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Abstract

We introduce the Byzantine Selection Problem, living at the intersection of game theory and
fault-tolerant distributed computing. Here, an event organizer is presented with a group of n
agents, and wants to select ℓ < n of them to form a team. For these purposes, each agent i
self-reports a positive skill value vi, and a team’s value is the sum of its members’ skill values.
Ideally, the value of the team should be as large as possible, which can be easily achieved by
selecting agents with the highest ℓ skill values. However, an unknown subset of at most t < n
agents are byzantine and hence not to be trusted, rendering their true skill values as 0. In the
spirit of the distributed computing literature, the identity of the byzantine agents is not random
but instead chosen by an adversary aiming to minimize the value of the chosen team. Can we still
select a teamwith good guarantees in this adversarial setting? As it turns out, deterministically, it
remains optimal to select agents with the highest ℓ values. Yet, if t ≥ ℓ, the adversary can choose
to make all selected agents byzantine, leading to a team of value zero. To provide meaningful
guarantees, one hence needs to allow for randomization, in which case the expected value of the
selected team needs to be maximized, assuming again that the adversary plays to minimize it.
For this case, we provide linear-time randomized algorithms that maximize the expected value
of the selected team.

1 Introduction

The Art of War is an ancient Chinese military treatise attributed to Sun Tzu. It is widely considered
the first known origin of game theory. Sun Tzu advocates misleading the enemy through deception,
discusses asymmetric information setups and even zero-sum games.

While Sun Tzu’s discussions were qualitative only, around two millennia later, in the 16th and 17th
centuries, the first foundations for analyzing games of chance were laid out. John von Neumann
eventually turned game theory into a rigorous academic subject, culminating with his celebrated 1944
book Theory of Games and Economic Behavior co-authored with Oskar Morgenstern.

Ever since, the agents participating in the game have been typically considered to be strategic, selfish,
egoistic, or sometimes altruistic, but they would essentially always follow the rules of the game. In this
paper, we take game theory back to Sun Tzu’s origins of lies and deception. We believe this take on
game theory opens up a whole class of exciting problems that have remained largely unexplored.

Let us introduce our paper with a concrete puzzle. A game show host puts four boxes in front of you,
each with a value written on top: 8, 7, 5 and 4. Each box contains its advertised amount of value, but
there is a catch: one box is a lie and contains nothing! You have to choose one box, and you will receive
the money inside. What is your strategy to win the maximum possible amount of money?

You quickly understand that there is no way to guarantee winning any money: no matter which box
you pick, it could be empty. However, what if you flipped a fair coin and chose the first box (with value
8) if the coin landed on heads and the second box (with value 7) if it landed on tails? At most one of
those boxes can be empty, so with probability at least 50%, you do not choose the empty box, so in
expectation you earn at least min(8, 7)/2 = 3.5. But can you do even better? Before reading on, we
would like to encourage you to think about this puzzle for a moment.

This problem can be generalized to n boxes promising monetary rewards v1, . . . , vn. At most t < n
boxes are a lie, and one has to choose ℓ < n boxes, winning the total inside these ℓ boxes. While we
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presented the problem as a game show puzzle, one can think of real-life situations where the same
setup emerges: say you are running an auction for ℓ identical perishable items (e.g., food close to the
expiration date, seat upgrades to first class on tomorrow’s flight, leftover concert tickets). People place
n bids v1, . . . , vn, and you want to maximize your revenue. For transparency reasons, you want to
publish the auction mechanism prior to the auction, and you worry that doing so might lead to the
emergence of malicious bidders that bid adversarially to win the auction and then walk away after
winning an item, leaving you with unsold items. Provided no binding terms enforce honoring the
winning bids, your best course of action is to design your mechanism to account for the presence of a
certain threshold t on the number of malicious bidders.

Another example where the problem occurs is when we have to choose ℓ individuals out of n applicants,
like when putting together a university chess team. Again, up to t applicants could be imposters,
bragging about their chess strength (the number on their box) despite barely knowing the rules of chess
(the box is empty).

Let us now return to our example with four boxes with values v = (8, 7, 5, 4). The first thought
following the fair-coin strategy would be to use a biased coin to balance the expectations from the
two cases: choose box 1 with probability p1 and box 2 with probability p2 = 1− p1. Then, if the first
box is empty, we get an expectation of 7 · p2, while if the second box is empty, we get an expectation
of 8 · p1. Setting the two products to be equal gives us the solution p = ( 7

15 ,
8
15), giving in both

cases an expectation of 7·8
15 ≈ 3.73, which is better than our previous expected value of 3.5. Going

further, one would think of generalizing the idea to randomize between all four boxes: choose each
box i ∈ {1, . . . , 4} with probability pi such that

∑4
i=1 pi = 1 and v1 · p1 = · · · = v4 · p4. Solving

the ensuing equations yields the solution p = ( 35
201 ,

40
201 ,

56
201 ,

70
201). In all four cases (i.e., one for each

possibility of which box is empty), the incurred expectation is (4− 1) · 280201 ≈ 4.18, which is better than
our last solution — but is this the best possible? Intuitively, one could think that the more boxes we
consider, the better our expectation will be. However, this turns out not to be the case. In particular,
ignoring box 4 is a good idea: suppose we require that

∑3
i=1 pi = 1 and v1 · p1 = · · · = v3 · p3. Solving

the equations yields p = ( 35
131 ,

40
131 ,

56
131 , 0), incurring in all three cases (depending on which box out

of the first three is empty) an expectation of (3 − 1) · 280131 ≈ 4.27, which turns out to be the unique
optimal solution.

The Problem. More formally, the boxes problem can be formulated as follows: n boxes indexed
by [n] := {1, . . . , n} are given with promised monetary amounts v = (v1, . . . , vn) written on them.
Without loss of generality, assume v1 ≥ · · · ≥ vn > 0.1 It is known that t < n of them are empty,2
termed byzantine, following tradition in the distributed computing literature; the other n− t contain
the advertised amounts. No prior over which boxes are byzantine is provided other than the fact that
there are t of them. The goal is to select ℓ < n boxes to open so as to maximize the worst-case expected
total amount of money in the selected boxes. Formally, a randomized algorithm is sought that samples
from a probability distribution p over size-ℓ subsets of [n] such that the quantity value(p) is maximized,
which is defined as the minimum over all possibilities for the size-t set B ⊆ [n] of byzantine boxes of
the expectation incurred by p assuming boxes in B are empty and the other boxes have the advertised
values. See Section 3 for a fully formal definition and further discussion of the model.

Our Contribution. We give linear-time algorithms for sampling from a distribution p maximizing
value(p).3 We start by doing this for the case ℓ = 1, for which we show that the approach we used to
solve our four-boxes example is indeed correct in general: a value(p)-maximizing distribution p always
exists such that for some t+ 1 ≤ i ≤ n we have v1 · p1 = · · · = vi · pi and pi+1 = · · · = pn = 0. For a
fixed i, there exists a single such distribution, given by setting p1, . . . , pi proportionally to 1

v1
, . . . 1

vi
.

1Boxes i with vi = 0 can be safely ignored. This removes edge cases in the analysis.
2Alternatively, at most t are empty. This does not change the analysis.
3The underlying distribution may have exponentially-large support, so outputting it explicitly may not be possible. We

also show that, at the cost of an extra factor of n in the time complexity, an explicit p (with linearly-sized support) can be
computed.
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Finding the i maximizing the expectation can then be easily achieved in linear time. To show that
an optimal solution maximizing value(p) has this shape, we combine an exchange argument with
combinatorial reasoning about the dual of a linear program (LP). Afterwards, we move on the the
general-ℓ case, for which such reasoning no longer suffices. Instead, we combine multiple techniques
to recover a linear-time algorithm for this case as well. First, we use prior results on randomized
rounding to show that it suffices to reason about the marginals of p along the n boxes. Then, we use a
succession of exchange arguments to prove increasingly more refined forms of an optimal solution.
The final form can be elegantly interpreted through a visual metaphor: pouring ℓ units of water into n
unit-volume vessels. Using this metaphor, we devise a linear-time two-pointer approach that iterates
through possible solutions in a principled manner and returns an optimal one. A technical overview of
our results and techniques can be found in Section 4.

2 Related Work

Our paper brings together multiple fields often studied separately. In the following, we outline numerous
connections between byzantine elements (and, more specifically, our selection problem) and other areas
studying related notions and problems. Outlining these connections can lead to fruitful interdisciplinary
future insights.

Fault-Tolerant Distributed Computing. The fault-tolerant distributed computing literature often
considers a setup with n parties, out of which at most t are corrupted and may exhibit arbitrary
deviations from the intended behavior. Following the tradition of the field, such parties are called
byzantine, while the other (at least) n− t parties are referred to as honest and will follow the intended
behavior. One of the most prominently-studied problems is binary Byzantine Agreement (BA), where
each party i has an input xi ∈ {0, 1}, and must eventually provide an output yi ∈ {0, 1}, such that
any two honest parties give the same output (the agreement condition) and this output is moreover
the input of some honest party (the validity condition). Depending on additional assumptions (e.g.,
synchronous communication, cryptographic setup, randomization), the difficulty of designing a correct
BA protocol varies, with protocols resilient against t < n/2 corruptions existing in certain settings. The
core challenge here lies in the global lack of trust: nobody can be sure who are the corrupted parties,
and hence protocols resilient against even a small number of corruptions can be highly non-trivial. In
contrast, assuming the existence of a trusted third party (TTP) that is guaranteed to be honest makes
BA essentially trivial: all parties send their xi’s to the TTP, which takes a majority vote and then
sends back the outcome to all parties. Consequently, efforts in the literature boil down to simulating
the behavior of the TTP in an untrusted setting. The keen reader might have already noted that the
simple TTP protocol above fails to work past the t < n/2 corruption threshold (if too many parties are
byzantine, they can outnumber the honest votes), and, in fact, no TTP protocol can surpass this bound,
implying that t < n/2 is best possible in the distributed setting too. Hence, from a fresh point of view,
understanding the difficulty of problems in fault tolerance begins with understanding their difficulty in
the TTP setting. While this was mostly straightforward for binary BA (and is hence rarely considered),
the story becomes interesting again for agreement problems over other domains:

When the inputs are real numbers, Honest-Range Validity [26] requires that the agreed-upon value is
between the smallest and largest honest inputs. A stronger requirement stands in variations of Median
Validity [62, 18, 51], asking that the output is close to the median of the honest inputs. An orthogonal
generalization of Honest-Range Validity is when the inputs are D-dimensional real vectors, where
Convex Validity [63, 53] requires the output vector to be in the convex hull of the honest input vectors.
This has been further generalized to abstract convexity spaces, including graphs and lattices [19, 57].
When the inputs are linear orders over a set of alternatives, also known as rankings in social-choice
theoretic terms, [52] considers Pareto Validity, requiring that whenever all honest inputs rank a above b,
so does the output ranking. The same paper also studies a second problem, requiring an output ranking
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that is close to the Kemeny median of the honest rankings. Another notion inspired by social-choice is
that of Voting Validity [65].

Note how all these problems are non-trivial even in the TTP setting: how should the TTP aggregate n
votes to yield a valid outcome when t of the votes might be corrupted and should not be considered?
The problem we study is precisely of this flavor: the TTP receives the box values v1, . . . , vn and must
output a set of boxes to open to minimize the loss from empty boxes4 (possibly using randomization). In
general, recent results indicate that the difficulty of solving the “centralized” TTP problem often matches
that of its decentralized version, at least when considering BA with non-trivial validity conditions
[15, 16, 20]. Hence, it is imperative to understand the difficulty of the centralized problem in more
settings, and our paper sets out to do just this for our selection problem.

Malice in Game Theory. While most of game theory considers rational (selfish) agents, a few works
consider the presence of malicious agents, who derive their utility from making the system perform
poorly or from others’ disutility. This has been particularly investigated in distributed settings, where
considering malicious actors is the norm. An excellent survey of work at the interface of rational
and malicious behavior can be found in [55], which also introduces the Price of Malice, quantifying
the degradation of the performance of a system of rational agents with the introduction of malicious
actors.5 The same paper analyzes the price of malice in a virus inoculation game, and subsequent
papers study it and other notions of malice in other classes of games [58, 6, 13]. Particularly relevant
to the distributed computing field is the concept of BAR fault tolerance [2], which requires distributed
protocols to withstand Byzantine, Altruistic, and Rational (BAR) behavior. Specifically, they must
tolerate a constant fraction of Byzantine agents, as is standard, while ensuring that the remaining agents
— who are rational — have sufficient incentives to follow the protocol. Subsequent work adopted the
notion and applied it in a variety of distributed settings, spanning theory and practice [46, 17, 47]. A
number of works define fault-tolerant solution concepts, e.g., fault-tolerant Nash Equilibria, and apply
them to study the fault tolerance of various games [28, 39]. Also relevant are the appealing results in
[35], which find that “large” games are naturally fault-tolerant. Malice can also manifest as spite. In
this context, [10, 54] examine auctions with spiteful agents, i.e., agents who derive utility from others’
disutility. Conversely, several works consider altruistic agents (which, in the previous context, referred
to agents who follow the protocol regardless of incentives, but this is not a strict requirement), modeled
as agents for whom larger utilities of others translate to larger utilities for themselves [38, 50].

Stackelberg and Security Games. Our problem can be seen as a zero-sum Stackelberg (maxi-min)
game where the leader commits to a (potentially randomized) strategy of picking ℓ boxes, and then
the follower (i.e., the adversary), knowing the leader’s choice, chooses t boxes to nullify. The leader
(follower) attempts to maximize (minimize) the expected sum of the ℓ selected boxes post-nullification.
Related is the class of security games, which have received extensive attention in recent years [60]. In
one variant [43], there are n potential targets, an attacker, and a defender. The defender moves first,
chooses t targets to protect (using a potentially randomized strategy), and then the attacker chooses ℓ
targets to attack, knowing the strategy of the defender. The utilities of the two players additively depend
solely on attacked targets, with the goal of the attacker being to attack undefended targets and that of
the defender being to protect attacked targets, but the game is not necessarily zero-sum. The existing
literature largely concerns the non-zero-sum case with ℓ = 1 attacked targets. On the computational
front, security games are largely amenable to techniques from combinatorial optimization [64], often
linear programming [42]. Results become scarcer when seeking more efficient algorithms: [41] for the
ℓ = 1 case, and [43] for the general-ℓ case if instead of Stackelberg Equilibria we require Nash Equilibria,
the former becoming computationally demanding. Our problem corresponds to a zero-sum variant of
the previously described security game with the order the attacker and defender play in reversed. We
note that this does not fundamentally change the game since for zero-sum games, the maxi-min and

4Technically, maximize the win from non-empty boxes (the sum of the two is non-constant, so there is a distinction).
5The notion is inspired by the celebrated Price of Anarchy, which instead targets the difference between selfish and

collaborating agents.
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mini-max values coincide by von Neumann’s theorem [56]. Stackleberg and Nash Equilibria are also
closely tied in the zero-sum case, so the algorithm of [43] can be used for our setting, but it is arguably
more complicated than our approach (and quadratic instead of linear).

Robust Combinatorial Optimization. An active area of operations research concerns optimization
under uncertainty [7]: when there is uncertainty in the constraints or objective. For our purposes, let
us restrict ourselves to a problem template where only the objective is uncertain: the (not necessarily
continuous) feasible region is known, denoted by F ⊆ Rn, and we are interested in maxx∈F cTx.
Instead of knowing c, we only know an uncertainty set U such that c ∈ U . No probability distribution
over U is supplied: we seek a solution x that maximizes cTx in the worst-case, making for the maxi-
min objective maxx∈F minx∈U cTx. This setup is very flexible, as F can range from a polytope in
the continuous case to the set of s-t paths or spanning trees of a graph in the discrete one. The
maxi-min objective can be replaced with regret-inspired variants. The uncertainty set U can take
various shapes, with the two most prominent ones being discrete uncertainty: UD = {c1, . . . , ck} and
interval uncertainty: UI = [a1, b1]× · · · × [an, bn]. Interval uncertainty admits a variant in the spirit
of byzantine fault-tolerance, introduced in [8]: given a threshold Γ define Γ-interval uncertainty UΓ

I

such that c ∈ UΓ
I if c ∈ UI and |{i : ci ̸= bi}| ≤ Γ. See [1, 40, 33, 12, 34] for excellent surveys of

results and techniques. One of the basic cases considered in the robust optimization literature concerns
F = {x ∈ {0, 1}n :

∑n
i=1 xi = ℓ}, the so-called Selection Problem: see [40] for a compilation of results

under various objective and uncertainty set assumptions. Of particular interest to us is the case with
the normal maxi-min objective and Γ = t-interval uncertainty for UI = [0, v1] × · · · × [0, vn]: this
corresponds exactly with choosing to open ℓ boxes, out of which the adversary can nullify t. Note,
however, that this only models the deterministic part of our paper (which is straightforward): it cannot
model committing to a randomized strategy of which ℓ boxes to open to which the adversary replies by
nullifying t so as to minimize the expectation. One of the few papers considering such randomized
strategies is [49], where the authors show that for discrete and interval uncertainty sets, it is possible to
optimize the regret objective in polynomial time as long as (non-robust) optimization over F is feasible
polynomially (which trivially holds for the Selection Problem). Note that their result does not target
Γ-interval uncertainty and is for the regret objective, hence not applicable to us. The paper [49] also
refers to an unpublished (and not publicly available) 2012 manuscript of Bertsimas, Nasrabadi, and Orlin,
titled “On the power of nature in robust discrete optimization,” claiming a similar result for our maxi-min
objective, this time more generally applying to any pair (F ,U) such that (non-robust) optimization
over both F and U is feasible polynomially (which is the case in our setting). Modulo the fact that
their paper cannot be reasonably retrieved, their result implies polynomial solvability for our problem
(most likely using continuous optimization techniques like LP, and hence not strongly-polynomial).
Our approach to the problem will be different, leading to a better, linear-time, algorithm.

An exposition of further related work is deferred to the appendix, touching on: election bribery, online
decision-making (adversarial bandit and expert learning), (byzantine) secretary problems, prophet
inequalities, and statistical learning with adversarial noise.

3 Preliminaries

Sets and Distributions. Given a non-negative integer k, write [k] := {1, 2, . . . , a}. Given a set
S and a non-negative integer k, we write S(k) := {S′ ⊆ S | |S′| = k} for the set of k-element
subsets of S. For finite S, we write ∆(S) := {p : S → [0, 1] |

∑
s∈S ps = 1} for the set of

probability distributions over S. For technical reasons, given a non-negative number x, we also define
∆x(S) := {p : S → [0, 1] |

∑
s∈S ps = x}, the set of what we will call pseudo-distributions of sum x

over S. Note that∆1(S) = ∆(S).

Setup. We consider a setting with n boxes indexed by the set [n]. Each box i ∈ [n] has a real number
vi > 0 written on it. For ease of presentation, except where stated otherwise, we will assume that
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v1 ≥ · · · ≥ vn. Each box imay either be honest, in which case it contains vi units of money, or byzantine,
in which case it contains no money, without loss of generality. Assume B ⊆ [n] is the set of byzantine
boxes, then [n] \B is the set of honest boxes. Given the set of byzantine boxes B, the payoff incurred by
opening box a box i is pay(i, B) = vi if i /∈ B and pay(i, B) = 0 otherwise. The total payoff incurred
by opening a set of boxes S ⊆ [n] is defined additively as pay(S,B) :=

∑
i∈S pay(i, B).

Problem Definition. We are interested in designing a (for now deterministic) mechanism M that,
given n, the mapping v : [n] → R+ and two numbers 1 ≤ t, ℓ < n select a size-ℓ subset of boxes
M(n, v, t, ℓ) = S ⊆ [n] to open such that the worst-case payoff is maximized with respect to all options
for the size-t subset B ⊆ [n] of byzantine boxes.6 Formally, we want to design aM such that:

M(n, v, t, ℓ) ∈ argmax
S∈[n](ℓ)

min
B∈[n](t)

pay(S,B) (1)

The right-hand side of Eq. (1) can be seen as a game between the mechanism and an adversary: the
mechanism picks the set S of boxes to open, then the adversary (knowing S) selects the set B of
byzantine boxes. This is a zero-sum game where the mechanism aims to maximize the payoff, while the
adversary to minimize it.7

Let us define value(S) := minB∈[n](t) pay(S,B), in which case Eq. (1) asks that the selectedS maximizes
value(S). Our problem, as stated so far, is easy to solve: from any set S of selected boxes, the adversary
will choose to nullify the largestmin{t, ℓ} values by including the corresponding boxes in B. Hence, to
maximize payoff, the mechanism should select boxes with the ℓ largest values, from which the largest
min{t, ℓ} will be nullified by the adversary.

Theorem 1. Among deterministic mechanisms, selecting S∗ = {1, 2, . . . , ℓ} achieves the highest
possible payoff:

max
S∈[n](ℓ)

min
B∈[n](t)

pay(S,B) = value(S∗) =

{ ∑ℓ
i=t+1 vi t < ℓ

0 t ≥ ℓ

As an immediate consequence, deterministic mechanisms fail to provide any meaningful guarantees
in the simplest case t = ℓ = 1. Naturally, the next step is to allow for randomization, in which case
we need to discuss the power of the adversary, i.e., how much they are allowed to know about the
random decisions of the mechanism prior to selecting B. For instance, a strong adversary8 knows both
the mechanism and the randomness before picking which boxes are byzantine. Since knowing the
randomness renders any randomized mechanism deterministic, randomization does not help against a
strong adversary. On the other hand, an oblivious/weak adversary has access to the mechanism, but not
to the random bits used. Formally, the game played against an oblivious adversary proceeds as follows:
the mechanism outputs a probability distribution over sets S of ℓ boxes each, say p ∈ ∆

(
[n](ℓ)

)
, then

the adversary (knowing p) selects the set B of at most t byzantine boxes,9 and finally a set S ∼ p is
sampled, incurring a payoff of pay(S,B). Before the final set S is sampled, the outcome of the game is
a probability distribution over possible payoffs, allowing for the formulation of various optimization
goals. Most prominently, one can optimize for the expected payoff, but this is not the only option: a
risk-averse mechanism user might prefer an expected payoff of 99 that guarantees a payoff of at least
50 in all realizations of the randomness to an expected payoff of 100 that leaves a positive probability
of getting payoff 1. In the paper, we will assume the expectation objective and an oblivious adversary,
unless stated otherwise. With these assumptions we seek a randomized mechanismM such that:

M(n, v, t, ℓ) ∈ argmax
p∈∆([n](ℓ))

min
B∈[n](t)

ES∼p[pay(S,B)] (2)

6Note that requiring |S| ≤ ℓ and |B| ≤ t instead of |S| = ℓ and |B| = t would not change the problem.
7In fact, Eq. (1) corresponds to the game-theoretic maxi-min solution concept.
8Also known as an adaptive offline adversary in the context of online algorithms.
9Since the adversary plays second, it does not help them to randomize their strategy.
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As before, we define value(p) := minB∈[n](t) ES∼p[pay(S,B)], in which case Eq. (2) asks that the
selected p maximizes value(p).

4 Results and Technical Overview

The case ℓ = 1 allows for simpler arguments and characterizations of optimal solutions (and generally
less machinery). To solve it, we will use a natural exchange argument to show that an optimal solution
satisfying v1 · p1 ≥ · · · ≥ vn · pn always exists. Restricting our search to such distributions p is
particularly useful because we then know that the worst-case set of byzantine boxes is {1, . . . , t}. These
observations let us cast the problem as a simple linear program (LP). Reasoning combinatorially about
its dual then shows that an optimal solution taking a very elegant form always exists. In particular,
this solution satisfies v1 · p1 = · · · = vi · pi and pi+1 = · · · = pn = 0, for some t+ 1 ≤ i ≤ n. In other
words, it is optimal to select a prefix of boxes 1, . . . , i of length at least t+ 1 and put all the probability
mass on it such that the expected values vj · pj are equal on the prefix. For a fixed i, the resulting
distribution is unique and given by setting (p1, . . . , pn) proportionally to

(
1
v1
, . . . , 1

vi
, 0, . . . , 0

)
, in

which case one can check that value(p) = i−t∑i
j=1

1
vj

. It is then easy to compute this value in linear time

for all t+ 1 ≤ i ≤ n and take the maximum. We prove the required claims in section Section 5.

Theorem 2. Assume ℓ = 1 and define pi for t + 1 ≤ i ≤ n to be the unique distribution such that(
pi1, . . . , p

i
n

)
is proportional to

(
1
v1
, . . . , 1

vi
, 0, . . . , 0

)
, in which case value(pi) = i−t∑i

j=1
1
vj

. Then, among

distributions p ∈ ∆([n]), the maximum value(p) is attained at one of pt+1, . . . , pn, and we can determine
which one in linear time.

For the harder general case, it is no longer the case that a value-maximizing distribution of such an
attractive shape exists. First and foremost, this is because we are now dealing with distributions over
size-ℓ subsets of [n]. To overcome this first obstacle, linearity of expectation gives us that value(p) for
some p ∈ ∆([n](ℓ)) is uniquely determined by the marginals p′i := PS∼p′(i ∈ S) for i ∈ [n]. Naturally,
the marginals are between 0 and 1 and sum up to ℓ since the sampled set S satisfies |S| = ℓ, from
which p′ ∈ ∆ℓ([n]). Note p′ is not just a distribution scaled up by a factor of ℓ because of the constraint
that p′i ∈ [0, 1] for i ∈ [n]. Still, it would be convenient to optimize directly over p′ ∈ ∆ℓ([n]), a much
lower-dimensional object. Perhaps surprisingly, this is something that we will be able to do by invoking
results on randomized rounding: for any p′ ∈ ∆ℓ([n]), there exists p ∈ ∆([n](ℓ)) such that p′ gives
the marginals of p, i.e., p′i = PS∼p(i ∈ S) for i ∈ [n], and we can sample from such a p in linear time.
Hence, our new goal will be to find a p′ ∈ ∆ℓ([n]) maximizing the appropriately redefined value(p′).

Having retaken the problem into the realm of combinatorial tractability, we then use a similar exchange
argument to show that a value-maximizing p′ exists such that v1 · p′1 ≥ · · · ≥ vn · p′n. Past this point,
unfortunately, optimal solutions no longer exhibit the elegant form that we could prove by considering
the dual in the ℓ = 1 case.10 To pass this hurdle, we take a different approach, proving a series of
more refined forms of the previous inequality. The last of these can be attractively visualized through
a physical metaphor involving pouring ℓ units of liquid into a histogram consisting of n rectangular
vessels where box i corresponds to a vi × (1/vi) vessel. The amount of water poured into each vessel i
corresponds to p′i, justifying why the rectangles were chosen to have area 1. The pseudo-distributions p′
that we will need to consider will be uniquely determined by the water level in the first container. This
way, we will simulate in linear time (in a two-pointer fashion) the process of continuously decreasing
the water level in the first container and find the moment in time where the value of the corresponding
p′ is maximized. We note that this algorithm can, of course, also be used when ℓ = 1, but the details are

10We can still cast the problem as an LP and take its dual, but this requires adding the constraints p′i ≤ 1 to the primal
since they no longer follow from the sum constraint, leading to a dual that is harder to analyze and no longer implies the
required property.
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considerably trickier and do not fully exploit the structure present in that case. All these considerations
are carried out in Section 6.

Theorem 3. Assume ℓ ≥ 1. We can sample from a distribution p ∈ ∆
(
[n](ℓ)

)
that maximizes value(p)

in linear time. If required, an explicit such p can be computed in O(n2) time.

5 The Case ℓ = 1

As a warm-up, to build intuition and avoid some notational burdens of the general case, we begin with
the case ℓ = 1, where the goal is to select a single “winner” box with the highest value possible. In
the presence of t byzantine boxes, for randomized mechanisms, this means outputting a distribution
p ∈ ∆([n]) maximizing

value(p) = min
B∈[n](t)

Ei∼p[pay(i, B)] = min
B∈[n](t)

∑
i/∈B

vi · pi =
n∑

i=t+1

xi (3)

where x1, . . . , xn are the values v1 · p1, . . . , vn · pn ordered such that x1 ≥ · · · ≥ xn. The first equality
follows by linearity of expectation, while the second holds because the best strategy for the adversary
is to choose the byzantine boxes have the highest t values vi · pi.

Lemma 4. There exists a distribution p ∈ ∆([n])maximizing value(p) that satisfies v1·p1 ≥ · · · ≥ vn·pn.

Proof. Among distributions p maximizing value(p), consider one such that for any i < j with vi = vj
we have pi ≥ pj . We show that this p has the required property. Assume the contrary, then for some
i < j we have vi · pi < vj · pj . Recall that vi ≥ vj , and moreover, since in case vi = vj the condition
vi · pi < vj · pj reduces to pi < pj , which can not hold by our choice of p, we have vi > vj . Let us now
construct p′ : [n]→ [0, 1] as follows:

p′k =


vj ·pj
vi

k = i
vi·pi
vj

k = j

pk k /∈ {i, j}

First, note that the values v1 · p1, . . . , vn · pn and v1 · p′1, . . . , vn · p′n coincide except for the i’th and
j’th entries being swapped, so value(p) = value(p′). Furthermore, it turns out that p′ does not use the
whole available probability mass:

n∑
k=1

p′k = p′i + p′j +
n∑

k=1
k/∈{i,j}

pk = p′i + p′j + 1− pi − pj =

vj · pj
vi

+
vi · pi
vj

+ 1− pi − pj = 1− (vi − vj)

(
vj · pj − vi · pi

vi · vj

)
< 1

Where the last inequality holds because vi > vj and vi·pi < vj ·pj . Letα > 1 be such that
∑n

k=1 p
′
k = 1

α .
Then, the distribution p′′ ∈ ∆([n]) given by p′′k = α · p′k satisfies value(p′′) = α · value(p) > value(p),
contradicting the optimality of p.

With this lemma in place, let us restrict ourselves to distributions p satisfying v1 · p1 ≥ · · · ≥ vn · pn.
For this case Eq. (3) simply becomes value(p) =

∑n
i=t+1 vi · pi.With this observation, we now prove

the following lemma, implying Theorem 2:

Lemma 5. There exists a distribution p ∈ ∆([n]) maximizing value(p) such that for some i ≥ t+ 1 we
have v1 · p1 = · · · = vi · pi and pi+1 = · · · = pn = 0.
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Proof. By Lemma 4, requiring that v1 · p1 ≥ · · · ≥ vn · pn does not change the maximum achievable
value(p), so let us restrict ourselves to this case. As a result, we know that value(p) =

∑n
i=t+1 vi · pi,

so a maximizing p is a solution to the following linear program with n variables and 2n constraints:

maximize
∑n

i=t+1 vi · pi
subject to vi+1 · pi+1 − vi · pi ≤ 0, i = 1, . . . , n− 1

pi ≥ 0, i = 1, . . . , n
n∑

i=1

pi = 1

Let us take its dual. For this purpose, introduce variables y1, . . . , yn−1 ≥ 0 corresponding to constraints
of the first kind and a variable T ∈ R corresponding to the last constraint. For convenience, we define
y0 = yn = 0 and v′1, . . . , v

′
n such that v′i = vi if i ≥ t+ 1 and v′i = 0 otherwise. Then, the dual is:

minimize T
subject to T − vi · yi + vi · yi−1 ≥ v′i, i = 1, . . . , n

yi ≥ 0, i = 1, . . . , n− 1
yi = 0 i ∈ {0, n}

We want to find the optimum value of the dual. This amounts to understanding for which values of T
the dual is feasible. Let us fix a value T and study the feasibility of the dual.

Note that constraints of the first kind in the dual can be conveniently rewritten as:

yi − yi−1 ≤
T − v′i
vi

=
T

vi
− [i ≥ t+ 1]

where [i ≥ t+ 1] := 1 if i ≥ t+ 1 and 0 otherwise. Denote the right-hand side of the inequality with
cTi , which is a constant in terms of the fixed T . Hence, we want to check the feasibility of:11

yi − yi−1 ≤ cTi , i = 1, . . . , n
yi ≥ 0, i = 1, . . . , n− 1
yi = 0 i ∈ {0, n}

It is natural to reinterpret this in terms of δi := yi − yi−1:

δi ≤ cTi , i = 1, . . . , n∑i
j=1 δj ≥ 0, i = 1, . . . , n− 1∑n
j=1 δj = 0

If we relax the last constraint to
∑n

j=1 δj ≥ 0, this is clearly feasible if and only if setting δi = cTi
satisfies the non-negativity constraints. Doing so might however lead to

∑n
j=1 δj > 0. If this is the

case, it suffices to decrease δn to make the total equal 0, so this is not a problem.

As a result, a value of T is achievable for the dual if and only if
∑i

j=1 c
T
j ≥ 0 for all 1 ≤ i ≤ n. For a

fixed i, this is equivalent to:
i∑

j=1

T

vj
−

i∑
j=1

[j ≥ t+ 1] = T ·
i∑

j=1

1

vj
−max{0, i− t} ≥ 0 ⇐⇒ T ≥ max{0, i− t}∑i

j=1
1
vj

For i ≤ t, this simplifies to T ≥ 0, and otherwise it simplifies to a stricter inequality, so the case i ≤ t
can be discarded from the condition. We hence get that the optimum value of the dual is:

T ∗ = max
t+1≤i≤n

i− t∑i
j=1

1
vj

11The accustomed reader will notice the similarity with the linear program for distances in the graph n → · · · → 0.
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We will now give a feasible solution p∗ to the primal with the property required in the statement of the
lemma. We will show that p∗ achieves value T ∗ implying, by weak duality, that it is optimal for the
primal, concluding the proof.

The distribution p∗ is constructed as follows: for j > i∗, we set p∗j = 0, while for j ≤ i∗ we set
p∗j =

1
vj ·C , where C :=

∑i∗

k=1
1
vk

is a normalizing factor. First, p∗ is clearly a well-defined distribution,
as its entries sum up to 1 and are non-negative. Moreover, vj · pj is 1

C for j ≤ i∗ and 0 for j > i∗,
implying that it is a feasible solution for the primal with the property required in the lemma statement.
It remains to show that p∗ achieves a value of T ∗ in the primal to get the optimality of p∗, completing
the proof. This amounts to a simple algebraic verification.

6 The General-ℓ Case

The general case concerns value-maximizing distributions p ∈ ∆([n]ℓ), i.e., over size-ℓ subsets of [n].
For ℓ > 1, these are combinatorially difficult to reason about. However, by linearity of expectation, we
can write ES∼p[pay(S,B)] =

∑
i/∈B vi · PS∼p(i ∈ S), so much of the information contained in p is

redundant: the expectation only depends on themarginals p′i := PS∼p(i ∈ S) for all i ∈ [n]. In particular,
ES∼p[pay(S,B)] =

∑n
i=1 vi ·p′i. Note that the marginals define a pseudo-distribution p′ ∈ ∆ℓ([n]): they

are between 0 and 1 and sum up to ℓ.12 Trying to optimize for p′ directly seems particularly attractive
given its lower-dimensional nature. In particular, instead of optimizing for value(p) among p ∈ ∆([n]ℓ),
we can optimize for value(p′) := minB∈[n](t)

∑n
i=1 vi · p′i among p′ ∈ ∆ℓ([n]). While attractive, this

approach could be prone to a serious pitfall: it could be that value-maximizing pseudo-distributions p′
cannot occur as the marginals of a true-distribution p. However, perhaps surprisingly, this is never the
case: any pseudo-distribution p′ can be (efficiently) implemented through a true distribution p (see the
appendix for the proof, which directly invokes results from [32, 4]):

Lemma 6. Let ℓ ≥ 1 and p′ ∈ ∆ℓ([n]) be arbitrary. Then, there exists a distribution p ∈ ∆
(
[n](ℓ)

)
such

that PS∼p(i ∈ S) = p′i for i ∈ [n]. Moreover, such a p exists with support of size at most n and can be
computed in O(n2) time given p′. If computing p explicitly is not required, we can sample from such a p in
O(n) time per sample.

As a result, our new goal is to give a linear-time algorithm outputting a pseudo-distribution p′ ∈ ∆ℓ([n])
that maximizes value(p′). The rest of the paper is dedicated to this task. Knowing p′, we can then apply
Lemma 6 to get our main result: Theorem 3.

6.1 Value-Maximizing Pseudo-Distributions

In order not to overburden the notation, henceforth, we drop the apostrophe and ask for a pseudo-
distribution p ∈ ∆ℓ([n]) that maximizes value(p). It will also be convenient to, without loss of generality,
allow the elements in p to sum to at most ℓ instead of exactly ℓ: we write p ∈ ∆≤ℓ([n]) from now on to
signal this fact.

To achieve our goal, we would now like to show similar structural results to Lemmas 4 and 5. For
Lemma 4, a similar argument shows that it suffices to consider pseudo-distributions satisfying v1 · p1 ≥
· · · ≥ vn · pn. However, an immediate analog of Lemma 5 is not possible. Instead, by going through
an intermediary lemma, we show that it suffices to restrict ourselves to what we call nice pseudo-
distributions, which admit a nice geometric interpretation through a water-in-vessels analogy. We
achieve our final goal by a careful, efficient simulation of continuously decreasing the water level in the
first vessel. We begin with the following lemma, whose proof mildly adapts that of Lemma 4 and then
uses a final exchange argument to obtain the equalities (see appendix).

12By linearity of expectation:
∑n

i=1 p
′
i =

∑n
i=1 PS∼p(i ∈ S) = ES∼p[|S|] = ℓ.
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(a) Example instance for n = 7, t = 1, ℓ = 5.

area = 5 

E = 7

8
6

4

8
Area = 5

i = 5

2

Area = 5

(b) The maximal 7-nice pseudo-distribution p.

Figure 1: Consider an example with n = 7, t = 1, ℓ = 5 and v = (12, 8, 8, 6, 4, 3, 2). This is depicted in
Fig. 1a by rectangles with heights given by v, each of area 1. One can understand pseudo-distributions p using a
water-filling metaphor: each rectangle corresponds to a container comprising one unit of volume and each value
pi ∈ [0, 1] corresponds to pouring pi units of water into the i-th container. By the choice of widths, pouring pi
units of water into the i-th container makes the water rise to height hi := vi · pi inside the container. Given
(t, ℓ), a pseudo-distribution is (E, i)-nice if: (0) it uses at most ℓ units of water; (1) the water rises to level E in
the first t+ 1 containers; (2) each container k among the first i is saturated for E, i.e., either the water rises to
height E in k or E < vk and k is full; (3) container i+ 1 (if it exists) is not saturated for E; (4) all subsequent
containers are empty. Given E, there can exist at most one maximal E-nice pseudo-distribution: fill in the first
t+1 containers to level E, if this exceeds the water budget ℓ, then no solution exists, otherwise continue in order
through the next containers, saturating them until there is not enough water left to saturate current container.
This is demonstrated for E = 7 in Fig. 1b: the first 3 ≥ t+ 1 containers rise to level 7, the next two containers
have p4 = p5 = 1 (hence i = 5), the following container is not saturated: p6 = 2

3 , and the last container is empty:
p7 = 0. Overall, p = ( 7

12 ,
7
8 ,

7
8 , 1, 1,

2
3 , 0), whose entries sum up to ℓ = 5.

Lemma 7. There exists a pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing value(p) satisfying v1 · p1 =
· · · = vt+1 · pt+1 ≥ · · · ≥ vn · pn.

Definition 8. A pseudo-distribution p ∈ ∆≤ℓ([n]) is (E, i)-nice for some E ≥ 0 and i ≥ t + 1 if the
following conditions are satisfied:

1. vk · pk = E for all 1 ≤ k ≤ t+ 1;
2. pk = min{1, E

vk
} for all 1 ≤ k ≤ i;

3. pi+1 < min{1, E
vi+1
};13

4. pk = 0 for all i+ 2 ≤ k ≤ n.

Moreover, p is E-nice if it is (E, i)-nice for some i ≥ t+ 1 and it is nice if it is E-nice for some E ≥ 0.

An E-nice pseudo-distribution p ∈ ∆≤ℓ([n]) is maximal (for E) if there is no E-nice pseudo-distribution
p′ ∈ ∆≤ℓ([n]) such that p′i ≥ pi for all 1 ≤ i ≤ n and p′i > pi for at least one i.

The notion of nice pseudo-distributions might appear complex at first. However, it has an elegant
geometric interpretation by a water-filling metaphor presented in Fig. 1 and its caption. The lemma
below shows that it suffices to look at nice pseudo-distributions. Intuitively, this can be proven by
starting from a non-nice distribution and moving water to the left until the distribution becomes nice,
never decreasing the value of the pseudo-distribution in the process. The formal proof (deferred to the
appendix) proceeds with a rather technical exchange argument.

Lemma 9. There exists a pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing value(p) that is nice.

Before proceeding further, we emphasize the observation made in the caption of Fig. 1: Given E,
there exists at most one maximal E-nice pseudo-distribution, obtained by the presented left-to-right

13Provided i+ 1 ≤ n, otherwise we consider the last two conditions vacuously true.
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water-filling argument. In fact, something even stronger holds: E-nice pseudo-distributions are linearly
ordered by the amount of water used: the only way to create non-maximal E-nice pseudo-distributions
is to follow the same water-filling argument but stop it early before it had a chance to use all possible
water. For a fixed E, pseudo-distributions with more water can not lead to a worse value, so we can
augment Lemma 9 to get that it suffices to look at maximal pseudo-distributions, which are uniquely
determined by E whenever they exist. Let us give the existence conditions in light of the water-filling
argument: (i) E ≤ vt+1, as otherwise pk = E

vk
> 1 would hold for some 1 ≤ k ≤ t+1, in particular for

k = t+ 1 and (ii)
∑t+1

k=1
E
vk
≤ ℓ ⇐⇒ E ≤ ℓ · (

∑t+1
k=1

1
vk
)−1, since otherwise the ℓ units of water we

have at our disposal are insufficient to make the water rise to level E in the first t+1 containers. Hence,
(maximal) E-nice pseudo-distributions exist for 0 ≤ E ≤ Emax := min{vt+1, ℓ · (

∑t+1
k=1

1
vk
)−1}. It

remains to identify E ∈ [0, Emax ] yielding a maximum-value E-nice pseudo-distribution. The main
idea to do this in linear time is to note that the value of the maximal E-nice distribution is piece-wise
linear in E. We prove this fact and give a linear-time algorithm that produces and iterates through the
breakpoints in order from Emax down to 0, at the same time computing the value of the corresponding
pseudo-distributions and outputting the best one at the end (the maximum has to happen at a break-
point due to piece-wise linearity). The details can be found in the proof of the lemma below, which is
rather involved and hence deferred to the appendix. To give a different view, our algorithm simulates
the continuous process of decreasing the water level in the first container (i.e., E, starting at Emax ),
outputting the best achievable value along the way in overall linear time.

Lemma 10. A pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing the quantity value(p) can be computed in
time O(n).

7 Conclusion and Future Work

We introduced the Byzantine Selection Problem and gave attractive linear-time algorithms sampling
from a value-maximizing distribution. It would also be interesting to study the problem for other
notions of optimality inspired by algorithm design under uncertainty, such as minimizing regret or
maximizing the competitive ratio. Introducing an online element, where boxes arrive one at a time,
like in the secretary problem, could also prove fruitful. Finally, our model followed the distributed
computing literature and assumed a known threshold t on the number of empty boxes (we assumed
exactly t purely for analysis purposes). In practice, such a threshold may not be available, in which case
one can still use our algorithms with t = n− 1 (which might, however, be overly conservative). One
can choose to work with a lower t depending on their risk aversion. Studying how the optimum varies
with t for a fixed instance or assuming a prior distribution on t could be promising avenues for future
work.

More broadly, our paper argues for an exciting yet relatively unexplored research avenue: introducing
byzantine elements into classic non-distributed settings, such as the centralized settings emerging in
social choice theory. The recent work in [21] brings this element to stable matchings. While their
paper targets a distributed setting, one of their contributions is the development of a fault-tolerant
notion of stable matchings. It would be appealing to conduct similar investigations in other application
domains, such as preference aggregation or fair division. The paper [28] targets so-called fault-tolerant
implementations, and could also serve as a good starting point for further investigation in this direction
when incentives are to be considered as well.
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A Omitted Proofs

This appendix contains the proofs omitted from the main body, namely those of Lemmas 6, 7, 9 and 10.

We begin by proving Lemma 6, restated below for convenience.

Lemma 6. Let ℓ ≥ 1 and p′ ∈ ∆ℓ([n]) be arbitrary. Then, there exists a distribution p ∈ ∆
(
[n](ℓ)

)
such

that PS∼p(i ∈ S) = p′i for i ∈ [n]. Moreover, such a p exists with support of size at most n and can be
computed in O(n2) time given p′. If computing p explicitly is not required, we can sample from such a p in
O(n) time per sample.

Proof. The linear time per sample part follows from applying dependent randomized rounding [32]
to a star graph with n edges of weights p′1, . . . , p′n (even ignoring the dependent part). The quadratic
explicit construction follows by applying the AllocationFromShares algorithm in [4]. See also [36] and
the informative discussion in [5].

We note that other existential proofs have appeared (sometimes implicitly) in the literature, using
tools like the Birkhoff-von Neumann theorem and Carathéodory’s theorem [42, 49]. Given existence,
a distribution can be computed [49] by setting up an LP with exponentially-many variables and
polynomially-many constraints and solving its dual using the ellipsoid method with a poly-time
separation oracle [37, 59] (however, not in strongly polynomial time).

Next, before proving Lemma 7, we prove the following analogue of Lemma 4.

Lemma 11. There exists a pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing value(p) that satisfies v1 · p1 ≥
· · · ≥ vn · pn.

Proof. The proof proceeds analogously to the proof of Lemma 4. Instead of assuming at the beginning
that p maximizes value(p) with the no-loss-of-generality assumption that for any i < j with vi = vj
we have pi ≥ pj , we will now additionally assume that among such maximizing pseudo-distributions,
p has the smallest possible

∑n
k=1 pk ≤ ℓ. We then proceed as before, defining p′. The calculation

that previously showed
∑n

k=1 p
′
k < 1 will now instead show that

∑n
k=1 p

′
k <

∑n
k=1 pk, contradicting

minimality of the sum. (No need to define p′′ anymore.)

Armed as such, we are now ready to prove Lemma 7, restated below for convenience.

Lemma 7. There exists a pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing value(p) satisfying v1 · p1 =
· · · = vt+1 · pt+1 ≥ · · · ≥ vn · pn.

Proof. By Lemma 11, let p be a maximizer of value(p) such that v1 · p1 ≥ · · · ≥ vn · pn. If p satisfies the
required property, then we are done. Otherwise, construct p′ : [n]→ [0, 1] as follows:

p′j =

{
vt+1·pt+1

vj
j ≤ t

pj j > t

Note that for j ≤ t we have p′j = vt+1·pt+1

vj
≤ vj ·pj

vj
= pj , so

∑n
j=1 p

′
j ≤

∑n
j=1 pj ≤ ℓ, from

which p′ ∈ ∆≤ℓ([n]). Moreover, by construction, we have value(p′) = value(p) and that p′ satisfies
v1 · p1 = · · · = vt+1 · pt+1 ≥ · · · ≥ vn · pn.

We now prove Lemma 9, restated below for convenience.

Lemma 9. There exists a pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing value(p) that is nice.
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Proof. By Lemma 7, let p be a maximizer of value(p) such that v1 · p1 = · · · = vt+1 · pt+1 ≥ · · · ≥
vn · pn. Define E := v1 · p1 and let t + 1 ≤ i ≤ n be the largest index such that pi = min{1, E

vi
}.

Among such pseudo-distributions p, further assume that we selected one maximizing the pair (i, pi+1)
lexicographically, where we consider pn+1 := 0 in order for this to always be well-defined. If i = n,
then p is (E, i)-nice, so we are done, otherwise, assume i + 1 ≤ n, implying pi+1 < min{1, E

vi+1
},

so p satisfies the first three conditions for being (E, i)-nice. If the forth condition is also satisfied,
then we are done. Otherwise, write x :=

∑n
k=i+2 pk, and observe that x > 0. Furthermore, note

that pi · vi > pi+1 · vi+1. To see this, assume the contrary, i.e., pi · vi = pi+1 · vi+1, from which
pi+1 = vi·pi

vi+1
= vi

vi+1
min{1, E

vi
} = min{ vi

vi+1
, E
vi+1
} ≥ min{1, E

vi+1
}, a contradiction. Now, define

ε := min{x, vi·pivi+1
− pi+1} and note that ε > 0.14 Construct p′ : [n]→ [0, 1] as follows:

p′k =


pk k ≤ i
pk + ε k = i+ 1
pk · x−ε

x k ≥ i+ 2

Let us first show that p′ ∈ ∆≤ℓ([n]). For this, we need to show that all entries are non-negative and sum
up to at most ℓ. Non-negativity follows since x−ε

x ≥ 0, and the sum is a simple algebraic calculation.

Let us now show that p′ satisfies v1 · p′1 = · · · = vt+1 · p′t+1 ≥ · · · ≥ v′n · p′n. The equalities hold by
construction of p′ from p and because i ≥ t+ 1. It then remains to show that for all 1 ≤ k ≤ n− 1 we
have vk · p′k ≥ vk+1 · p′k+1. The cases k < i and k ≥ i + 2 are immediate by construction. The case
k = i+ 1 is also straightforward: vi+1 · p′i+1 ≥ vi+1 · pi+1 ≥ vi+2 · pi+2 ≥ vi+2 · p′i+2. The final case
i = k amounts to vi · pi ≥ vi+1 · (pi+1 + ε), which holds by ε’s definition.

Finally, let us show that the existence of p′ is a contradiction. First, value(p′) ≥ value(p). This is because
p′ is constructed from p by moving ε probability mass from positions i+2, . . . , n to position i+1, and
vi+1 is no smaller than vi+2, . . . , vn and hence value(p′) =

∑n
k=t+1 vk·p′k ≥

∑n
k=t+1 vk·pk = value(p).

If value(p′) > value(p) then this is already a contradiction, otherwise, value(p′) = value(p) holds, but
even in that case p′ has by construction a lexicographically strictly higher (i, p′i+1) pair, again a
contradiction.

Finally, we prove Lemma 10, restated below for convenience.

Lemma 10. A pseudo-distribution p ∈ ∆≤ℓ([n]) maximizing the quantity value(p) can be computed in
time O(n).

Proof. Consider varying E continuously starting from Emax := min{vt+1, ℓ · (
∑t+1

k=1
1
vk
)−1} down to

0. For a fixedE, let pE be the corresponding maximalE-nice pseudo-distribution (which is well-defined
as E ∈ [0, Emax ]) and iE be the corresponding index such that pE is (E, iE)-nice. Moreover, let
kE ≥ t+ 1 be such that vkE ≥ E > vkE+1, assuming the convention that vn+1 := −1 for uniformity
of this definition. As E decreases, kE monotonically increases. Moreover, as E decreases, more water is
pushed to the right, making iE also monotonically increase. As a result, the mapping E 7→ (iE , kE) can
be described using a sequence Emax = x1 ≥ · · · ≥ xm = 0 with m ≤ 2n such that on each interval
(xq+1, xq] for 1 ≤ q < m the mapping is constant.

We are interested in finding an E ∈ [0, Emax ] that maximizes value(pE), as from it the pseudo-
distribution pE can be easily computed in linear time using the water-filling argument. Note that
value(pE) is continuous. The main idea of the proof will be to show that value(pE) is additionally
piece-wise linear with breakpoints (i.e., points where the slope can change) at x1, . . . , xm. Since a
piece-wise linear function on a closed domain attains its maximum at one of the breakpoints, it will be
enough to give a linear-time algorithm computing the breakpoints and evaluating value(pE) at them.
Our algorithm will proceed precisely along these lines. However, to remove the need to consider a

14This is because x > 0 and pi · vi > pi+1 · vi+1.

19



number of edge cases, we will refine the approach slightly. In particular, it will follow that if for some
E we have iE = n, then we can disregard all E′ < E, meaning that we can ignore breakpoints after
the first one with iE = n. Our algorithm can be modified to compute all breakpoints and associated
values, but this is not needed to get the maximum.

First, let us show that, indeed, value(pE) is piece-wise linear with breakpoints at x1, . . . , xm. Consider
some 1 ≤ q < m and any E ∈ (xq+1, xq] and ε > 0 such that E − ε ∈ [xq+1, xq]. We will show
that value(pE−ε) − value(pE) = ε · C , where C does not depend on ε. Write i := iE = iE−ε and
k := kE = kE−ε.

To determine value(pE−ε)−value(pE), let us compare pE and pE−ε, i.e., start with p = pE and decrease
E by ε to reach p = pE−ε: how does the water move? The first k containers lose water so as to lower
the water level from E to E − ε. Consider one of those containers 1 ≤ j ≤ k. To be at water level E,
container j had E

vj
units of water inside, and to be at water level E − ε after E is decreased, E−ε

vj
units

of water need to be left inside. Hence, in the process, it loses ε
vj

units of water. Summing up over the k
containers, in total ε ·

∑k
j=1

1
vj

units of water are lost. Where does this water go? In container i+ 1

if i < n, and nowhere otherwise, in which case it is lost. How does this movement of water impact
value(p)? Recall that value(p) is the sum of the water levels in containers t+ 1, . . . , n. Hence, since
the first k ≥ t + 1 containers’ water levels decreased by ε and we are only interested in containers
t+ 1, . . . , n, we get that value(p) decreased by (k− t) · ε. If i < n, i.e., the lost water went somewhere,
we need to also account for the increase in water level of container i+1. Since we know that in this case
the amount of water added to this container is ε ·

∑k
j=1

1
vj
, the water level in this container increased

by vi+1 · ε ·
∑k

j=1
1
vj
. Summarizing:

value(pE−ε)− value(pE) =

{
ε ·

∑k
j=1

vi+1

vj
− (k − t) · ε, i < n

−(k − t) · ε, i = n
(4)

Observe that, in both cases, ε can be factored out, so we have shown that, indeed, value(pE−ε) −
value(pE) = ε · C , where C does not depend on ε, as desired.

Note that Eq. (4) is useful more generally than in proving piece-wise linearity: if we set E = xj for
some 1 ≤ j < m and ε = xj − xj+1, it gives a formula for value(pxj+1)− value(pxj ) whose value is
non-positive when ixj = n. Hence, let 1 ≤ m′ ≤ m be the first index such that im′ = n and note that,
by the previous, the maximum value(pE) is attained at one of the points x1, . . . , xm′ .

We will now give a linear-time algorithm that computes the breakpoints x1, . . . , xm′ in order and
finds the associated value(pE) at them. The value m′ is not known a priori, but the algorithm will
detect when it has been reached and terminate. We will assume a precomputed prefix-sums array
for 1

v1
, . . . , 1

vn
, so that sums of the kind present in Eq. (4) can be determined in constant time. The

algorithm maintains there variables (E,X, k), which start initialized to (x1, value(px1), kx1), where
recall that x1 = Emax . This initialization is possible in linear time using the water-filling argument. At
the beginning of each step 1 ≤ j ≤ m′ of the algorithm, (E,X, k) = (xj , value(pxj ), kxj ) will hold.
The step will either determine that j = m′ and terminate, or compute the required values and set
(E,X, k)← (xj+1, value(pxj+1), kxj+1), in preparation for the next step.

First, let us see how to check whether j = m′ holds. This amounts to checking whether iE = n, for
which we need to compute iE (which we will also need for other purposes). This can be achieved using
the formula iE = min{n, k + ⌊ℓ−

∑k
j=1

E
vj
⌋}. The idea behind is as follows: out of the total of ℓ units

of water,
∑k

j=1
E
vj

are used up by the first k containers, and the remaining ℓ−
∑k

j=1
E
vj

are left to fill
containers k + 1, . . . , n in this order, filling up one container completely before going on to the next
one. There is enough water to completely fill ⌊ℓ −

∑k
j=1

E
vj
⌋ additional containers, from which the

conclusion follows.
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Now, assume j < m′ (i.e., iE < n, from which also k = kE ≤ iE < n holds), so we want to compute
(xj+1, value(pxj+1), kxj+1) for the next iteration. The most interesting part will be computing xj+1

(the other two will follow easily afterward). To compute xj+1, consider starting with E and letting it
decrease continuously so that its value throughout the process is E − ε with ε steadily increasing. We
would like to stop the process when E − ε = xj+1 holds. How can we quickly determine the value of ε
for which this happens, so that we do not have to simulate the continuous process? During the process,
two things can happen, and the one happening first is what stops the process: either kE−ε ̸= kE ,
which first happens when E − ε = vk+1, or iE−ε ̸= iE , which first happens when pE−ε

iE+1 = 1, i.e.,
container iE + 1 gets filled. If the latter were to happen before the former, then the latter occurs when
pEiE+1 + ε ·

∑k
j=1

1
vj

= 1. By the same reasoning as the one we used to find iE , the value pEiE+1 can be
determined as the fractional part of ℓ−

∑k
j=1

E
vj
, denoted by {ℓ−

∑k
j=1

E
vj
}. Hence, the process stops

when ε = εmin := min{E − vk+1,
1−pEiE+1∑k

j=1
1
vj

}, depending on which of the two cases occurs first. As a

result, we can compute xj+1 as xj − εmin .

It remains to show how to compute value(pxj+1) and kxj+1 . To get value(pxj+1), we use the fact that
we knowX = value(pxj ) and employ Eq. (4) to determine value(pxj+1)− value(pxj ), adding it toX to
get value(pxj+1). To get kxj+1 , we employ monotonicity: we increase k repeatedly by 1 for as long as
xj+1 ≤ vk+1. This takes amortized constant time per step.

For completeness, the full algorithm is given below:
1: E ← Emax .
2: Compute pE using the water-filling argument and determine value(pE) and kE .
3: (X, k)← (value(pE), kE)
4: for j ← 1, 2, . . . do ▷ Invar.: (E,X, k) = (xj , value(pxj ), kxj )

5: Compute iE = min{n, k + ⌊ℓ−
∑k

j=1
E
vj
⌋}.

6: if iE = n then break ▷ Stop when j = m′.
7: Compute pEiE+1 = {ℓ−

∑k
j=1

E
vj
} ▷ Fractional part.

8: εmin ← min{E − vk+1,
1−pEiE+1∑k

j=1
1
vj

}

9: X ← X +
(
viE+1 · εmin ·

∑k
j=1

1
vj

)
− (k − t) · εmin

10: E ← E − εmin

11: while k + 1 < n and E ≤ vk+1 do
12: k ← k + 1
13: end while
14: end for

B Further Related Work

Bribery in Voting. The social choice literature considers election bribery [30]: changing the outcome
by bribing a subset of voters to change their ballots. The aggregation problem that the TTP faces in
distributed computing is of a similar flavour: the byzantine votes can be thought of as bought votes,
and the bound on the number of corruptions t as the budget of the briber. However, there is a notable
difference: in voting the aggregation mechanism is fixed and the aim is to quantify the damage that
can be done for a given profile of votes given a budget t. In contrast, our goal is designing a robust
aggregation mechanism that is aware of the presence of at most t ill-intended votes (which should be
rightfully nullified if ever identified, although no signals to this end exist in our setting).

Statistical Learning with Adversarial Noise. Learning the underlying distribution or statistics about
a dataset is a fundamental problem in statistical learning. However, real-world data is often ill-behaved,
including a fraction of adversarially corrupted/byzantine data. An extensive line of work has been
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dedicated to robust learning in this setting [44, 24, 25, 23, 14], including but not limited to learning
high-dimensional Gaussians with adversarial noise.

Adversarial Bandits and Experts. Bandit and Expert Learning are two related cornerstone models of
decision-making under uncertainty, with applications ranging from machine learning to theoretical
computer science and economics [11, 61, 45]. In the former, a decision-maker faces a slot machine with
n arms with unknown, possibly different, reward distributions. At each time-step, having observed past
behavior, the decision-maker must select an arm to pull, gaining an instantaneous reward sampled from
that arm’s distribution independently of other time-steps. The standard goal is regret minimization
across a (possibly not fixed) time horizon T . Adversarial variants of the model have been explored,
where instead of independent stochastic rewards, the rewards in each time slot are chosen by an
adversary, bringing the setup closer to ours. Our problem can be seen as a single-shot (T = 1) variant
of adversarial bandits. Here, each arm gives a known reward of either 0 or vi, and the number of
zeros is limited by t (the number of Byzantine arms), but it is not known which t arms give zeros. The
goal also changes from regret minimization to value maximization. Some work also explored models
in-between stochastic and adversarial bandits [48, 66], closer to our byzantine setting. More broadly,
there is interest in such in-between models [29].

Secretary Problem. In the classical Secretary Problem [31, 27], a stream of n items arrive one by one
in an online fashion. After each arrival, the algorithm should either commit to that item or discard it
permanently. Each item has a value, and common goals include maximizing the probability of picking
a highest-value item or maximizing the expected value of the picked item. A plethora of variations
of the problem have been explored, including picking ℓ items instead of a single one [3], connecting
the problem to our paper. In the standard secretary model, the adversary picks the values of the items
knowing the algorithm, and then the items are presented to the algorithm in an order chosen uniformly
at random (the random-order model). Most developed algorithms are not robust to even small adversarial
perturbations of the random order assumption. To study this effect, [9] introduces a semi-randommodel,
where all values stay adversarial, but the arrival times of t items are adversarial, chosen before the
other n− t items’ arrival times are randomly generated. Like us, inspired by the distributed computing
literature, they call this the Byzantine Secretary model. We note that the problem in [9] is very different
from ours: they consider an online setting where all values are adversarial, but the arrival times of only
t are adversarial, while our setting is offline, with all but t of the values being honest. More subtly,
given the values v1, . . . , vn, we want the best possible solution for a given instance, instead of the best
achievable for a worst-case instance as in their setting (making our problem harder in this regard).

Prophet Inequalities. A commonly studied online stopping problem, related to the Secretary Problem,
but also to Bandit Learning due to its online flavor, goes under the name of Prophet Inequalities [22].
The basic setup considers n random variables with known distributions X1, . . . , Xn. One by one, the
realization of these random variables is revealed to the decision-maker, who has the option between
committing to the current value or passing to the next round. The goal is to maximize the expectation
of the selected value, and the standard result is that a policy achieving an expectation of at least half of
the ex-post maximum value exists. Variants where ℓ values are to be selected have been studied, but
once again, the combination of the stochastic and online aspects makes this setup very different from
ours.
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