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Abstract

Can neural networks be applied in voting theory, while satisfying the need for transparency
in collective decisions? We propose axiomatic deep voting: a framework to build and evaluate
neural networks that aggregate preferences, using the well-established axiomatic method of
voting theory. Our findings are: (1) Neural networks, despite being highly accurate, often fail to
align with the core axioms of voting rules, revealing a disconnect between mimicking outcomes
and reasoning. (2) Training with axiom-specific data does not enhance alignment with those
axioms. (3) By solely optimizing axiom satisfaction, neural networks can synthesize new voting
rules that often surpass and substantially differ from existing ones. This offers insights for both
fields: For Al important concepts like bias and value-alignment are studied in a mathematically
rigorous way; for voting theory, new areas of the space of voting rules are explored.!

1 Introduction

Artificial intelligence (AI) is increasingly applied in many domains, including not just scientific and
technological but also societal problems. This poses a dilemma when it comes to social choice, i.e.,
voting, preference aggregation, and other processes of collective decisions [11]. On the one hand, voting
systems should be transparent, but the neural networks on which modern Al is built are notoriously
opaque. On the other hand, neural networks could unearth novel and tailor-made collective decision
procedures. Already, state-of-the-art techniques for alignment of Large Language Models (LLMs) with
human values—like RLHF [5] or DPO [53]—rely on the aggregation of human preferences about the
generated outputs. This triggered recent research in guiding such Al alignment using social choice [16].

In this paper, we study how neural networks aggregate preferences. When they form collective decisions,
do they adhere to the normative principles that social choice theory formulates as axioms? This offers
new insights for both Al and voting theory. For Al this provides a rich testing ground to study pressing
machine learning concepts like bias, value-alignment and interpretability in a mathematically rigorous
way. For example, a network is not biased towards specific individuals if it aggregates their preferences
in accordance with the axiom of anonymity; the so-called Pareto principle requires the neural network
to align with any preference shared among all individuals; and the well-known axiom of independence
entails a certain compositional interpretability of the network. For voting theory, axiomatic deep voting
provides a new method for the central quest of exploring the space of voting rules.

Formally, a voting rule is a function that takes as input a profile—i.e., a list of each individual’s preferences
among a set of alternatives—and produces as output a collective decision, i.e., the alternative(s) that the
rule takes to be most preferred for the group as a whole. A straightforward rule is Plurality (picking
the alternative that is considered best by the most individuals); other classic rules include Borda and
Copeland, while a more recent suggestion is Stable Voting. To study the collective decisions of neural
networks, we develop the axiomatic deep voting framework.? Deep neural networks are (parametrized)
functions that map vectors (typically of a high dimension) to vectors (typically of a low dimension).
So, after suitably encoding profiles and collective decisions as vectors, neural networks realize voting

! After submission, the paper got accepted and published as [34] (COMSOC 2025 does not preclude such publications).
*The source code is available here: https://github.com/LevinHornischer/AxiomaticDeepVoting.
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rules, i.e., functions from profiles to collective decisions. Discovering a voting rule can be seen as an
optimization problem: updating the neural network parameters until a given desired property is fulfilled.
We evaluate neural networks in terms of accuracy and axiom satisfaction. While the former is standard
in machine learning, the latter is specific to voting theory and its axiomatic method [55, 38]: as already
mentioned, different axioms describe different desirable properties of voting rules.

Research questions. We investigate how neural networks aggregate preferences via three questions.

(1) Correct for the right reasons? Neural networks can accurately learn standard voting rules, but do
they adhere to the normative principles expressed by voting axioms?

We observe eminent violations of the axioms, so we focus on teaching neural networks the expert
knowledge expressed by them, in two common ways. First, using dataset augmentation [56]:

(2) Learning principles by example? Can neural networks be trained to adhere to voting axioms by
training with data exemplifying the axioms?

The second way is using semantic loss functions [57]. For this, we develop a translation of the axioms
into loss functions; so, by optimizing this loss during training, the network increases the corresponding
axiom satisfaction. Importantly, though, perfect axiom satisfaction is impossible according to the
infamous theorem by Arrow [4]. So we search for the best possible axiom satisfaction:

(3) Rule synthesis guided by principles? When neural networks optimize axiom satisfaction, can they
develop new voting rules that surpass existing ones in axiom satisfaction?

We compare the discovered rules to a wide range of known voting rules, to test if neural networks can
advance the current state of the art in voting theory.

Key findings. We answer these questions in three experiments, testing three paradigmatic neural
network architectures (multi-layer perceptrons, convolutional neural networks, and word embedding
based classifiers) and a variety of standard distributions of voter preferences. We find, respectively:

(1) The employed architectures demonstrate similar behavior both regarding accuracy and axiom
satisfaction. Importantly, despite high accuracy, they markedly violate critical axioms like
anonymity—yet, the news is not as bad for other axioms.

(2) Data augmentation does not seem to boost the principled learning of neural networks. However,
it drastically decreases the amount of required training data.

(3) Neural networks that perform the unsupervised learning task of optimizing axiom satisfaction
discover voting rules that are substantially different from existing ones and are comparable—and
often better—in axiom satisfaction.

Thus, we combine two approaches: Drawing on machine learning, we use neural networks qua universal
function approximators to explore the space of voting rules; and drawing on voting theory, we evaluate
points in that space—i.e., voting rules—by their axiom satisfaction, guiding the exploration.

Related work. We identify three main streams of relevant literature. First, social choice theory has
extensively studied the axiomatic satisfaction of voting rules, particularly focusing on manipulability
[23, 22, 48] and Condorcet consistency [24, 43, 50]. In line with our findings, the Borda rule is found to



elect the Condorcet winner more often than Plurality [50], and to satisfy independence more frequently
than both Copeland and Plurality [19]. Even in simple settings (e.g., 3 voters and 3 alternatives),
independence is rarely satisfied by anonymous voting rules [51]. Our work aligns with this tradition of
evaluating voting rules based on axioms, but also extends it to learning.

Second, the synergy between voting theory and machine learning has recently garnered increasing
attention. Neural networks like MLPs are used to predict outcomes of voting rules across various
settings [36, 12], showing high accuracy for simpler rules like Borda, and moderate success for more
complex ones. In these studies, MLPs tend to mimic Borda even when trained on other rules, and sample
size impacts their behavior. More advanced architectures like Set Transformers and DeepSets improve
prediction performance slightly [2]. Our approach differs by evaluating not only the outcome accuracy
but also the axiomatic behavior of voting rules learned by neural networks.

Some other works also incorporate axioms directly. Armstrong and Larson [3] use Condorcet consistency
to guide learning with real data from Canadian elections.®> Mohsin et al. [46] explore trade-offs of
fairness and efficiency using synthetic data and discover new rules that compete with Plurality and
Borda. Similarly, Matone et al. [42] apply MLPs to probabilistic voting and learn voting rules with
improved properties. In settings of participatory budgeting, Set Transformers learn existing rules and
discover new ones that satisfy axioms of fair representation [21]. Our work builds on these insights by
proposing a systematic framework for the axiomatic evaluation of ML-driven voting rules.

Other research directions include learning a rule given examples about its choices [52] and optimizing
for social welfare [2]. Holliday et al. [32] find that several voting rules can be manipulated by large MLPs
that only have information about pairwise majority victories between alternatives, though some other
rules (e.g., Split Cycle) are more resistant. Broader connections to social choice and RLHF are explored
by Dai and Fleisig [18], who include fundamental axioms like Condorcet consistency. Considering
Al agents as voters, Yang et al. [58] find that LLMs are influenced by the presentation order of the
alternatives and demographic stereotypes about the voters they are supposed to mimic, sometimes
reducing the diversity of the collective decisions (notably under Borda). However, Gudifio Rosero et al.
[27] show that LLMs outperform naive predictors in modelling individual votes in real elections.

Third, when social choice theory is applied to Al alignment, it can model moral aggregation [49], capture
fairness limits in Al via Arrow-like results [45], or design RL-based redistribution mechanisms that
agree with human preferences [35]. While we do not directly engage in discussions about ethics, we
contribute foundational insights into principled decision-making via learned voting rules.

2 Preliminaries

We work in the standard setting of voting theory, where a finite set N of voters have preferences that
are linear orders (also called rankings) over a finite set A of alternatives [59]. Set m := |A| and n := |N|.
We denote by P = (P4, ..., P,) a preference profile, i.e., a vector with the preference P; for every voter
t € N. This is illustrated in Figure 1.

For a permutation of the alternatives 0 : A — A, the ranking o(P) is obtained by applying o
elementwise to the ranking P, and o(P) = (o(P1),...,0(P,)). For a permutation of the voters
7 : N — N, we define 7(P) = (Pr(1), ---; Pr(n))- A voting rule is a function F' that determines the
winning alternatives for each such profile. Formally, F' : P + S, where ) # S C A.*

*Recently (after submission), Caiata et al. [13] study the similar setting of committee-selection. They compute, by exhaustive
search, data points by minimizing axiom violations in this setting, and train a multi-layer perceptron on this dataset to find a
new committee selecting rule. As an anonymous reviewer very helpfully remarks: In their setting, the underlying profile
distribution matters, while this is not significantly the case in our rule-learning experiment (Section 4.3), where the models
‘directly’ optimize axiom satisfaction (not ‘indirectly’ via a dataset). It would be very interesting to further explore this.

*We use the Python package pref-voting in all our experiments [31].
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Figure 1: A voting profile, with voters N = {1, ...,6} and alternatives A = {a, b, ¢, d}. Each column depicts
the preference of the individual voter; e.g., voter 1 prefers alternative ¢ most, followed by alternative a, etc.

2.1 Voting Rules

Voting rules usually fit into one of two categories: scoring rules and tournament solutions. Scoring rules
assign a score to each alternative depending on its position in the linear preference of each voter and
declare as winners those alternatives with the highest score across all voters. The two primary scoring
rules are Plurality (assigning score 1 to an alternative each time it is ranked first by a voter, and score 0
otherwise) and Borda (assigning score m — 1 to an alternative ranked first by a voter, score m — 2 to an
alternative ranked second, and so on, until score 0 is assigned to an alternative ranked last by a voter).’

Tournament solutions on the other hand are based on tournaments that capture pairwise comparisons
between the alternatives, induced by the voters’ preferences. For x,y € A, let N, aiy be the set of voters ¢
in the profile P that consider z better than y in F;, and nf;y = \Ni;y |. A classical tournament solution
is the Copeland rule, which selects as winners the alternatives that beat the most other alternatives
in a pairwise majority contest: argmax,c 4|{y € 4 : nE_, > nZ_}|. To define the recently proposed
Stable Voting rule [30], we first need to describe—the more computationally expensive, and thus left
aside in our analysis—Split Cycle [29]. The weighted tournament of a profile is a weighted directed
graph the nodes of which are alternatives with an edge from x to y of weight nf;y. Suppose that in
each cycle of the graph, we simultaneously delete the edges with minimal weight. Then the alternatives
with no incoming edges are the winners of Split Cycle. If there is only one Split Cycle winner in a
profile P, then this also is the winner of Stable Voting; otherwise x is a winner of Stable Voting if for
some alternative y it holds that x is a Split Cycle winner with the maximal margin nf;y such that z is
a Stable Voting winner in the profile P_, obtained from P after deleting alternative y.

The aforementioned rules and several others are included in our last experiment that compares a wide
pool of voting rules that vary in nature. Our remaining two experiments are focused on the three most
standard voting rules, Plurality, Borda, and Copeland, which are the most frequently studied in the
literature to date at the intersection of voting and machine learning. For detailed definitions of all the

rules, we refer to the introductory chapter of Zwicker [59] and to the pref-voting documentation.

2.2 Data Generation

A line of work called ‘map of elections’ within computational social choice attempts to systematize
simulation experiments relying on synthetic voting data [7, 8, 9]. In this vein, we aim to ensure that our
results are independent of the specific choice of the distribution of preference profiles. We employ four
representative distributions that cover elections of different nature, and, since our experimental results
are robust across those distributions, additional ones are not expected to provide new insights.

Impartial Culture (IC) assumes that all preference profiles have the same probability of appearing. Each
preference of a voter in a profile is sampled uniformly at random. The Mallows distribution [41] fixes
a reference ranking P and assumes that each voter’s preference is close to that ranking. Closeness
to the reference ranking is defined using the Kendall Tau distance, parameterized by a dispersion

*Plurality and Borda are often contrasted in voting [28, 54].



parameter ¢ € (0, 1].° We use a parameter rel-¢ (randomly generated) that, together with the number
of alternatives, determines the value of the dispersion parameter ¢, following Boehmer et al. [7, 8]: this
methodology generates data that more closely resemble those of real elections. In Appendix A, we also
define the 2D-Euclidean and the Urn distribution.

We work with nyax = 77 and mpyax = 7 in the first experiment and npmax = 55 and Mmpax = 5 in the
other experiments. The first experiment does not show a qualitative difference between these settings,
but the latter is computationally more efficient. To generate our synthetic data, we sample preference
profiles according to a given distribution and produce their corresponding winning sets according to a
known voting rule.

2.3 Axioms

We define axioms as functions that map a voting rule and a preference profile to a value in {—1, 1,0},
where 0 means that the axiom is not applicable, —1 means that the axiom is violated, and 1 that it
is satisfied. The satisfaction degree of a rule with respect to a given axiom is the ratio of the number
of sampled profiles in which the axiom is satisfied to the number of sampled profiles in which it is
applicable. We focus on axioms that capture basic and diverse normative properties of a voting rule F.

« Anonymity is always applicable; it is satisfied in P if for all permutations of voters 7 : N — N,
F(n(P)) = F(P). In words, the winners should be invariant under permutations of the voters.

« Neutrality is always applicable; it is satisfied in P if for all permutations of alternatives o : A — A,
F(o(P)) = o(F(P)). In words, under permutations of the alternatives, the winners should be
permuted respectively.

« Condorcet principle is applicable in P if some x € A is such that nfw >n/2forally € A\ {z};
it is satisfied if 7'(P) = {x}. In words, if a Condorcet winner exists, then it should be the unique

winner of the voting rule.

« Pareto principle is applicable in P if there exist two alternatives =,y € A such that nf_ = n;

y
it is satisfied if y ¢ F'(P). In words, if an alternative is considered inferior to a certain other

alternative by all voters, then it should not win.

« Independence is applicable in P if F'(P) # A; it is satisfied if for all z € F'(P),y ¢ F(P), and
P’ such that Ni;y = Nf:y, it holds that y ¢ F'(P’). In words, if the relative ranking between
a winning alternative and a losing alternative remains the same for all voters, then the losing

alternative should not win.

All voting rules we defined satisfy anonymity and neutrality, as well as the Pareto principle, for all
preference profiles. They all violate independence for some preference profile. Several of them such as
Copeland and Stable voting always satisfy the Condorcet principle (but no scoring rule does) .

To evaluate the axiom satisfaction of a voting rule, we sample 400 profiles on which the axioms are
applicable. We use the same profile distribution p as was used for training the neural network, and
we again randomly choose integers n € [1, nymax] and m € [1, myax] before p-sampling a profile with
n voters and m alternatives. To compute whether an axiom is satisfied for a profile, the axioms of
anonymity, neutrality, and independence require sampling of permutations. We sample, per profile, 50,
50, and w(m — w)256 permutations, respectively (where w is the number of winners according to the

rule on the profile, and hence m — w is the number of losers).’

% The Kendall Tau distance between two rankings P and ) over the same set of alternatives is the number of pairs of
alternatives (a, b) such that a is preferred over b in P but not so in Q.
"Independence requires permutations of voters and of alternatives, hence we sample more permutations of the profile.



3 Method

The axiomatic deep voting framework is built around a neural network, which is a function f,, : R* — RJ
parametrized by wights w € R¥. We instantiate this with three neural network architectures. Every
profile P is mapped, via an encoding function e, to a vector z = e(P) € R, for which the neural
network produces an output § € R/, 8 and the decoding function d turns this output into a winning
set S = d()). This realizes the voting rule F,,(P) := d(f.,(e(P))). The network is trained using
backpropagation with respect to a loss function relying on training data. Finally, we evaluate the trained
network not only with respect to its accuracy (how well it fits the test dataset), but, crucially, also by
how much it satisfies the various voting axioms. We calculate the accuracy on a given test set in two
ways: Identity accuracy is the percentage of pairs (P, .S) in the test set for which F,,(P) = S. Subset
accuracy is defined in the same way but considering F,,,(P) C S. We calculate the satisfaction degrees
for the various axioms of the voting rule F, realized by the trained neural network as in Section 2.3.

Architectures. We use three paradigmatic neural network architectures from modern machine
learning. Section C.1 in the Appendix explains the selected hyperparameters for each architecture.
First, multi-layer perceptrons (MLPs)—also known as feed-forward neural network—are the classic deep
neural net [see, e.g., 26, ch. 6]. They consist of an input layer of neurons, one or more hidden layers, and
an output layer. Second, convolutional neural networks (CNNs) are a standard architecture to process
grid-like input data such as images [see, e.g., 26, ch. 9], and in our case profiles. Third, we devise
an architecture that satisfies the anonymity axiom by design: We view profiles as sentences whose
words are the rankings. We use the word embedding algorithm Word2vec [44] to map each ranking
to a high-dimensional embedding vector. These vectors are averaged—hence we get anonymity—and
an MLP then classifies this average into a winning set. This combined architecture we call here word
embedding classifiers (WECs).

Encoding and decoding. To ensure our neural networks learn general patterns, we do not work
with a fixed number of voters and alternatives, but only with a maximal number of voters ny,x and a
maximal number of alternatives mmax. So the model should allow as input any profile P over the set of
voters N = {0, ...,n—1} with n < npax and set of alternatives M = {0,...,m—1} with m < myax.
We write a; for the r-th most preferred alternative of voter s, so the profile P is represented as the
matrix (a?), s, whose columns are the rankings as in Figure 1. We write P = (&%), for the result of
padding the m x n matrix P with the symbol ~ to the maximal input dimensions mmax X Nmax. SO a;
isa; if r < m and s < n, and otherwise it is ~.

How should we encode P so it can be inputted to a neural network? The most straightforward way is
to read each alternative a] € M as the number that it is and the padding symbol ~ as, say, —1. Then
the matrix P is regarded as a vector of dimension My ax"max. However, this does not perform well, so,
following Anil and Bao [2], we represent an alternative not as a number but as a one-hot vector. For
a € {0,...,mmax — 1}, let @ be the vector of length m,,y that is 1 at position a and 0 everywhere else.
For the padding symbol, let =~ be the vector of length m . that is O everywhere. We write P = (ZT,%)T, e

The encoding function for MLPs, eyq1,p, maps profile P to the vector  obtained by casting the matrix P
column by column into a flattened vector (of dimension m2 , 7max). This can then be inputted into the
MLP. The encoding function for CNNs regards the matrix P as a pixel image: the ‘pixel’ at position (7, s)
has the ‘color value’ as. Thus, ecyn maps profile P to the matrix P recast as a tensor with dimensions
(channel, height, width) = (Mmax, Mmax, Mmax)- This tensor can then be inputted into the CNN. The
encoding function for WECs regards the profile P = (P,..., P,) as a sentence with words P;. We train
it to embed these words into vectors of a fixed high dimension. Thus, unlike the previous encoding

8For our third architecture, the encoding function is part of the neural network, while for the first two it is independent;
hence we treat e as a separate entity here.



functions, this one is not separate from the neural network but rather forms the first layer of the WEC,
with the remaining layers processing the embedding vectors. More precisely, we first pre-train the
embeddings as follows. For a given corpus size ¢, we sample c-many profiles from a given distribution of
profiles (e.g., IC) to form our corpus (i.e., a set of sentences). The rankings occurring in the profiles form
the vocabulary of this corpus, to which we add the unk token (to later represent unknown rankings, i.e.,
rankings that are not in the vocabulary) and the pad token (to pad a profile to length np,,x). Due to
the unk token, this encoding applies to all profiles, even if it contains rankings that are not part of the
model’s vocabulary. Using Word2vec, we train embeddings which represent words in the vocabulary
as vectors. When instantiating the WEC architecture, these embeddings form the first layer: it maps
the profile (P, ..., P,) to the corresponding embedding vectors (v1,. .., v,). The next layer averages
these vectors into a single vector v, followed by several linear layers ending with the output layer.

Given a profile P as input, all architectures produce as output the logits § = (9o, - - - , Umypay ) i1 R7m2x,
We apply the sigmoid function sig elementwise to obtain the probability that alternative r is in the
winning set and define the decoding function d,,(§) := {r € {0,...,m} : sig(9,) > 0.5}.

Loss functions. Since multiple alternatives can win, we cast the task of finding a voting rule as a
multi-label classification problem. Each input profile P is associated with m binary labels (where m
is the number of alternatives in P), and the r-th label is 1 if and only if the r-th alternative is in the
winning set associated with P. Hence we use binary cross entropy as loss function. A main contribution
of this paper is that, for each axiom, we also design a loss function that enforces satisfaction of that
axiom. So, for each axiom ax, we define a function L.y( f, P) that takes as input the function f,,
computed by the neural network with weights w and a profile P. It outputs a non-negative real number
describing numerically how much the axiom is satisfied: 0 means perfect axiom satisfaction, while
higher numbers mean worse axiom satisfaction. For example, for anonymity, uniformly sample N-many
permutations 71, . .., my of the set of voters of P and define

N
Lafur P) = 5 S KL fu(6(P), fu (el (P))) ),
r=1

where KL is Kullback-Leibler divergence. The loss functions for the other axioms are in Appendix B.

4 Results and Analysis

We discuss the three experiments that provide answers to our three main research questions.

4.1 Experiment 1: Correct for the Right Reasons?

Recent papers address neural networks learning voting rules [2, 12], without asking if “the system
performs well for the right reasons” [6, p. 5192]. Rather, we use axioms to focus on principled learning.

Design. We train each neural network architecture (MLP, CNN, and WEC) on data from each
basic voting rule (Plurality, Borda, and Copeland), using four different sampling distributions (IC,
Urn, Mallows, and Euclidean). We report the results as relative accuracy and axiom satisfaction,
i.e., (relative evaluation) = (rule evaluation) — (model evaluation). For example, if the model has
95% accuracy, then, since the rule trivially has 100% accuracy, there is a relative accuracy loss of
100% — 95% = 5%. If the model has 35% satisfaction of an axiom and the rule only 30%, then the
relative axiom satisfaction is 30% — 35% = —5%), so there is a relative gain of 5%.

°A priori, it can happen that the neural network does not assign any winner, in contrast to our definition of a voting rule.
We check (and train) that this happens, if at all, only with a negligible probability.
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Figure 2: Training the three architectures (MLP, CNN, and WEC) on data from Plurality, Borda, and Copeland
(the three bars in each plot) with IC samples and comparing the errors in both accuracy and axiom satisfaction.
The error describes the rule’s evaluation minus the model’s evaluation. Intuitively, 2.8% accuracy error means
2.8% loss in accuracy: the rule by definition is correct so it has 100% accuracy, but the model obtains only
97.2% accuracy; similarly, —6.5% Condorcet error means 6.5% gain in accuracy: the rule has 73.25% Condorcet
satisfaction, but the model obtains 79.75% Condorcet satisfaction.

Results. Figure 2 presents the relative evaluations with IC sampling. (The otehr distributions are in
Appendix D, as they do not yield significantly different results.) The three architectures do not differ
much in accuracy. The best (resp. worst) accuracy is achieved for the simple Plurality rule (resp. the
complex Copeland rule). Across all voting rules, architectures, and distributions, we see large losses
in neutrality despite only low losses in accuracy (e.g., 4.6% relative identity-accuracy loss but 19.5%
relative neutrality loss for the WEC architecture when trained on Plurality). Large anonymity losses are
also observed under the MLP and CNN architectures. This is particularly noteworthy since anonymity
and neutrality are 100% satisfied by the given voting rules. The MLP and CNN models show larger
neutrality than anonymity losses (with the models trained on Plurality demonstrating the smallest such
difference). Regarding the other axioms, all models adhere perfectly to Pareto, in accordance with the
voting rules on which they are trained. The MLP and WEC models trained on Plurality seem to exhibit
relative Condorcet gains, but Condorcet losses are found for the CNN model. The MLP model trained
on Borda obtains relative Condorcet gains, but this is not the case for CNN and WEC. Since Copeland
always satisfies the Condorcet principle, there is a relative small Condorcet loss for all models. The
MLP and WEC models trained on Plurality and Borda, as well as the CNN model trained on Plurality,
satisfy independence to a similar degree as the rules on which they are trained. All models trained on
Copeland exhibit relative independence gains, and the same holds for the CNN model trained on Borda.

Discussion. The simplicity of Plurality is probably the reason behind its advanced learnability.
Notably, the models take a stance on the well-documented tension between anonymity and neutrality:'°
they tend to favor outcomes that align more closely with the former than with the latter. As the
architectures are not invariant to permutations of the input data, the severe violations of neutrality (and
of anonymity for MLPs and CNNs) are not a priori surprising. What is surprising is that the violations
persist even for high accuracy with respect to rules that are perfectly neutral and anonymous.As the
architectures are not invariant to permutations of the input data, the severe violations of neutrality
(and of anonymity for MLPs and CNNs5s) are not a priori surprising. However, these violations persist
even for high accuracy with respect to rules that are perfectly neutral and anonymous.!! Overall, this
experiment highlights the importance of the reasons behind automated decision-making. Outcomes that
mimic well-defined voting rules are arguably still unreliable, since they do not come with a guarantee

"No voting rule that always elects a single winner can simultaneously be anonymous and neutral.

""To elaborate: On the one hand, these results are surprisingly bad. Given the high accuracy, we may expect that the neural
network should have ‘gotten the idea’ of the voting rule, and hence of its anonymity and neutrality. On the other hand, for
anonymity and, respectively, neutrality to be satisfied on a given profile, we require the neural network to output the correct
answer on 50 permutations of the profile, while accuracy requires being correct only on that very profile. So struggles with
anonymity and neutrality are not surprising. However, surprising or not, the results stay the same: we do not have high
certainty (at least one failure in 50 checks) that the neural network outputs the desired answer under permutations.



of respecting the principles on which those rules are built.

4.2 Experiment 2: Learning Principles by Example?

A natural approach to integrating expert knowledge in neural networks is data augmentation. In the
voting context, this was proposed by Xia [56] but has not been tested in practice, to the best of our
knowledge. We focus on the anonymity and neutrality axioms since they were violated most in our
first experiment. We also test the effects of data augmentation on the model’s accuracy. Asking if data
augmentation helps can be understood in two ways: First, does training with augmented data increase
axiom satisfaction without diminishing accuracy? Second, if so, does it do it better than just training
with sampled data points? A ‘yes’ to the first question improves data efficiency: we get at least as
good a model even when only part of the data is ‘real’ and the rest is augmented. A ‘yes’ to the second
question means that we can actually improve our model’s performance.

Design. We test data augmentation in two versions. In the first version, we form an initial dataset
(i.e., pairs of a sampled profile with corresponding winning set) and train an architecture on it. Using a
copy, we continue training either with sampled data points or with the same number of augmented data
points obtained from the initial data points by renaming alternatives (‘neutrality variations’) or voters
(‘anonymity variations’). If the model trained on augmented data improves axiom satisfaction without
worsening accuracy, we get a ‘yes’ to the first question. If it also is better than the copied model, we get
a ‘yes’ to the second question; otherwise, any improvement only comes from a mere increase in the
quantity and not from the quality of data. A potential issue is that, during the continued training with
augmented data, the model does not see any further sampled data and hence might lose in accuracy.

The second version maks sure that each training batch consists of p percent sampled data points with the
remaining data points being neutrality variations (resp., anonymity variations) of those sampled data
points. For different choices of p, we then test the models’ achieved axiom satisfaction and accuracy.
We get a ‘yes’ to the first (resp., second) question if axiom satisfaction and accuracy are not worse (resp.,
better) for lower values of p when compared to p = 100% (i.e., only sampled data).

Results. Results for IC-sampling and neutrality augmentation are exhibited in Figure 3 for the first
version of the experiment. (Appendix E presents results for the second version, other distributions,
and anonymity augmentation.) It is again apparent that even when the models excel in accuracy, their
satisfaction of neutrality and anonymity remains consistently below perfect—this does not change when
considering augmented data. Now, we find a ‘yes’ to the first question but a ‘no’ to the second: training
with augmented data does not substantially hurt accuracy (though in some cases, sometimes it does:
e.g., the identity accuracy of the CNN after 1000 gradient steps on top of 500 steps of pretraining is up
to 10% lower with augmented data than with sampled data), but it does not reliably improve axiom
satisfaction. In Figure 3, augmented data does not seem to be advantageous for neutrality relatively
to sampled data (on the contrary, it often seems harmful, e.g., when applying CNN or WEC). In the
second version of the experiment that can be found in the Appendix, the ratio p between sampled and
augmented data does not seem to correlate with neutrality satisfaction either.

Discussion. Learning voting-theoretic principles by examples—augmented to the training data—does
not seem to work for neural networks. However, an advantage of data augmentation is a drastic increase
in data efficiency when we only aim for accuracy. This is crucial if we use real election data, where
having access to a vast amount of data points is practically impossible. Even when more data is needed
to increase the accuracy of network, we could build an appropriate data set based on a limited amount
of real data points and then augment it via the neutrality (or anonymity) axiom.
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Figure 3: The first version of the experiment 3. Pretraining on IC-sampled data from the Plurality rule, then
continue training on neutrality variations of this data (solid line) and comparing it to continued training with
sampled data (dashed line), with identity accuracy.

4.3 Experiment 3: Rule Synthesis Guided by Principles?

We saw that neural networks, when trained on data from established voting rules, struggle to vote with
principles. But can we directly train neural networks to form principled collective decisions, without
relying on any pre-existing voting rules? We are limited by Arrow’s Impossibility Theorem [4]: a voting
rule (ML-based or not) cannot simultaneously satisfy anonymity, Pareto, and independence. However,
how close can we get to full axiom satisfaction? We design an optimization task, using custom loss
functions, to guide neural networks in learning novel and principled voting rules.

Design. We train each architecture (MLP, CNN, and WEC) on the loss functions (defined in Section B of
the Appendix) that represent the axioms of anonymity, neutrality, Condorcet, Pareto, and independence.
Since neural networks could attempt to vacuously satisfy the axioms by proposing no winner, we also
consider the “No-winner” loss function, which demands the winning sets to be nonempty. Moreover,
by Arrow’s Theorem, the axioms cannot be jointly satisfied and will, hence, negatively influence each
other. So optimizing for all axioms is not necessarily the best. We pick, for each architecture, a set O of
objectives that we optimize for. For WEC, we choose: no winner, Condorcet, and Pareto. (Appendix F.5
establishes in an ablation study the optimality of this choice.) For MLP and CNN, we add: anonymity
and independence. Then the optimization problem is argmin,, Y co Ep~p [Lo(fuw, P)|, where the
loss functions L are described in Section 3 and D is the chosen distribution of profiles P. Note that,
unlike the previous experiments, this is an unsupervised learning task.

To have a model that is also neutral by design (not just anonymous like the WEC), we add the neutrality-
averaged decoding [cf. 12]: Given an input profile, we first generate all alternative-permuted versions of
the profile, then compute the logits-predictions of the model on each of those permuted profiles (in one
batch), next de-permute the predictions again and average all of them, and finally turn those average
logits into a winning set with the decoding function used so far. The WEC with neutrality-averaged
decoding is anonymous and neutral by design. (We also tested a neutrality-and-anonymity-averaged
decoding for the other architectures, but the WEC results were consistently superior.)

Results. Table 1 shows the axiom satisfaction of different neural networks (bottom) and of several
known voting rules (top), using IC sampling. (Appendix F includes other distributions.) The best
ML-based rule in terms of axiom satisfaction is always the neutrality-averaged WEC: it outperforms
the classic Plurality, Borda, and Copeland rules in every single axiom, except for a slight loss on
Condorcet. Even when we consider more modern rules in voting theory, the neutrality-averaged WEC
is competitive: the existing rule with highest axiom satisfaction is Stable Voting and its edge is marginal,
with its average axiom satisfaction being less than 1% higher than that of the neutrality-averaged
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Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 80.2 100 28.5 81.8
Borda 100 100 95.5 100 37.2 86.5
Anti-Plurality 100 100 74.2 100 24.8 79.8
Copeland 100 100 100 100 28.0 85.6
Llull 100 100 100 100 26.8 85.4
Uncovered Set 100 100 100 100 27.8 85.5
Top Cycle 100 100 100 100 29.0 85.8
Banks 100 100 100 100 27.8 85.5
Stable Voting 100 100 100 100 43.0 88.6
Blacks 100 100 100 100 35.2 87.1
Instant Runoff TB 100 100 94.8 100 28.2 84.6
PluralityWRunoff PUT 100 100 95.0 100 25.5 84.1
Coombs 100 100 96.2 100 34.5 86.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 40.0 88.0
Kemeny-Young 100 100 100 100 39.2 87.9
MLP (NW, A, C, P, 1) 77.8 75.8 92.5 100 39.5 77.1
CNN (NW, A, C,P, 1) 85.2 67.2 92.0 100 39.5 76.8
WEC (NW, C, P) 100 72.5 94.2 100 41.8 81.7
WEC n (NW, C, P) 100 100 96.8 100 41.2 87.6

Table 1: Axiom satisfaction of known rules and ML models. IC sampling. WEC n is the neutrality-averaged WEC.
The following letters indicate the axioms on which we optimize: NW-No winner, A-Anonymity, C-Condorcet,
P-Pareto, I-Independence. All models have been trained for 15k gradient steps with batch size 200.

WEC.' In fact, when averaging five runs of checking axiom satisfaction (which always involves some
stochasticity), the neutrality-averaged WEC even comes out better than the rules: see Table 6 in the
Appendix. (This is also true for the Euclidean distribution but not for Mallows and Urn.)

We also consider how often the examined rules produce the same outcomes, because similar axiom
satisfaction does not imply similar outcomes.'® Table 2 considers the five closest rules, using IC sampling
(again, see Appendix F for the other distributions). The rule discovered by the neutrality-averaged WEC
is substantially different from existing ones: it proposes different outcomes than each of them, according
to identity accuracy, at least 9.3% of the time (resp., 10.6% for Mallows, 11.1% for Urn, and 7.8%
for Euclidean). In comparison, Stable Voting, which was found best in Table 1, disagrees with Borda
and Copeland 8.9% of the time and with Weak Nanson and Blacks only 6.6% of the time. Thus, the
discovered rule not only is competitive in axiom satisfaction, it also is novel. Figure 4 shows an example
of a profile where the winning set provided by the neutrality-averaged WEC differs to all existing voting
rules. Note however that even if the results of the model differ from those of existing voting rules, very
frequently they do so by only excluding or by only adding certain winning alternatives (see Table 4 in
the Appendix). This is not unique to our ML model—it is also the case between known voting rules
that exhibit high axiomatic satisfaction: for example, the outcome of Stable Voting is a subset (resp.,
superset) of the outcome of Weak Nanson 97.9% (resp., 94.35%) of the time.

Discussion. WEC outperforms the other two architectures because it is anonymous by design, so it is
enough to use the neutrality-averaged decoding to get a model that is anonymous and neutral, without
dealing with the tension between anonymity and neutrality. Moreover, just three optimization objectives
were enough to obtain competitive results, while the MLP and CNN models needed to optimize for
anonymity and independence as well. The WEC model interestingly had enough implicit inductive

!?Table 5 in the Appendix suggests that more gradient steps do not further improve the results.
BFor example, the Blacks and Weak Nanson rules are close in average axiom satisfaction (less than 1% difference), but
Table 2 shows that more than 8% of the time they propose a different set of winners.
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Identity accuracy WECn  Blacks Stable Voting Borda Weak Nanson Copeland

WEC n 100 91 90.5 89.5 88.4 87.7
Blacks 100 95.71 95.13 91.26 90.57
Stable Voting 100 90.84 93.5 91.67
Borda 100 86.39 85.7
Weak Nanson 100 92.43
Copeland 100

Table 2: Similarities between the rules, on 10,000 IC-sampled profiles.

1 2 3 4 5 6 7 8
a e d a e b e a
b b b ¢ b a a b
e d ¢ b ¢ e ¢ d
d a e e a ¢ d e
c ¢ a d d d b ¢

Figure 4: Profile where the WEC outcome disagrees with known voting rules. The winners are: {a} for the ‘WEC
n’ (with sigmoids a:.51, b:.49, ¢:.31, d:.32, e:.43); {b} for Blacks, Stable Voting, Borda, Weak Nanson, Copeland;
{a, e} for Plurality, PluralityWRunoff PUT; {e} for Instant Runoff TB, Anti-Plurality; {a, b} for Llull, Uncovered
Set, Banks, Coombs, Baldwin, and Kemeny-Young; {a, b, e} for Top Cycle. The WEC choice is intuitive: alternative
a is three times the most preferred and two times the second-most preferred option among eight voters. The
sigmoids indicate that alternative b was a close competitor, and would indeed win under many known rules.

bias toward satisfying independence—again highlighting non-trivial interference of the axioms and the
network architecture. In summary, ML-driven voting rules derived from axiom optimization beat many
classic ones in terms of axiom satisfaction while being comparable to the best rules known today, even
if they inherit the opacity of neural networks. This may suggest that existing rules are already close to
optimal axiom satisfaction, but since the newly discovered rules are substantially different, they extend
the boundaries of what is so far explored in voting theory.

5 Conclusion

Within our axiomatic deep voting framework, we answer the three questions: (1) Are preference-
aggregating neural networks correct for the right reasons? No. (2) Can they learn voting-theoretic
principles by example? No. (3) Can they synthesize new rules guided by the principles? Yes.

Axiomatic deep voting offers a new tool for the exploration of the space of all voting rules. This provides
a promising starting point for studying new, axiom-optimal voting rules, and the influence the axioms
exert on each other. The universal approximation theorems [33, 17] ensure that the neural networks
are dense in the space of all voting rules, so all areas of that space can be explored with axiomatic
deep voting. Moreover, the axiomatic evaluation offers another cautionary tale that accuracy is not
everything: Neural networks can have high accuracy without following the right reasons. This changes
when we move from the supervised setting of learning rules from examples to the unsupervised setting
of directly optimizing axiom satisfaction (translating voting axioms into corresponding loss functions).

Future work could investigate further architectures and axioms, and more options in generating the
dataset. For example, we could consider the extrapolation task (in which the model sees data where
different rules agree and has to find a general rule) or the interpolation task (in which the model sees
data of different rules and has to find a compromise). Finally, it seems intriguing to bridge notions
of explainability in voting theory [14, 47, 10] and in AI [1], in particular to try extracting a symbolic
representation (e.g., in logic programming) of the rule that a model learns.
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A More on distributions

We continuing our discussion of distributions of profiles from Section 2.2. The IC and Mallows dis-
tributions are complementary: IC is simplistic and widely employed in theoretical works on voting
rules discussed earlier in the literature review; it captures an extreme case with no correlation between
preferences of voters. Mallows is often employed in numerical studies of voting rules that use artificial
data but wish to capture more realistic voting scenarios [15, 37].

The next two distributions also capture more intricate relationships between the preferences in a
profile. According to the 2D-Euclidean distribution, voters and alternatives are distributed randomly in
2-dimensional Euclidean space, and the closer an alternative is to a voter the more the voter prefers that
alternative. Finally, in Urn distribution [20] voters randomly draw their ranking from an urn. Initially,
the urn includes all possible rankings over the alternatives. After a voter randomly draws from the urn,
we add to the urn an! copies of that ranking for some parameter o € [0, 00). When o = 0, this reduces
to IC. We use the Urn-R distribution [7], where, for each generated profile, « is chosen according to a
Gamma distribution with shape parameter £ = 0.8 and scale parameter § = 1.

B Specific loss functions

We define the specific loss functions for several basic axioms, which we use in the third experiment.
(For more background on semantic loss functions, see, e.g., Xu et al. [57] or Giunchiglia et al. [25].)

Anonymity. Given the network f,, and profile P, uniformly sample N-many permutations 7y, ..., 7y
of the set of voters of P and define

N
Lafur P) 1= 5 S KL(fu(e(P)), fulelm (P) ).
r=1

where KL is Kullback-Leibler divergence.!*

Condorcet. If P has no Condorcet winner, Lo ( fy, P) := 0, and otherwise, if that Condorcet winner is
alternative a, define (recall @ is the one-hot vector for alternative a)

Lo(fuw, P) = KL(fw(e(P))va)'

Pareto. We define (recall that nll;b = n means that all voters in P rank a above b)

Lp(fuw, P) = Z 5ig<fw(e(P))b)-

a,b with naPH):n

Independence. Define L ( f,,, P) := 0 if P does not have at least two alternatives. Otherwise, randomly
sample N-many pairs (a,, b, ) of distinct alternatives in P and randomly sample, for each ranking P,
of P= (P,...,P,),ashuffling P,; of P, in which, however, the order of a, and b, is the same as in
Py, and set P, := (Py,..., P}). Write § := f,(e(P)) and §" := f,,(e(P;)), and define

N
Lifu P)i= S KL (a0, (32,35, )
r=1

No winner. Recall that voting rules are required to output at least one winner. This is usually not called
an axiom, and we did not hard-code this into our architectures. So we also want to optimize our neural

“Though, in principle, other distance/similarity functions can be considered.
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networks to align with this requirement. Hence we define the ‘no winner’ loss as follows. Writing
§ = fuw(e(P)), we want that at least one of the numbers in p := (sig(41),...,0(Jm)) is above 0.5, ie.,
the maximum norm ||p||o should be above 0.5. Hence the more it is below that, the worse the loss:

Lyw (fw, P) := max (0.5 —IPllso, O).15

C Hyperparameter tuning

In this section, we first explain the hyperparameter choices for our models and then investigate different
choices to justify the ones we made.

C.1 Hyperparameters

All models use ReLU as the activation function. Our MLP has four hidden layers with 128 neurons each,
like those of [2]. The CNN has two convolution layers with kernel size (5, 1) and (1, 5), respectively
(and 32 or 64 channels), followed by three linear layers with 128 neurons. Thus, the first kernel can pick
up local patterns in the rankings of the voters, while the second kernel can pick up local patterns among
the i-th preferred alternatives of the voters. (Appendix C.3 establishes the optimality of this choice
when compared to other kernel sizes and additional pre-processing.) The WEC has the word embedding
layer, then the averaging layer, and then three linear layers with 128 neurons. For pre-training the word
embedding layer with word2vec, we use a corpus size of 105, an embedding dimension of 200, and a
window size of 7.1 The corpus size is chosen large enough so that no occurrences of the unk token are
observed in 1, 000 sampled profiles.

This results in the following numbers of parameters in the setting nmax = 77 and mpyax = 7: 500, 487
(MLP), 1,834,439 (CNN), and 1, 226, 143 (WEC). In the setting n,ax = 55 and myax = 5 this reduces
to: 193, 285 (MLP), 232,165 (CNN), and 45, 585 (WEC). Thus, the models have roughly comparable
capacities. Section C in the Appendix motivates these choices via hyperparameter tuning.

For training, we use the AdamW algorithm [40]. We use a batch size of 200. Since we have synthetic
data, we do not use epochs and hence only specify the number of gradient steps. In experiments 1, 2,
and 3, these are 15,000, 5,000, and 15,000, respectively. Similar to Anil and Bao [2], we use as a learning
rate scheduler cosine annealing with warm restarts [39]. All results are reported for one fixed seed.
(In the Appendix, Table 3 performs cross validation and Tables 6 and 9 report averaged results across
different seeds.) All experiments were run on a laptop without GPU.

C.2 Model sizes

First, regarding the MLPs, Figure 5 tests the performance of different sizes. As mentioned in Section C.1,
we use the same sizes for our MLPs as Anil and Bao [2]: four hidden layers with 128 neurons each. To
test this choice, we compare it to a smaller MLP with only two hidden layers with 128 neurons each,
and to a larger MLP with six hidden layers with 128 neurons each plus layer norm. Figure 5 shows
that all three MLPs achieve very similar accuracy. The larger MLP learns a bit more quickly than the
other two, but it also has a higher variance in achieved accuracy. Hence the larger MLP does not yield a
performance improvement. The results suggest that a smaller MLP might work, too, but, for continuity
with the literature on the topic, when then choose their model sizes.

To see almost-everywhere differentiability of the loss functions, use the distributivity of the differential operator over
sums, the chain rule, and the almost-everywhere differentiability of the involved functions (KL, sig, max, || - ||cc)-

16That is in the setting Nmax = 77 and Mmax = 7. When nmax = 55 and mmax = 5, we reduce this to a corpus size of
2 x 10%, an embedding dimension of 100, and a window size of 5.
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Figure 5: Different sized MLP and their learning performance. The ‘small’ MLP has two hidden layers with 128
neurons each, the ‘standard’ MLP has four hidden layers with 128 neurons each (our and the literature’s choice),
and the ‘large’ MLP has six hidden layers with 128 neurons each plus layer norm.

Second, regarding the CNNs and the WECs, the choice for the MLP size also dictates their sizes: in
order to have a comparable capacity, they should have a roughly similar number of parameters. Indeed,
with our choices of numbers and kinds of layers for the CNN and the WEC, we get, as described in
Section C.1, models that are roughly comparable in size.

C.3 CNN kernels and pre-processing

Figure 6 investigates different choices for the hyperparameters of the CNN architecture. In Section C.1,
we described our choice: the two convolution layers have kernel sizes (5, 1) and (1, 5), respectively.
Thus, the first kernel can pick up local patterns in the rankings of the voters, while the second kernel
can pick up local patterns among the i-th preferred alternatives of the voters.

In image processing, ‘quadratic’ kernel sizes—e.g., (3, 3)—are more common, to pick up correlations of
pixels with their surrounding pixels. In the voting setting, at least conceptually speaking, a quadratic
surrounding does not make too much sense: Why should there be important ‘diagonal’ correlations, say
between the i-th preferred alternative of voter k and the ¢ 4 2-th preferred alternative of voter k + 3,
especially if the voters should be permutable? On the contrary, vertical and horizontal correlations are
important: Vertically, the first kernel captures patterns of correlation between a given alternative in a
voter’s ranking and more or less preferred alternatives in that ranking; horizontally, the second kernel
captures patterns of correlation between the ¢-th preferred alternative of a voter and the i-th preferred
alternative of other voters.

Figure 6 shows that our choice of kernel size (top left) indeed achieves overall better results than a
quadratic choice of kernel size (top right). Only for Condorcet and Independence, the quadratic choice
is slightly better for some rules.

One might wonder, if one could still leverage diagonal correlations by first reordering the rankings
of the voters in a profile so that ‘similar’ rankings are next to each other, before feeding the profile
into the CNN. With such a pre-processing of the input, a quadratic kernel could be used since diagonal
comparisons now make sense in such a similarity reordered profile. A standard way to formalize this
notion of similarity is via Kendall Tau distance (as defined in footnote 6). We consider two versions of
reordering a given profile P = (Py,..., P,):

+ Global: Compute, for k = 2, ..., n, the Kendall Tau distance dy between P; and Py. Then reorder

the profile starting with P; followed by the other rankings with ascending dj. (In case of a tie,
pick the ranking with minimal index first.)
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« Local: The reordered profile P’ = (P{,..., P!) is computed recursively. Start with P| := P;.
Given P}, we determine P}, ; as follows. Go through the rankings that have not been picked
yet (ie, {P1,..., P,} \ {P],..., P.}) and compute their Kendall Tau distance to P;. Then P,
is the ranking among these with the smallest Kendall Tau distance. (Again, tie-break via the
indices.)

Figure 6 shows that adding either the global or the local version of Kendall Tau pre-processing overall
does not reliably help the performance compared to our chosen setting (neither for our choice of kernel
size nor for the quadratic choice). In some cases we do observe an improvement, as for example in the
independence axiom satisfaction when learning the Copeland rule—however, this always comes with
an additional loss, either in the accuracy or in the satisfaction of other axioms such as anonymity and
neutrality.

C.4 Cross validation

Finally, we corroborate our choice of hyperparameters by establishing their robust learning capabilities
via cross validation in Table 3. For this, we IC-sample a fixed dataset of 100, 000 data points. We split
the dataset into 10 folds (each of size 10, 000). Looping over k = 0, ..., 9, we take fold k as the test set
and train the model on the data in the other 9 folds for 8 epochs. We record the achieved accuracy and
loss (both on the training and the test set). Table 3 shows that, for all architectures with their chosen
hyperparameters, we always get a high accuracy with little variance. This corroborates the robust
learning capabilities of our architectures.

D Experiment 1

We run the ‘correct for the right reasons’ experiment from Section 4.1 in more settings, reported in
Figure 7 (part 1) and Figure 8 (part 2).

E Experiment 2

We add further results to the ‘learning principles by example’ experiment from Section 4.2. Figure 9
and 10 show different choices of architecture, rules, and distribution for the first version of the experi-
ment. Figure 12, 11, and 13 show different choices of architecture, rules, and distribution for the second
version of the experiment.

Regarding the second version and IC sampling (see Figure 11), when p < 10%, i.e., with almost only
augmented data, both accuracy and neutrality satisfaction are unsatisfactory, so data augmentation
only becomes relevant for p > 10%. Here accuracy is stable: it does not vary by more than 5%. In
some cases, neutrality is equally stable: for the CNN on all rules and the MLP on Borda (certainly
for p > 25%, with slightly worse neutrality satisfaction for smaller p). In the remaining non-stable
cases, the best neutrality satisfaction is achieved for p = 100%, i.e., without augmented data—with
only negligible exceptions.!” Thus, neither in the stable nor the unstable cases can we see reliable
comparative improvements in neutrality satisfaction with more neutrality augmented data.

"The only two exceptions are the CNN on Plurality (where neutrality is most satisfied at p = 75% but to a very similar
degree as for p = 100%) and the CNN on Copeland (where neutrality is minimized at p = 25%). Moreover, CNN on Borda
and MLP on Copeland have a local—albeit not global—minimum at p = 25%. Thus, while there might be some special
cases where neutrality is improved in the highly augmented scenario, this is not enough to consider data augmentation as a
successful strategy to improve neutrality satisfaction (which is what we are concerned with here).
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Figure 6: Different hyperparameters of CNNs and their performance. The description [(5, 1), (1,5), 32, no KT]
means that, for this CNN, the first kernel has size (5, 1), the second kernel has size (1,5), the number of channels

is 32, and the input is not Kendall Tau preprocessed. Similarly for the other descriptions. (The top left plot is our
standard CNN setting and repeated from Figure 7 for convenience.)
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MLP

Testing fold number  Trainloss Train accuracy (in %) Testloss Test accuracy (in %)

0 0.013 97.7 0.031 95.1
1 0.013 97.7 0.033 94.8
2 0.012 97.9 0.032 95.4
3 0.009 98.5 0.031 95.4
4 0.018 96.9 0.038 94.4
5 0.018 96.9 0.04 94.1
6 0.025 95.8 0.042 93.7
7 0.011 97.9 0.03 95.1
8 0.013 97.7 0.029 95.9
9 0.008 98.7 0.025 96
Avg. 0.014 97.6 0.033 95
Std. dev. 0.005 0.8 0.005 0.7
CNN
Testing fold number  Trainloss  Train accuracy (in %) Testloss Test accuracy (in %)
0 0.021 96.5 0.023 96.1
1 0.015 97.2 0.019 96.8
2 0.009 98.7 0.011 98.3
3 0.012 98 0.015 97.3
4 0.016 97.3 0.019 96.9
5 0.01 98.5 0.011 98
6 0.009 98.4 0.012 98
7 0.02 96.3 0.02 96.4
8 0.014 97.3 0.019 96.6
9 0.024 95.8 0.029 95.4
Avg. 0.015 97.4 0.018 97
Std. dev. 0.005 0.9 0.005 0.9
WEC

Testing fold number  Trainloss  Train accuracy (in %) Testloss Test accuracy (in %)
0 0.005 99.4 0.006 99.5
1 0.005 99.7 0.005 99.8
2 0.006 99.6 0.006 99.5
3 0.007 99.3 0.008 99.1
4 0.035 96.3 0.037 95.8
5 0.004 99.8 0.004 99.9
6 0.012 98.6 0.014 98.5
7 0.01 99 0.011 98.7
8 0.01 98.5 0.009 98.6
9 0.011 98.4 0.011 98.3
Avg. 0.01 98.8 0.011 98.8
Std. dev. 0.009 1 0.009 1.1

Table 3: Cross validation of the three architectures on a dataset with 100, 000 data points IC-sampled from the
Plurality rule with up to 55 voters and 5 alternatives. Training is for 8 epochs with a batch size of 200 (hence

8 x 2500 = 3,600 gradient steps).
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Exp. 1: MLP up to 55 voters and 5 alternatives (IC sampling)

Exp. 1: CNN up to 55 voters and 5 alternatives (IC sampling)
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Figure 7: Part 1 of more settings of experiment 1 (Section 4.1). Varying architectures, rules, and sampling, while
comparing the errors in both accuracy and axiom satisfaction.
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Exp. 1: MLP up to 55 voters and 5 alternatives (Mallows sampling)

Exp. 1: CNN up to 55 voters and 5 alternatives (Mallows sampling)
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Figure 8: Part 2 of more settings of experiment 1 (Section 4.1). Varying architectures, rules, and sampling, while
comparing the errors in both accuracy and axiom satisfaction.
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Augmentation (WEC, Borda, IC, up to 55 vot. & 5 alt.)

Augmentation (WEC, Copeland, IC, up to 55 vot. & 5 alt.)
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Figure 9: The first version of experiment 2 (Section 4.2) with further architectures, rules, and distributions.
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Augmentation (CNN, Borda, IC, up to 55 vot. & 5 alt.)
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Figure 10: The first version of experiment 2 (Section 4.2), but for the anonymity axiom (instead of neutrality).
Since the WEC is anonymous by design, this can only be tested for MLP and CNN.

Exp. 2: MLP up to 55 voters and 5 alternatives (IC sampling)

40

30

Errorin %

20

10

10 25

75 100

Amount of sampled (as opposed to neutrality-augmented) data in %

Exp. 2: CNN up to 55 voters and 5 alternatives (IC sampling)

Exp. 2: WEC up to 55 voters and 5 alternatives (IC sampling)

50
40
40
301
R ®
= £ 30
8 8
i 50 I
20
104
10
01— , ; [
1

10 25
Amount of sampled (as opposed to neutrality-augmented) data in %

—®- Plurality accu. (identity)
--@- Plurality accu. (subset)
—8— Plurality neutrality

Figure 11: The second version of experiment 2 (Section
error across different ratios of augmented data (for the
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4.2). The identity accuracy, subset accuracy, and neutrality
rules shown in the legend). E.g., ‘10’ on the z-axis means
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Figure 12: The second version of experiment 2 (Section 4.2) with different distributions.
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Exp. 2: MLP up to 55 voters and 5 alternatives (IC sampling)
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Figure 13: The second version of experiment 2 (Section 4.2), but for the anonymity axiom (instead of neutrality).

Since the WEC is anonymous by design, this can only be tested for MLP and CNN.
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Subset accuracy WECn Blacks Stable Voting Borda Weak Nanson Copeland

WEC n 100 93.6 92.7 93.9 93 95.3
Blacks 95.6 100 96.53 97.3 95.57 98.2
Stable Voting 95.4 97.21 100 94.51 97.9 99.59
Borda 93.8 95.13 91.66 100 90.7 93.33
Weak Nanson 92 92.69 94.35 89.99 100 97.71
Copeland 90.4 91.29 91.73 88.59 94.15 100

Table 4: Similarities between the rules. Computed on 10,000 IC-sampled profiles. The entries show when the
rule in the row outputs a winning set that is a subset of the rule in the column. So the entry 92.7 in row “‘WEC
n’ and column ‘Stable Voting’ means that, in 92.7% of the sampled profiles, the winning set outputted by the
neutrality-averaged WEC is a subset of the winning set outputted by Stable Voting. This table is not symmetric,
because the entry 95.4 in row ‘Stable Voting” and column ‘WEC n’ means that, in 95.4% of the sampled profiles,
the winning set outputted by Stable Voting is a subset of the model’s winning set (equivalently, the model’s
winning set is a superset of the rule’s winning set).

1 2 3 4 5 6 7
a b ¢ e b b d
e d e ¢ ¢ c¢ e
d ¢ a d a a b
b a d a d d ¢
c e b b e e a

{b,c} neutrality-averaged WEC, with sigmoids (rounded) a:.38, b:.54, ¢:.50, d:.39, €:.39
{b}  Plurality, Weak Nanson, Kemeny-Young
{c} Borda, Copeland, Llull, Blacks, Coombs
{d}  Anti-Plurality, Baldwin
{e} Instant Runoff TB
{b,d} Stable Voting
{b,c,d} Uncovered Set, Banks
{b,c,e} PluralityWRunoff PUT
{a,b,c,d,e} Top Cycle

Figure 14: IC sampling: Profile where the “WEC n’ model weakly disagrees (i.e. non-identical winning sets) with
existing voting rules.

F Experiment 3

We add further results on the ‘rule synthesis guided by principles’ experiment (Section 4.3).

F.1 More on the experiment with IC

Regarding difference-making profiles, Figure 4 in the main text shows a profile where the model strongly
disagrees with its 5 closest voting rules, i.e., the model’s winning set does not intersect the winning set
of these rules. Figure 14 here shows a profile where the model weakly disagrees with all considered
voting rules, i.e., the model’s winning set is not identical with the winning set of these rules. (For the
main text profile, the model also happens to weakly disagree with all considered rules.) We found these
profiles by going through 10,000 IC-sampled profiles and picking the weakly or strongly disagreeing
profile with the smallest number of voters.

Table 4 shows the similarities between the rules based on subset (i.e., soft) accuracy.

Table 5 suggests that further optimization does not further improve axiom satisfaction.
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Anon. Neut. Condorcet Pareto Indep. Average

WEC n (NW, C, P, round 0) 100 100 97.5 100 46 88.7
WEC n (NW, C, P, round 1) 100 100 100 100 38.5 87.7
WEC n (NW, C, P, round 2) 100 100 100 100 34.8 87

WEC n (NW, C, P, [, round 3) 100 100 100 100 31.8 86.3

Table 5: IC sampling: The result of keeping on training an WEC model. Each round adds 20k gradient steps to
the previous one. Round 1 is with a learning rate of 1073, round 2 with 10~%, round 3 with 5 x 10~°, and round 4
the same but with added optimization of independence.

Anon. Neut. Condorcet Pareto Indep. Avg.

Blacks 100 100 100 100 36.04 87.2
Stable Voting 100 100 100 100 40.48 88.1
Borda 100 100 93.82 100 37.72 86.32
Weak Nanson 100 100 100 100 38.28 87.68
Copeland 100 100 100 100 28.54 85.72
WEC n (NW, C, P) 100 100 96.78 100 45.9 88.54

Table 6: IC sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model and
its closest rules.

Table 6 shows the statistical robustness of the axiom satisfaction achieved by the model.

F.2 The experiment with Mallows

Table 7 shows the result of the experiment from Section 4.3 but with Mallows sampling (instead of IC
sampling), using the parameters discussed in Section 2.2. Table 8 shows how similar the best model
is to its closest rules. Figure 15 presents a profile where the model differs from all considered rules.
Table 9 shows the statistical robustness of the axiom satisfaction achieved by the model.

F.3 The experiment with Urn

Table 10 shows the result of the experiment from Section 4.3 but with Urn sampling (instead of IC
sampling). Table 11 shows how similar the best model is to its closest rules. Figure 16 presents a profile
where the model strongly differs (i.e., had non-intersecting winning sets) from its five closest rules.
Table 12 shows the statistical robustness of the axiom satisfaction achieved by the model.

1 2 3 4
c b b ¢
d d d a
a a c¢ b
b ¢ a d

{b} neutrality-averaged WEC, with sigmoids (rounded) a:.24, b:.51, c:.49, d:.32
{c} Instant Runoff
{b,c} Plurality, Borda, Copeland, Llull, Uncovered Set, Stable Voting, Blacks, Plurality-
WRunoft PUT, Baldwin, Weak Nanson, Kemeny-Young
{b,c,d} Banks
{a,b,c,d}  Anti-Plurality, Top Cycle, Coombs

Figure 15: Mallows sampling: Profile where the ‘WEC n’ model weakly disagrees (i.e. non-identical winning
sets) with existing voting rules.
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Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 83.0 100 30.2 82.7
Borda 100 100 92.8 100 32.8 85.1
Anti-Plurality 100 100 76.5 100 26.2 80.5
Copeland 100 100 100 100 27.8 85.5
Llull 100 100 100 100 26.2 85.2
Uncovered Set 100 100 100 100 29.5 85.9
Top Cycle 100 100 100 100 25.2 85.0
Banks 100 100 100 100 25.2 85.0
Stable Voting 100 100 100 100 39.0 87.8
Blacks 100 100 100 100 33.8 86.8
Instant Runoff TB 100 100 96.8 100 29.0 85.2
PluralityWRunoff PUT 100 100 94.0 100 27.0 84.2
Coombs 100 100 95.5 100 30.2 85.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 33.8 86.8
Kemeny-Young 100 100 100 100 38.2 87.7
MLP NW, A, C, P, 1) 78.8 76.0 94.0 100 38.8 77.5
CNN (NW, A, C,P, 1) 80.5 68.8 94.5 100 38.8 76.5
WEC (NW, C, P) 100 65.5 91.8 100 37.8 79

WEC n (NW, C, P) 100 100 97.0 100 44.0 88.2

Table 7: Mallows sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom part
of the table). Otherwise like Table 1 from the main text.

Identity accuracy WECn  Stable Voting Blacks Borda Weak Nanson Copeland

WEC n 100 89.1 89.4 88.3 87.3 87.2
Stable Voting 100 95.61 91.04 93.47 92.16
Blacks 100 95.43 91.71 90.82
Borda 100 87.14 86.25
Weak Nanson 100 92.08
Copeland 100

Subset accuracy WECn  Stable Voting Blacks Borda Weak Nanson Copeland

WEC n 100 91.7 92.2 92.5 92.1 94.4
Stable Voting 95.8 100 97.09 944 97.78 99.49
Blacks 95.8 96.63 100 97.31 95.96 97.97
Borda 94.2 92.06 95.43 100 91.39 93.4
Weak Nanson 92.7 94.5 93.02 90.33 100 97.4
Copeland 91.3 92.23 91.6 88.91 94.17 100

Table 8: Mallows sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise like
Table 2 from the main text.

Anon. Neut. Condorcet Pareto Indep. Avg.

Stable Voting 100 100 100 100 38.14 87.62
Blacks 100 100 100 100 34.04 86.84
Borda 100 100 94.16 100 35.02 85.84
Weak Nanson 100 100 100 100 37.18 87.46
Copeland 100 100 100 100 27.5 85.48
WEC n (NW, C, P) 100 100 94.92 100 41.72 87.34

Table 9: Mallows sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’
model and its closest rules.
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Anon. Neut. Condorcet Pareto Indep. Avg.

Plurality 100 100 84.2 100 24.5 81.8
Borda 100 100 94.8 100 35 85.9
Anti-Plurality 100 100 76.8 100 25 80.3
Copeland 100 100 100 100 28.2 85.6
Llull 100 100 100 100 27.3 85.5
Uncovered Set 100 100 100 100 25.2 85

Top Cycle 100 100 100 100 27.8 85.5
Banks 100 100 100 100 27.5 85.5
Stable Voting 100 100 100 100 38 87.6
Blacks 100 100 100 100 34.2 86.9
Instant Runoff TB 100 100 97 100 28.2 85

PluralityWRunoff PUT 100 100 94.2 100 26.2 84.1
Coombs 100 100 96.5 100 28.5 85

Baldwin 100 100 100 100 39 87.8
Weak Nanson 100 100 100 100 38.5 87.7
Kemeny-Young 100 100 100 100 39.2 87.9
MLP NW, A, C, P, I) 79.8 74.2 92.8 100 34.8 76.3
CNN (NW, A, C,P, 1) 82.8 73.8 94 100 37.8 77.6
WEC (NW, C, P) 100 75.2 93 100 37.8 81.2
WEC n (NW, C, P) 100 100 93.5 100 39 86.5

Table 10: Urn sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom part of
the table). Otherwise like Table 1 from the main text.

Identity accuracy WECn  Blacks Stable Voting Borda Copeland Weak Nanson

WEC n 100 88.9 88.5 88.2 86.5 86.3
Blacks 100 95.52 95.32 90.92 91.6
Stable Voting 100 90.84 92.17 93.61
Borda 100 86.24 86.92
Copeland 100 92.09
Weak Nanson 100

Subset accuracy WECn  Blacks Stable Voting Borda Copeland Weak Nanson

WEC n 100 92.3 91.4 93.2 94.3 91.3
Blacks 95.1 100 96.44 97.48 98.07 95.4
Stable Voting 94.9 97.03 100 94.51 99.47 97.48
Borda 93.9 95.32 91.76 100 93.39 90.72
Copeland 90.4 91.83 92.19 89.31 100 93.9
Weak Nanson 91.7 93.04 94.65 90.52 97.43 100

Table 11: Urn sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise like
Table 2 from the main text.

Anon. Neut. Condorcet Pareto Indep. Avg.

Blacks 100 100 100 100 34.38 86.9
Stable Voting 100 100 100 100 39.2 87.84
Borda 100 100 93.46 100 35.66  85.84
Copeland 100 100 100 100 26.9 85.38
Weak Nanson 100 100 100 100 37.82 87.54
WEC n (NW, C, P) 100 100 95.68 100 38.16  86.76

Table 12: Urn sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model
and its closest rules.
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e d a b b
a b ¢ e d
{b} neutrality-averaged WEC, with sigmoids (rounded) a:.44, b:.50, c:.48, d:.40, e:.44
{c}  Blacks, Stable Voting, Borda, Copeland, Weak Nanson, Llull
{b}  Plurality, Instant Runoff TB
{a} Baldwin
{a,b} PluralityWRunoff PUT
{a,c¢} Kemeny-Young
{a,c,e} Uncovered Set, Banks
{a,b,c,d,e}  Anti-Plurality, Top Cycle, Coombs

Figure 16: Urn sampling: Profile where the “‘WEC n’ model strongly disagrees (i.e. non-intersecting winning
sets) with its 5 closest rules (among the remaining rules it only agrees with Plurality and Instant Runoff TB).
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{b} neutrality-averaged WEC, with sigmoids (rounded) a:.34, b:.50, ¢:.13, d:.30, e:.13
{a} Coombs
{d} Instant Runoff TB
{a,b} Weak Nanson
{b,d} Plurality, PluralityWRunoff PUT
{a,b} Borda, Copeland, Stable Voting, Blacks
{a,b,d}  Llull, Uncovered Set, Banks, Baldwin, Kemeny-Young
{a,b,c¢}  Anti-Plurality
{a,b,c,d,e} Top Cycle

Figure 17: Euclidean sampling: Profile where the ‘WEC n’ model weakly disagrees (i.e. non-identical winning
sets) with existing voting rules.

F.4 The experiment with Euclidean

Table 13 shows the result of the experiment from Section 4.3 but with Euclidean sampling (instead of
IC sampling). Table 14 shows how similar the best model is to its closest rules. Figure 17 presents a
profile where the model differs from all considered rules. Table 15 shows the statistical robustness of
the axiom satisfaction achieved by the model.

F.5 Ablation study

Figure 18 displays an ablation study in the choice of axioms to optimize for. For the best performing
model, i.e., the neutrality-averaged WEC, there remain three axioms that can be optimized for: Condorcet
(C), Pareto (P), and independence (I). The ‘No winner’ loss (NW) is always needed to prevent the
model from never outputting any winner. Which subset of the three axioms is the optimal choice for
optimization? In the main text, we chose C and P. The figure shows that this choice indeed is the best
one. Figure 19 shows, for each choice of axiom optimization, the evolution of the losses during training.
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Anon. Neut. Condorcet Pareto Indep. Avg.

Plurality 100 100 79.8 100 25.5 81

Borda 100 100 93.8 100 37.2 86.2
Anti-Plurality 100 100 77.2 100 25 80.5
Copeland 100 100 100 100 29.5 85.9
Llull 100 100 100 100 29.8 86

Uncovered Set 100 100 100 100 26.2 85.2
Top Cycle 100 100 100 100 28.7 85.8
Banks 100 100 100 100 28 85.6
Stable Voting 100 100 100 100 39.5 87.9
Blacks 100 100 100 100 37 87.4
Instant Runoff TB 100 100 96.8 100 30 85.4
PluralityWRunoff PUT 100 100 94.8 100 26.5 84.2
Coombs 100 100 96 100 26.2 84.5
Baldwin 100 100 100 100 40.2 88

Weak Nanson 100 100 100 100 40 88

Kemeny-Young 100 100 100 100 36.5 87.3
MLP (NW, A, C, P, I) 79.2 78 92.2 100 36 77.1
CNN NW, A, C,P, 1) 83.2 74.5 93.2 100 35 77.2
WEC (NW, C, P) 100 75 96.8 100 38.5 82

WEC n (NW, C, P) 100 100 97.8 100 42.2 88

Table 13: Euclidean sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom
part of the table). Otherwise like Table 1 from the main text.

Identity accuracy 'WECn  Stable Voting  Blacks Weak Nanson Copeland Borda

WEC n 100 92.2 91.5 89.5 88.7 89.1
Stable Voting 100 95.65 93.22 92.24 91.05
Blacks 100 91.37 90.85 95.4
Weak Nanson 100 92.46 86.77
Copeland 100 86.25
Borda 100

Subset accuracy WECn  Stable Voting Blacks Weak Nanson  Copeland Borda

WEC n 100 94.9 94.5 94.6 96.7 93.9
Stable Voting 95.6 100 97.19 97.5 99.58 94.57
Blacks 94.7 96.69 100 95.61 97.92 97.38
Weak Nanson 92 94.24 92.82 100 97.53 90.2
Copeland 90.8 92.3 91.67 94.39 100 89.05
Borda 92.1 92.09 95.4 91.01 93.32 100

Table 14: Euclidean sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise
like Table 2 from the main text.

Anon. Neut. Condorcet Pareto Indep. Avg.

Stable Voting 100 100 100 100 39.12 87.8
Blacks 100 100 100 100 3498  86.98
Weak Nanson 100 100 100 100 39.32  87.86
Copeland 100 100 100 100 27.68  85.54
Borda 100 100 95.08 100 3546  86.08
WEC n (NW, C, P) 100 100 97.74 100 45.16  88.58

Table 15: Euclidean sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’
model and its closest rules.
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Ablation study of axiom optimization (WEC, IC, up to 55 vot. & 5 alt.)
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Figure 18: Ablation study in axiom optimization with the neutrality-averaged WEC. For each possible (nonempty)
choice of axioms to optimize for among Condorcet (C), Pareto (P), and independence (I), the achieved axiom
satisfaction is shown. The ‘No winner’ loss (NW) is always optimized for. Its reported satisfaction is 0 if the
model always outputs at least one winner. The axioms of anonymity and neutrality are not shown since they are
satisfied by design. The black squares in the independence satisfaction indicate that the axiom was applicable on
too few of the sampled test profiles to warrant an estimate. The best choice is C, P since it has the highest axiom
satisfaction combined with a low ‘No winner’ satisfaction.
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Figure 19: The evolution of the losses during axiom optimization with the neutrality-averaged WEC, for each
choice of which axioms to optimize among Condorcet (C), Pareto (P), and independence (I), with ‘no winner’
(NW) always being optimized for. The loss curves for the NW+I-optimization are not shown, since they are so
close to 0 that they are indistinguishable from the x-axis. In the other two cases that did not yield good axiom
satisfaction—i.e., P and P, I in figure 18—, the loss evolution also shows no convergence.
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