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Abstract

Two prominent objectives in social choice are utilitarian - maximizing the sum of agents’ utilities,
and leximin - maximizing the smallest agent’s utility, then the second-smallest, etc. Utilitarianism
is typically computationally easier to attain but is generally viewed as less fair. This paper
presents a general reduction scheme that, given a utilitarian solver, produces a distribution
over states (deterministic outcomes) that is leximin in expectation. Importantly, the scheme is
robust in the sense that, given an approximate utilitarian solver, it produces a lottery that is
approximately-leximin (in expectation) - with the same approximation factor. We apply our
scheme to several social choice problems: stochastic allocations of indivisible goods, giveaway
lotteries, and fair lotteries for participatory budgeting.

Extended Version: https://arxiv.org/abs/2409.10395

1 Introduction

In social choice, the goal is to find the best choice for society, but ’best’ can be defined in many ways.
Two frequent, and often contrasting definitions are the utilitarian best, which focuses on maximizing the
total welfare (i.e., the sum of utilities); and the egalitarian best, which focuses on maximizing the least
utility. The leximin best generalizes the egalitarian one. It first aims to maximize the least utility; then,
among all options that maximize the least utility, it chooses the one that maximizes the second-smallest
utility, among these — the third-smallest utility, and so forth. Leximin is often the solution of choice
in social choice applications, and frequently used (e.g., Freeman et al. [13], Bei et al. [6], Cheng et al.
[7], Flanigan et al. [12]).

Calculating the Optimal Choice. Calculating a choice that maximizes utilitarian welfare is often
easier than finding one that maximizes egalitarian welfare, while finding one that is leximin optimal
is typically even more complex. For example, when allocating indivisible goods among agents with
additive utilities, finding a choice (in this case, an allocation) that maximizes the utilitarian welfare can
be done by greedily assigning each item to the agent who values it most. Finding an allocation that
maximizes the egalitarian welfare, however, is NP-hard [5], even in this relatively simple case.

In this paper, we show that knowing how to efficiently maximize the utilitarian welfare is sufficient in
order to find a fair leximin solution.

Contributions. The core contribution of this paper is a general protocol that, when provided with a
procedure for optimizing the utilitarian welfare (for a given problem), outputs a solution that optimizes
the expected leximin welfare (for the same problem). By expected leximin we mean a distribution over
deterministic solutions, for which the expectations of the players’ utilities is leximin optimal. Crucially,
our protocol extends to approximations, in the following sense: given an approximate solver for the
utilitarian welfare, the protocol outputs a solution that approximates the expected leximin optimal,
and the same approximation factor is preserved. In all, with our protocol at hand, optimizing expected
leximin welfare is no more difficult than optimizing utilitarian welfare.

We demonstrate the reduction significance by applying it to three social choice problems as follows.

First, we consider the classic problem of allocations of indivisible goods, where one seeks to fairly
distribute a a set of indivisible goods among a set of heterogeneous agents. Maximizing the utilitarian
welfare in this case is well-studied. Using our reduction, the previously mentioned greedy algorithm
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Figure 1: High level description of the reduction algorithm. An arrow from element A to B denotes that
the corresponding section reduces problem A to B. White components are implemented in this paper; gray
components represent existing algorithms; the black component is the black-box for the utilitarian welfare.

for agents with additive utilities, allows us to achieve a leximin optimal lottery over the allocations
in polynomial time. For submodular utilities, approximating leximin to a factor better than (1 − 1

e )
is NP-hard. However, by applying our reduction, existing approximation algorithms for utilitarian
welfare can be leveraged to prove that a 0.5-approximation can be obtained deterministically, while the
best-possible (1− 1

e )-approximation can be obtained with high probability.

Second, we consider the problem of giveaway lotteries [2], where there is an event with limited capacity
and groups wish to attend, but only-if they can all be admitted together. Maximizing the utilitarian
welfare in this setting can be seen as a knapsack problem, for which there is a well-known FPTAS (fully
polynomial-time approximation scheme). Using our reduction, we obtain an FPTAS for leximin as well.

Lastly, we consider the problem of fair lotteries for participatory budgeting, where one seeks to find a
fair lottery over the possible budget allocations. When agents have additive utilities, maximizing the
utilitarian welfare can also be interpreted as a knapsack problem (albeit in a slightly different way),
which allows us to provide an FPTAS for leximin.

Organization. Section 3 introduces the model and required definitions.

In Sections 4-10, we prove our main result: an algorithm for finding a leximin-approximation using an
approximate black-box for utilitarian welfare, while importantly, preserving the same approximation
factor. The reduction is done step by step. Section 4 reduces the problem of leximin-approximation
to another problem; then, each Section k ∈ {5, 6, 7, 8, 9} reduces the problem introduced in Section
k − 1 to another problem, where in Section 9 the reduced problem is approximate utilitarian optimiza-
tion. Section 10 ties the knots to prove the entire reduction, and extends the result to randomized
solvers. A schematic description of the reduction structure is provided in Figure 1.

The applications are shown in Section 11. Lastly, Section 12 concludes with some future work directions.

Due to space constraints, all proofs are omitted. Please refer to the extended version for more details.

1.1 Related Work

Recently, there has been a wealth of research focused on finding a fair leximin lottery for specific
problems. Examples include algorithms proposed for Representative Cohort Selection [15], Giveaway
Lotteries [2], Allocating Unused Classrooms [19], and Selecting Citizens’ Assemblies [11]. This paper,
in contrast, provides a general protocol that can be applied to a wide range of problems.

Alongside these, many papers describe general algorithms for exact leximin optimization [22, 21, 20].
These algorithms usually rely on a solver for single-objective problem, which, in our context, is NP-hard.
Recently, Hartman et al. [14] adapted one of these algorithms to work with approximately-optimal solver.
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However, designing such a solver remains quite challenging. Our work generalizes these approaches by
proving that this algorithm still functions with even a weaker type of solver, which we show can be
implemented for many problems.

Another significant area of research focuses on leximin approximations. Since leximin fairness involves
multiple objectives simultaneously, it is not straightforward to define what leximin approximation is.
Several definitions have been proposed. The definition we employ is related to that of [18, 1]. Other
definitions can be found in [14, 15]. An extensive comparison of the different definitions, including
examples, is provided in Appendix H.

The work closest to ours is [17], which laid the foundation for this research. Their paper studies the
problem of stochastic allocation of indivisible goods (see Section 11.1 for more details), and proposes
a reduction from egalitarian welfare to utilitarian welfare for this specific problem. We extend their
work in two ways. First, we extend their approach from the allocation problem to any problem where
lotteries make sense. Second, we show that a black-box for the utilitarian welfare is even more powerful,
as it can also be used for leximin, rather than the egalitarian welfare.

2 Preliminaries

We denote the set {1, . . . , n} by [n] for n ∈ N.

Mathematical Programming. Throughout the paper, we frequently use mathematical programming
to define optimization problems. A program is characterized by the following three elements. (1)
Constraints: used to define the set of feasible solutions, which forms a subset of Rm for somem ∈ N.
(2) Type: the program can be either a maximization or minimization program. (3) Objective function:
assigns an objective value to each feasible solution. The goal is to find a feasible solution with an
optimal objective value (either maximal or minimal, depending on the problem type).

For a given program, P, the feasible region, denoted by F (P), represents the set of vectors satisfying all
the constraints of P. We say that a vector v ∈ F (P) is a feasible solution for P (also: a solution for P or
feasible for P), and denote its objective value according to the objective function of P by obj(P,v).

3 Model and Definitions

The setting postulates a set of n agents N = {1, . . . , n}, and a set of deterministic options S — this set
represents the possible deterministic allocations - in the fair division setting, or the possible budget
allocations - in a budgeting application. For simplicity from now on, we refer to S as states and
number them S = {s1, . . . , s|S|}. We seek solutions that are distributions over states. Formally, an
S-distribution is a probability distribution over the set S, and X is the set of all such distributions:

X =

x = (x1, . . . , x|S|) ∈ R|S|
≥0 |

|S|∑
j=1

xj = 1

 .

Importantly, we allow the number of states, |S|, to be exponential in n. This implies that even describing
a solution requires exponential time. However, our algorithms will return sparse solutions – that is, the
number of states with positive probability will be polynomial in n. These solutions can be efficiently
described as a list of states with positive probability, along with their corresponding probabilities.

Following Kawase and Sumita [17], we assume that solutions are represented in sparse form — a list of
indices of entries with positive values, together with their corresponding values.

Definition 3.1 (A Poly-sparse Vector). A vector, v ∈ Rm
≥0 for some m ∈ N, is a poly-sparse if no more

than polynomial number (in n) of its entries are non-zero.



Degenerate-State. We assume that there exists a single degenerate-state, sd ∈ S, that gives all the
agents utility 0. This will allow us to also consider sub-probabilities over the other states, which give
positive utility to some agents. The use of degenerate-state makes sense in our setting, as we assume
all utilities are non-negative.

Utilities. The utility of agent i ∈ N from a given state is described by the function ui : S → R≥0,
which is provided as a value oracle.1 The utility of agent i from a given S-distribution, x ∈ X , is the
expectations Ei(x) =

∑|S|
j=1 xj · ui(sj). The vector of expected utilities of all agents from a solution x

is denoted by E(x) = (E1(x), . . . , En(x)); and referred to as the expected vector of x.

3.1 Leximin Fairness

We aim for a leximin-optimal S-distribution: one that maximizes the smallest expected-utility, then,
subject to that, maximizes the second-smallest expected-utility, and so on. It is formally defined below.

The Leximin Order. For v ∈ Rn, let v↑ be the corresponding vector sorted in non-decreasing
order, and v↑i the i-th smallest element (counting repetitions). For example, if v = (1, 4, 7, 1) then
v↑ = (1, 1, 4, 7), and v↑3 = 4. For v,u ∈ Rn, we say that v is (weakly) leximin-preferred over u,
denoted v ⪰ u, if one of the following holds. Either v↑ = u↑ (in which case they are leximin-equivalent,
denoted v ≡ u). Or there exists an integer 1 ≤ k ≤ n such that v↑i = u↑i for i < k, and v↑k > u↑k (in
which case v is strictly leximin-preferred over u, denoted v ≻ u). Note that the E(x)’s are n-tuples,
so the leximin order applies to them.

Observation 3.1. Let v,u ∈ Rn. Exactly one of the following holds: either v ⪰ u or u ≻ v.

Leximin Optimal. x∗ ∈ X is a leximin-optimal S-distribution if E(x∗) ⪰ E(x) for all x ∈ X .

Approximation. Throughout the paper, α ∈ (0, 1] is a multiplicative approximation ratio.

Definition 3.2 (Leximin-Approximation). We say that an S-distribution, xA ∈ X , is an α-leximin-
approximation if E(xA) ⪰ α ·E(x) for all x ∈ X .

Observation 3.2. An S-distribution is a 1-leximin-approximation if-and-only-if it is leximin-optimal.

3.2 Utilitarian Optimization

Utilitarian Optimal. We say that xuo ∈ X is a utilitarian-optimal S-distribution if it maximizes the

sum of expected utilities. That is,
n∑

i=1

Ei(x
uo) ≥

n∑
i=1

Ei(x) for any x ∈ X .

Stochasticity is Unnecessary. In fact, for utilitarian welfare, there always exists a deterministic
solution – a single state – that maximizes the sum of expected utilities.

Lemma 3.3. Let suo ∈ argmax
s∈S

n∑
i=1

ui(s). Then
n∑

i=1

ui(s
uo) ≥

n∑
i=1

Ei(x) for any x ∈ X .

Algorithms for utilitarian welfare are typically designed for this deterministic setting (where the goal is
to find a utilitarian-optimal state). Our reduction requires a deterministic solver.

The proposed reduction requires a utilitarian welfare solver that is robust to scaling each utility function
by a different constant. Formally:

1This means that the algorithm does not have a direct access to the utility function. Rather, given s ∈ S, the value ui(s)
can be obtained in O(1) for any i = 1, . . . , n.



(I) α-Approximate Black-Box for Utilitarian Welfare

Input: n non-negative constants c1, . . . , cn.

Output: A state, suo ∈ S, for which
n∑

i=1

ci · ui(suo) ≥ α

n∑
i=1

ci · ui(s) for any s ∈ S .

When α = 1, we say that we have an exact black-box.

Many existing solvers for the utilitarian welfare are inherently robust to scaling, as they handle a class
of utilities that are closed under this operation. For instance, in the division of goods, various classes of
utilities, such as additive and submodular, are closed under constant scaling.

At times, however, rescaling can result in diverging from the problem definition. For example, if the
problem definition assumes that utilities are normalized to sum up to 1, then the definition is not robust
to rescaling. In such cases, technically, a polynomial solver need not be able to solve the scaled version.
Hence, we explicitly include the assumption that the solver is robust to rescaling.

4 Main Loop

The main algorithm used in the reduction is described in Algorithm 1. It is adapted from the Ordered
Outcomes algorithm of [20] for finding an exact leximin-optimal solution. It uses a given solver for the
maximization program below.

The Program P1. The program is parameterized by an integer t ∈ N and t−1 constants (z1, . . . , zt−1);
its only variable is x (a vector of size |S| representing an S-distribution):

max
t∑

i=1

E↑
i (x)−

t−1∑
i=1

zi s.t. (P1.1)
|S|∑
j=1

xj = 1

(P1.2) xj ≥ 0 j = 1, . . . , |S|

(P1.3)
ℓ∑

i=1

E↑
i (x) ≥

ℓ∑
i=1

zi ∀ℓ ∈ [t− 1]

(P1)

Constraints (P1.1–2) simply ensure that x ∈ X . Constraint (P1.3) says that for any ℓ < t, the sum of the
smallest ℓ expected-utilities is at least the sum of the ℓ constants z1, . . . , zℓ. The objective of a solution2
x ∈ F (P1) is the difference between the sum of its smallest t expected-utilities and the sum of the t− 1
constants z1, . . . , zt−1.

Algorithm 1. The algorithm has n iterations. In each iteration t, it uses the given solver for P1 with
the following parameters: the iteration counter t, and (z1, . . . , zt−1) that were computed in previous
iterations. The solver returns a solution for this P1, denoted by xt. If t < n then its objective value,
denoted by zt, is used in the following iterations as an additional parameter. Finally, the solution xn

generated at the last application of the solver is returned by the main loop.

Notice that the program evolves in each iteration. For any t ∈ [n− 1], the program at iteration t+ 1
differs from the program at iteration t in two ways: first, the objective function changes; and second, an
additional constraint is introduced as part of Constraint (P1.3),

∑t
i=1E

↑
i (x) ≥

∑t
i=1 zi (for ℓ = t). This

constraint is equivalent to:
∑t

i=1E
↑
i (x)−

∑t−1
i=1 zi ≥ zt, which essentially ensures that any solution

for following programs achieves an objective value at-least zt according to the objective function of the
program at iteration t. In other words, this constraint guarantees that as we continually improving the
situation. This implies, in particular, that xt remains feasible for the (t+ 1)-th program.

2See Preliminaries for more details.



Algorithm 1 Main Loop
Input: A solver for P1.
1: for t = 1 to n do
2: Let xt be the solution returned by applying the given solver with t and (z1, . . . , zt−1).
3: Let zt := obj(P1,xt).
4: end for
5: return xn.

Observation 4.1. Let t ∈ [n− 1]. The solution obtained in the t-th iteration of Algorithm 1, xt, is also
feasible for the (t+ 1)-th program.

Solving P1 Exactly. By Ogryczak and Śliwiński [20] (Theorem 1), the returned xn is leximin-optimal
when the solver for P1 is exact - that is, it returns a solution xt ∈ F (P1) with optimal objective value —
obj(P1,xt) ≥ obj(P1,x) for any solution x ∈ F (P1). However, in some cases, no efficient exact
solver for P1 is known. An example is stochastic allocation of indivisible goods among agents with
submodular utilities, described in Section 11.1 — in this case, it is NP-hard even for t = 1, as its optimal
solution maximizes the egalitarian welfare (see [17] for the hardness proof).

Solving P1 Approximately. Our initial attempt to deal with this issue was to follow the approach of
Hartman et al. [14]. They consider an approximately-optimal solver for P1, which returns a solution
xt ∈ F (P1) with approximately-optimal objective value — obj(P1,xt) ≥ α ·obj(P1,x) for any solution
x ∈ F (P1). When t = 1, the algorithm of Kawase and Sumita [17] is an approximate-solver for P1.
However, for t > 1, their technique no longer works due to fundamental differences in the structure of
the resulting programs. Designing such a solver is very challenging; all our efforts to design such a
solver for several NP-hard problems were unsuccessful.

Solving P1 Shallowly. Our first contribution is to show that Algorithm 1 can work with an even
weaker kind of solver for P1, that we call a shallow solver. The term "shallow" is used since the solver
returns a solution whose objective value is optimal only with respect to a subset of the feasible solutions,
as described below. Recall that sd is the degenerate-state that gives utility 0 to all agents, and xd
is its probability according to x. We consider the set of solutions that use at-most α fraction of the
distribution for the other states, which give positive utility to some agents:

X≤α = {x ∈ X |
∑
j ̸=d

xj ≤ α}.

A shallow-solver is defined as follows:

(II) α-Shallow-Solver for P1

Input: An integer t ∈ N and rationals z1, . . . , zt−1.

Output: A solution xt ∈ F (P1) such that obj(P1,xt) ≥ obj(P1,x) for any x ∈ F (P1) ∩X≤α.

In words: the solver returns a solution xt ∈ F (P1) whose objective value is guaranteed to be optimal
comparing only to solutions that are also in X≤α. This is in contrast to an exact solver, where the
objective value of the returned solution is optimal comparing to all solutions.3 Clearly, when α = 1, we
get an exact solver, as X≤1 = X .

Notice that xt does not required to be in X≤α, so its objective value might be strictly-higher than the
optimal objective value of the set F (P1) ∩X≤α.

Lemma 4.2. Given an α-shallow-solver for P1, Algorithm 1 returns an α-leximin-approximation.
3See Table 1 in Appendix B for comparison of the solvers.



5 A Shallow-Solver for P1

To design a shallow solver for P1, we use a weak objective-feasibility-oracle, defined as follows:

(III) α-Weak Objective-Feasibility-Oracle for P1

Input: An integer t ∈ N and rationals z1, . . . , zt−1, and another rational zt.

Output: One of the following claims regarding zt:

• Feasible: ∃x ∈ F (P1) s.t. obj(P1,x) ≥ zt. In this case, the oracle returns such x.

• Infeasible-Under-X≤α: ∄x ∈ F (P1) ∩X≤α s.t. obj(P1,x) ≥ zt.

Note that these claims are not mutually exclusive, as zt can satisfy both conditions simultaneously. In
this case, the oracle may return any one of these claims.

Lemma 5.1. Given an α-weak objective-feasibility-oracle for P1 (III), an α-approximate black-box for
the utilitarian welfare (I), and an arbitrary vector in F (P1), an efficient α-shallow-solver for P1 (II) can be
designed.

6 Weak Objective-Feasibility-Oracle for P1

To design a weak objective-feasibility-oracle for P1, we modify P1 as follows. First, we convert the
optimization program P1, to a feasibility program (without an objective), by adding a constraint saying
that the objective function of P1 is at least the given constant zt:

∑t
i=1E

↑
i (x) ≥

∑t
i=1 zi. We then

make two changes to this feasibility program: (1) remove Constraint (P1.1) that ensures that the sum of
values is 1, and (2) add the objective function: min

∑|S|
j=1 xj . We call the resulting program P2:

min

|S|∑
j=1

xj s.t. (P2.1) xj ≥ 0 j = 1, . . . , |S|

(P2.2)
ℓ∑

i=1

E↑
i (x) ≥

ℓ∑
i=1

zi ∀ℓ ∈ [t]

(P2)

Note that (P2.2) contains the constraints (P1.3), as well as the new constraint added when converting to
a feasibility program. As before, the only variable is x. However, in this program, a vector x can be
feasible without being in X , as its elements are not required to sum to 1.

We shall now prove that a weak objective-feasibility-oracle for P1 can be designed given a solver for P2,
which returns a poly-sparse4 approximately-optimal solution. As P2 is a minimization program and as
α ∈ (0, 1], it is defined as follows:

(IV) 1
α -Approximately-Optimal-Sparse-Solver for P2

Input: An integer t ∈ N and rationals z1, . . . , zt.

Output: A poly-sparse xA ∈ F (P2) such that obj(P2,xA) ≤ 1
αobj(P2,x) for any x ∈ F (P2).

Lemma 6.1. Given an 1
α -approximately-optimal-sparse-solver for P2 (IV), anα-weak objective-feasibility-

oracle for P1 (III) can be obtained.
4A poly-sparse vector (def. 3.1) is one whose number of non-zero values can be bounded by a polynomial in n.



7 Approximately-Optimal Solver for P2

The use of E↑() operator makes both P1 and P2 non-linear. However, Ogryczak and Śliwiński [20]
showed that P1 can be “linearized“ by replacing the constraints using E↑() with a polynomial number
of linear constraints. We take a similar approach for P2 to construct the following linear program P3:

min

|S|∑
j=1

xj s.t. (P3.1) xj ≥ 0 j = 1, . . . , |S|

(P3.2) ℓyℓ −
n∑

i=1

mℓ,i ≥
ℓ∑

i=1

zi ∀ℓ ∈ [t]

(P3.3) mℓ,i ≥ yℓ −
|S|∑
j=1

xj · ui(sj) ∀ℓ ∈ [t], ∀i ∈ [n]

(P3.4) mℓ,i ≥ 0 ∀ℓ ∈ [t], ∀i ∈ [n]

(P3)

Constraints (P3.2–4) introduce t(n+ 1) ≤ n(n+ 1) auxiliary variables: yℓ and mℓ,i for all ℓ ∈ [t] and
i ∈ [n]. We formally prove the equivalence between the two sets of constraints in Appendix D. We
show that it implies that the required solver for P2 can be derived from the same type of solver for P3.

(V) 1
α -Approximately-Optimal-Sparse-Solver for P3

Input: An integer t ∈ N and rationals z1, . . . , zt.

Output: A poly-sparse
(
xA,yA,mA

)
∈ F (P3) such that for any (x,y,m) ∈ F (P3):

obj(P3,
(
xA,yA,mA

)
) ≤ 1

α
obj(P3, (x,y,m))

Lemma 7.1. Given an 1
α -approximately-optimal-sparse-solver for P3 (V), an 1

α -approximately-optimal-
sparse-solver for P2 (IV) can be obtained.

8 Approximately-Optimal Solver for P3

P3 is a linear program, but has more than |S| variables. Although |S| (the number of states) may be
exponential in n, P3 can be approximated in polynomial time using a variant of the ellipsoid method,
similarly to Karmarkar and Karp [16], as described bellow. The method uses an approximate separation
oracle for the dual of the linear program P3:

max

t∑
ℓ=1

qℓ

ℓ∑
i=1

zi s.t. (D3.1)
n∑

i=1

ui(sj)

t∑
ℓ=1

vℓ,i ≤ 1 ∀j = 1, . . . , |S|

(D3.2) ℓqℓ −
n∑

i=1

vℓ,i ≤ 0 ∀ℓ ∈ [t]

(D3.3) − qℓ + vℓ,i ≤ 0 ∀ℓ ∈ [t], ∀i ∈ [n]

(D3.4) qℓ ≥ 0 ∀ℓ ∈ [t]

(D3.5) vℓ,i ≥ 0 ∀ℓ ∈ [t], ∀i ∈ [n]

(D3)

Similarly to P3, the program D3 is parameterized by an integer t, and rational numbers (z1, . . . , zt).
It has a polynomial number of variables: qℓ and vℓ,j for any ℓ ∈ [t] and j ∈ [n]; and a potentially
exponential number of constraints due to (D3.1); see Appendix E for derivation.



We prove that the required solver for P3 can be designed given the following procedure for its dual D3:

(VI) 1
α -Approximate-Separation-Oracle for D3

Input: An integer t ∈ N , rationals z1, . . . , zt, and a potential assignment of the variables (q,v).

Output: One of the following regarding (q,v):

• Infeasible: At least one of the constraints is violated by (q,v). In this case, the oracle returns
such a constraint.

• 1
α -Approximately-Feasible: All the constraints are 1

α -approximately-maintained — the
left-hand side of the inequality is at least 1

α times the its right-hand side.

In Appendix F, we present the variant of the ellipsoid method that, given a 1
α -approximate-separation

oracle for the (max.) dual program, allows us to obtain a sparse 1
α -approximation to the (min.) primal

program (Lemma F.1). This allows us to conclude the following:

Corollary 8.1. Given a 1
α -approximate-separation-oracle for D3 (VI), a 1

α -approximately-optimal-
sparse-solver for P3 (V) can be derived.

9 Approximate Separation Oracle for D3

Now, we design the required oracle using the given approximate black-box for the utilitarian welfare.

Lemma 9.1. Given an α-approximate black-box for the utilitarian welfare (I), a 1
α -approximate-

separation-oracle for D3 (VI) can be constructed.

10 The Main Result

Putting it all together, we obtain:

Theorem 10.1. Given an α-approximate black-box for the utilitarian welfare (I). An α-leximin-
approximation (Def. 3.2) can be computed in time polynomial in n and the running time of the black-box.

Proof. By Lemma 9.1, given an α-approximate black-box for utilitarian welfare, a 1
α -approximate-

separation-oracle for D3 can be constructed.

By Corollary 8.1, using this oracle, we can construct a 1
α -approximately-optimal-sparse-solver for P3.

By Lemma 7.1, we can use this solver to design a 1
α -approximately-optimal-sparse-solver for P2.

By Lemma 6.1, this solver allows us to construct an α-weak objective-feasibility-oracle for P1.

By Lemma 5.1, a binary search with (1) this procedure, (2) the given α-approximate black-box for
utilitarian welfare, and (3) an arbitrary solution for P1 (as follows); allows us to design an α-shallow-
solver for P1. As an arbitrary solution, for t = 1, we take x0 defined as the S-distribution with x0d = 1
and x0j = 0 for j ̸= d. However, for t ≥ 2, we rely on the fact that the shallow solver is used within
the iterative Algorithm 1, and take the solution returned in the previous iteration, xt−1, which, by
Observation 4.1, is feasible for the program at iteration t as well.

By Lemma 4.2, when this shallow solver is used in Alg.1, it outputs an α-leximin approximation.

Together with Observation 3.2, this implies:



Corollary 10.2. Given an exact black-box for the utilitarian welfare, a leximin-optimal S-distribution
can be obtained in polynomial time.

10.1 Randomized Solvers

A randomized black-box returns a state that α-approximates the utilitarian welfare with probability
p > 0, otherwise returns an arbitrary state. Theorem 10.1 can be extended as follows:

Theorem 10.3. Given a randomized α-approximate black-box for the utilitarian welfare with success
probability p ∈ (0, 1). An α-leximin-approximation can be obtained with the same success probability p
in time polynomial in n and the running time of the black-box.

11 Applications

This section provides three applications of our general reduction framework. Each application employs
a different black-box for the associated utilitarian welfare.

11.1 Stochastic Indivisible Allocations

In the problem of fair stochastic allocations of indivisible goods, described by Kawase and Sumita [17],
there is a set of m indivisible goods, G, that needs to be distributed fairly among the n agents.

The Set S. The states are the possible allocations of the goods to the agents. Each state can be described
by a function mapping each good to the agent who gets it. Accordingly, S = {s | s : G → N}, and
|S| = nm. We assume that agents care only about their own share, so we can abuse notation and let
each ui take a bundle B of goods. The utilities are assumed to be normalized such that ui(∅) = 0, and
monotone – ui(B1) ≤ ui(B2) if B1 ⊆ B2. Under these assumptions, different black-boxes for the
utilitarian welfare exist.

The Utilitarian Welfare. For any n constants c1, . . . , cn, the goal is to maximize the following:

max
s∈S

n∑
i=1

ci · ui(s)

Many algorithms for approximating utilitarian welfare are already designed for classes of utilities,
which are closed under multiplication by a constant. This means that, given such an algorithm for the
original utilities (ui)i∈N , we can use it as-is for the utilities (ci · ui)i∈N .

Results. When the utilities are additive, it is known that a leximin-optimal solution can be found
in polynomial time by introduce variables describing the allocation probability of each agent–item
pair, and then solve it using an iterative linear-programming algorithm (e.g., [24, 20]). However, this
result can also be derived independently from our approach, since utilitarian welfare maximization is
computationally easy—it can be solved in polynomial time by greedily assigning each item to the agent
who values it most. Together with Corollary 10.2:

Corollary 11.1. For additive utilities, a leximin-optimal S-distribution can be obtained in poly. time.

When the utilities are submodular, approximating leximin to a factor better than (1− 1
e ) is NP-hard [17].

5

However, as there is a deterministic 1
2 -approximation algorithm for the utilitarian welfare [10], by

Theorem 10.1:
5Kawase and Sumita [17] prove that approximating the egalitarian welfare to a factor better than (1 − 1

e
) is NP-hard.

However, since an α-leximin-approximation is first-and-foremost an α-approximation to the egalitarian welfare, the same
hardness result applies to leximin as well.



Corollary 11.2. For submodular utilities, a 1
2 -leximin-approximation can be found in polynomial time.

There is also a randomized (1− 1
e )-approximation algorithm for the case where utilities are submodular,

with high success probability [23]. Thus, by Theorem 10.3:
Corollary 11.3. For submodular utilities, a (1− 1

e )-leximin-approximation can be obtained with high
probability in polynomial time.

11.2 Giveaway Lotteries

In giveaway lotteries, described by Arbiv and Aumann [2], there is an event with a limited capacity,
and groups who wish to attend it - but only-if all the members of the group can attend together. Here,
each group of people is an agent. We denote the size of group i by wi ∈ N≥0 and the event capacity by
W ∈ N≥0. It is assumed that wi ≤ W for i ∈ N and

∑
i∈N wi > W .6

The Set S. Each state describes a set of the groups that can attend the event together: S = {s ⊆ N |∑
i∈swi ≤ W}. Here, |S| is only bounded by 2n. The utility of group i ∈ N from a state s is 1 if

they being chosen according to s (i.e., if i ∈ s) and 0 otherwise.

The Utilitarian Welfare. For any n constants c1, . . . , cn, the goal is to maximize the following:

max
s∈S

n∑
i=1

ci · ui(s) = max
s∈S

∑
i∈s

ci

This is just a knapsack problem with n item (one for each group), where the weights are the group sizes
wi (as we only look at the legal packing s ∈ S), and the values are the constants ci.

Result. It is well known that there is an FPTAS for the Knapsack problem. By Theorem 10.1:
Corollary 11.4. There exists an FPTAS for leximin for the problem of giveaway lotteries.

11.3 Participatory Budgeting Lotteries

The problem of fair lotteries for participatory budgeting, was described by Aziz et al. [4]. Here, the n
agents are voters, who share a common budget B ∈ R>0 and must decide which projects from a set P
to fund. Each voter, i ∈ N , has an additive utility over the set of projects, ui; while the projects have
costs described by cost : P → R>0. 7

The setS. The states are the subsets of projects that fit in the given budget: S = {s ⊆ P | cost(s) ≤ B}.
The size of S in this problem is only bounded by 2|P |.

The Utilitarian Welfare. For any n constants c1, . . . , cn, the goal is to maximize the following:

max
s∈S

n∑
i=1

ci · ui(s) = max
s∈S

n∑
i=1

∑
p∈s

ci · ui(p) (Additivity)

= max
s∈S

∑
p∈s

(
n∑

i=1

ci · ui(p)

)
This can also be seen as a knapsack problem where: the items are the projects, the weights are the costs,
and the value of item p ∈ P is

∑n
i=1 ci · ui(p).

Result. The existence of a FPTAS for the Knapsack problem together with Theorem 10.1, give:
Corollary 11.5. There is an FPTAS for leximin for participatory budgeting lotteries.

6Arbiv and Aumann [2] provide an algorithm to compute a leximin-optimal solution. However, their algorithm is
polynomial only for a unary representation of the capacity.

7Aziz et al. [4] study fairness properties based on fair share and justified representation.



12 Conclusion and Future Work

In this work, we establish a strong connection between leximin fairness and utilitarian optimization,
demonstrated by a reduction. It is robust to errors in the sense that, given a black-box that approximates
the utilitarian value, a leximin-approximation with respect to the same approximation factor can be
obtained in polynomial time.

Negative Utilities. Our current technique requires to assume that the utilities are non-negative since
we use the degenerate-state. For non-positive utilities, we believe that a similar reduction might still
be possible by redefining the degenerate state to represent a lower bound on the worst outcome with
respect to negative utilities. For example, in chores allocation, an appropriate choice for the degenerate
state can be an artificial allocation in which every agent is assigned all tasks. We note that combining
positive and negative utilities poses even more challenges – as even the meaning of multiplicative
approximation in this case is unclear.

Nash Welfare. The Nash welfare (product of utilities) is another prominent objective in social choice,
offering a compelling compromise between the efficiency of utilitarianism and the fairness of egal-
itarianism. From a computational perspective, maximizing Nash welfare is typically as challenging
as maximizing egalitarian welfare. An interesting question is whether a similar reduction can be
constructed from Nash welfare (in expectation) to utilitarian optimization.

Applications. We believe this method can also be applied to a variety of other problems, such as:
Selecting a Representative Committee [15], Allocating Unused Classrooms [19], Selecting Citizens’
Assemblies [11], Cake-Cutting [3, 9], Nucleolus [8].

Best-of-both-worlds. Aziz et al. [4], who study participatory budgeting lotteries, focus on fairness
that is both ex-ante (which is a guarantee on the distribution) and ex-post (which is a guarantee on
the deterministic support). In this paper, we guarantee only ex-ante fairness. Can ex-post fairness be
achieved alongside it? We note that our method ensures both ex-ante and ex-post efficiency – since
leximin guarantees Pareto-optimality with respect to the expected utilities Ei, any state in the support
is Pareto-optimal with respect to the utilities ui.

Deterministic Setting. When the objective is to find a leximin-optimal (or approximate) state rather
than a distribution, it remains an open question whether a black-box for utilitarian welfare can still
contribute, even if for a different approximation factor.

Truthfulness. Arbiv and Aumann [2], who study giveaway lotteries, prove that a leximin-optimal
solution is not only fair but also truthful in this case. Can our leximin-approximation be connected to
some notion of truthfulness?

Leximin-Approximation Definitions. This paper suggests a weaker definition of leximin-
approximation than the one proposed by Hartman et al. [14] (see Appendix H for more details). Can
similar results be obtained with the stronger definition?

Weighted Leximin. A natural extension is to consider weighted leximin, where agents are assigned
different weights that determine their relative priority in the lexicographic ordering. For instance, if
agent a1 has weight 1 and agent a2 has weight 2, then an allocation that gives a1 utility of 1 and a2
a utility of 2 would be preferred over allocation that gives both utility of 1.5. Since our framework
already relies on access to a weighted utilitarian black box, we expect that the reduction extends to this
setting as well, though a careful analysis is left for future work.
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