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Abstract

We consider voting on multiple independent binary issues. In addition, a weighting vector for
each voter defines how important they consider each issue. The most natural way to aggregate
the votes into a single unified proposal is issue-wise majority (IWM): taking a majority opinion
for each issue. However, in a scenario known as Ostrogorski’s Paradox, an IWM proposal may not
be a Condorcet winner, or it may even fail to garner majority support in a special case known as
Anscombe’s Paradox.
We show that it is co-NP-hard to determine whether there exists a Condorcet-winning pro-
posal even without weights. In contrast, we prove that the single-switch condition provides an
Ostrogorski-free voting domain under identical weighting vectors. We show that verifying the
condition can be achieved in linear time and no-instances admit short, efficiently computable
proofs in the form of forbidden substructures. On the way, we give the simplest linear-time test
for the voter/candidate-extremal-interval condition in approval voting and the simplest and most
efficient algorithm for recognizing single-crossing preferences in ordinal voting.
We then tackle Anscombe’s Paradox. Under identical weight vectors, we can guarantee amajority-
supported proposal agreeing with IWM on strictly more than half of the overall weight, while
with two distinct weight vectors, such proposals can get arbitrarily far from IWM. The severity
of such examples is controlled by the maximum average topic weight w̃max: a simple bound
derived from a partition-based approach is tight on a large portion of the range w̃max ∈ (0, 1).
Finally, we extend Wagner’s rule to the weighted setting: an average majority across topics of at
least 3

4 ’s precludes Anscombe’s paradox from occurring.

1 Introduction

There are numerous scenarios in which people must decide on a slate of binary issues and come up
with a single outcome for each topic. When political parties form a platform, they must aggregate their
base’s opinions and provide a unified set of stances on numerous separate issues. Similarly, when voters
head to the ballot box for local elections, they typically vote yes or no on a series of initiatives. The
election results in one outcome for each individual topic. On a smaller scale, a group of flatmates might
decide on a series of unrelated topics and generate a plan for living together. For example: Should the
kitchen be cleaned once a week or twice a week? Should we get the red couch or the yellow couch?

The most natural way to decide the final outcome in all of these scenarios is to take the majority
opinion on each individual topic and aggregate them into a unified party platform, legislative agenda,
or roommate contract. However, this approach can yield a surprisingly undesirable outcome: a majority
of the voters may actually be more unhappy with this result than if the opposite decision were made on
every issue (known as Anscombe’s Paradox [2]). How can this arise? Consider a setting with 5 voters
and 3 independent binary issues. The following table illustrates the preferences of each voter on each
of the 3 issues: +1 is in favor and −1 is against:
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Issue 1 Issue 2 Issue 3
v1 +1 -1 -1
v2 -1 +1 -1
v3 -1 -1 +1
v4 +1 +1 +1
v5 +1 +1 +1

Now, assume each voter would only vote in favor of proposals that they agree with on more than half
of the issues (in the paper, a voter will abstain when agreeing with a proposal on exactly half of the
issues). Taking the majority on each topic yields the proposal (+1,+1,+1). However, voters 1, 2, and 3
all disagree with a majority of this proposal. Therefore, if we posed this proposal for a vote, a majority
of voters would vote against it. If, instead, we posed the opposite proposal (−1,−1,−1), then voters 1,
2, and 3 would support it, and it would win the majority vote. Hence, in this scenario, the proposal
comprising theminority opinion on each topic wins the majority vote, whereas the proposal comprising
the majority opinions fails to get majority support.

An equivalent view on the previous scenario positions Anscombe’s paradox in a broader context: instead
of assuming a vote on a single proposal with people voting for/against it, let us assume that the vote
happens between two competing proposals p and p′ and each voter votes for whichever of p and p′

agrees with their views on more topics, abstaining in case of equality. Seen as such, Anscombe’s paradox
is the situation where an issue-wise majority (IWM) proposal p loses the majority vote against p′ = p,
defined as the opposite proposal of p. A less extreme variant of the paradox, known as Ostrogorski’s
paradox [35] happens when an IWM proposal p loses against some proposal p′, not necessarily p.
Settling on the IWM proposal in such cases can lead to daunting situations where one of its opposers
calls a final vote between p and p′ that “surprisingly” unveils general dissatisfaction with what was
otherwise a perfectly democratically chosen outcome.

Consequently, multi-issue aggregation mechanisms need to balance the tension between two majori-
tarian processes: majority on the individual topics and majority when proposals are compared to one
another. In terms of the first, the chosen proposal should ideally stay somewhat close to IWM. In terms
of the second, the chosen proposal should not be easily refuted by calling a vote against some other
proposal.

Even when voters consider the issues to be of equal importance in their decision-making, we get
paradoxical situations. However, in reality, voters rarely consider all issues to be equally important
and often disagree on their importance; e.g., a Pew Research study from June 2023 indicated that in the
United States, there were massive differences in perceived issue importance along partisan lines [36].
Some voting advice applications already attempt to account for personalized issue-importance, such
as Smartvote [3]. Data from these applications can not only help assess how the current parties are
aligning with the populace [5], it can also suggest potential new party platforms. Such pre-existing
infrastructure to get data on both voter opinions and issue importance underscores the pertinence of
issue weights to modeling this problem setting.

1.1 Our Contribution

We study the aggregation of opinions on multiple independent binary issues with respect to two
measures of majoritarianism: agreement with issue-wise majority and success in pairwise proposal
comparisons. Our analysis considers two weighting models: external weights and internal weights. In
the former, the policy-maker sets a weight to each issue reflecting its relative importance, and voters
use weighted agreement when comparing any two proposals. The latter is the same, but each voter is
free to choose their own weighting vector. We use the “unweighted setting” to refer to the edge case
where issues are equally-weighted.
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1.1.1 Condorcet Winners

In the first part of the paper, we focus on the complexity of determining a Condorcet-winning proposal: a
proposal that does not lose in a direct vote against any other proposal. Under external weights, we find
that any Condorcet winner has to be an IWM proposal, while this does not extend to internal weights.
However, even in the unweighted setting with an odd number of voters, where the IWM proposal is
unambiguous, checking whether this proposal is a Condorcet winner is co-NP-hard (answering an open
question in [14]).

An Ostrogorski-free domain. To mitigate this hardness result, it would be appealing to identify a
large set of instances for which IWM proposals are Condorcet winners (i.e., Ostrogorski’s paradox does
not occur). If membership to this set could also be efficiently verified, this would allow for practically
certifying “safe instances” where issue-wise majority is the right choice. We achieve this by the single-
switch condition of Laffond and Lainé [26]: a preference matrix over ±1 is single-switch if it admits a
single-switch presentation— a way to permute and potentially negate some columns such that+1 entries
on each row form a prefix or a suffix. They show that for the unweighted case, this condition implies
that Ostrogorski’s paradox does not occur. We extend and simplify their analysis to show that the
same holds under external weights (but not always for internal weights). We then provide a linear-time
algorithm for checking whether the preference matrix is single-switch and prove that no-instances
admit short proofs of this fact in the form of small forbidden subinstances (that can also be identified
in linear time by a black-box reduction to the recognition problem which we have not encountered
before).

Secondary implications. Along the way, in this part, we make multiple secondary contributions: (i) we
uncover an interesting topological connection: the set of single-switch presentations of a single-switch
matrix can be compactly represented as the union of twomirror-imageMöbius strips; (ii) our recognition
algorithm for single-switch matrices proceeds by reducing to checking whether the columns of a matrix
can be permuted so that the ones on each row form a prefix or a suffix — while a linear-time algorithm
is known for this [15],1 it relies on rather complex machinery — we instead give a much simpler direct
algorithm with the same guarantees; (iii) our simpler algorithm can be adapted to yield the simplest
and at the same time most efficient algorithm for checking the single-crossing condition in ranked social
choice [17]. Similarly to the single-switch condition, the latter also admits a characterization in terms
of small forbidden substructures [10], and finding such forbidden substructures can be achieved within
the same time complexity using our black-box technique, a result which to the best of our knowledge is
new.

1.1.2 Representative Majority-Supported Proposals

Settling on a Condorcet-winning proposal would be ideal, especially under external weights where
such proposals are by default IWM proposals, but in the absence of Condorcet winners, a compromise
is needed. In fact, the hardness of checking whether an IWM proposal is a Condorcet winner can be
seen positively: it is computationally demanding to find the proposal that defeats it, so we need not
fear a vote being called against the defeating proposal. Hence, it is reasonable to relax the demanding
Condorcet condition: the chosen proposal should, at the least, not lose against its opposite — or, in the
language of our first formulation of Anscombe’s paradox above, should garner majority support. In the
second part of the paper, we explore existence guarantees for majority-supported proposals that are as
close as possible to an IWM proposal pIWM . So far, this has been studied in the unweighted model
[21, 14]: a weakly majority-supported proposal agreeing in strictly more than half of the issues with
pIWM exists and can be found in polynomial time, while achieving better guarantees is NP-hard. The
word “weakly” can be dropped if majority is strict/unambiguous on at least one issue, i.e., some column

1Under the name of recognizing voter/candidate-extremal-interval preferences.
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of the preference matrix has differing numbers of +1’s and −1’s. We will be interested in the more
complex weighted case.

External weights. We provide a matching guarantee to the unweighted case, showing that there
always exists a weakly majority-supported proposal with strictly more than half the total weight in
topics agreeing with pIWM . Under a simple condition on certain higher-weight issues, we can also
drop the word “weakly.”

Internal weights. In sharp contrast, with as few as two different weight vectors, we construct families
of instances where the distance between every weakly majority-supported proposal and the unique
IWM proposal gets arbitrarily large. The severity of such examples is controlled by the maximum
average topic weight w̃max: we give a simple bound derived from a partition-based approach that is
tight on a large portion of the range w̃max ∈ (0, 1).

More paradox-free instances. Finally, we generalize Wagner’s Rule of Three-Fourths [39] for both
external and internal weights: if the average weighted majority on the issues is at least 3

4 , then
Anscombe’s Paradox cannot occur. Without loss of generality, if +1 is a majority opinion on each topic,
this translates to the total weight of +1’s in the preference matrix being at least 3

4 of the total weight.
A stronger condition precludes Ostrogorski’s paradox under external weights: if on each column the
relative weight of +1’s is at least 3

4 of that column’s total weight. This surprisingly simple check is a
counterpart to the single-switch condition, once again giving a convenient characterization for a whole
class of instances in which returning an IWM proposal is always a good choice.

1.2 Further Related Work

Variations on the question of how best to reach consensus on a series of issues have been studied
thoroughly. We first go over models where all topics are considered equally important.

Approval voting is a popular mechanism that is frequently used for single-winner and multi-winner
elections alike [7, 19]. Here, each participant indicates their approval for a subset of candidates. In
contrast to our setting, not expressing the approval of a candidate does not give the same signal as
voting for the “no” stance on an issue (which is a vote for the logical negation of the issue) [25].

Another related field of study is judgment aggregation, where a series of judges have viewpoints on
multiple topics, but there is external logical consistency required between the topics [31]. As in our
problem, a reasonable method of reaching consensus is to take the majority opinion on each topic.
However, the outcome may fail to be logically consistent — this is the Discursive Dilemma, and can
occur with as few as 3 judges and 3 topics [24]. There has been some investigation into conditions that
avoid this paradox, like List’s unidimensional alignment [30],2 and other similar paradoxes under the
name of compound majority paradoxes [33].

Our problem can also be viewed as a special instance of voting in combinatorial domains: multiple
referenda with separable topics [9]. Multiple works explored generalizations of Anscombe’s paradox
and gave further impossibility results [4, 23], e.g., relating to the Pareto optimality of aggregation rules
[34].

Significant work has also been done to characterize when such paradoxes cannot occur. Wagner
proposed the Rule of Three-Fourths [39], preventing Anscombe’s paradox, as well as a generalization
[40]. Laffond and Lainé showed that if no two voters disagree on too many issues, then Anscombe’s is
prevented [27], and for single-switch preferences, Ostrogorski’s does not occur [26].

The interested reader should also consult [1], which develops Flexible Representative Democracy as
2The unidimensional alignment condition might appear to closely resemble the single-switch condition, as it essentially

requires that the transposed preference matrix be single-switch. However, this is not equivalent, as rows and columns play
different roles — issue-wise majority aggregates along columns, not rows.
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a hybrid between direct democracy (voting on each issue separately) and representative democracy
(electing representatives who decide on behalf of the voters across all issues). In positioning their model,
the authors discuss its relation to delegative (liquid) democracy and analyze paradoxical situations
such as the Ostrogorski/Anscombe paradox, illustrating how representative systems can systematically
diverge from majority preferences.

We now survey proposals to augment various voting systems with weights, allowing voters to express
their degrees of interest or investment in the topics. Storable voting allows participants to delay using
their vote in a given election, and accumulate votes to use in later elections that they have more stake
in [12]. Quadratic voting proposes a somewhat similar system in which people are given an allotment of
vote credits, and before a given election can buy a certain number of votes [28]. Both of these systems
maintain that voters will use more votes for elections in which they feel strongly and believe they are
likely to be pivotal in. Uckelman introduces a framework using goalbases to express cardinal (numeric)
preferences over a combinatorial voting domain [38]. This, however, loses information by abstracting
away the separability of issues: for us, the cardinal preferences are induced by the weighted Hamming
distance. Lang also considers augmenting combinatorial voting with preference weights and provides
several computational complexity results [29]. Satisfaction approval voting [8] modifies approval voting
by spreading a voter’s total weight equally over all of the candidates they approve of. Finally, there is
recent interest in studying how voters have varying stakes in elections and how to accommodate these
stakes to limit distortion [11, 20].

2 Model and Notation

For any non-negative integer m, write [m] := {1, . . . ,m}. Given a real number x, write sgn(x) ∈
{−1, 0, 1} for its sign. Note that for any two reals x, y, we have that sgn(x · y) = sgn(x) · sgn(y).

We consider a setting with n voters and t independent, binary issues/topics. The decision space for each
issue is B := {±1}. Each voter i ∈ [n] is modeled as a dimension-t vector vi ∈ Bt indicating for each
issue j ∈ [t] the opinion/preference vi,j ∈ B of voter i on issue j. We call the matrix P = (vi,j)i∈[n],j∈[t]
the preference profile. We also write P = (c1, . . . , ct), where c1, . . . , ct ∈ Bn are the columns of the
matrix.

For each issue j ∈ [t], we are consistent with previous literature [39, 40, 21, 14] and define the majority
mj ∈ [0, 1] on issue j to be the fraction of voters that prefer +1 on it; i.e., the number of +1’s in cj ,
divided by n. If mj > 0.5, then the majority opinion on issue j is +1; if mj < 0.5, then it is −1, and
if mj = 0.5, then both +1 and −1 are majority opinions on issue j. Equivalently, if we write bj for
the sum of the entries in cj (i.e., the column’s ±1-balance), a majority opinion on issue j is any o ∈ B
satisfying bj · o ≥ 0.

A proposal is a vector p ∈ Bt that consists of a decision for each issue. We write p for the complement
of proposal p, which simply flips each bit of p; i.e., p = −p. An issue-wise majority (IWM) is a proposal
p where the decision on each topic is a majority opinion for the topic.

We study two weighting models: external weights and internal weights. In the former, an externally
supplied vector of non-negative weights w = (w1, . . . , wt) summing up to 1 is available, denoting the
importance of each issue as seen collectively by the voters. The internal weights model generalizes
this by having each voter i ∈ [n] report an individual vector of weights wi = (wi,1, . . . , wi,t); i.e., there
need no longer be consensus on the importance of any fixed issue. For internal weights, we writeW
for the matrix with rows w1, . . . , wn. We call the voting instance the pair I = (P,W ) for internal
weights and I = (P, w) for external weights. We will also talk about the unweighted model, which is
simply external weights with w = (1/t, . . . , 1/t), and directly write I = P for it. For the remainder of
this section, we assume external weights — the internal weights model requires substantial additional
notation so we postpone it to later on.
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For any positive integer m, given two vectors u, v ∈ Bm and a vector of weights w ∈ [0, 1]m with unit
sum, we write dH(u, v, w) :=

∑m
j=1wj · I(uj ̸= vj) for the w-weighted Hamming distance between u

and v. We omit the w argument when referring to the unweighted Hamming distance. For convenience,
we write ⟨u, v⟩w :=

∑m
j=1wj · uj · vj for the standard w-weighted inner/dot-product. One can easily

show that ⟨u, v⟩w = 1− 2 · dH(u, v, w).

Fix an instance I = (P, w) in the external weights model. For each voter i with vote vi we define
their individual preference relation ≽i between proposals. In particular, given two proposals p, p′ ∈ Bt,
voter i weakly prefers p over p′, written p ≽i p

′, iff dH(vi, p, w) ≤ dH(vi, p
′, w). Note that this is

equivalent to ⟨vi, p⟩w ≥ ⟨vi, p′⟩w ⇐⇒ ⟨vi, p− p′⟩w ≥ 0. We write ≻i and ≈i for the strict and
symmetric parts of ≽i, respectively. We define the collective preference relation ≽I between proposals:
given two proposals p, p′ ∈ Bt, the voters collectively weakly prefer p over p′, written p ≽I p′, iff
|{i ∈ [n] : p ≻i p

′}| ≥ |{i ∈ [n] : p′ ≻i p}|. Note that this is equivalent to
∑n

i=1 sgn(⟨vi, p− p′⟩w) ≥ 0.
We write ≻I and ≈I for the strict and symmetric parts of ≽I , respectively. A proposal p ∈ Bt is a
Condorcet winner if for any other proposal p′ ∈ Bt we have p ≽I p′.

For a voting instance I , Ostrogorski’s paradox occurs if some IWM proposal pIWM is not a Condorcet
winner, Anscombe’s paradox occurs if for some IWM proposal pIWM we have pIWM ≻I pIWM, and the
Condorcet paradox happens if there is no Condorcet-winning proposal.

3 Complexity of Determining a Condorcet Winner

In this section, we prove that it is co-NP-hard to determine whether an instance I admits a Condorcet-
winning proposal, even in the unweighted setting with odd n:

Theorem 1. Deciding whether an instance I = P admits a Condorcet winner is co-NP-hard in the
unweighted setting with odd n.

This could be surprising given the following observation of Laffond and Lainé [26] for the unweighted
model, which we extend to external weights:

Lemma 2. Consider an external-weights instance I such that p ∈ Bt is a Condorcet winner for I . Then, p
is an IWM for I .

Proof. Assume the contrary, then there is an issue j ∈ [t] such that pj · bj < 0. Consider the proposal
p∗ obtained from p by flipping pj . Then, p∗ ≻I p, a contradiction.

Lemma 2 shows that one can restrict the search space for Condorcet winners to IWM proposals. In the
unweighted setting with odd n, there is a single such proposal, which we can assume without loss of
generality to be 1 ∈ Bt. Nevertheless, even under these conditions, we will show that checking whether
1 is a Condorcet winner is co-NP-hard, or, equivalently, checking whether 1 is not a Condorcet winner
is NP-hard. The latter occurs if and only if there is a proposal p ∈ Bt such that p ≻I 1, which, recall,
means that strictly more voters i ∈ [n] prefer p ≻i 1 than 1 ≻i p. Hence, it suffices to prove that the
following problem is NP-hard:

Problem “MAJOR”
Input: Instance I = P in the unweighted setting with odd n such that 1 is the issue-wise majority.
Output: Does there exist a proposal p ∈ Bt s.t. p ≻I 1?

To show its hardness, we need the following auxiliary problem:
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Problem “UNANIM”
Input: Voting instance I = P in the unweighted setting.
Output: Does there exist a proposal p ∈ Bt s.t. p ≻i 1 for all i ∈ [n] (to be read “p unanimously
defeats 1”)?

UNANIM is NP-hard [16, Theorem 2], but the proof in [16] is relatively complicated: we give a simpler
one in Appendix A by noting the equivalence to choosing a subset of columns of P that sum up to a
negative amount on each row (we also give a similar reformulation of MAJOR for the interested reader).

Lemma 3. MAJOR is NP-hard.

Proof. We reduce from the NP-hard problem UNANIM. Consider an instance I = P of UNANIM with n
voters. If there is an issue j ∈ [t] disapproved by all voters in P , then P is a yes-instance of UNANIM:
all voters prefer the proposal with +1 in all coordinates except the j-th to proposal 1. This case can be
easily detected in polynomial time, so we henceforth assume the contrary.

We build an instance I ′ = P ′ of MAJOR from P by adding n − 1 voters approving all issues. For P ′

to be a valid instance for MAJOR we need that 2n− 1 is odd (which it is) and that 1 is the issue-wise
majority. The latter holds because at least n− 1 + 1 = n voters approve of each issue: the n− 1 added
ones and at least one from the first n by our assumption. It remains to show that a proposal p ∈ Bt

unanimously defeats 1 in P iff it majority-defeats 1 in P ′.

Assume p ∈ Bt unanimously defeats 1 in P . Then, each of the first n voters in P ′ prefers p to 1. Since
there are only n− 1 < n other voters in P ′, a majority of the voters in P ′ prefer p to 1.

Conversely, assume p ∈ Bt majority-defeats 1 in P ′. Clearly, p ̸= 1 has to hold, so all of the n − 1
added voters prefer 1 to p. To counteract this, since p ≻I′ 1, the first n voters in P ′ must prefer p to 1,
meaning that p unanimously defeats 1 in P .

For completeness, we put the pieces together to give a self-contained proof of Theorem 1 in Appendix A.

4 An Ostrogorski-free Domain

As we have seen, at least for external weights, a Condorcet-winning proposal has to be an issue-wise
majority proposal. Yet, we proved that determining whether one of them is actually Condorcet-winning
is co-NP-hard, even in the unweighted case with odd n, where there is only one such proposal to
check. To mitigate this hardness result, it would be useful if we could identify a large set of instances
for which IWM proposals are guaranteed to be Condorcet-winning, i.e., Ostrogorski’s paradox does
not occur. Laffond and Lainé [26] introduced the single-switch condition, which achieves exactly
this goal for the unweighted setting. Furthermore, they showed that it is the most general condition
preventing Ostrogorski’s paradox among conditions that do not consider the multiplicities of the votes
(i.e., conditions defining a domain) or whether a vote is negated or not (i.e., they only look at the set
{{vi, vi} | i ∈ [n]} and not at how many times each vi or vi is repeated). In particular, if an instance
in the unweighted model is not single-switch, then it is possible to add copies of some of the votes
vi (or their negations vi) so that some issue-wise majority proposal is not a Condorcet winner. Two
important questions underpinning their condition are: (i) Does it still guarantee the existence of a
Condorcet winner in the (at least externally) weighted setting? (ii) Is it possible to check whether it
applies in polynomial time? If not, are there short proofs of this fact? In this section, we answer all
these questions in the affirmative.

A preference profile (matrix) P = (c1, . . . , ct) is single-switch (SSW) if we can flip (multiply by −1 all
entries in) some columns and then permute the columns to get a new profile P ′ such that +1 entries on
every row form either a prefix or a suffix, in which case we say that P ′ is an SSW presentation of P . We
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1 2 3 4 5 6
+1 +1 +1 -1 +1 -1
+1 -1 +1 +1 -1 +1
+1 +1 -1 -1 +1 -1

(a) Profile P .

2 1 3 4 5 6
+1 +1 +1 -1 -1 -1
-1 +1 +1 +1 +1 +1
+1 +1 -1 -1 -1 -1

(b) Single-switch presentation of P .

Figure 1: The profile P in Fig. 1a is single-switch because its columns can be permuted and flipped as in Fig. 1b
to ensure that ones on each row form a prefix or a suffix.

allow flipping no columns or leaving all columns in their original place. Intuitively, issues are arranged
along a left-right axis. Left-wing voters approve a prefix of issues, with the length depending on their
tolerance, while right-wing voters similarly approve a suffix of issues.3 See Fig. 1 for an illustration of
the notion. A voting instance I is single-switch if its preference profile P is single-switch.

4.1 For External Weights Single-Switch Prevents Ostrogorski’s Paradox

We find that, assuming external-weights, the single-switch condition guarantees that all IWM proposals
are Condorcet winners. To show this, we first show that every issue-wise majority proposal does not
lose against its opposite, i.e., Anscombe’s paradox does not occur. We do this by streamlining and
adapting the argument in [26] (which was only for the unweighted model). Because the single-switch
condition is closed under removing issues, the general statement then follows easily by noting that,
under external weights, Ostrogorski’s paradox happens if and only if there is a subset of issues inducing
an instance where Anscombe’s paradox happens. The details are deferred to Appendix B.1.

Theorem 4. In the external-weights model, every issue-wise majority proposal of a single-switch instance
is a Condorcet winner.

4.2 Recognizing Single-Switch Profiles

The result in the previous section is particularly appealing: in the external-weights model, if the
preferences are single-switch, any issue-wise majority proposal is a Condorcet winner. This bypasses
our previous hardness result in the case of single-switch preferences. However, this is only useful
provided one can quickly tell whether a given profile P is single-switch or not. In this section, we
show that this can be determined in linear time, i.e., O(nt). For yes-instances, our algorithm also
determines an SSW presentation P ′ (implicitly also the permutation and flips used to obtain it). Given
P ′, we also characterize the set of all SSW presentations as the union of two “orbits” around P ′ and
its column-reversal. These orbits can be attractively interpreted topologically as two mirror-image
Möbius strips. To begin, we need the following observation following easily from the case n = 1. See
Appendix B.2 for the proof.

Lemma 5. Consider a profile P admitting an SSW presentation P ′ = (c1, . . . , ct). Then, P ′
r :=

(c2, . . . , ct, c1) is also a SSW presentation of P . Furthermore, any t (circularly) consecutive columns
in P ′′ := (c1, . . . , ct, c1, . . . , ct) form an SSW presentation of P .

Hence, any SSW presentation P ′ of a profile P corresponds to a set of 2t such presentations that we
call the orbit OP ′ of P ′. Formally, these are the 2t profiles that can be obtained by taking t (circularly)
consecutive columns in P ′′ in the above. Note that the orbits of any two SSW presentations either

3This shares similarities with several related concepts, such as single-peaked and single-crossing preferences. However,
unlike most other notions, we allow issues to be flipped before ordering them, as they can be logically negated without
changing meaning.
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Figure 2: Möbius strip of orbit OP′ for P ′ = (c1, . . . , c10). We start with a rectangular piece of paper of length
10 and write (c1, . . . , c10) on the (green) front side and (c1, . . . , c10) on the (red) backside. We then give the paper
a length-wise half-turn and glue the endpoints (bold strip). This gives raise to a surface with a single continuous
side.

coincide or are disjoint, so the set of all orbits partitions the set of SSW presentations of P . Also, the 2t
profiles in OP ′ are pairwise distinct, which can be easily seen by considering the case n = 1, under
whichP ′′ is circularly equivalent to a list of tminus ones followed by t ones. This reasoning additionally
allows us to assign to each orbit a representative, namely the profile with all −1’s on the first row:

Corollary 6. Every orbit contains exactly one profile where the first row is all −1’s.

Orbits can be understood through a topological lens: For the orbit OP ′ of P ′ = (c1, . . . , ct) take an
n × t rectangular piece of paper and write the columns c1, . . . , ct on the front and c1, . . . , ct on the
back, such that for each i ∈ [t], column ci on the front aligns with column ci on the back. Then, give
the paper a length-wise half-twist and glue the left and right sides to form a surface known as a Möbius
strip: see Fig. 2. Cutting along the width of the strip between any two columns recovers an n× t piece
of paper with one SSW presentation on one side and its opposite on the other side. In high-level terms,
each orbit is topologically a Möbius strip.

To check whether a profile P is single-switch, by Corollary 6, it suffices to check for presentations
with all −1’s in the first row: all other presentations are generated by the orbits of such presentations.
There is a simple strategy to achieve this: flip columns in P to make the first row all −1’s, and then
check whether columns in the resulting profile can be permuted to ensure that ones on each row
form a prefix or a suffix. This amounts to recognizing single-switch-no-flips profiles: A profile P
is single-switch-no-flips (SSWNF) if its columns can be permuted to get a new profile P ′ such that
+1 entries on every row form either a prefix or a suffix, in which case we say that P ′ is an SSWNF
presentation of P .

Recognizing single-switch-no-flips profiles. Telling whether a profile P = (c1, . . . , ct) is single-
switch-no-flips can be achieved by appending a negated copy of P underneath [15] and running a
solver for the Consecutive Ones Problem (C1P), which can be solved in O(nt) time [6], implying the
same about our problem. However, such solvers are complicated and notoriously error-prone: most
available implementations fail on at least some edge cases [18]. Moreover, reducing to C1P does not
utilize the additional structure present in our problem and hence does not shed light on the structure
of all solutions, as we set out to do. We give a much simpler algorithm achieving the O(nt) time-
bound: Find an index x maximizing dH(c1, cx). Then, sort (using Counting Sort) the columns based
on their Hamming distance from cx to get a profile P ′ = (c′1, . . . , c

′
t) where dH(cx, c

′
i) ≤ dH(cx, c

′
i+1)

for i ∈ [t − 1] (i.e., ties in Hamming distance can be broken arbitrarily). We claim that either P ′ is
the unique SSWNF presentation of P (up to reversing the order of the columns), or there is no such
presentation, so we can easily check in additional O(nt) time whether the candidate solution works.
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All required claims shown formally in Appendix B.2:

Theorem 7. There is a simple O(nt) algorithm computing (or deciding the inexistence of) an SSWNF
presentation of a profile P . Moreover, if it exists, this presentation is unique up to reversing column order.

Appendix B.2 also provides a much ampler discussion of related work for this sub-problem, including the
relation between our algorithm and previous algorithms for recognizing single-crossing preferences. As
a bonus, it gives a similar simpler, more efficient algorithm for recognizing single-crossing preferences,
running in time O(nt

√
log n), improving state of the art [17, Algorithm 4].

Putting it together. To decide whether a profile P is single-switch, we flip columns in P to get a
profile P ′ with only −1’s in the first row and then use the algorithm in Theorem 7 to find an SSWNF
presentation P ′′ of P ′ (and hence also P). If it exists, this presentation is unique up to column reversal,
so we can also characterize the set of all SSW presentations of P by unioning the orbits of P ′′ and its
column-reversal. Note that these two orbits may coincide for pathological input profiles P .

Theorem 8. There is an O(nt) algorithm computing (or deciding the inexistence of) an SSW presentation
of a profile P . If the algorithm returns a presentation P ′′, let P ′′

r be P ′′ with the order of the columns
reversed, then the set of all SSW presentations of P is OP ′′ ∪OP ′′

r
.

4.3 Forbidden Subprofiles Characterization of Single-Switch Preferences

Whenever the single-switch condition is not satisfied, it would be useful if there were a short proof of this
fact: a small subprofile that is not single-switch. Formally, a profile/matrix P contains a profile/matrix
P ′ as a subprofile/submatrix if we can remove (possibly zero) rows and columns from P to get P ′ up to
permuting rows and columns. Note that existence is not immediate: there could exist arbitrarily large
matrices not satisfying the condition but all of whose proper submatrices do. We show that this is not
the case: either the condition holds, or there is a 3× 4 or 4× 3 submatrix witnessing that this is not
the case, as in the following:

Theorem 9. A profile P is single-switch if and only if it does not contain as a subprofile Pa
1 ,Pa

2 and any
profile that can be obtained from them by flipping rows and columns:

Pa
1 =

-1 -1 -1 -1
+1 +1 -1 -1
+1 -1 +1 -1

 Pa
2 =


-1 -1 -1
+1 -1 -1
-1 +1 -1
-1 -1 +1


We prove Theorem 9 in Appendix B.3 by combining a similar characterization for single-switch-no-flips
profiles given in [37] (under the name voter/candidate-extremal-interval preferences) with our insight
that to go to the no-flips version it suffices to make one row all −1’s. Henceforth, we call the 3× 4 and
4× 3 preference profiles in the theorem above forbidden subprofiles. Then, the theorem says that P is
single-switch if and only if it contains no forbidden subprofiles. Note how this implies that single-switch
profiles are relatively rare: the probability that a random binary n× t matrix is single-switch tends to
zero as n and t tend to infinity.

Finding forbidden subprofiles. So far, we have seen that non-membership to the class of single-
switch preferences admits short proofs, but can such proofs also be constructed efficiently? Given
some no-instance, it is straightforward to determine which forbidden subprofiles occur in it in time
O(n3t4 + n4t3). In contrast, our recognition algorithm runs in time O(nt), but does not identify a
forbidden subprofile. We will now assume our O(nt) recognition algorithm as a black box and show
how to identify a forbidden subprofile for a given no-instance P in time O(nt).

Let us first describe an O(n2t+ nt2) approach: one at a time, try to remove each row and each column
of P , i.e., n + t removal attempts; if doing so makes the resulting profile a yes-instance, undo the
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removal, and otherwise let it persist. At the end, the ensuing no-instance P ′ is a subprofile of P whose
proper subprofiles are yes-instances, so P ′ is a forbidden subprofile, completing the argument.

We nowmodify the previous idea to run in timeO(nt) by removing multiple rows/columns at a time. We
will first only remove rows, and then, starting from the resulting profile, only columns. The reasoning
for columns is entirely analogous, so we only describe the procedure for rows: partition the rows into
5 groups G1, . . . , G5, each of size roughly n/5. Because all forbidden subprofiles are of size 3× 4 or
4 × 3, any occurrence of a forbidden subprofile in P only uses rows from at most 4 of the 5 groups.
Consequently, we can find a group Gi such that removing all rows in Gi from P keeps the property
that P is a no-instance. Doing so requires at most 5 calls to the recognition algorithm, so it can be done
in overall time O(nt). Ignoring for brevity the cases where n is not divisible by 5, this reasoning shows
how to reduce n to 4n/5 in time O(nt). Applying the same reasoning iteratively until n goes below 5
takes total time O(nt) because the geometric series

∑∞
i=0(4/5)

i converges.

Theorem 10. Given a non-single-switch profile P , a forbidden subprofile of P can be determined in time
O(nt).

We note that the previous idea applies more broadly; e.g., for single-crossing preferences, which admit
a characterization in terms of two small forbidden subinstances [10], our O(nt

√
log n) recognition

algorithm can be bootstrapped to also produce a forbidden subinstance for no-instances within the
same time bound. A formal statement and more details can be found in Appendix B.3.

5 Anscombe’s Paradox

When preferences are not single-switch, determining whether an IWM proposal is a Condorcet winner
is co-NP hard. In light of this, we focus on the most diabolical subset of Ostrogorski paradox instances:
those inducing Anscombe’s paradox (where an IWM proposal is defeated by its complement, or,
equivalently, an IWM proposal fails to get majority support). If Anscombe’s paradox occurs, a natural
question is: “How close can we get to any given IWM while still requiring that the proposal gets
majority support?”

We first explore this question under external weights, i.e., in instances I = (P, w) where all voters
share the same, unit-sum weights vector w. Then, we introduce the necessary notation and study it for
internal weights. Finally, we give a simple characterization of a broad swath of instances that avoid
Anscombe’s paradox entirely for internal weights. We assume throughout that t > 1, as Anscombe’s
paradox does not occur with one topic, and without loss of generality that mj ≥ 0.5 for all j ∈ [t] (i.e.,
that +1 is a majority opinion on all topics).

Formally, some voter i supports (approves of) a proposal p if dH(vi, p, w) < 1/2, opposes (disapproves
of) p if dH(vi, p, w) > 1/2, and is indifferent to p if dH(vi, p, w) = 1/2. A proposal is strictly majority-
supported if more people support it than oppose it and weakly majority-supported if no more people
oppose it than support it. Our definition of majority support matches [14] but differs from [21] (where
indifferent voters count towards the proposal’s support).

5.1 External Weights

In the unweighted case, it is straightforward to argue that for any IWM, there exists a weakly majority-
supported proposal within distance≤ 1

2 +
1
2t because at least one proposal in every complementary pair

(p, p) gets weak majority support (and at least one pair satisfies the distance bound for both proposals).
A slightly better guarantee of distance< 1

2 holds by a more difficult proof [14, 21]. For external weights,
the complementary pairs argument no longer gives a bound close to 1

2 if no subset of topic weights
sum up close to 1

2 . One may hope to reduce to the unweighted case by splitting topics into multiple
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equal-weight topics and use the < 1
2 bound there, but the resulting majority-supported proposals may

have different values for an original topic’s clones, making it hard to translate to proposals in the
original instance. Despite these setbacks, we surprisingly find that the < 1

2 guarantee still holds for
external weights. Our proof, deferred to Appendix C.1.2, simplifies and adapts the argument in [14]. We
also guarantee strict majority support if there is a strict majority in at least one relevant topic, roughly
meaning topics with high enough weight to be the tipping point in a vote (see Appendix C.1.1 for a
formal definition).

Theorem 11. For any I = (P, w) and pIWM , there is a weakly majority supported proposal p with
dH(p, pIWM , w) < 1/2. If majority is strict in any relevant topic, “weak” can be replaced with “strict”.

To accommodate space constraints, our results for the internal weights model are deferred to Ap-
pendix C.2

6 Conclusion and Future Work

We explored how best to represent the will of voters on multiple, separable issues when optimizing
for two potentially conflicting ideals: agreement with issue-wise majority and success in pairwise
proposal comparisons. Additionally, we augmented previous multi-issue voting models to account
for non-uniform and individualized issue importance. We demonstrated that determining whether
an IWM is a Condorcet winner is co-NP hard, but provided an efficiently checkable condition under
which Ostrogorski’s paradox does not occur. We then examined instances where an IWM loses to the
opposing proposal (i.e., Anscombe’s paradox occurs) and showed how our two weighting models alter
our ability to reconcile the two objectives. While we now have a rich understanding of the interaction
of these two majoritarian ideals, one could optimize for different notions of representation in the
proposal selection. It would be interesting to study variants of maximizing total voter “satisfaction” —
the total weight voters have on topics that they agree with the final proposal on (a weighted version of
an objective proposed in [21]). On the technical side, our work leaves open a number of interesting
questions and gaps: (i) Our Theorem 11 for external weights is only existential. In contrast, in the
unweighted setting, [14] also provide a polynomial-time method to derandomize the probabilistic
argument. Extending this approach to the weighted setting appears generally more challenging but
likely feasible in pseudo-polynomial time with slightly more involved techniques. (ii) Paper [14] also
shows a hardness result for the unweighted case: telling whether a proposal achieves more agreement
with an IWM than guaranteed by the probabilistic argument is NP-hard. It would be interesting to get a
similar result for every fixed weights vector w. (iii) We have only succeeded in proving that our bounds
in Theorem 27 are tight for some portion of the range w̃max ∈ (0, 1).
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A Complexity of Determining a Condorcet Winner

In this section, we show that UNANIM is NP-hard. This was previously known [16, Theorem 2], but
the proof there is a more complicated reduction from Independent Set. In contrast, our proof proceeds
by recasting the problem in terms of selecting a subset of column vectors whose sum is negative in
all coordinates. This alternate view enables a more natural reduction from Exact Cover By 3-Sets.
Afterward, we put all the pieces together to give a self-contained formal proof of Theorem 1. We
conclude the section by providing a similar “choosing a subset of vectors” formulation for MAJOR,
which we believe could be interesting more broadly.

To prove that UNANIM is NP-hard, we note that UNANIM admits an elegant reformulation: write
P = (c1, . . . , ct) in terms of its issue/column vectors, then selecting a proposal p ∈ Bt amounts to
choosing the subset of issues where p differs from 1. A voter i ∈ [n] prefers p ≻i 1 iff the sum of the
selected vectors is strictly negative in coordinate i, so UNANIM asks to select vectors such that the sum
is negative in all n coordinates. Hence, UNANIM is equivalent to the following problem, which we find
of independent interest:

Problem “NEGATIVE-SUM-SUBSET” (NSS)
Input: Collection C of t dimension-n vectors over ±1.
Output: Does there exist C ′ ⊆ C s.t v :=

∑
c∈C′ c is negative in all coordinates: vi < 0 for all

i ∈ [n]?

Lemma 12. UNANIM = NSS is NP-hard.

Proof. We reduce from the problem Exact Cover By 3-Sets (X3C), which is well-known to be NP-hard
[22]. An instance of X3C is given by a ground set S of size 3s and a set X of size-3 subsets of S (also
called triples); it is a yes-instance if and only if there exists a subset X ′ ⊆ X that forms an exact cover
of S (i.e., the triples in X ′ cover each element of S exactly once); note that |X ′| = s must hold if so.

Consider an instance of X3C, we want to construct an instance of NSS such that the former is a
yes-instance if and only if the latter one is.

We can assume without loss of generality that there is a triple {a, b, c} ∈ X such that no other element
ofX contains any of a, b, or c. Indeed, if not, we can add three new elements to S and a set comprising
them to X . The modified instance is a yes-instance if and only if the original instance is.

Now, to create an instance of NSS, we construct |X|+ s− 1 dimension-(3s+ 1) vectors over ±1. The
first 3s coordinates correspond to the elements of the ground set. For each set x ∈ X , we construct
a vector with −1 in coordinates that correspond to elements of x as well as in the last coordinate (in
other coordinates, we have +1). We refer to these vectors as set vectors. In addition, we construct s− 1
vectors with −1 in the first 3s coordinates and +1 in the last coordinate; we refer to these vectors as
dummy vectors.

We claim that this is a yes-instance of NSS if and only if the original instance of X3C was a yes-instance.

(⇐) Suppose we started with a yes-instance of X3C, so let X ′ ⊆ X be an exact cover. Recall that
this implies |X ′| = s. Take the s set vectors corresponding to X ′ as well as all s− 1 dummy vectors.
Summing up these vectors, in the last coordinate, we get s · (−1) + (s − 1) · (+1) = −1. In every
other coordinate, we have s − 1 entries −1 from the dummy vectors, one entry −1 from the vector
corresponding to the triple that covers the respective element, and s − 1 entries +1 from the other
selected set vectors, making for a total sum of (s− 1) · (−1) + 1 · (−1) + (s− 1) · (+1) = −1. Hence,
the resulting instance is a yes-instance of NSS.

(⇒) Conversely, suppose the resulting instance is a yes-instance of NSS. Hence, pick some of the
vectors so that the sum in each coordinate is negative. We will show that, among picked vectors, the set
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vectors correspond to an exact cover. Suppose we picked t set vectors. Then, we picked at most t− 1
dummy vectors (as otherwise, the sum in the last coordinate would be non-negative). Note that this
implies t > 0.

Assume for a contradiction that the set vectors among selected vectors do not correspond to a cover.
Then, there is some coordinate among the first 3s in which all selected set vectors have +1. However,
in that case, the sum of the vectors cannot be negative in that coordinate, as we have t entries +1 from
set vectors and at most t− 1 entries −1 from dummy vectors, a contradiction.

On the other hand, assume for a contradiction that the selected set vectors do correspond to a cover,
but it is not an exact cover, so some element is covered more than once. In particular, each element is
covered at least once, and at least one element element is covered more than once, so the sum of the
sizes of the triples that the selected set vectors correspond to has to be at least 3s+ 1, meaning that we
had to pick at least s+1 = ⌈3s+1

3 ⌉ set vectors. Now, recall that there is some element a (without loss of
generality, the element corresponding to the first coordinate) that is only contained in one triple in X.4
Then, in our chosen collection of vectors, we have at most one set vector with−1 in the first coordinate
and, hence, at least s set vectors with +1 in this coordinate. Hence, considering only set vectors, the
sum in this coordinate is at least 1 · (−1) + s · (+1) = s− 1. Hence, even if all s− 1 dummy vectors
were picked, the sum in this coordinate is at least s− 1 + (s− 1) · (−1) = 0, and hence non-negative,
a contradiction.

Hence, the set vectors among picked vectors correspond to an exact cover, so the original instance of
X3C is a yes-instance, completing the proof.

We now give a self-contained formal proof of Theorem 1, restated below for convenience.

Theorem 1. Deciding whether an instance I = P admits a Condorcet winner is co-NP-hard in the
unweighted setting with odd n.

Proof. In the unweighted setting with odd n, checking for the existence of a Condorcet winner is
equivalent to checking whether the (unique) issue-wise majority proposal is a Condorcet winner (by
Lemma 2). It is enough to show hardness for the case where the issue-wise majority proposal is 1.5
Hence, we want to show that the following problem is co-NP-hard: “Given a voting instance I = P in
the unweighted setting with odd n where 1 is the issue-wise majority proposal, determine whether 1
is a Condorcet winner.” This is equivalent to showing that the ‘negated’ problem is NP-hard: “Given
a voting instance I = P in the unweighted setting with odd n where 1 is the issue-wise majority
proposal, determine whether 1 is not a Condorcet winner.” Not being a Condorcet winner is equivalent
to there existing a proposal p ∈ Bt such that p ≻I 1. Hence, the negated problem is precisely MAJOR,
which is NP-hard by Lemma 3, completing the proof.

We end by pointing out that it is also possible to formulate MAJOR as a vector problem. We found it
clearest not to do so in our proofs, but the problem resulting in doing so is elegant and might see other
applications. Namely, the following problem is equivalent to MAJOR, and hence NP-hard:

Problem
“MORE-NEGATIVE-THAN-POSITIVE-SUM-SUBSET”
Input: Collection C of t dimension-n vectors over ±1, s.t. n is odd and each vector’s entries sum
up to a positive amount.
Output: Does there exist C ′ ⊆ C s.t. v :=

∑
c∈C′ c is negative in more coordinates than it is

positive:
∑

i∈[n] sgn(vi) < 0?

4In fact, there are three such elements, but we do not need this fact.
5This is, in fact, equivalent to the general case by negating/flipping issues where−1 is the majority opinion, but we do not

need this distinction to prove hardness.
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e′1 e′2 e′3 e′4
e0 -1 -1 -1

e1 +1 -1 -1 -1
e2 +1 +1 -1 -1
e3 +1 +1 +1 -1

Figure 3: Matrix in the proof of Lemma 13 for t = 3. The helper e0 and e′4 are depicted above/to the right.

B An Ostrogorski-free Domain

B.1 For External Weights Single-Switch Prevents Ostrogorski’s Paradox

In this section, we prove that, under external weights, the single-switch condition guarantees that all
IWM proposals are Condorcet winners, i.e., Ostrogorski’s paradox does not occur. To this end, we
first show that every issue-wise majority proposal does not lose against its opposite, i.e., Anscombe’s
paradox does not occur. This was already known for the unweighted model [26]. We, however, found
the proof in [26] relatively tricky to parse: in part because of certain missing/unclear details and in
part because of the relatively involved case distinctions in the second part of the proof. We adapt this
proof to external weights and also simplify and streamline it, removing the need for case distinctions by
noting symmetries and wisely manipulating sgn functions. This yields a shorter and clearer argument
that highlights better where the assumption about our proposal being an IWM comes into play, which
was not immediate from the original presentation.

Lemma 13. Consider an external-weights single-switch instance I = (P, w). Then, for any issue-wise
majority proposal p, we have p ≽I p.

Proof. Without loss of generality, assume that ones form a prefix or a suffix on every row ofP .6 For each
1 ≤ i ≤ t define ei ∈ Bt such that ei,j = +1 if j ≤ i, and ei,j = −1 otherwise. It follows that every
row in P belongs to the set ∪t

i=1{ei, ei}. Given a vector u ∈ Bt write #P(u) := |{i ∈ [n] | vi = u}|
for the number of voters in P whose vote is u, in which case we say that those voters are of type
u. For 1 ≤ i ≤ t, define xi := #P(ei) − #P(ei) to be the number of voters in P with vote ei
minus the number of voters in P with vote ei. We want to show that p ≽I p, which amounts to∑n

i=1 sgn(⟨vi, p− p⟩w) ≥ 0, which is equivalent to
∑n

i=1 sgn(⟨vi, p⟩w) ≥ 0. Since voters can only be
of the 2t types, this is equivalent to:

t∑
i=1

(#P(ei) · sgn(⟨ei, p⟩w) + #P(ei) · sgn(⟨ei, p⟩w)) ≥ 0

Since ⟨ei, p⟩w = −⟨ei, p⟩w, this is the same as:

t∑
i=1

xi · sgn(⟨ei, p⟩w) ≥ 0 (1)

To prove this, we are given the fact that p is an issue-wise majority proposal. Recall that for j ∈ [t] we
defined bj :=

∑n
i=1 vi,j =

∑t
i=1 xi · ei,j , in which case what we know amounts to bj · pj ≥ 0 for all

j ∈ [t].

To begin the proof, note that the type votes e1, . . . , et form a t× t matrix with one row for each vote.
Let e′1, . . . , e′t be the columns of this matrix. For uniformity in the reasoning that follows, it will be
helpful to define e′t+1 := e′1 = −1 and e0 := et = −1. See Fig. 3 for an illustration. With these added

6Note that assuming this and, at the same time, that 1 is an issue-wise majority proposal would lose generality.
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conventions, for any j ∈ [t] we have that e′j and e′j+1 differ only in coordinate j, which is +1 in e′j and
−1 in e′j+1, and, moreover, ej and ej−1 differ only in coordinate j, which is +1 in ej and −1 in ej−1.
Let us also extend the definition of b to make bt+1 well-defined.

As a result, for all i ∈ [t] we have that bi − bi+1 = 2 · xi and ⟨ei − ei−1, p⟩w = 2 · wi · pi. Moreover,
by definition, bt+1 = −b1 and ⟨et, p⟩w = −⟨e0, p⟩w, which together imply that bt+1 · sgn(⟨et, p⟩w) =
b1 · sgn(⟨e0, p⟩w).

Armed as such, we substitute in Eq. (1) to get that we need to show that:

t∑
i=1

bi − bi+1

2
· sgn(⟨ei, p⟩w) ≥ 0 ⇐⇒

t∑
i=1

(bi − bi+1) · sgn(⟨ei, p⟩w) ≥ 0 ⇐⇒

t∑
i=1

bi · sgn(⟨ei, p⟩w)−
t∑

i=1

bi+1 · sgn(⟨ei, p⟩w) ≥ 0

The last term in the second sum is bt+1 · sgn(⟨et, p⟩w) = b1 · sgn(⟨e0, p⟩w), so the second sum stays the
same if we change its summation bounds from (1, t) to (0, t− 1). Doing so and then rewriting in terms
of i+ 1 instead of i, the second sum equals

∑t
i=1 bi · sgn(⟨ei−1, p⟩w). Combining the two sums and

then factoring out the bi yields:

t∑
i=1

bi · (sgn(⟨ei, p⟩w)− sgn(⟨ei−1, p⟩w)) ≥ 0

To show that this is true, we will just show that each term is non-negative. Consider a fixed i ∈ [t],
then we would like to show that bi · (sgn(⟨ei, p⟩w)− sgn(⟨ei−1, p⟩w)) ≥ 0. This happens if and only if:

sgn(bi) · (sgn(⟨ei, p⟩w)− sgn(⟨ei−1, p⟩w)) ≥ 0 ⇐⇒
sgn(bi) · sgn(⟨ei, p⟩w) ≥ sgn(bi) · sgn(⟨ei−1, p⟩w) ⇐⇒

sgn(bi · ⟨ei, p⟩w) ≥ sgn(bi · ⟨ei−1, p⟩w)

Because the sign function is monotonic, it hence suffices to show that bi · ⟨ei, p⟩w ≥ bi · ⟨ei−1, p⟩w ⇐⇒
bi · ⟨ei − ei−1, p⟩w ≥ 0 ⇐⇒ bi · (2 · wi · pi) ≥ 0, which is true since bi · pi ≥ 0.

The general statement that Ostrogorski’s paradox does not occur will now follow easily by combining
Lemma 13 with the following:

Lemma 14. Ostrogroski’s paradox occurs for an instance I = (P, w) in the external-weights model if and
only if Anscombe’s paradox occurs on an instance I ′ obtained from I by removing (possibly zero) issues
from I and renormalizing the weights to sum up to 1.

Proof. We prove the two directions separately:

(⇐) Assume Anscombe’s paradox occurs on an instance I ′ obtained from I by removing a subset
of issues R ⊆ [t] from I and renormalizing the weights to sum up to 1. Then, by definition, there is
an IWM proposal p′IWM for I ′ such that p′IWM ≻I′ p′IWM . Complete p′IWM into an IWM proposal
pIWM for I and define p∗ to agree with pIWM in topics in R and disagree in topics in [t] \R. Then,
Ostrogorski’s paradox occurs for I : proposal pIWM is an IWM and p∗ ≻I pIWM by construction
because p′IWM ≻I′ p′IWM .

(⇒) Assume Ostrogroski’s paradox occurs for I . Let pIWM and p∗ be such that pIWM is an IWM
proposal for I and p∗ ≻I pIWM . Define R ⊆ [t] to be the set of topics in which p∗ and pIWM agree,

19



and create I ′ from I by removing issues in R and renormalizing the weights to sum up to 1. Moreover,
restrict pIWM to topics in [t]\R to get an IWMproposal p′IWM for I ′. Then, Anscombe’s paradox occurs
for I ′: proposal p′IWM is an IWM and p′IWM ≻I′ p′IWM by construction because p∗ ≻I pIWM .

Theorem 4. In the external-weights model, every issue-wise majority proposal of a single-switch instance
is a Condorcet winner.

Proof. Assume this was not the case and consider a single-switch instance I in the external-weights
model for which there exists an issue-wisemajority proposal that is not a Condorcet winner (equivalently,
Ostrogorski’s paradox occurs for I). By Lemma 14, Anscombe’s paradox occurs on an instance I ′

obtained from I by removing (possibly zero) issues from I and renormalizing the weights to sum up
to 1. Since I is single-switch, so is I ′. Hence, Anscombe’s paradox occurs in a single-switch instance,
contradicting Lemma 13.

B.2 Recognizing Single-Switch Profiles

In this section, we first prove Lemma 5, restated below for convenience. Then, we delve into the task
of recognizing single-switch-no-flips profiles, providing an ample guided discussion of the relation
between our simpler O(nt) algorithm and related work, including the task of recognizing single-
crossing preferences. As a bonus, we discuss a simpler and, at the same time, more efficient algorithm
for recognizing single-crossing preferences, running in time O(nt

√
log n).

Lemma 5. Consider a profile P admitting an SSW presentation P ′ = (c1, . . . , ct). Then, P ′
r :=

(c2, . . . , ct, c1) is also a SSW presentation of P . Furthermore, any t (circularly) consecutive columns
in P ′′ := (c1, . . . , ct, c1, . . . , ct) form an SSW presentation of P .

Proof. It is enough to show this for the case where P has n = 1 rows, in which case c1, . . . , ct ∈ B. Let
us assume c1 = 1, as the other case is analogous. Since P ′ is an SSW presentation of P , let 1 ≤ k ≤ t
be such that P ′ starts with k ones and the rest are −1’s. As a result, P ′

r by definition starts with k − 1
ones, and the rest are −1’s, implying that P ′

r is an SSW presentation of P ′, and hence also of P by
transitivity.

To get the part about P ′′, apply the previous reasoning for P ′
r repeatedly, each time taking the first

column, negating it, and moving it to the end. Doing so 2t times leads back to the original presentation,
and along the way, we get the advertised single-switch presentations.

Recognizing single-switch-no-flips profiles. We now focus on deciding whether a given preference
profile P is single-switch-no-flips. A first way to do so requires rather involved machinery, by reducing
to the Consecutive Ones Problem (C1P). In the C1P problem, the input is an n× t matrix with ±1 entries.
The goal is to permute its columns so that the ones on each row form a consecutive interval. Solving
C1P on a matrix with a negated copy of itself appended underneath corresponds to requiring a solution
for the original matrix where not only ones are consecutive, but also −1’s, meaning that ones form a
prefix or a suffix on each row. C1P can be solved in O(nt) time [6], hence giving an immediate solution
to check whether P is single-switch-no-flips within the same time. However, linear-time C1P solvers
are complicated and notoriously error-prone: most available implementations fail on at least some edge
cases [18]. Moreover, reducing to C1P does not utilize the additional structure present in our problem
and hence does not shed light on the structure of all solutions, as we set out to do. We note that this
way of checking whether a profile is single-switch-no-flips has previously appeared in [15], where
the authors use it to solve the equivalent problem of recognizing voter/candidate-extremal-interval
preferences.

A second way to recognize single-switch-no-flips profiles reduces to the problem of recognizing single-
crossing preferences. In this problem, the input consists of a set A, of size denoted by n, and a list
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(≻1, . . . ,≻t) of linear orders over A. The goal is to permute this list to obtain a new list (≻′
1, . . . ,≻′

t)
such that for any a, a′ ∈ A with a ̸= a′ the set {j ∈ [t] : a ≻′

j a′} forms a prefix or a suffix. The
reduction is not too difficult: start with a preference profile P and define A = ∪i∈[n]{a0i , a1i } and a
list (≻1, . . . ,≻t) of linear orders over A as follows. For each j ∈ [t], order ≻j ranks the elements in
A as {a01, a11} ≻j {a02, a12} ≻j . . . ≻j {a0n, a1n}, breaking the tie inside each bracket as follows: for
each i ∈ [n], rank a0i ≻j a1i if vi,j = 1, and a1i ≻j a0i otherwise. One can check that permutations
of the list with the required property correspond to permutations of the columns of P such that the
ones on each row form a prefix or a suffix. Recognizing single-crossing preferences can be achieved
in O(nt log n)) time [17, Algorithm 4], meaning that our problem also can. In contrast to the C1P
approach, this algorithm has a reasonable implementation. Moreover, by the standard fact that, when it
exists, the single-crossing permutation is unique up to reversal, we get that the SSWNF presentation is
unique up to reversal whenever it exists (we will give a self-contained proof later on, so we omit the
details here for brevity).

The previous approach can be modified to run in timeO(nt) by identifying and adapting its super-linear
components. Most prominently, [17, Algorithm 4] computes O(t) times the Kendall Tau distance
between certain orders ≻i and ≻j with i, j ∈ [t], which is defined as the number of pairs of elements
on which ≻i and ≻j disagree: dKT (≻i,≻j) := {(a, a′) ∈ A2 : a ≻i a

′ and a′ ≻i a}|. This is done in
time O(n log n) by finding the number of inversions of a permutation. However, for our particular
construction of the orders (≻1, . . . ,≻t), disagreements between orders can only occur on pairs of the
form (a0k, a

1
k) with k ∈ [n], and the number of such disagreements is precisely the Hamming distance

dH(ci, cj), which can be computed in time O(n). The algorithm also sorts a list of O(t) integers with
values bounded by O(n2). To get the right time complexity, this is done depending on whether n or t is
larger, either in time O(t log t) or using Counting Sort in time O(n2 + t). We note that using Radix
Sort would have sufficed to make this O(n+ t) without the need for a case distinction.7 For our usage,
the values in the list are instead bounded by O(n), so Counting Sort suffices directly (this is because
Kendall Tau distances can be quadratic in n, while Hamming distances only linear in n). This completes
the required modifications. We note, moreover, that their algorithm proceeds in two stages: first, a
candidate list (≻′

1, . . . ,≻′
t) is determined, and then it is checked whether it satisfies the single-crossing

condition. Moreover, should a solution exist, the candidate list is the unique one up to reversing the
list. The second stage is, perhaps surprisingly, the more difficult one to achieve efficiently, and its
correctness proof is the subtler part of the argument. For our purposes, however, the first stage suffices
since, given the candidate solution, it is easy to check whether ones on each row form a prefix or a
suffix in additional time O(nt).

It is possible to give a self-contained O(nt) algorithm for our problem following the outline above
(without going through the reduction to single-crossing preferences). However, the resulting algorithm
is still arguably not the simplest. Instead, in the following we present a simpler, O(nt) direct algorithm
for recognizing single-switch-no-flips profiles P = (c1, . . . , ct). The algorithm combines insights from
[17, Section 4.2] with a simple new observation. We defer further elaboration on the connection with
single-crossing preferences until the end of the section for clarity. Our algorithm proceeds as follows:
First, find an index x maximizing dH(c1, cx). Then, sort (using Counting Sort) the columns based on
their Hamming distance from cx to get a profile P ′ = (c′1, . . . , c

′
t) where dH(cx, c

′
i) ≤ dH(cx, c

′
i+1)

for i ∈ [t − 1] (i.e., ties in Hamming distance can be broken arbitrarily). We claim that either P ′ is
the unique SSWNF presentation of P (up to reversing the order of the columns), or there is no such
presentation. The algorithm runs in O(nt) time. We prove all required claims in the following theorem:

Theorem 7. There is a simple O(nt) algorithm computing (or deciding the inexistence of) an SSWNF
presentation of a profile P . Moreover, if it exists, this presentation is unique up to reversing column order.

7With this small modification, and if counting inversions is performed with the O(n
√
logn) algorithm of Chan and

Pătraşcu [13], single-crossing preferences can be recognized in the better time O(nt
√
logn). We do not give the details here

in order not to dilute the message. Instead, we discuss a simpler O(nt
√
logn) algorithm at the end of the section based on

similar ideas.
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Proof. We first repeat the full algorithm briefly:

1. Say P = (c1, . . . , ct);

2. Find an index x maximizing dH(c1, cx);

3. Sort (using Counting Sort) the columns based on their Hamming distance from cx to get a profile
P ′ = (c′1, . . . , c

′
t) where dH(cx, c

′
i) ≤ dH(cx, c

′
i+1) for i ∈ [t− 1];

4. Check whether ones form a prefix or a suffix on each row of P ′. If yes, return P ′, else return “not
single-switch-no-flips.”

Each step of the algorithm runs in time O(nt), so it attains the required time-bound. It remains to show
that: (i) if no solution exists, then this is correctly reported; (ii) if P∗ = (c∗1, . . . , c

∗
t ) is an arbitrary

SSWNF presentation of P , then the algorithm returns either P∗ or its reverse (which note further
implies that the solution is unique up to reversal). Part (i) follows immediately from the last step in the
algorithm. To show part (ii), we will need an auxiliary claim:

Claim 15. Assume 1 ≤ i < j < k ≤ t, then dH(c∗i , c
∗
j ) ≤ dH(c∗i , c

∗
k) with equality iff c∗j = c∗k . Similarly,

dH(c∗i , c
∗
k) ≤ dH(c∗j , c

∗
k) with equality iff c∗i = c∗j .

Proof. We will only prove the first part, as the second follows analogously. First, observe that for any
u, v ∈ Bn we can write dH(u, v) =

∑n
ℓ=1 I(uℓ ̸= vℓ). Hence, it suffices to show that for each 1 ≤ ℓ ≤ n

we have I(c∗i,ℓ ̸= c∗j,ℓ) ≤ I(c∗i,ℓ ̸= c∗k,ℓ) and then sum up those inequalities. This amounts to showing
that c∗i,ℓ ̸= c∗j,ℓ =⇒ c∗i,ℓ ̸= c∗k,ℓ. Assume the contrary: c∗k,ℓ = c∗i,ℓ ̸= c∗j,ℓ. This means that on row ℓ of
P∗ columns i < j < k read either+1,−1,+1 or−1,+1,−1, which either way means that ones do not
form a prefix or a suffix on this row, contradicting that P∗ is an SSWNF presentation of P . To get the
equality case, note that we have shown dH(c∗i , c

∗
j ) ≤ dH(c∗i , c

∗
k) by summing inequalities, so equality

occurs iff all summed inequalities are tight; i.e., for all 1 ≤ ℓ ≤ n we have I(c∗i,ℓ ̸= c∗j,ℓ) = I(c∗i,ℓ ̸= c∗k,ℓ),
which amounts to c∗i,ℓ ̸= c∗j,ℓ ⇐⇒ c∗i,ℓ ̸= c∗k,ℓ, and in turn to c∗i,ℓ = c∗j,ℓ ⇐⇒ c∗i,ℓ = c∗k,ℓ, which holds
iff c∗j,ℓ = c∗k,ℓ. As a result, equality occurs iff for all 1 ≤ ℓ ≤ n we have c∗j,ℓ = c∗k,ℓ, i.e., c∗j = c∗k.

Armed as such, we can show that the column cx maximizing dH(c1, cx) found by the algorithm
satisfies cx ∈ {c∗1, c∗t }. To see this, let y be such that c1 = c∗y , then any column cx that maximizes
dH(c1, cx) equals a column c∗z that maximizes dH(c∗y, c

∗
z). By Claim 15, it follows that cz ∈ {c∗1, c∗t }, so

cx ∈ {c∗1, c∗t }.

In the following, we will show that if cx = c∗1, then the output of the algorithm is P ′ = P∗, and if
cx = c∗t , then P ′ = the reverse of P∗, completing the proof.

The equality parts of Claim 15 give that two columns in P∗ have the same Hamming distance from c∗1
(or c∗t ), if and only if they are equal. Since cx ∈ {c∗1, c∗t }, this means that two columns in P have the
same Hamming distance from cx if and only if they are equal.8

The algorithm constructsP ′ by ordering the columns ofP in non-decreasing order of Hamming distance
from cx. By the previous, equal Hamming distances correspond to identical columns, so P ′ as defined
by us to satisfy dH(cx, c

′
i) ≤ dH(cx, c

′
i+1) for i ∈ [t− 1] is actually unique no matter the tie-breaking

for equal distances.9

If cx = c∗1, note that (c′1, . . . , c′t) = (c∗1, . . . , c
∗
t ) satisfies dH(cx, c

′
i) ≤ dH(cx, c

′
i+1) for i ∈ [t− 1]. By

the uniqueness of (c′1, . . . , c′t), this means that (c∗1, . . . , c∗t ) is the output of our algorithm, i.e., P ′ = P∗.

If cx = c∗t , the reasoning is analogous, leading to P ′ = the reverse of P∗.
8Note that this hinges on our assumption that P admits P∗ as an SSWNF presentation (and would be false in general).
9Fact which again is only true because in this part of the proof we assumed that P is single-switch-no-flips.
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Better recognition for single-crossing preferences. Our O(nt) algorithm for recognizing single-
switch-no-flips profiles can be easily modified to recognize single-crossing preferences: Consider an
input consisting of a set A and a list (≻1, . . . ,≻t) of linear orders over A. First, find an index x
maximizing dKT (≻1,≻x). Then, sort (using Radix Sort) the list according to the Kendall Tau distance
from ≻x to get a list (≻′

1, . . . ,≻′
t) where dKT (≻x,≻′

i) ≤ dKT (≻x,≻′
i+1) for i ∈ [t− 1] (i.e., ties can

be broken arbitrarily). The resulting list is either the unique permutation of the input list witnessing
the single-crossing property (up to reversal), or there is no such permutation. After identifying this
candidate solution, one checks whether the single-crossing property is satisfied using the second stage of
[17, Algorithm 4], namely [17, Algorithm 2]: the solution is valid if and only if dKT (≻′

1,≻′
i) + dKT (≻′

i

,≻′
i+1) = dKT (≻′

1,≻′
i+1) for all 2 ≤ i < t. If the O(n

√
log n) algorithm of Chan and Pătraşcu [13] is

used for counting permutation inversions, the previous yields a simpler, and at the same time, more
efficient algorithm for recognizing single-crossing preferences, running in time O(nt

√
log n). The

proof of correctness of this algorithm follows the same outline as the proof of Theorem 7.10 We also
note that our algorithm is, in fact, a more efficient implementation of [17, Algorithm 3]. The latter tries
all O(t) options for ≻′

1 and, for each one, sorts by Kendall Tau distance from ≻′
1 to get a candidate

solution, which is then verified as in our case using [17, Algorithm 2]. Our improvement was to notice
that ≻′

1 can be determined efficiently without trying out all options for it, hence removing a linear
factor from the time complexity. In contrast, instead of efficiently determining ≻′

1, [17, Algorithm 4]
takes a more intricate approach.

Theorem 16. Single-crossing preferences can be recognized in time O(nt
√
log n), including producing a

witnessing permutation for yes-instances (which is the unique solution up to reversal).

B.3 Forbidden Subprofiles Characterization of Single-Switch Preferences

In this section, we prove Theorem 9, which establishes the forbidden subprofiles characterization of
single-switch profiles. Afterward, we give further details about how our recognition algorithm for
single-crossing preferences in Theorem 16 can be bootstrapped to also produce a forbidden subinstance
without sacrificing runtime, similarly to the proof of Theorem 10.

To begin with proving Theorem 9, a profile P is single-switch if and only if P ′ is single-switch-no-flips,
where P ′ is the profile obtained from P by flipping columns so that the first row is all −1’s. As a result,
it suffices to understand how short proofs of non-membership look for the class of single-switch-no-flips
preferences. To this end, [37] considered the profiles:

P1 =

[
+1 +1 -1 -1
+1 -1 +1 -1

]
P2 =

+1 -1 -1
-1 +1 -1
-1 -1 +1


and showed that P ′ is single-switch-no-flips if and only if it does not contain as subprofiles P1, P2

and the profiles obtainable from them by flipping any subset of rows. In total, one can check that this
leads to 5 non-equivalent profiles P1, . . . ,P5, where P1,P2 are the ones above and P2+i for 1 ≤ i ≤ 3
is P2 with the first i rows flipped. The original presentation lists the 5 profiles explicitly, but since
both single-switch and single-switch-no-flips preferences are closed under flipping rows, we find our
account cleaner. For the interested reader, we note that the result of Terzopoulou et al. [37] can also be
recovered from [10], where it is shown that non-membership to the class of single-crossing preferences
is always witnessed by one of two small subinstances (this can be done using as a lens the reduction to
single-crossing preferences recognition in Appendix B.2).

Lemma 17. A profileP is single-switch if and only ifP ′ does not contain as a subprofile any ofP1, . . . ,P5.
Here P ′ denotes the profile obtained from P by flipping columns so that the first row is all −1’s.

10This is no accident: one can reduce from recognizing single-crossing preferences to recognizing single-switch-no-flips
profiles by introducing a voter for each pair of distinct elements in A. This incurs a quadratic computational cost but suffices
to recover correctness.
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This already gives short proofs for non-membership, but for our purposes, we would like a charac-
terization in terms of the subprofiles of P , not of P ′. This can be easily achieved given the previous:
consider a non-single-switch profile P , then, by the previous, P ′ contains one of P1, . . . ,P5, say Pi.
Note that Pi has no row that is all −1’s, so Pi is, in fact, a subprofile of P ′ without its first row (which
is all −1’s). As a result, if we define Pa

i to be Pi with a row of −1’s appended to the top, then P ′ also
contains Pa

i as a subprofile. Given how P ′ was obtained from P by flipping a subset of columns, P
contains a version of Pa

i with accordingly-flipped columns. Namely, if we let Πa
i be the set of profiles

that can be obtained from Pa
i by flipping any subset of columns, then P contains some X ∈ Πa

i as a
subprofile. Moreover, X is not single-switch, as X ′ = Pa

i and Pa
i is not single-switch-no-flips (here X ′

denotes X with columns flipped to make its first row all −1’s). As a result, we get the following:

Lemma 18. A profile P is single-switch if and only if it contains no profile X ∈ ∪5
i=1Π

a
i as a subprofile.

This result can be compressed into a more elegant form by leveraging the closure of single-switch
preferences under flipping rows and columns and the wayP3, . . . ,P5 were obtained fromP2, as follows,
which is precisely Theorem 9, restated below for convenience:

Theorem 9. A profile P is single-switch if and only if it does not contain as a subprofile Pa
1 ,Pa

2 and any
profile that can be obtained from them by flipping rows and columns:

Pa
1 =

-1 -1 -1 -1
+1 +1 -1 -1
+1 -1 +1 -1

 Pa
2 =


-1 -1 -1
+1 -1 -1
-1 +1 -1
-1 -1 +1



Finding forbidden subinstances of single-crossing preferences. Our idea to use a fast black-box
recognition algorithm to bootstrap a fast algorithm for finding a forbidden subprofile extends beyond
our usage for single-switch preferences in Theorem 10. The same idea can be used for the class of single-
crossing preferences, where non-membership to the class is witnessed by one of two small forbidden
subinstances with (t, n) ∈ {(4, 4), (3, 6)}, as shown in [10]. Given our O(nt

√
log n) recognition

algorithm in Theorem 16, we can apply very similar reasoning to the proof of Theorem 10 (except now
we need to split into 6 + 1 = 7 groups) to get the following result, which, to the best of our knowledge,
is new, even if we were to replace our improved time bound with that of the previously-known fastest
algorithm, namely [17, Algorithm 4]:

Theorem 19. Given a no-instance of the problem of recognizing single-crossing preferences, a forbidden
subinstance can be determined in time O(nt

√
log n).

C Anscombe’s Paradox

C.1 External Weights

This section of the appendix centers on Theorem 11. In Appendix C.1.1, we formalize the definition of
relevant topics and discuss how to determine the set of relevant topics for a given instance I = (P, w)
efficiently. Appendix C.1.2 then proves Theorem 11. Throughout this section of the appendix, we use
the notation w(S) =

∑
j∈S wj for any S ⊆ [t].

C.1.1 Relevant Topics

A subset of the topics, T ⊆ [t], is a minimal topic group under weight vector w if w(T ) > 1
2 and for

all j ∈ T we have that w(T \ {j}) ≤ 1
2 . Then we call a topic j ∈ [t] a relevant topic under w if it is in

some minimal topic group under w. We denote the set of all relevant topics under w as Rw.
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In proving Theorem 25 (see Appendix C.1.2), we define Bm = {p ∈ Bt : ⟨p, pIWM ⟩w > 0}
and select a proposal from it uniformly at random. Note that we can equivalently write
Bm = {p ∈ Bt : dH(p, pIWM , w) < 1/2}. We then claim that the only topics j ∈ [t] such
that Pr(pj = (pIWM )j)− Pr(pj ̸= (pIWM )j) > 0 are relevant topics. We prove this claim below.

Claim 20. For p selected uniformly at random from Bm, Pr(pj = (pIWM )j) >
1
2 if and only if j ∈ Rw .

Proof. Fix some j ∈ [t]. We denote the number of proposals with +(pIWM )j for j and −(pIWM )j for
j in Bm by N+, N− respectively.

(⇐) Assume j ∈ Rw. Consider the bijection q : Bt → Bt that flips the jth entry of the proposal.
If dH(p, pIWM , w) < 1/2 − wj and pj = (pIWM )j then p ∈ Bm and so is q(p), so these cancel
each other out when comparing N+ − N−. Note too that if pj = −(pIWM )j and p ∈ Bm then
certainly q(p) is as well. So we only have to consider the case where p = (pIWM )j , p ∈ Bm but
dH(p, pIWM , w) ≥ 1/2− wj . We know such a case must exist because j ∈ Rw. So, this means j is in
some minimal topic group, T . Let p be the proposal where all topics in T are set to their value in pIWM ,
and all remaining topics are set to their value in−pIWM . By definition of minimal topic group, we have
that w(T ) ≤ 1/2+wj , so dH(p, pIWM , w) = 1−w(T ) ≥ 1/2−wj . Then dH(q(p), pIWM , w) ≥ 1/2,
so q(p) ̸∈ Bm. So we have that N+ > N−. Hence Pr(pj = (pIWM )j) > 1/2.

(⇒) Assume Pr(pj = ((pIWM )j) > 1/2. We know that all p ∈ Bm with pj = −(pIWM )j have q(p) ∈
Bm, so this means there must exist some p ̸∈ Bm with pj = −(pIWM )j such that q(p) ∈ Bm. Find
the p with the fewest indices agreeing with pIWM such that this holds. Then the set of topics that q(p)
agrees with pIWM on forms a minimal topic group for w. To see this, let T be the set of topics that q(p)
agrees with pIWM on. We know that w(T ) > 1/2 and w(T \ {j}) ≤ 1/2 because p ̸∈ Bm, q(p) ∈ Bm.
Take any other k ∈ T, k ̸= j. Assume for sake of contradiction thatW (T \ k) > 1/2. Then we could
have taken p′ ̸∈ Bm to be equal to p at all indices except flipped for k. Then p′ ̸∈ Bm and q(p′) ∈ Bm,
but p′ has one fewer index agreeing with pIWM than p. This contradicts the minimality in our selection
of p. Hence T is a valid minimal topic group, and thus j ∈ Rw.

As Theorem 11 shows, relevant topics are useful for determining whether a proposal with majority
support and with weighted agreement of > 1/2 with the issue-wise majority exists. How, then can we
discern whether specific topics are relevant? This is essentially equivalent to determining whether or
not a voter is a dummy voter in a weighted majority game. While this can be shown to be NP-hard
with respect to general input w [32], we have the constraint that all elements of w are bounded in [0, 1].
We say that w has polynomial precision if all of its elements can be expressed as rational numbers with
a common denominator that is polynomial in n and t. If additionally we assume that w has polynomial
precision then we can give a polynomial time algorithm for determining the set of relevant topics. In
order to do this we show the following claim:

Claim 21 (Relevance Monotonicity). Being a relevant topic is a monotonic property with respect to topic
weight.

Proof. Fix topics i, j such that wj ≥ wi. We want to show that if i is a relevant topic then j is also a
relevant topic. Assume i is relevant, then there exists some S ⊆ [t] \ {i} such that w(S) ≤ 1/2 but
w(S ∪ {i}) > 1/2. We have two cases:

1. j ̸∈ S. In this case we can reuse S as proof of j’s relevance. We have that w(S) ≤ 1/2 and
w(S ∪ {j}) = w(S) + w(j) ≥ w(S) + w(i) = w(S ∪ {i}) > 1/2.
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2. j ∈ S. In this case we define S′ = (S \ {j}) ∪ {i} (we just swap in i for j). Then we have that
w(S′) = w(S)−w(j)+w(i) ≤ w(S) ≤ 1/2. We also can see that w(S′∪{j}) = w(S ∪{i}) >
1/2.

Therefore, we have shown that if i is relevant, then j is also relevant. This is equivalent to saying that
if j is irrelevant, i is irrelevant as well.

Claim 21 implies that there is a “lowest weight relevant topic” such that all topics with weight less than
it are irrelevant, and all topics with greater weight must be relevant. In order to find the lowest weight
relevant topic we can run binary search over the topics sorted by weight. For each topic choice j, we
can run knapsack on the remaining topics to look for a set such that 1

2 − wj < w(S) ≤ 1/2 as proof
of its relevance. Assuming that all weights are integral, which we can achieve by temporarily scaling
all of the weights and the respective bounds up, then there is an exact algorithm for knapsack that
runs in polynomial time with respect to |w| = t and the max weight item. As we only have to scale
up the weights a polynomial factor with respect to nt (due to our assumption on their precision), the
max weight item is also polynomial in nt. Therefore, the whole algorithm together is polynomial in nt.
As any preference profile input has size at least n × t (just considering number of entries), this is a
polynomial size operation with respect to the size of our overall problem input.

C.1.2 Existence of Representative Non-Losing Proposals in the External Weights Setting

In this section, we prove Theorem 11, restated here:

Theorem 11. For any I = (P, w) and pIWM , there is a weakly majority supported proposal p with
dH(p, pIWM , w) < 1/2. If majority is strict in any relevant topic, “weak” can be replaced with “strict”.

At a high level, our proof structure is the following (the same structure as used in [14]): For every voter,
we define two bijective relations between proposals. Then, we piece these together to construct a third
relation that “swaps” a proposal’s weighted similarity to the voter with its weighted similarity to pIWM .
We then define two quantities that we take the expectation of. One can easily be shown to be non-
negative, and we use the defined relations for each voter to show the equality of these expectations. The
non-negativity of the second expectation then implies the existence of a majority-supported proposal,
p ∈ Bt, with dH(pIWM , p, w) < 1/2.

C.1.3 Structure-Preserving Maps

We define three different proposal transformations for each given voter. Fix some voter v and let
B∗ ⊆ Bt be the set of proposals p such that ⟨pIWM , p⟩w ̸= 0 and ⟨v, p⟩w ̸= 0. We partition proposals in
B∗ into four categories: Ti,j where i, j ∈ {−1,+1} and i = sgn(⟨p, pIWM ⟩w) and j = sgn(⟨v, p⟩w).
We construct the following “mask” for use in our transformations: v⊙pIWM where⊙ is the elementwise
(Hadamard) product. This mask has +1 for topics on which v and pIWM agree, and −1 for topics on
which they disagree. Then we define two transformations f+

v , f−
v : B∗ → B∗ as follows:

f+
v (p) = p⊙ (v ⊙ pIWM ), f−

v (p) = p⊙−(v ⊙ pIWM )

f+
v flips a proposal on indices where v and pIWM disagree, while f−

v flips a proposal on indices where v
and pIWM agree. Note that the Hadamard product is commutative and for any vectorm ∈ Bt,m⊙m =
1. Additionally, for any vectors a, b, c ∈ Bt we have that ⟨a, b⊙ c⟩w = ⟨a⊙ b, c⟩w. From the first two
properties, we can immediately see that f+

v , f−
v are both self-inverse and hence bijective.

Lemma 22. f+
v maps proposals of type Ti,j to proposals of type Tj,i for i, j ∈ {0, 1}. Moreover, for any

p ∈ B∗ we have that ⟨v, f+
v (p)⟩w = ⟨p, pIWM ⟩w.
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Proof. Fix some p ∈ B∗. Then:

⟨v, f+
v (p)⟩w = ⟨v, p⊙ v ⊙ pIWM ⟩w = ⟨v ⊙ p⊙ v, pIWM ⟩

= ⟨p, pIWM ⟩w

As f+
v (p) ∈ B∗, using the shown equality with one more application of f+

v and the fact that f+
v is

self-inverse gives us that ⟨f+
v (p), pIWM ⟩w = ⟨v, f+

v (f+
v (p))⟩w = ⟨v, p⟩w . Hence, applying f+

v has the
effect of swapping a proposal’s weighted agreement with v with its weighted agreement with pIWM .
Therefore, f+

v maps Ti,j to Tj,i.

Lemma 23. f−
v maps proposals of type Ti,j to proposals of type T(−j),(−i) for i, j ∈ {−1,+1}. For any

p ∈ B∗ we have that ⟨v, f−
v (p)⟩w = −⟨pIWM , p⟩w.

Proof. Fix some p ∈ B∗. Then:

⟨v, f−
v (p)⟩w = ⟨v, p⊙−(v ⊙ pIWM )⟩w = ⟨v ⊙ p⊙−v, pIWM ⟩w

= −⟨p, pIWM ⟩w

Then again, as f−
v (p) ∈ B∗, using the shown equality with one more application of f−

v and the fact
that its self-inverse gives us that −⟨f−

v (p), pIWM ⟩w = ⟨v, f−
v (f−

v (p))⟩w = ⟨v, p⟩w. Hence we have
that f− swaps and negates a proposal’s weights agreement with v with its weighted agreement with
pIWM . Therefore it indeed maps Ti,j to T(−j),(−i).

Now we combine our two bijective maps into a single map fv : B
∗ → B∗ defined as follows:

fv(p) =

{
f+
v (p) if p is of type T−1,−1 or T+1,+1

f−
v (p) if p is of type T−1,+1 or T+1,−1

It follows from f+
v and f−

v being self-inverse and Lemmas 22 and 23 that fv is also self-inverse.

Corollary 24. fv maps proposals of type Ti,j to proposals of type Ti,j . For any proposal p of type T−1,−1

or T+1,+1 we have ⟨v, fv(p)⟩w = ⟨p, pIWM ⟩w and for any proposal p of type T−1,+1 or T+1,−1 we have
that ⟨v, fv(p)⟩w = −⟨p, pIWM ⟩w.

Proof. This follows directly from the definition of fv as well as Lemmas 22 and 23.

C.1.4 Thought Experiments

Now we will detail our two quantities of interest through two thought experiments and show
that their expectations are equivalent and non-negative. We define a subset of Bt denoted as
Bm = {p ∈ Bt : ⟨p, pIWM ⟩w > 0}. Equivalently, for all p ∈ Bm, dH(p, pIWM , w) < 1/2. As w is
externally fixed, this is some known set. We also note that the number of +1s minus the number of
-1s for a given topic j in the preference profile can be written as n ·mj − n(1−mj) = n(2mj − 1).
Finally, let Rw be the set of all relevant topics under weight vector w (for a discussion of relevant topics,
see Appendix C.1.1).

Thought Experiment 1. Our first thought experiment keeps a global counter X initialized to 0 and
samples a proposal p ∈ Bm uniformly at random. For each voter i ∈ [n], we add ⟨vi, p⟩w to X —
equivalently, for each voter we go topic by topic and add wj to X for each topic j voter i agrees with p
on, and subtract wj from X for each topic j voter i disagrees with p on.
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Theorem 25. E[X] ≥ 0. If there exists some j ∈ Rw such that mj > 0.5 then E[X] > 0.

Proof. We can write X in terms of variables Xi,j that take on 1 if vij = pj and -1 otherwise as
X =

∑n
i=1

∑t
j=1wjXi,j . Then we can evaluate E[X] more easily:

E[X] =
n∑

i=1

t∑
j=1

wjE[Xi,j ] =
t∑

j=1

wj

n∑
i=1

E[Xi,j ]

=

t∑
j=1

wj · n(2mj − 1)(Pr(pj = +1)− Pr(pj = −1))

We arrive at the last line because if pj = +1 then
∑n

i=1Xi,j =
∑

i∈[n] : vi,j=+1 1+
∑

i∈[n] : vi,j=−1−1 =

n(2mj − 1) and similarly if pj = −1 then
∑n

i=1Xi,j = −n(2mj − 1). Note that we can rewrite the
sum with only the terms where there is a strict majority of +1 (so mj > 0.5), because all terms where
mj = 0.5 evaluate to 0:

E[X] =
∑
j∈[t]

mj>0.5

wjn(2mj − 1)(Pr(pj = +1)− Pr(pj = −1))

=
∑
j∈[t]

mj>0.5

wjn(2mj − 1)(Pr(pj = (pIWM )j)− Pr(pj ̸= (pIWM )j))

We arrive at the last line by noting that for all j withmj > 0.5, (pIWM )j must be+1 as it is the unique
majority for that issue.

Nowwe observe thatPr(pj = (pIWM )j) ≥ Pr(pj ̸= (pIWM )j) for all j ∈ [t]. Fix some j ∈ [t]. Then for
any p ∈ Bm such that pj ̸= (pIWM )j , we know that there exists a p′ ∈ Bm that matches p on all entries
except j, where p′j = (pIWM )j . p′ is indeed in Bm because ⟨p′, pIWM ⟩w = ⟨p, pIWM ⟩w + 2wj > 1/2.
Note that this mapping from p to p′ is injective, so we have that there are at least as many proposals in
Bm with a (pIWM )j for issue j as there are with a −(pIWM )j . Hence, when selecting a proposal from
Bm uniformly at random, the probability that it has a (pIWM )j for issue j is at least the probability
that it has a −(pIWM )j .

We also claim that Pr(pj = (pIWM )j) > Pr(pj ̸= (pIWM )j) if and only if j ∈ Rw. To see a proof
of this claim, please refer to Appendix C.1.1 Claim 20. Therefore, we know that for all j ̸∈ Rw,
Pr(pj = (pIWM )j)− Pr(pj ̸= (pIWM )j) = 0. Then we can rewrite our expectation only in terms of
the relevant topics:

E[X] =
∑
j∈Rw
mj>0.5

wjn(2mj − 1)(Pr(pj = (pIWM )j)− Pr(pj ̸= (pIWM )j))

For any relevant topic j, wj is strictly positive (otherwise j would not be in a minimal topic group)
and as just mentioned Pr(pj = (pIWM )j)−Pr(pj ̸= (pIWM )j) is strictly positive as well. n(2mj − 1)
must be positive in all of our terms because we only consider j ∈ Rw such thatmj > 0.5. Therefore,
every term in the sum is positive. If no relevant topic has mj > 0.5 then E[X] = 0. Otherwise, we
have that there exists at least one term left in the sum, and E[X] > 0.

Thought Experiment 2. For our second thought experiment we again sample p ∈ Bm uniformly
at random and maintain a global counter Y initialized to 0. Each voter i compares vi with p. If
they approve of p then they add ⟨p, pIWM ⟩w to Y , and if they disapprove of p then they subtract
⟨p, pIWM ⟩w from Y . If they are neutral (so dH(vi, p, w) = 1/2) then they leave Y unchanged.
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Theorem 26. E[X] = E[Y ]

Proof. First we write Y =
∑

i∈[n] Yi where Yi is ⟨p, pIWM ⟩w if voter i approves of p, −⟨p, pIWM ⟩w if
voter i disapproves of p, and 0 if voter i is neutral. Then E[Y ] =

∑
i∈[n] E[Yi] by linearity of expectation.

From the first thought experiment, we have that E[X] =
∑

i∈[n] E[⟨vi, p⟩w] by definition of X . Hence,
to show that E[X] = E[Y ], it suffices to show that for all i ∈ [n] we have that E[Yi] = E[⟨vi, p⟩w].

Fix some voter i ∈ [n]. Let B+ and B− be the sets of proposals in Bm that voter i approves of and
disapproves of, respectively. Note that if i is neutral about Bm then ⟨vi, p⟩w = 0. Then we have that:

E[⟨vi, p⟩w] = |Bm|−1
∑
p∈Bm

⟨vi, p⟩w

= |Bm|−1

∑
p∈B+

⟨vi, p⟩w +
∑
p∈B−

⟨vi, p⟩w


Then, because fvi is self-inverse, we can write:

E[⟨vi, p⟩w] = |Bm|−1

∑
p∈B+

⟨vi, fvi(fvi(p))⟩w +
∑
p∈B−

⟨vi, fvi(fvi(p))⟩w


= |Bm|−1

∑
p∈B+

⟨fvi(p), pIWM ⟩w −
∑
p∈B−

⟨fvi(p), pIWM ⟩w


In the last line we use the fact that for p ∈ B+, p ∈ T+1,+1 because p ∈ Bm so ⟨p, pIWM ⟩w > 0
and p ∈ B+ implies that ⟨vi, p⟩w > 0. By Corollary 24, we know that fvi(p) is then also in T+1,+1,
and hence that ⟨vi, fvi(fvi(p))⟩w = ⟨fvi(p), pIWM ⟩w. Similarly, we have that for p ∈ B−, p ∈ T+1,−1

because p ∈ Bm so ⟨p, pIWM ⟩w > 0 and p ∈ B− implies that ⟨vi, p⟩w < 0. Then fvi(p) is also in
T+1,−1, so ⟨vi, fvi(fvi(p))⟩w = −⟨fvi(p), pIWM ⟩w . As fvi is a bijection on both B+ and B−, summing
over a function of fvi(p) for all p ∈ B+(B−) is equivalent to summing over that function of p for all
p ∈ B+(B−):

E[⟨vi, p⟩w] = |Bm|−1

∑
p∈B+

⟨p, pIWM ⟩w −
∑
p∈B−

⟨p, pIWM ⟩w


= E[Yi]

Therefore, we have shown that E[X] = E[Y ].

Finally, we can prove Theorem 11:

Proof. By Theorem 26, we know that E[Y ] = E[X], and by Theorem 25 we have that this quantity
is always non-negative and is strictly positive when in there exists some relevant topic j such that
mj > 0.5. We call this condition the strict majority guarantee. Then there exists some proposal p ∈ Bm

such that Y ≥ 0, or Y > 0 if we have the strict majority guarantee.

We now rewrite Y in a way that makes the connection to majority-supported proposals more explicit.
We can write Y = ⟨p, pIWM ⟩w · ((# voters supporting p) − (# voters opposing p)). As p ∈ Bm, we
know that ⟨p, pIWM ⟩w > 0. Hence we have that:

(# voters supporting p)− (# voters opposing p) = Y

⟨p, pIWM ⟩
≥ 0
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where the inequality is strict if we have the strict majority guarantee. As the number of approving
voters is at least the number of disapproving voters, p is weakly majority-supported. With the strict
majority guarantee, Y > 0 so we have that the number of approving voters is strictly greater than the
number of disapproving voters, and p is strictly majority-supported.

C.2 Internal Weights: High Level Overview of Results

We now explore a model where individuals can have unique weight vectors, expressing not only diverse
preferences on issue outcomes but also differing opinions on relative topic importance.

Internal Weights Model. In the internal weights model, an instance I = (P,W ) consists of a
preference profile P and a weight profile W with rows w1, . . . , wn where each weight vector wi

corresponds to voter i, is non-negative, and sums to 1. The average weight vector is defined as w̃ :=
1
n

∑n
i=1wi. Zero entries in the average weight vector correspond to issues that no voters placed any

weight on (and hence can be ignored). We assume no such topics exist without loss of generality.
We define the majority for a given topic j to be mj := 1

nw̃j

∑n
i=1wi,j · I(vi,j = +1). This is the

fraction of voter weight placed on that issue that prefers +1. Note that this agrees with our previous
definition for external weights (where it was just the fraction of voters that prefer +1 on that topic).
The average majority for a given preference profile is defined as m̃ :=

∑t
j=1 w̃jmj . This naturally

weights consensus on issues proportionally to how important those issues are to the population.

Under external weights, we could give a constant upper bound (Theorem 11) on the minimum distance
of some majority-supported proposal from an IWM, independent of the weight profile. As we will see
in Theorems 27 and 28, the severity of Anscombe’s Paradox under internal weights is closely related to
the maximum average topic weight w̃max (the maximum entry in w̃). Formally, we will upper bound
the worst-case IWM distance gℓ for instances with maximum average topic weight w̃max = ℓ ∈ (0, 1)
and selections of pIWM for the instance:

gℓ := max
I=(P,W ), pIWM

s.t.w̃max=ℓ

(
min

p weakly majority-supported
dH(p, pIWM , w̃)

)

We first give a simple upper bound on gℓ for ℓ ∈ (0, 1) derived from a partition-based algorithm.
Surprisingly, we then show that this seemingly weak upper bound is tight for a large portion of the
range w̃max ∈ (0, 1). Our lower-bound constructions more strongly imply the existence of instances
where all weakly majority-supported proposals are far from all IWM’s. Fig. 4 provides a summary of
the bounds we give on gw̃max .

Partition-based upper bounds. Theorem 27 guarantees both the existence of reasonable majority-
supported proposals and provides an algorithm to efficiently recover them.

Theorem 27. We have the following upper bounds on gℓ:

• If ℓ ∈ (0, 1/3), then gℓ ≤ 1/2 + ℓ/2;

• If ℓ ∈ [1/3, 1/2], then gℓ ≤ 1− ℓ;

• If ℓ ∈ (1/2, 1), then gℓ ≤ ℓ.

In each case, we can compute a weakly majority-supported proposal p with dH(p, pIWM , w̃) at most the
given bound in polynomial time.

The full proof is deferred to Appendix C.3.1, but the intuition is as follows: for any proposal, either it or
its complement will get weakmajority support (potentially both), and for any pIWM , dH(p, pIWM , w̃) =
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Figure 4: A summary of our bounds on gw̃max .

1− dH(p, pIWM , w̃). Therefore, we construct p that keeps max{dH(p, pIWM , w̃), dH(p, pIWM , w̃)}
small. This is ultimately equivalent to the partition optimization problem with the t entries in the
average weight vector as inputs. Our bounds are constructive and give the pair (p, p) achieving the
bound.

Lower bounds. By definition, gℓ ≤ 1, so the upper bounds in Theorem 27 might seem fairly weak.
However, in Theorem 28, we show that they are actually tight for many values of ℓ. This implies that
when w̃max is large, gw̃max can get arbitrarily close to 1.

Theorem 28. The following lower bounds for gℓ hold:

• If ℓ = 1/(2k + 1) with k ∈ Z≥0, then gℓ ≥ 1/2 + ℓ/2;

• If ℓ ∈ (1/2, 1), then gℓ ≥ ℓ.

We conjecture that the upper bounds in Theorem 27 are tight for the remaining values of ℓ, but leave this
to future work. The proof of Theorem 28 is deferred to Appendix C.3.2, but we provide the construction
for ℓ ∈ (1/2, 1) and some intuition here. In the instance below, we choose x large enough such that
w̃max = ℓ and the first issue holds a strict majority of the weight for all voters. There are x copies of
the first voter, and x+ 1 copies of the second.

P =
(x) ×

(x+ 1) ×

[
+1 +1
-1 +1

]
W =

(x) ×
(x+ 1) ×

[
x+1
x · ℓ 1− x+1

x · ℓ
x

x+1 · ℓ 1− x
x+1 · ℓ

]

In this instance, all voters are essentially “single-issue voters” on the first topic, but the second type
of voters split their weight slightly more evenly between the two topics. +1 is the weighted majority
opinion on the first topic, but any proposal with +1 for that topic will not get majority support because
voters of the second type will oppose it. Notably, 1 is the unique IWM in our constructions, implying
there is no majority-supported proposal close to any IWM.

Theorem 28 quashes any hope of improving on Theorem 27 and proving a similar result to the external
weights setting (where gℓ < 1/2 held for any weights profile). Once voters can have distinct weight
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vectors, increasing w̃max can make the distance between all majority-supported proposals and IWM
proposals arbitrarily large. We conclude this section by characterizing a group of voting instances in
which Anscombe’s Paradox will not occur.

Condition precluding Anscombe’s Paradox. We find that generalizations of Wagner’s Rule of
Three-Fourths hold in both the external and internal weights settings:

Theorem 29. If m̃ ≥ 3/4 then Anscombe’s paradox will not occur. Additionally, if mj ≥ 3/4 for all
j ∈ [t] in the external weights setting, then Ostrogorski’s paradox will not occur.

Our proof (deferred to Appendix C.4) follows Wagner’s original proof strategy of counting agreement
with an IWM in an instance in two ways: column-wise and row-wise, but is modified to account for
weights. We get the second part of our claim by using the fact that, under external weights, Ostrogorski’s
paradox occurs if and only if there is a subset of issues inducing an instance where Anscombe’s paradox
occurs.

C.3 Internal Weights: Non-Losing Proposals

In this section of the appendix, we provide proofs and further discussion of the results presented
in Appendix C.2. In Appendix C.3.1 we provide intuition and proof for our upper bounds on gℓ in
Theorem 27, and in Appendix C.3.2 we provide proof for our lower bounds on gℓ in Theorem 28. Finally
in Appendix C.4 we prove the generalized Rule of Three-Fourths. Throughout this section of the
appendix, we use the notation that w(S) =

∑
j∈S wj for any S ⊆ [t].

C.3.1 Efficiently Finding Reasonable Non-Losing Proposals in Individual Weight Setting

As discussed in the body, for any proposal p ∈ Bt, at least one of p, p is weakly majority-supported.
Therefore, one way to get a simple upper bound on gℓ is to construct p given any pIWM and take
max{dH(p, pIWM , w̃), dH(p, pIWM , w̃)}. Hence, to get a tighter upper bound, we would like to con-
struct p such that this quantity is small. As dH(p, pIWM , w̃) = 1 − dH(p, pIWM , w̃), this problem
corresponds to the partition problem, because we want to partition the topics into two sets such that
their average weight sums are as close as possible. We formalize this intuition below.

Theorem 27. We have the following upper bounds on gℓ:

• If ℓ ∈ (0, 1/3), then gℓ ≤ 1/2 + ℓ/2;

• If ℓ ∈ [1/3, 1/2], then gℓ ≤ 1− ℓ;

• If ℓ ∈ (1/2, 1), then gℓ ≤ ℓ.

In each case, we can compute a weakly majority-supported proposal p with dH(p, pIWM , w̃) at most the
given bound in polynomial time.

Proof. Fix some instance I = (P,W ) with average weight vector w̃max. We will case on w̃max and
construct a subset of topics, T , for later use in creating the proposal complement pair of interest.

• If w̃max ∈ (0, 1/3), construct a set S ⊆ [t] by starting with S = [t] and then removing topics
until we cannot remove anymore without the total weight going below 1/2. We know that
w̃(S) ≤ 1/2 + w̃max, as otherwise we could remove another topic without the weight dipping
below 1/2 (as all topics have weight at most w̃max). If w̃(S) ≤ 1/2 + w̃max/2 then let T = S.
Otherwise, we have that w̃(S) > 1/2 + w̃max/2. Take any topic j ∈ S and let S′ := S \ {j}
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and S′′ = [t] \ S′. Then w̃(S′) = w̃(S) − w̃j and w̃(S′′) = t − w̃(S′). By construction of S
we know that w̃(S′) < 1/2. We can also lower bound it by using our lower bound on w̃(S)
and upper bounding w̃j by w̃max: w̃(S′) ≥ 1/2 + w̃max/2− w̃max = 1/2− w̃max/2. Then we
have that w̃(S′′) ≥ 1/2 and w̃(S′′) ≤ 1/2 + w̃max/2. Then let T = S′′. Hence, in all cases
1/2 ≤ w̃(T ) ≤ 1/2 + w̃max/2.

• If w̃max ∈ [1/3, 1/2], let T = [t] \ {jmax} where jmax ∈ [t] is the index of some maximum
weight topic. Then 1/2 ≤ w̃(T ) = 1− w̃max.

• If w̃max ∈ (1/2, 1) then let T = {jmax}. Then 1/2 ≤ w̃(T ) = w̃max.

We construct a proposal p as follows: for all j ∈ T , set pj = (pIWM )j , and for all j ∈ [t] \ T set
pj = −(pIWM )j . Then we have that p agrees with pIWM on all topics in T and disagrees with pIWM

on all other topics. Then dH(p, pIWM , w̃) = 1− w̃(T ) and dH(p, pIWM , w̃) = w̃(T ). We know that
at least one of these is weakly majority-supported. Hence,

min
p weakly majority-supported

dH(p, pIWM , w̃) ≤ max{w̃(T ), 1− w̃(T )}

= w̃(T )

We arrive at the second line because w̃(T ) ≥ 1/2. This bound holds for any selection of I with the
same maximum average weight and for any selection of pIWM for I . Hence, gw̃max ≤ w̃(T ), which
gives us the desired bounds. Additionally, either p or p are weakly majority-supported and have the
desired distance from pIWM . Determining T , constructing p, p, and checking their support takes time
O(nt) altogether.

We note that if one wants to find a weakly majority-supported proposal with distance as close as
possible to 1/2 from a designated pIWM using the proposal complement pair technique, this can also
be done in polynomial time with an additional assumption on the average weight vector. Specifically,
we assume that W has polynomial precision, so all of its elements can be expressed as rational numbers
with a common denominator that is polynomial in n and t. We first scale up all elements of w̃ by the
common denominator, so that they are all integers. By our assumption, we know that their scaled-up
counterparts are polynomial in n and t. We then use the standard reduction from partition to knapsack
and run the pseudo-polynomial DP for knapsack. Finally, we check which one of p or p (or both) has
weak majority support.

C.3.2 Arbitrarily Low Agreement with the IWM

We provide the full proof for Theorem 28 here:

Theorem 28. The following lower bounds for gℓ hold:

• If ℓ = 1/(2k + 1) with k ∈ Z≥0, then gℓ ≥ 1/2 + ℓ/2;

• If ℓ ∈ (1/2, 1), then gℓ ≥ ℓ.

Proof. We will actually show something slightly stronger than just upper bounding gℓ in this proof. In
both ranges of ℓ, our constructions will be such that 1 is the unique IWM for the instance. Hence, the
fact that any non-losing proposal is far away from 1 not only implies the bound on gℓ, it also implies
that there are instances where any non-losing proposal is far away from any IWM for that instance.

Small ℓ. Fix some k ∈ N+ and let ℓ = 1/(2k + 1). We illustrate the construction below for k = 1 for
clarity and then describe the generalization to larger k.
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P =

5 ×
5 ×
5 ×
4 ×


-1 +1 +1
+1 -1 +1
+1 +1 -1
+1 +1 +1

 W =

5 ×
5 ×
5 ×
4 ×


3/5 1/5 1/5
1/5 3/5 1/5
1/5 1/5 3/5
1/3 1/3 1/3


The generalization is as follows: we have t = 2k + 1 topics and t+ 1 types of voters. Denote type i’s
preference and weight vectors as vi and wi respectively. There are 2t − 1 copies of each of the first
t types, and t+ 1 copies of the last type of voter. The voters of type t+ 1 prefer the all-ones vector
and consider all issues to be equally important: vt+1 = +1 and wt+1 = (1/t, 1/t, . . . , 1/t). Voters of
type i ∈ {1, . . . , t} are single-issue voters on issue i and prefer the negative outcome, although they do
place some importance on the other issues:

vij =

{
−1 if i = j

+1 o.w.
wi
j =

{
t

2t−1 if i = j
1

2t−1 o.w.

We say that they are single-issue voters because they vote for a proposal if and only if it agrees with
their position on that issue. Note that by symmetry of the weight matrix, all topics have the same
weight in the average weight vector. As there are t = 2k+1 topics, w̃j = 1/(2k+1) = ℓ for all j ∈ [t].
Therefore, ℓ is indeed w̃max of this profile. Additionally, all of the weights are nonnegative, and every
weight vector type sums to 1, as t

2t−1 + (t− 1) · 1
2t−1 = 1.

Now we show that +1 is the unique IWM for this preference and weight profile. For any given topic,
the total weight on+1 is (t−1) · (2t−1) · 1

2t−1 +(t+1) · 1t , and the weight on−1 is (2t−1) · t
2t−1 = t.

We have that (t − 1) · (2t − 1) · 1
2t−1 + (t + 1) · 1

t = t + 1
t > t. Therefore, +1 is the strict majority

opinion on all topics.

Fix any p ∈ Bt such that dH(p,1, w̃) < 1/2 + ℓ/2. Given our construction, this means that at least
k + 1 of the 2k + 1 topics are set to +1 in the proposal. Note that for all i ∈ [t] such that pi = +1, all
voters of type i vote no on p. As there are at least k + 1 of these indices, we have that at least k + 1
types of voters vote against p. This corresponds to at least (2t− 1) · (k + 1) voters. The proposal can
then get at most all of the remaining votes, which amount to (2t− 1) · k + (t+ 1) votes. We have that
(2t − 1)(k + 1) = (2t − 1)k + (2t − 1) > (2t − 1)k + (t + 1) because t ≥ 3. Therefore, p receives
strictly more votes against it than for it. Hence, any non-losing proposal must have distance at least
1/2 + ℓ/2 from 1.

Big ℓ. Fix some ℓ ∈ (1/2, 1). We will construct a preference and weight profile, P,W , such that
w̃max = ℓ, 1 is the sole IWM, and any non-losing proposal p has dH(p,1, w̃) ≥ ℓ. Let x ∈ N+ be such
that x > max

{
ℓ

1−ℓ ,
1

2ℓ−1

}
. Note that both of the denominators are strictly positive because of our

bounds on ℓ.
P =

x ×
x+ 1 ×

[
+1 +1
-1 +1

]
W =

x ×
x+ 1 ×

[
x+1
x · ℓ 1− x+1

x · ℓ
x

x+1 · ℓ 1− x
x+1 · ℓ

]

First we show that all elements ofW are in [0, 1]. It suffices just to show that this is true for the weights
on the first issue, as every row sums to 1 and there are only two issues. More specifically, we will show
all voters place weight in the range (0.5, 1) on the first topic. First we upper bound:

ℓ(x+ 1)

x
< 1 ⇐⇒ ℓx+ ℓ < x ⇐⇒ ℓ < x(1− ℓ) ⇐⇒ ℓ

1− ℓ
< x

where the final inequality holds by our definition of x. Additionally,

ℓx

x+ 1
> 0.5 ⇐⇒ 2ℓx > x+ 1 ⇐⇒ x >

1

2ℓ− 1
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where again the final inequality holds by our definition of x. Putting everything together we have that:

0.5 <
ℓx

x+ 1
≤ ℓ(x+ 1)

x
< 1

Not only does this confirm that W is a valid weight profile, it also informs us that both types of voters
in this scenario are single issue voters on the first issue — they vote for a proposal if and only if it agrees
with their preference on the first issue. Additionally, it gives us that w̃1 = w̃max. We have that

w̃1 =

(
x · ℓ(x+ 1)

x
+ (x+ 1) · ℓx

x+ 1

)
1

2x+ 1

=
ℓ(x+ 1) + ℓx

2x+ 1
= ℓ

Hence, w̃max = ℓ as desired.

Next, we show that 1 is the sole IWM for this profile. Clearly +1 is the unanimous majority opinion for
the second topic. For the first topic, we have that +1 is the unique majority opinion if there is strictly
more total weight on +1 than on −1 for that topic:

x · ℓ(x+ 1)

x
> (x+ 1) · ℓx

x+ 1
⇐⇒ x+ 1 > x

Therefore, +1 is the strict majority for both issues and as such 1 is the unique IWM for this profile.

Finally, we claim that any non-losing proposal p must have p1 = −1. To see this, recall that all voters
are single-issue voters on the first topic. All x+ 1 voters with −1 as their preference for the first topic
would vote against p if p1 = +1. As they form a majority of voters, the proposal would lose. Therefore,
dH(p,1, w̃) ≥ w̃1 = ℓ.

It is also worth noting that this preference profile is single-switch, but Ostrogorski’s paradox happens:
(−1,+1) ≻I (+1,+1). This instance highlights that the single-switch condition does not help for the
internal weights setting.

C.4 Internal Weights: Condition Precluding Anscombe’s Paradox

Here we include the full proof for our generalized Rule of Three-Fourths, Theorem 29:

Theorem 29. If m̃ ≥ 3/4 then Anscombe’s paradox will not occur. Additionally, if mj ≥ 3/4 for all
j ∈ [t] in the external weights setting, then Ostrogorski’s paradox will not occur.

Proof. Fix an instance I = (P,W ) in the internal weights setting such that m̃ ≥ 3/4. Notice if W
has identical rows, then this is equivalent to the external weights setting. We assume without loss of
generality that the IWM proposal we are interested in verifying gets weak majority support is 1. This is
indeed without loss of generality because if our original pIWM has a−1 for some topic, j, we know that
mj = 0.5 (as we assume for all of Section 5 thatmj ≥ 0.5, so for −1 to be a majority, the column must
be exactly split). We can then flip all entries in that column of the preference profile — this is equivalent
to having voters express their preferences on the negated version of the issue. Then (pIWM )j = +1
as well because its decision on the negated version of issue j is the opposite of its former decision.
Moreover, the fraction of weight on +1 in that column is still 0.5. So all issue majorities are unchanged,
and hence the average majority is also unchanged. Therefore, assume pIWM = 1.

We first define a variable Wones counting the total weight placed on +1 in a preference profile, and
show that if Wones ≥ 3n

4 then 1 is weakly majority-supported (hence Anscombe’s paradox does not
occur). Then we will show thatWones = n · m̃.
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Let Wones :=
∑n

i=1 1− dH(vi,1, wi). We claim that if

Wones ≥
(⌊n

2

⌋
+ 1
)(1

2

)
+

⌊
n− 1

2

⌋
then 1 is weakly majority-supported. Assume for the sake of contradiction that this is not the case.
For any voter i that opposes 1, we have that dH(vi,1, wi) > 1/2. As 1 is not even weakly majority-
supported, we know that more than half of the voters (at least ⌊n/2⌋+ 1) oppose 1. The remaining at
most n− ⌊n/2⌋ − 1 = ⌊(n− 1)/2⌋ voters still must have a non-negative distance from 1. Hence we
can upper boundWones:

Wones =
∑
i∈[n]

i opposes 1

1− dH(vi,1, wi) +
∑
i∈[n]

i supports 1

1− dH(vi,1, wi)

<
∑
i∈[n]

i opposes 1

1/2 +
∑
i∈[n]

i supports 1

1

≤
(⌊n

2

⌋
+ 1
)(1

2

)
+

⌊
n− 1

2

⌋

Hence, we have that Wones <
(⌊

n
2

⌋
+ 1
) (

1
2

)
+
⌊
n−1
2

⌋
, a contradiction. We now upper bound the RHS

as follows: (⌊n
2

⌋
+ 1
)(1

2

)
+

⌊
n− 1

2

⌋
≤
(n
2
+ 1
) 1

2
+

(
n− 1

2

)
=

3n

4

Hence, ifWones ≥ 3n
4 then our previous condition is satisfied, and the issue-wise majority is non-losing.

Now we’ll show the claimed relationship between m̃ andWones:

n · m̃ = n

t∑
j=1

w̃jmj = n

t∑
j=1

w̃j

(
1

nw̃j

n∑
i=1

wi,j · I(vi,j = +1)

)

=
t∑

j=1

n∑
i=1

wi,j · I(vi,j = +1) = Wones

Therefore we have thatWones ≥ 3n
4 ⇐⇒ m̃ ≥ 3

4 .

To prove the second claim of the theorem, we fix a new instance I ′ = (P, w) in the external weights
model such that mj ≥ 3/4 for all j ∈ [t]. Therefore, 1 is the unique IWM. Assume for sake of
contradiction that Ostrogorski’s paradox occurs, so there is some proposal p ̸= 1 such that p ≻I′ 1.
Then we know by Lemma 14 that there exists a sub-instance I ′′ in which Anscombe’s paradox occurs,
where I ′′ is obtained by restricting I ′ to some subset of issues T ⊆ [t] and renormalizing the external
weight vector. Note that the majorities on the topics in T are unchanged from the original profile.
Hence, the average majority in I ′ is at least 3/4, because each individual issue majority is at least 3/4.
This is a contradiction to the claim proven above. Therefore, Ostragorski’s paradox does not occur in
I ′.
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