R3 : a2 ≻ a3 ≻ a1 ≻ · · · ≻ am.

In subprofileR−1, candidate a2 receives a score of α(1) + α(2). On the other hand, a1 and a3
receive a smaller score of α(1)+α(3) and α(2)+α(3), respectively. Any other candidate receive
a score strictly lower than a2. Hence, a2 is ranked first in B1. The same argument shows that a2
is ranked first in B2. Hence, a2, and not a1, is the strict Condorcet winner in B.

This concludes the proof.

Theorem 8. Let F ext
be AV, F int

be MES without any completion method, and the ballot function be

lexicographic. IfR is a party-list profile and n ≥ k + 1, then F ext(B) satisfies JR.

Proof. Let N ′ be a cohesive group in R of size |N ′| = n′. By definition, this implies k · n′/n ≥ 1 and
hence also

n′

n− 1
k ≥ 1.

In particular, this implies for every voter i ̸∈ N ′ that in R−i the voters in N ′ together receive a budget
of n′ · k/n−1 ≥ 1. AsR is a party-list profile, the only way the voters can spend this budget is by buying
a jointly approved candidate, which must exist by the cohesiveness of N ′. Thus underR−i we have
that MES must return a committee that contains such a candidate. As we use the lexicographic ballot
function, it must return the lexicographically minimal candidate cmin from

⋂
j∈N ′ Aj . Thus cmin must

receive at least n− n′ many approvals.

Assume now that we also have
n′ − 1

n− 1
k ≥ 1.

Then, by the same argument as above, every voter in N ′ must also approve cmin, which means that
cmin is unanimously approved inB. As under the lexicographic ballot function no voter can approve
more than k candidates, there cannot be more than k unanimously approved candidates and cmin must
be an AV winner underB. Thus let us now assume that

n′ − 1

n− 1
k < 1. (4)

We want to show that, in this case, there cannot be more than k candidates that receive at least as many
approvals as cmin, i.e., n− n′. For a candidate c to receive any approvals, there must be a large enough
party N⋆ of size n⋆ supporting c. By the same argument as above, any candidate supported by party
N⋆ that receives any votes is either unanimously supported or receives n − n⋆ many approvals. In
particular, ℓ⋆ candidates receive unanimous support if and only if

n⋆ − 1

n− 1
k ≥ ℓ⋆.
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If n⋆ > n′ then n− n⋆ < n− n′ and these unanimously supported candidates are the only ones that
receive as many votes as cmin. On the other hand, if n⋆ < n′ then we know

n⋆

n− 1
k ≤ n′ − 1

n− 1
k < 1.

Consequently, MES will never select a candidate supported by the voters in N⋆ for any i ∈ N andR−i.

In summary, the candidates that receive at least as many approvals as cmin are either unanimously
approved or are approved by exactly n′ voters. Now let x be the number of candidates that are approved
by exactly n′ voters, which includes cmin. Additionally, let N1, . . . , Np be the cohesive groups with
strictly more than n′ members. For each such Nj we let yj be the number of unanimously supported
candidates from that list and nj the size of Nj . Then, let us compute

n ≥ xn′ +

p∑
j=1

nj ≥ x
n

k
+

p∑
j=1

(
yj(n− 1)

k
+ 1

)
=

x
n

k
+

∑p
j=1 yj(n− 1)

k
+ p =

xn+
∑p

j=1 yj(n− 1)

k
+ p

Now, we have to distinguish two cases. If p is 0 then there no unanimously approved candidates and
the equation above tells us that n ≥ n · x/k, which means there are at most k candidates that receive
n− n′ many approvals. Hence, cmin is an AV winner underB. Assume now that p ≥ 1. Then we get
the following:

n ≥
xn+

∑p
j=1 yj(n− 1)

k
+ p ≥

xn+
∑p

j=1 yj(n− 1)

k
+ 1 ≥

x(n− 1) +
∑p

j=1 yj(n− 1)

k
+ 1 =

x+
∑p

j=1 yj

k
(n− 1) + 1.

As n > 1, this implies x+Σp
j=1yj ≤ k and thus we again know that at most k candidates receive at

least as much support as cmin.

Proposition 11. Let F int
be simple Condorcet. Then, for every Soc ⊆ N and profileR with CW(R) ̸= ∅,

we have that ∅ ⊊ CW(B) ⊆ CW(R).

Proof. Fix a profile R with CW(R) ̸= ∅. The proof has the following steps. (1) First, we deal with the
simple case where |N | is odd. Then, assuming an even |N |, (2) we characterize how sociotropic voters
update their ballots. With this, we show (3) CW(B) ⊆ CW(R) and (4) CW(B) ̸= ∅.

Step 1. Assume |N | is odd. Here, there cannot be ties in majority contests. Thus, there must be some
(strict) Condorcet winner x. Via arguments analogous to those in the proof of Proposition 9, one shows
that x is ranked first in every Bi with i ∈ Soc. Hence, for all y ∈ X \ {x}, we have nB

xy ≥ nR
xy , and

thus CW(B) = CW(R) = {x}.

Step 2. Assume |N | is even, fix some i ∈ Soc, and define xi as the unique

xi ∈ CW(R) such that y ≻i xi for all y ∈ CW(R) \ {xi}.

We show that CW(R−i) = {xi}. First, assume some y ∈ CW(R) \ {xi} exists. By definition of xi, we
have that y ≻i xi, and hence

n
R−i
xiy = nR

xiy = nR
yxi

> n
R−i
yxi .

Here, the second equality follows from the fact that xi, y ∈ CW(R). Therefore, inR−i, candidate y
loses to xi in the pairwise majority contest. Hence no such y (if any exists) can be in CW(R−i). Next,
consider some y ∈ X \ CW(R). Assume towards a contradiction that y ∈ CW(R−i). By definition
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of y, there must be some x ∈ X \ {y} such that nR
xy > nR

yx, and, by assumption, we must have that
n
R−i
xy ≤ n

R−i
yx . Therefore, we must have nR

xy − 1 = nR
yx. However, since |N | = nR

xy + nR
yx, we derive

|N | = 2nR
xy − 1, an odd number. Since |N | is even, we reached the desired contradiction.

We have shown that CW(R−i) is either ∅ or {xi}. By definition of simple Condorcet, in the former
case we have Ri = Bi. In the latter, Bi is obtained by ranking xi first while leaving the relative order
between any y, z ∈ X \ {xi} as in Ri.

Step 3. Consider any x ∈ CW(R) and y, z ∈ X \ CW(R). By the conclusion of Step 2, we know
nB
xy ≥ nR

xy and nB
yz = nR

yz . This implies CW(B) ⊆ CW(R).

Step 4. It remains to be shown that CW(B) ̸= ∅. For all x ∈ X , define

s(x) = |{i ∈ N : Bi ̸= Ri and x is ranked first in Bi}|

and let x⋆∈ argmaxx∈CW(R) s(x). We now show that x⋆ never loses any pairwise majority contest in
B, proving the claim. By the arguments in Step 3, we know that x⋆ cannot lose to any y ∈ X \CW(R).
Then, consider an arbitrary candidate y ∈ CW(R) \ {x⋆}. By the conclusion of Step 2, for all i ∈ N
and x ∈ CW(R), Ri ̸= Bi and x being ranked first in Bi implies that x is ranked last in Ri among the
members of CW(R). Thus

nB
x⋆y = nR

x⋆y + s(x⋆)− s(y) and nB
yx⋆ = nR

yx⋆ + s(y)− s(x⋆).

By definition of x⋆, we know that s(x⋆)− s(y) ≥ 0. Hence, nB
x⋆y ≥ nR

x⋆y = nR
yx⋆ ≥ nB

yx⋆ , where the
equality follows from the fact that x⋆, y ∈ CW(R). Since y was chosen arbitrarily, x⋆ never loses a
pairwise majority contest inB. This concludes Step 4 and, with it, the proof.
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