
An O(log log n)-Approximation for
Submodular Facility Location1

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka,

Fabrizio Grandoni, Krzysztof Sornat and Antoine Tinguely

Abstract

In the Submodular Facility Location problem (SFL) we are given a collection of n clients and

m facilities in a metric space. A feasible solution consists of an assignment of each client to

some facility. For each client, one has to pay the distance to the associated facility. Furthermore,

for each facility f to which we assign the subset of clients Sf
, one has to pay the opening cost

g(Sf), where g(·) is a monotone submodular function with g(∅) = 0.
SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still

“tractable”) function of the set of served clients. For example, each client might have differ-

ent types of needs, and satisfying such needs might have a submodular impact on the opening

cost (regardless of the facility location). SFL can model participatory budgeting within a spatial

voting framework, where clients are voters positioned in a metric space, and facilities correspond

to projects considered for implementation.

SFL is NP-hard and, more strongly, APX-hard since it includes the classical (metric uncapacitated)

Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [39,

SODA’06] gave the current-best O(log n) approximation algorithm for SFL. The same authors

pose the open problem whether SFL admits a constant approximation and provide such an

approximation for a very restricted special case of the problem.

We make some progress towards the solution of the above open problem by presenting an

O(log log n) approximation. Our approach is rather flexible and can be easily extended to

generalizations and variants of SFL. In more detail, we achieve the same approximation factor

for the natural generalizations of SFL where the opening cost of each facility f is of the form

pf + g(Sf) or wf · g(Sf), where pf , wf ≥ 0 are input values.

We also obtain an improved approximation algorithm for the related Universal Stochastic Facility

Location problem. In this problem one is given a classical (metric) facility location instance and

has to a priori assign each client to some facility. Then a subset of active clients is sampled from

some given distribution, and one has to pay (a posteriori) only the connection and opening costs

induced by the active clients. The expected opening cost of each facility f can be modelled with

a submodular function of the set of clients assigned to f .

1 Introduction

In the Submodular Facility Location problem (SFL), we are given a set C of n clients and set F ofm
facilities, with metric distances d : (C ∪ F)× (C ∪ F) → R≥0. Furthermore, we are given a monotone

submodular
2
(opening cost) function g : 2C → R≥0 with g(∅) = 0. Notice that g(·) is non-negative. A

feasible solution consists of an assignment φ : C → F of each client to some facility (we also say that

φ(c) serves c). The opening cost of f ∈ F in this solution is g(φ−1(f)). The cost of the solution, that
we wish to minimize, is the sum of the distances from each client to the corresponding facility plus the

total opening cost of the facilities, in other words

cost(φ) =
∑
c∈C

d(c, φ(c)) +
∑
f∈F

g(φ−1(f)).

1

A conference version of this work appeared in ICALP 2024 [2]. A full version of the paper is available at arXiv [1].

2

We recall that g(·) is submodular iff, for every S, T ⊆ C , g(S) + g(T) ≥ g(S ∩ T) + g(S ∪ T). The function is also

monotone if g(T) ≤ g(S) for every T ⊆ S ⊆ C . As usual in this framework, we assume to have an oracle access to g(·):
given S ⊆ C , we can obtain the value of g(S) in polynomial time.

SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still “tractable”)

function of the set of served clients. For example, each client might have different types of needs, and

satisfying such needs might have a submodular impact on the opening cost (regardless of the facility

location). SFL can model participatory budgeting [9, 35] within a spatial voting framework [16], where

clients are voters positioned in a metric space, and facilities correspond to projects considered for

implementation. In such a participatory budgeting setting, the cost of implementing a project is not

constant—it depends on the specific group of voters who will use it, including both their types and their

numbers.

Let us illustrate this with a conceptual example: building multiple sports facilities across a city. Our goal

is to serve all citizens, whom we categorize into three primary age groups: children, adults, and seniors.

Naturally, these groups have different needs in terms of the types of sports facilities they use, as well as

their available times of usage (e.g., constrained by school or work schedules). These differences imply

that the cost of building a facility depends on both the type and the number of citizens it serves. The

cost increases in a concave manner with the size of each demographic group. For instance, a facility

serving 50 children and 50 seniors will likely incur a higher cost than a facility serving 100 children or

100 seniors, due to the need to accommodate diverse requirements. Such dependencies can be effectively

modeled using a submodular opening cost function in the SFL objective function. Furthermore, we also

account for the travel cost associated with reaching a facility. That is, we aim to avoid assigning citizens

to facilities that are too far from their locations. Incorporating distance as a cost component in the

SFL objective function (with distances appropriately scaled to be comparable to facility opening costs)

introduces a meaningful trade-off between opening costs and travel costs. Indeed, if travel costs were

ignored, the optimal solution would be to open a single facility to minimize opening cost. However,

this would result in high societal costs due to excessive travel distances for many citizens.

As we will discuss, SFL is also closely related to certain stochastic optimization problems which recently

attracted a lot of attention (see, e.g, [3, 22, 20, 25, 27] and references therein). In particular, there are

scenarios where one has to pay (a posteriori) the connection and opening costs related only to a random

subset of activated clients, and this naturally induces objective functions with submodular opening

costs.

SFL is APX-hard since it includes the classical Facility Location problem (with uniform facility costs)

as a special case [24]. Hence the best we can hope for, in terms of approximation algorithms, is a constant

approximation. Finding such an approximation algorithm is explicitly posed as an open problem, e.g.,

by Svitkina and Tardos [39, 40]. The same authors present an O(log n) approximation, based on a

greedy approach, for a generalization of SFL where each facility f has a distinct monotone submodular

function gf (·) (and this result is tight for this generalization due to a reduction from Set Cover by

Shmoys, Swamy and Levi [38]). Chekuri and Ene [11] obtain an alternative O(log n) approximation for

the same generalization of SFL based on rounding a convex relaxation exploiting Lovász extensions (see

also the related work on submodular partitioning problems [12, 15]). Svitkina and Tardos also present a

constant approximation for a rather restrictive (still practically motivated) special case of SFL where

g(·) is induced by certain subtrees of a node-weighted tree over the clients.

1.1 Our Results and Techniques

We make some progress towards the resolution of the mentioned open problem by presenting an

improved approximation algorithm for SFL.

Theorem 1.1. There is a polynomial-time O(log log n)-approximation algorithm for SFL.

Our approach is surprisingly simple (modulo exploiting some non-trivial results in the literature). By

standard reductions (see Section 1.4) we can assume that N = n+m is polynomial in n, hence it is
sufficient to provide an O(log logN) approximation. Our starting point is a natural (configuration) LP

relaxation for the problem:

min
∑
f∈F

∑
R⊆C

g(R) · xfR +
∑
c∈C

∑
f∈F

∑
R∋c

d(c, f) · xfR (Conf-LP)

s.t.

∑
f∈F

∑
R∋c

xfR = 1 ∀c ∈ C;

∑
R⊆C

xfR = 1 ∀f ∈ F ;

xfR ≥ 0 ∀R ⊆ C, ∀f ∈ F.

In an integral solution, we interpret xfR = 1 as assigning exactly the set of clients R to the facility f .

Notice that we impose

∑
R⊆C xfR = 1. This is w.l.o.g. since g(∅) = 0 (intuitively, xf∅ = 1 means that

no client is assigned to f). We can solve the above LP in polynomial time (see Appendix A for a proof).

Lemma 1.2. In poly(N) time one can find an optimal solution to (Conf-LP) with poly(N) non-zero
entries.

Given an optimal solution ẋ = (ẋfR)f∈F,R⊆C to (Conf-LP) of cost cost(ẋ) as in Lemma 1.2, we proceed

with two main stages. In the first stage (discussed in Section 2) we simply sample partial assignments of

clients to facilities with the distribution induced by ẋ for ln lnN many times. This cost at most ln lnN
times the optimal LP cost in expectation, and leads to a partial solution that covers a random subset

C1 ⊆ C of clients.

In the second stage (discussed in Section 3) we take care of the remaining uncovered clientsC2 = C \C1.

Let us consider the restriction ẍ of ẋ to C2. The opening cost of ẍ might be as large as the opening cost

of ẋ. However, in expectation, the connection cost of ẍ is only a 1/ lnN fraction of the connection cost

of ẋ (as we will show).

At this point, using the probabilistic tree embedding algorithm in [17], we embed the original metric d
into a (rooted) tree metric dT over a hierarchically well-separated tree (HST) T (see Section 1.4 for the

details). The opening cost of ẍ w.r.t. to the new tree instance does not change, while its connection cost

grows by a factor at most O(logN) in expectation. Altogether we obtain a feasible fractional solution

ẍ over the tree instance whose expected cost is at most O(cost(ẋ)). Hence it is sufficient to develop an

O(log logN)-approximate LP-rounding algorithm for the considered tree instance.

The next step is at the heart of our approach. Using the properties of HSTs and losing a constant factor

in the approximation, we can further reduce our SFL tree instance to the following Descendant-Leaf

Assignment problem (DLA): the facilities are leaves of T and the clients are arbitrary nodes of T .
Each client c must be served by a facility contained in the subtree Tc rooted at c. The opening cost of
each facility is given by g(·), and there are no connection costs at all. Bosman and Olver [6] describe

a reduction of Submodular Joint Replenishment and Inventory Routing problems to the Nice

Subadditive Cover Over Time problem. We critically observed that DLA has some similarities with

the latter problem (though this connection might not be obvious at first sight, see the discussion in

Section 1.3). In particular, we were able to adapt their approach to achieve the desired O(log logN)
approximation for our DLA problem.

We remark that we do not know how to get an O(1) approximation for SFL on trees (even on HSTs).

Though such approximation would not imply an O(1) approximation for SFL with our approach (due

to the first stage), finding it seems to be a natural intermediate problem to address.

The first stage of our construction might be helpful in other related problems, in particular to reduce the

input problem to one on HSTs while introducing an additive O(log log n) term in the approximation

ratio.

1.2 Generalizations and Variants

Our basic approach is rather flexible, and it can be applied to generalizations and variants of SFL.We next

describe some other applications of our approach, and we expect to see a few more ones in the future.

For example, we can handle the case where the opening cost of the facility f is gf (S
f) = wf · g(Sf),

where wf ≥ 0 is some input value: we call this the SFL with Multiplicative Opening Costs problem

(multSFL).

Theorem 1.3. There is a polynomial-time O(log log n)-approximation algorithm for multSFL.

Similarly, we can address the SFL with Additive Opening Costs problem (addSFL), where gf (S
f) =

pf + g(Sf) for Sf ̸= ∅, gf (∅) = 0, and pf ≥ 0 is some input value.

Theorem 1.4. There is a polynomial-time O(log log n)-approximation algorithm for addSFL.

The above generalizations are discussed in Appendix B. We remark that we do not know how to

obtain anO(log log n)-approximation for the Affine SFL case, where the opening costs are submodular

functions of the form gf (S
f) = pf +wf ·g(Sf). Notice that this generalizes both addSFL and multSFL.

This is left as an interesting open problem.

As mentioned earlier, SFL is closely related to stochastic variants of Facility Location. In particular, our

approach also extends to the following Universal Stochastic Facility Location problem (univFL).

Here we are given clients C and facilities F with metric distances d like in SFL, plus an opening

cost wf for each f ∈ F . Furthermore, we have an oracle access to a probability distribution π :
2C → R≥0 specifying the probability π(A) that a given subset of clients A ⊆ C is activated. A

feasible solution is an (universal) mapping φ : C → F . The cost of φ w.r.t. clients A ⊆ C is

costA(φ) =
∑

c∈A d(c, φ(c)) +
∑

f∈F :φ−1(f)∩A ̸=∅wf . In words, this is the cost of connecting clients

in A to the corresponding facilities, plus the cost of opening the facilities that serve at least one client

in A. Our goal is to minimize EA∼π[costA(φ)]. The main motivation for universal problems of this

type is to allow a very quick (possibly distributed) reaction to requests that arrive over time. Let

opt : C → F minimize EA∼π[costA(opt)], in other words opt is an optimal (universal) mapping. We

say that an algorithm for univFL is α-approximate
3
if it returns a universal mapping φ satisfying

EA∼π[costA(φ)] ≤ α · EA∼π[costA(opt)].

Notice that the objective function of univFL can be rewritten as∑
c∈C

d(c, φ(c)) · PA∼π[{c} ∩A ̸= ∅] +
∑
f∈F

wf · PA∼π[φ
−1(f) ∩A ̸= ∅].

Hence univFL is almost identical to SFL since g(R) = PA∼π[R ∩ A ̸= ∅] is a monotone submodular

function of R which is 0 for R = ∅. We can therefore adapt our techniques to achieve the following

result (see Section 4). Let πmin := minc∈C{PA∼π[c ∈ A]} be the smallest probability of any client to be

activated. W.l.o.g. we will assume πmin > 0.

Theorem 1.5. There is a polynomial-time O(log log n
πmin

)-approximation algorithm for the Universal
Stochastic Facility Location problem.

For a comparison, Adamczyk, Grandoni, Leonardi and Włodarczyk [3] obtain an O(log n) approxima-

tion which also holds for non-metric distances. In the case of metric distances, they obtain an O(1)
approximation but only in the independent activation case, i.e., when the sampled set A of active clients

is obtained by independently sampling each client c according to some input probability π′(c) for k
times.

3

In Section 1.3 we describe alternative ways to define the approximation ratio.

1.3 Related Work

As mentioned earlier, Bosman and Olver [6] consider the Nice Subadditive Cover Over Time problem:

roughly speaking, here we are given a set V of items and a time interval {1, . . . , L}. Each item v ∈ V
is associated with a time window Fv = {s, . . . , t}, 1 ≤ s ≤ t ≤ L. The time windows altogether have

a special left-aligned structure whose definition we skip here. A feasible solution consists of a subset

St ⊆ V for each t ∈ {1, . . . , L}, such that, for each v ∈ V , one has v ∈ Sr for some r ∈ Fv . The

goal is to minimize

∑L
t=1 g(St), where g(·) is a monotone submodular set function with g(∅) = 0. For

this problem they give a O(log logL) approximation, using a clever rounding algorithm for a convex

optimization problem involving the Lovász extension of g(·). Intuitively, in our DLA problem (defined

in Section 3.1) the time interval is replaced by the leaves (associated with some facility) of the tree T̃ ,
and the time window of c ∈ C̃ by the set F̃c. Our time windows naturally induce a laminar family,

which is a special case of the left-aligned structure mentioned before. The parameter logL in their

construction is replaced by the depth D of T̃ in our case.

In the (Metric Uncapacitated) Facility Location problem (FL) we are given a set of clients and

a set of facilities in a metric space d, where each facility has an opening cost of . One has to select a

subset of facilities F ′ ⊆ F and assign each client c to the closest facility F ′(c) in F ′
so as to minimize∑

c∈C d(c, F ′(c)) +
∑

f∈F ′ of . FL is a special case of both addSFL and multSFL (and of SFL in the

case of uniform opening costs). FL is among the best-studied problems in the literature from the

point of view of approximation algorithms (see, e.g., [10, 33, 37]). It is known to be APX-hard [24]

and the current best-known 1.488-approximation algorithm [31] is a randomized combination of the

greedy JMS algorithm [30] with an LP-rounding algorithm from [7]. Lagrangian-multiplier preserving

algorithms for FL are at the heart of several approximation algorithms for fundamental clustering

problems, including k-Median [4, 8, 13, 14, 21, 30, 29, 32] and k-Means [4, 13, 23].

Various variants of FL were studied in the literature and for most of them (at least with metric connection

costs) a constant approximation was eventually discovered. A notable example is the Capacitated

Facility Location problem in which the number of clients that can be served from a facility is restricted

by a location-specific bound. A local-search-based constant approximation for the latter problem is given

in [41] (see also [5] for a more recent LP-based result). SFL is one of the most natural generalizations of

(metric) FL where a constant approximation is still not known.

Grandoni, Gupta, Leonardi, Miettinen, Sankowski, and Singh [22], among other universal stochastic

problems, studied univFL in the independent activation case. However, they compare the cost of their

solution with EA∼π[costA(opt(A))], where opt(A) is the optimal facility location solution restricted

to clients A (while we compare with EA∼π[costA(opt)]). For this setting they obtain a O(log n)
approximation, which also holds for non-metric connection costs.

Gupta, Pál, Ravi, and Sinha [25] consider a 2-stage stochastic version of FL. Here in a first stage, one

buys some facilities, then a subset of active clients is sampled from a given distribution. Finally, one can

buy some more facilities, however at an opening cost which is increased by a multiplicative inflation
factor σ. For this setting they present a constant approximation.

Universal stochastic problems have a natural online stochastic counterpart. For example, in the Online

Stochastic Facility Location problem clients are sampled one by one, and when client c is sampled

one has to connect c to an already open facility or open a new facility f and connect c to f . Garg, Gupta,
Leonardi and Sankowski [20] consider this problem in the independent activation case, i.e. when the

next client to be served is sampled from a probability distribution π : C → R≥0. For this setting, they

present an O(1) approximation. Meyerson [34] studied a variant of the problem where an adversary

chooses the set of input clients, and then a random permutation of them is presented in input (random
order model).

We believe that it is plausible that SFL admits a constant approximation. In particular, one might

consider greedy algorithms. Gupta [26] considered a natural set-cover type greedy algorithm for SFL.

The same algorithm gives a 1.861-approximation when applied to the classical Facility Location

problem [30]. Gupta [26, Section 2.3] showed that this algorithm produces an Ω(log n) approximate

solutions for SFL. Hence our algorithm is provably better than that one.

1.4 Preliminaries and Notation

We use log for the logarithm with base 2 and ln for the natural logarithm. Define X = C ∪ F , and

N = |X| = |C ∪ F |. Given a metric d over X , we let dmin be the smallest non-zero distance and dmax

be the largest distance (that we assume to be positive w.l.o.g). We use g(c) as a shortcut for g({c}).

We sometimes express a feasible solution to SFL in the form S = (Sf)f∈F , where S
f ⊆ C specifies

the clients φ−1(f) assigned to f . Notice that for each c ∈ C there is precisely one f ∈ F with c ∈ Sf
.

We define a partial assignment as S = (Sf)f∈F , where Sf ⊆ C . We say that S covers the clients

C ′ = ∪f∈FS
f ⊆ C . Notice that, for technical reasons, in a partial assignment we allow Sf ∩ Sf ′ ̸= ∅

for two distinct f, f ′ ∈ F (i.e. we allow to simultaneously assign a client to more than one facility).

The cost of a (partial) assignment S of the above type is defined as cost(S) := conn(S) + open(S),
where conn(S) :=

∑
f∈F

∑
c∈Sf d(c, f) is the connection cost ofS and open(S) :=

∑
f∈F g(Sf) is the

opening cost ofS. Given a (possibly infeasible) fractional solution x for (Conf-LP), we analogously define

cost(x) = conn(x) + open(x), where conn(x) =
∑

c∈C
∑

f∈F
∑

R∋c d(c, f) · x
f
R, and open(x) =∑

f∈F
∑

R⊆C g(R) · xfR.

It is convenient to define the merge S = S1 + S2 of two partial assignments S1 and S2 naturally

as follows: (1) for each facility f ∈ F , we initially set Sf := Sf
1 ∪ Sf

2 ; (2) while there exist two

distinct facilities f and f ′
with Sf ∩ Sf ′ ̸= ∅, replace Sf ′

with Sf ′ \ Sf
(intuitively this second step

guarantees that each client is assigned to no more than one facility). We observe that merging two

partial assignments cannot increase the total cost.

Lemma 1.6. For any two partial assignments S1 and S2, cost(S1 + S2) ≤ cost(S1) + cost(S2).

Proof. Let S = S1 + S2, and S′
be the intermediate value of S obtained by executing only step (1) of

the merge operation. One has conn(S′) = conn(S1) + conn(S2). Furthermore, by the submodularity

(hence subadditivity) of g(·), open(S′) ≤ open(S1)+ open(S2). Clearly conn(S) ≤ conn(S′), and the
monotonicity of g(·) implies that open(S) ≤ open(S′). The claim follows.

We will exploit the following fairly standard reductions (proofs in Appendix A), thanks to which in the

following it will be sufficient to obtain an O(log logN) approximation for SFL. In order to distinguish

between distinct instances J of the problem, we use costJ(φ) to denote the cost of φ w.r.t. J and define

similarly openJ(φ) etc.

Lemma 1.7. There is a 3-approximate reduction from SFL to the special case wherem = n.

Lemma 1.8. For any constant ε > 0, There is a (1 + 4ε)-approximate reduction from SFL to the special
case where the metric d satisfies dmin = 2 and dmax ≤ 2nN

ε .

One of the key tools that we use is the notion of probabilistic tree embedding, which we use to map the

input metric into a metric on a hierarchically well-separated tree (HST) while stretching the distances
by a small enough factor. We recall that an HST is an edge weighted rooted tree where all the leaves

are at the same distance from the root r. Furthermore, on every path from a leaf to r the edge weights
are 1, 2, 4, . . . In particular, edges at the same level have the same weight. We will use the following

construction
4
by Fakcharoenphol, Rao and Talwar [17].

4

We slightly and trivially extend their claim to consider nodes at distance 0.

Theorem 1.9 (FRT metric tree embedding [17]). For any finite metric space (M,d) with dmin > 1, there
exists a randomized polynomial-time algorithm returning an HST T such that:

1. Every a ∈ M is mapped to some leaf map(a) of T (with elements at distance zero being mapped to
the same leaf);

2. Let dT (a, b) := dT (map(a),map(b)) be the length of the path between the leaves map(a) and
map(b) of T . Then dT (a, b) ≥ d(a, b) and E

[
dT (a, b)

]
≤ 8 log |M | · d(a, b);

3. T has depth O(log dmax).

For a given set C , let h : 2C → R be a monotone submodular function with h(∅) = 0. The Lovász
extension ĥ : [0, 1]C → R of h(·) is defined as

ĥ(y) := min
{ ∑

R⊆C

h(R)µR :
∑
R⊆C

∑
R∋c

µR = yc ∀c ∈ C,
∑
R⊆C

µR = 1, µ ≥ 0
}
. (1)

The function ĥ(·) is convex. We remark that ĥ(y) can be alternatively defined as

ĥ(y) :=

n−1∑
k=1

h ({c1, . . . , ck}) (yck − yck+1
) + h(C)ycn , (2)

where the components of y are sorted in decreasing order, i.e. yc1 ≥ yc2 ≥ · · · ≥ ycn [19, Section 6.3].

By the monotonicity of h(·), ĥ(·) is also non-decreasing in the sense that ĥ(y) ≥ ĥ(y′) if y ≥ y′.

2 Reducing the Connection Cost

In this section, we show how to compute a random partial assignment S1 = (Sf
1)f∈F covering a random

subset of clients C1 := ∪f∈FS
f
1 ⊆ C with the following high-level properties: the expected cost of S1

is “small enough” and (2) each client belongs to C1 with “large enough” probability. In the next section,

we will describe a different partial assignment S2 = (Sf
2)f∈F , again of small enough cost, covering

the remaining clients C2 := C \ C1. By merging these two partial assignments we obtain a feasible

solution for the input problem of small enough total cost.

Let ẋ be an optimal solution to (Conf-LP) with at most poly(N) non-zero entries that can be computed

via Lemma 1.2. The basic idea behind the next lemma is fairly standard: we sample partial assignments

according to the distribution induced by ẋ for ln lnN times, and merge them together.

Lemma 2.1. In polynomial time one can compute a random partial assignmentS1 covering a random subset
of clientsC1 such that: (1)E [cost(S1)] ≤ ln ln(N)·cost(ẋ) and (2) For each c ∈ C , P[c ∈ C1] ≥ 1− 1

lnN .

Proof. For i ∈ {1, 2, . . . , ln lnN} and for every R ⊆ C , we define a partial assignment S(i, R) by

setting Sf (i, R) = R independently with probability ẋfR and Sf (i, R) = ∅ otherwise. Let S1 =∑ln lnN
i=1

∑
R⊆C S(i, R) be obtained by merging all these solutions, and let C1 = ∪f∈FS

f
1 . Observe

that

P[c /∈ C1] =
∏
f∈F

∏
R∋c

(1− ẋfR)
ln lnN ≤ e− ln lnN

∑
f∈F

∑
R∋c ẋ

f
R ≤ e− ln lnN =

1

lnN
.

Furthermore, by Lemma 1.6, E[cost(S1)] is upper-bounded by

ln lnN∑
i=1

∑
R⊆C

E[cost(S(i, R))] = ln lnN ·
∑

f∈F,R⊆C

ẋfR ·
(
g(R) +

∑
c∈R

d(c, f)

)
= ln lnN · cost(ẋ).

Consider the partial assignment S1 covering the random subset of clients C1 as in the previous lemma.

Let C2 := C \ C2 be the remaining (uncovered) clients. Let also ẍ be ẋ restricted to C2, i.e. ẍ
f
R =∑

R′⊆C1
ẋfR∪R′ for R ⊆ C2 and f ∈ F . The following lemma upper bounds the expected opening and

connection cost of ẍ.

Lemma 2.2. One has open(ẍ) ≤ open(ẋ) and E[conn(ẍ)] ≤ 1
lnN conn(ẋ).

Proof. We have open(ẍ) ≤ open(ẋ) by the monotonicity of g(·). For the connection cost, notice that

the probability of a client c being in C2 is at most 1/ lnN , and only in that case one has to pay the

associated connection cost. Thus by linearity of expectation, the expected connection cost of ẍ is at

most conn(ẋ)/ lnN . The claim follows.

Notice that ẍ is a feasible fractional solution for (Conf-LP) limited to C2. In the following section,

we show how to randomly round ẍ to a partial assignment S2 which covers C2 at expected cost

O(log logN) · cost(ẍ). It will then follow that S1 +S2 is a feasible O(log logN)-approximate solution

to the input SFL instance.

3 Approximating SFL on an HST

Given an SFL instance and a tree embedding of (C ∪F, d) into an HST T as in Theorem 1.9, we say that

(C ∪ F, dT , g(·),map(·)) is the corresponding HST-type instance. We remark that we allow multiple

clients C(v) and facilities F (v) to be colocated at each leaf v of T . In this section we will describe an

O(log logN)-approximate LP-rounding algorithm for the considered instances w.r.t. (Conf-LP).

Lemma 3.1. Given a feasible fractional solution x to (Conf-LP) for an HST-type SFL instance, in polynomial
time one can compute a feasible (integral) solution for the same instance with cost at most O(log logN) ·
cost(x).

Theorem 1.1 directly follows.

Proof of Theorem 1.1. By Lemma 1.7 it is sufficient to describe an O(log logN)-approximation. Further-

more by Lemma 1.8, we can assume that dmin = 2 and dmax ≤ 2nN
ε .

By applying the construction of Section 2 we compute a random partial assignment S1 = (Sf
1)f∈F

covering the clients C1 = ∪f∈FS
f
1 with expected cost at most O(log logN) · cost(ẋ), where ẋ is an

optimal solution to (Conf-LP). Furthermore, by Lemma 2.2, we obtain a feasible solution ẍ to (Conf-LP)

restricted to clients C2 := C \ C1 which satisfies open(ẍ) ≤ open(ẋ) and E[conn(ẍ)] ≤ 1
lnN conn(ẋ).

By applying the probabilistic tree embedding from Theorem 1.9 to the metric (C2 ∪ F, d), we obtain
an HST-type SFL instance (C2 ∪ F, dT , g(·),map(·)) where the tree has depth D = O(log dmax) =
O(logN). Observe that ẍ is a feasible fractional solution for (Conf-LP) restricted to C2 on the HST-type

instance. Furthermore, let connT (ẍ) denote the connection cost of ẍ w.r.t. the HST-type instance, and

define similarly openT (ẍ) and costT (ẍ). Then one has

E[costT (ẍ)] = open(ẍ) + E[connT (ẍ)] ≤ open(ẋ) +O(logN) · E[conn(ẍ)] ≤ O(cost(ẋ)).

By applying the LP-rounding algorithm from Lemma 3.1 to ẍ one obtains a partial assignment (Sf
2)f∈F

covering the clients C2 of cost at most O(log logN) cost(ẋ). The same solution has no larger cost in

the original problem (on a non-tree metric). Altogether S1 + S2 is a feasible solution to the input SFL

problem of expected cost at most O(log logN) · cost(ẋ) ≤ O(log logN) · cost(opt).

In the rest of this section, we prove Lemma 3.1. To this aim, we will first present a reduction to a

different problem that we call the Descendent-Leaf Assignment problem (DLA) (see Section 3.1).

Then, we will present a good-enough approximation algorithm for DLA (see Section 3.2).

3.1 A Reduction to DLA

In the Descendent-Leaf Assignment problem (DLA) we are given a rooted tree T̃ with depth D, a

set of facilities F̃ and a set of clients C̃ . Each x ∈ F̃ ∪ C̃ is mapped to some node v(x) of T̃ , with the

restriction that facilities are mapped to leaves of T̃ . By F̃c we denote the facilities which are mapped to

nodes that are descendants of v(c) in T (v(c) included if it is a leaf). A feasible solution consists of an

assignment φ̃ : C̃ → F̃ of each c ∈ C̃ to some f ∈ F̃c. The cost of this solution is

∑
f∈F̃ h(φ̃−1(f)),

where h(·) is a monotone submodular function over C̃ with h(∅) = 0. Similarly to SFL, we also express

a feasible solution as S = (Sf)f∈F̃ , where S
f = φ̃−1(f), and let costDLA(S) =

∑
f∈F̃ h(Sf) be the

associated cost. We define a convex-programming (CP) relaxation for DLA as follows:

min
∑
f∈F̃

ĥ(zf) (DLA-CP)

s.t.

∑
f∈F̃c

zfc = 1 ∀c ∈ C̃;

zfc ≥ 0 ∀c ∈ C̃, ∀f ∈ F̃ .

In a 0-1 integral solution we interpret zfc = 1 as c being assigned to f . Recall that ĥ(·) is convex,
which makes (DLA-CP) a convex program. We also notice that each feasible assignment S = (Sf)f∈F̃
corresponds to a feasible integral solution z = (zf)f∈F̃ to (DLA-CP) with costDLA(S) = costDLA(z) :=∑

f∈F̃ ĥ(zf) and vice versa. Hence indeed (DLA-CP) is a CP-relaxation of DLA.

The next lemma provides the claimed reduction from SFL on HST-type instances to DLA.

Lemma 3.2. Given a polynomial-time O(logD)-approximate CP-rounding algorithm for DLA w.r.t.
(DLA-CP), where D is the depth of the tree, there is polynomial-time O(log logN)-approximate LP-
rounding algorithm for SFL on HST-type instances with tree-depth O(logN) w.r.t. (Conf-LP).

Proof. Let (C ∪ F, dT , g(·),map(·)) be the considered HST-type instance of SFL over an HST T , and x
be an input feasible fractional solution to (Conf-LP) for this instance.

We build an instance (C̃ ∪ F̃ , T̃ , h(·), v(·)) of DLA as follows. First, let yfc :=
∑

R⊆C:c∈R xfR: intuitively

this is the fractional amount by which c is assigned to f in x. We set h(·) = g(·) and T̃ = T . Notice
that D = O(logN). We set F̃ = F and v(f) = map(f) for each f ∈ F̃ . We associate to each c ∈ C a

new client c̃ ∈ C̃ . Let Tv be the subtree rooted at v (containing v and all its descendants) and Fv be the

facilities located in the leaves of Tv according to map(·). We map c̃ into the lowest ancestor v(c̃) of

map(c) such that

∑
f∈Fv(c̃)

yfc ≥ 1/2. Notice that v(c̃) = map(c) is possible (in which case there is at

least one facility f colocated with c in T).

We next define a feasible fractional solution z for (DLA-CP) w.r.t this DLA instance as follows. For

each c̃ ∈ C̃ we set zfc̃ = yfc /(
∑

f ′∈Fv(c̃)
yf

′
c) if f ∈ Fv(c̃), and otherwise zfc̃ = 0. Let φ̃ be a solution to

the DLA instance obtained with the CP-rounding algorithm in the claim w.r.t. z. We obtain a feasible

solution φ for the input instance by simply setting φ(c) = φ̃(c̃).

It remains to analyze the cost of φ. Define z̄fc̃ = yfc /(
∑

f ′∈Fv(c̃)
yf

′
c) for all f ∈ F . Notice that

z̄ ≥ z. By the definition of ĥ(·) and its monotonicity, ĥ(zf) ≤ ĥ(z̄f) = ĥ(yf/(
∑

f ′∈Fv(c̃)
yf

′
c)) ≤

2ĥ(yf) = 2ĝ(yf). Notice that by plugging in xfR for µR in the set in (1) and by how y is defined w.r.t.

x above, we get ĝ(yf) ≤
∑

R⊆C g(R) · xfR and in particular

∑
f∈F ĝ(yf) ≤ open(x). Thus, we have

costDLA(z) ≤ 2 open(x) and

open(φ) = costDLA(φ̃) = O(logD) · costDLA(z) ≤ O(log logN) · 2 open(x). (3)

Consider next the connection cost of a given c ∈ C . If v(c̃) = map(c), i.e v(c̃) has no child, then

dT (c, φ(c)) = 0 ≤
∑

f∈F dT (c, f)yfc . Otherwise, let w(c) be the child of v(c̃) along the v(c̃)-map(c)
path in T . Let ∆ be the weight of the edge between v(c̃) and w(c). Observe that the distance between
v(c̃) and the leaves in Tv(c̃) is exactly 2∆− 1. Furthermore, both c and φ(c) are located in the leaves of

Tv(c̃) in the HST mappingmap(·). Hence dT (c, φ(c)) ≤ 2(2∆− 1).

By the definition of v(c̃), it must be the case that

∑
f∈Fw(c)

yfc < 1
2 , and consequently

∑
f∈F\Fw(c)

yfc ≥
1
2 . For each f ∈ F \ Fw(c), themap(f)-map(c) path in T has length at least 2(2∆− 1). Thus∑

f∈F
dT (c, f)yfc ≥

∑
f∈F\Fw(c)

dT (c, f)yfc ≥ 1

2
2(2∆− 1).

Therefore, the connection cost of c in φ is at most 2 times its connection cost in x. We conclude

that conn(φ) ≤ 2 conn(x). Altogether we have cost(φ) ≤ 2 conn(x) + O(log logN) · 2 open(x) ≤
O(log logN) · cost(x).

3.2 An Approximation Algorithm for DLA

In this section, we present a CP-rounding algorithm for DLA. Lemma 3.1 follows by chaining Lemmas

3.2 and 3.3.

Lemma 3.3. Given a feasible fractional solution z to (DLA-CP) on an instance of DLA with tree-depth
D, in polynomial time one can compute a feasible (integral) solution to the same instance of cost at most
O(logD) · costDLA(z).

The CP-rounding algorithm from Lemma 3.3 is essentially the algorithm by Bosman and Olver [6] with

minor modifications that we introduced to simplify our correctness analysis. Also, the analysis of its

approximation ratio is essentially identical to [6], but we reproduce it for the sake of completeness.

In particular, we will exploit the following definitions and lemma from [6]. Let h : 2C̃ → R≥0 be a

monotone submodular function with h(∅) = 0. For a given f ∈ F̃ and a (possibly infeasible) solution

z to (DLA-CP), let Lθ(z
f) := {c ∈ C̃ : zfc ≥ θ} be the set of clients that are served fractionally by at

least some value θ by f . Let also zf |θ be obtained from zf by rounding down to θ the values larger than

θ, i.e. z
f |θ
c := min{zfc , θ} for each c ∈ C̃ . Given θ ∈ [0, 1] and zf ∈ [0, 1]C̃ , we say that the set Lθ(z

f)
is α-supported (w.r.t. h) if ĥ(zf)− ĥ(zf |θ) ≥ αh(Lθ(z

f)).

Lemma 3.4 (Lemma 5.2 from [6]). Given zf ∈ [0, 1]C̃ and α ∈ (0, 1], at least one of the following holds:
(1) there exists θ ∈ [0, 1], which can be computed in polynomial time, such that Lθ(z

f) is α
32 -supported; (2)

21/αh(L1(z
f)) ≤ ĥ(zf).

Our algorithm is Algorithm 1 in the figure. Recall that T̃v is the subtree rooted at node v, where T̃v

includes v and all its descendants. Furthermore, F̃v is the set of facilities mapped to the leaves of T̃v . As

usual the level of a node is its hop-distance from the root.

Clearly Algorithm 1 runs in polynomial time. The next two lemmas analyze the correctness and the

approximation ratio of Algorithm 1, hence proving Lemma 3.3.

Lemma 3.5. Algorithm 1 computes a feasible DLA solution.

Proof. Consider a given client c ∈ C̃ such that v(c) is at levelD− i in T̃ . Let us show that the following

invariant holds at the beginning of each iteration j ≤ i: either
∑

f∈F̃c
zfc = 1 or c ∈ Sf

for some f ∈ F̃c.

The invariant trivially holds for j = 0. Assume that it holds up to the beginning of iteration j < i, and
consider what happens during that iteration. Notice that for every node v at level D − j > D − i, we

Algorithm 1
Input: Feasible solution z to (DLA-CP)

1: Sf ← ∅ for all f ∈ F
2: for i = 0, . . . , D do
3: For every node v at level D − i, choose an arbitrary fv ∈ F̃v and set zfv ←

∑
f ′∈F̃v

zf
′
and zf

′
← 0 for all

f ′ ∈ F̃v \ {fv}
4: if there exists θ ∈ [0, 1] such that Lθ(z

fv) is 1
32 log(D+1)

-supported then
5: For an arbitrary such θ, set Sfv ← Sfv ∪ Lθ(z

fv) and zfvc ← 0 for all c ∈ Lθ(z
fv)

6: else
7: Set Sfv ← Sfv ∪ L1(z

fv) and zfvc ← 0 for all c ∈ L1(z
fv)

8: For every c ∈ C̃ choose f ∈ F̃c such that c ∈ Sf
and set Sf ′

← Sf ′
\ {c} for all f ′ ∈ F̃ \ {f}

9: return (Sf)f∈F̃

either have that every f ∈ F̃v is a descendant of v(c) or every f ∈ F̃v is not in F̃c. Therefore, in Step

(3) the value of

∑
f∈F̃c

zfc does not change. In more detail, it remains 1 by inductive hypothesis. The

same value can decrease in Steps (5) or (7), however, this can only happen if c is added to Sfv
for some

fv ∈ F̃c. Thus the invariant holds at the end of the j-th iteration, hence at the beginning of the next

iteration j + 1.

Due to the invariant, during the iteration i, when one considers the node v = v(c), one has that either

c already belongs to some Sf
with f ∈ F̃c, or

∑
f∈F̃c

zfc = 1. In the latter case, after Step (3), zfvc = 1

where fv ∈ F̃c, so c belongs to every set Lθ(z
fv) with θ ∈ [0, 1]. As a consequence, c is added to Sfv

either in Step (5) or in Step (7).

It might happen that a client c is assigned also to a facility not in F̃c. Step (8) guarantees that the final

assignment of c is correct and unique.

Lemma 3.6. Algorithm 1 outputs a solution of cost at most O(logD) · costDLA(z).

Proof. Recall that costDLA(z) =
∑

f∈F̃ ĥ(zf). We start by observing that the value of costDLA(z)
can not increase over time when z changes during the execution of the algorithm. Indeed, Steps (5)

and (7) can only decrease the entries of z, hence costDLA(z) by the monotonicity of ĥ(·). The only
other changes of z happen in Step (3). Let us interpret this step as iteratively decreasing to zero zf

′

for each f ′ ∈ F̃v \ {fv} and increasing zfv by the same amount. The decrease of the cost at each step

is ĥ(zfv) + ĥ(zf
′
)− ĥ(zfv + zf

′
). By the alternative definition of ĥ(·) as in (2) and its convexity, one

has ĥ(zfv + zf
′
) = 2ĥ

(
zfv+zf

′

2

)
≤ 2

(
1
2 ĥ(z

fv) + 1
2 ĥ(z

f ′
)
)
= ĥ(zfv) + ĥ(zf

′
). Hence the decrease

of the cost is non-negative as required.

For each facility f and level i, let∆θ
i (f) be the clients added to S

f
in Step (5) during iteration i (possibly

∆θ
i (f) = ∅). We define similarly ∆1

i (f) w.r.t. Step (7). Notice that, by the submodularity (hence

subadditivity) of h(·), the increase of the cost of the solution due to adding ∆ to Sf
is at most h(∆).

Therefore we can upper bound the cost of the final solution S = (Sf)f∈F̃ by

costDLA(S) :=
∑
f∈F̃

h(Sf) ≤
D∑
i=0

∑
f∈F̃

(
h(∆θ

i (f)) + h(∆1
i (f))

)
.

Let us upper bound the right-hand side of the above inequality. Let z(i) denote the value of z at the
beginning of iteration i. From the previous observation, we have ĥ(z(i)) ≤ ĥ(z) for every i. By Lemma

3.4 with α = 1
log(D+1) , for any∆1

i (f) one has h(∆
1
i (f)) ≤ 1

D+1 ĥ(z
f (i)). Thus

D∑
i=0

∑
f∈F̃

h
(
∆1

i (f)
)
≤

D∑
i=0

∑
f∈F̃

1

D + 1
ĥ
(
zf (i)

)
≤

D∑
i=0

1

D + 1
costDLA(z(i)) ≤ costDLA(z). (4)

Let z(D+1) be the value of z at the end of theD-th iteration, hence in particular costDLA(z(D+1)) ≥ 0.
Notice that z = z(0). We can lower bound costDLA(z) by

costDLA(z) ≥
D∑
i=0

(
costDLA(z(i))− costDLA(z(i+ 1))

)
.

Let z1(i) be the value of z obtained from z(i) after applying Step (3) for all nodes of level D − i. Let
also z2(i) be the value obtained from z1(i) if, for all the facilities F

′
i where Step (5) is applied during

iteration i, instead of setting zfc = 0 one sets zfc = θ for the corresponding value of θ. For the facilities
not in F ′

i we simply let zf2 (i) = zf1 (i). Observe that z(i+ 1) ≤ z2(i) ≤ z1(i) ≤ z(i). One has

costDLA(z(i))− costDLA(z(i+ 1)) ≥ costDLA(z1(i))− costDLA(z(i+ 1))

≥ costDLA(z1(i))− costDLA(z2(i))

=
∑
f∈F̃

ĥ
(
zf1 (i)

)
− ĥ

(
zf2 (i)

)
=
∑
f∈F ′

i

ĥ
(
zf1 (i)

)
− ĥ

(
zf2 (i)

)

≥
∑

f∈F ′
i
h
(
∆θ

i (f)
)

32 log(D + 1)
=

∑
f∈F̃ h

(
∆θ

i (f)
)

32 log(D + 1)
.

In the first two inequalities above we used the monotonicity of ĥ(·), while in the last inequality the

definition of α-supported. Altogether

D∑
i=0

∑
f∈F̃

h
(
∆θ

i (f)
)
≤ 32 log(D + 1) ·

D∑
i=0

(
costDLA(z(i))− costDLA(z(i+ 1))

)
≤O(logD) · costDLA(z). (5)

By the monotonicity of h(·), Step (8) cannot increase the cost of the solution, hence the claim.

4 Universal Stochastic Facility Location

In this section we sketch our approximation algorithm for univFL. We first present a weaker approxi-

mation factor O(log logN + log log dmax
dmin

). Later we will show how to refine it.

Define g(R) := PA∼π[R∩A ̸= ∅]. We observe that this function is monotone submodular and g(∅) = 0.
Recall that g(c) = g({c}) for every c ∈ C . W.l.o.g. we can assume g(c) > 0 since otherwise we can
discard c. We can define the objective function of univFL for a given assignment φ : C → F as

cost(φ) = conn(φ) + open(φ) =
∑
c∈C

d(c, φ(c)) · g(c) +
∑
f∈F

wf · g(φ−1(f)).

Notice that only the connection cost changes w.r.t. multSFL. In more detail, the connection cost of each

client c is scaled by the factor g(c).

We can similarly define a configuration LP for univFL, and solve it by the same arguments as in

Lemma 1.2. We next use an analogous notation as for SFL. Let ẋ be an optimal solution to this

LP with poly(N) many non-zero variables. We can apply the first stage of our algorithm for SFL

(described in Section 2) with essentially no changes. This will lead to a partial assignment S1 of

expected cost E[cost(S1)] ≤ ln lnN · cost(ẋ) and serving the clients C1, where P[c /∈ C1] ≤ 1
lnN .

Mapping the metric over an HST T and considering the restriction ẍ of ẋ to C2 := C \ C1, we obtain

that E[costHST (ẍ)] = O(cost(ẋ)). A reduction similar to the one in Lemma 3.2 works also in this

case (since the scaling of the fractional solution is done on a per-client base). However in this case

D = O(log dmax
dmin

) (since we did not reduce the ratio
dmax
dmin

in a preprocessing step). Hence we can apply

the result from Lemma 3.3 to obtain an assignment coveringC2 of expected costO(log log dmax
dmin

)·cost(ẋ).
This concludes the sketch of the O(log logN + log log dmax

dmin
) approximation.

We next improve this bound via a preprocessing step. Recall that 0 < πmin := minc∈C{g(c)}. We first

scale the ratio dmax/dmin. Let us guess
5
the largest distanceL = maxc∈C{d(c, opt(c))} in some optimal

(universal) solution opt. Notice that cost(opt) ≥ πminL. We use essentially the same arguments as in

Lemma 1.8, we can enforce that dmax ≤ NL and dmin ≥ ε
nπminL. Hence we obtain

dmax
dmin

≤ nN
επmin

.

Now let us reduce the number of facilities m to O(n + log 1
πmin

) (hence N as well). Here we use

essentially the same argument as in the proof of Lemma B.1 (with pf = 0). In more detail, we can

assume thatm ≤ 2n. Indeed, otherwise we can reduce the input instance to a Weighted Set Cover

instance (that we can solve exactly in polynomial time) in the same way as in the mentioned lemma,

with the difference that now, forR ̸= ∅, we set κR = minf∈F {wf · g(R)+
∑

c∈R d(c, f) · g(c)}. By the
rest of the construction in the same lemma, we can reduce (with a constant loss in the approximation

factor) our instance to one where there are O(log dmax
dmin

) = O(log n2n

επmin
) = O(n+ log 1

πmin
) facilities

per client. Altogether we reduce N to N ′ = O(n(n+ log 1
πmin

)). Now we can apply again the above

scaling trick over the distances (with N replaced by N ′
) to obtain distances d′ which satisfy:

d′max

d′min

≤ nN ′

επmin
= O

(
n3 + n2 log 1

πmin

πmin

)
.

This leads to the approximation factor

O

(
log log

d′max

d′min

+ log logN ′
)

= O

(
log log

n

πmin

)
.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments, in particular for pointing

out to the simpler and stronger lower bound construction by Gupta [26]. We would also like to thank

Neil Olver for inspiring discussions about applications of their technique in [6] to various covering

problems over time.

Fateme Abbasi and Jarosław Byrka were supported by Polish National Science Centre (NCN) Grant

2020/39/B/ST6/01641. Marek Adamczyk was supported by Polish National Science Centre (NCN) Grant

2019/35/D/ST6/03060. Miguel Bosch-Calvo, Fabrizio Grandoni, Krzysztof Sornat and Antoine Tinguely

were supported by the SNSF Grant 200021_200731/1. Krzysztof Sornat was partially supported by the

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 101002854).

References

[1] Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni,

Krzysztof Sornat, and Antoine Tinguely. An O(log log n)-approximation for submodular facility

location. CoRR, abs/2211.05474, 2022. doi: 10.48550/ARXIV.2211.05474.
[2] Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni,

Krzysztof Sornat, and Antoine Tinguely. An O(log log n)-approximation for submodular fa-

cility location. In 51st International Colloquium on Automata, Languages, and Programming, ICALP
2024, pages 5:1–5:20, 2024. doi: 10.4230/LIPICS.ICALP.2024.5. URL https://doi.org/10.4230/
LIPIcs.ICALP.2024.5.

5

Throughout this paper, by guessing we mean trying all the (polynomially many) possible options. Each such options

leads to a different solution, and we return the best one.

https://doi.org/10.4230/LIPIcs.ICALP.2024.5
https://doi.org/10.4230/LIPIcs.ICALP.2024.5

[3] Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michal Włodarczyk. When the

optimum is also blind: A new perspective on universal optimization. In 44th International Col-
loquium on Automata, Languages, and Programming, ICALP 2017, pages 35:1–35:15, 2017. doi:
10.4230/LIPIcs.ICALP.2017.35. URL https://doi.org/10.4230/LIPIcs.ICALP.2017.35.

[4] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020. doi:
10.1137/18M1171321. URL https://doi.org/10.1137/18M1171321.

[5] Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facility

location. SIAM J. Comput., 46(1):272–306, 2017. doi: 10.1137/151002320. URL https://doi.org/
10.1137/151002320.

[6] Thomas Bosman and Neil Olver. Improved approximation algorithms for inventory problems.

In Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO
2020, pages 91–103, 2020. doi: 10.1007/978-3-030-45771-6_8. URL https://doi.org/10.1007/
978-3-030-45771-6_8.

[7] Jarosław Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the metric

uncapacitated facility location problem. SIAM J. Comput., 39(6):2212–2231, 2010. doi: 10.1137/
070708901. URL https://doi.org/10.1137/070708901.

[8] Jarosław Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An

improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2):23:1–23:31, 2017. doi: 10.1145/2981561. URL https://doi.org/10.
1145/2981561.

[9] Yves Cabannes. Participatory budgeting: A significant contribution to participatory democ-

racy. Environment and Urbanization, 16(1):27–46, April 2004. ISSN 0956-2478. doi: 10.1177/

095624780401600104.

[10] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location

problems. SIAM J. Comput., 34(4):803–824, 2005. doi: 10.1137/S0097539701398594. URL https:
//doi.org/10.1137/S0097539701398594.

[11] Chandra Chekuri andAlina Ene. Submodular cost allocation problem and applications. InAutomata,
Languages and Programming - 38th International Colloquium, ICALP 2011, pages 354–366, 2011. doi:
10.1007/978-3-642-22006-7_30. URL https://doi.org/10.1007/978-3-642-22006-7_30.

[12] Chandra Chekuri and Alina Ene. Approximation algorithms for submodular multiway partition.

In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pages 807–816,
2011. doi: 10.1109/FOCS.2011.34. URL https://doi.org/10.1109/FOCS.2011.34.

[13] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Improved

approximations for Euclidean k-means and k-median, via nested quasi-independent sets. In 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 1621–1628, 2022. doi:
10.1145/3519935.3520011. URL https://doi.org/10.1145/3519935.3520011.

[14] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breaching

the 2 LMP approximation barrier for facility location with applications to k-median. In 34th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 940–986, 2023. doi: 10.1137/1.
9781611977554.ch37. URL https://doi.org/10.1137/1.9781611977554.ch37.

[15] Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approximability of

multiway partitioning problems. In 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, pages 306–325, 2013. doi: 10.1137/1.9781611973105.23. URL https://doi.org/10.
1137/1.9781611973105.23.

[16] James M Enelow and Melvin J Hinich. The Spatial Theory of Voting: An Introduction. Cambridge

University Press, 1984.

[17] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary

metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi: 10.1016/J.JCSS.2004.04.011.
[18] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (exponential) algorithms for

the dominating set problem. In Graph-Theoretic Concepts in Computer Science, 30th International

https://doi.org/10.4230/LIPIcs.ICALP.2017.35
https://doi.org/10.1137/18M1171321
https://doi.org/10.1137/151002320
https://doi.org/10.1137/151002320
https://doi.org/10.1007/978-3-030-45771-6_8
https://doi.org/10.1007/978-3-030-45771-6_8
https://doi.org/10.1137/070708901
https://doi.org/10.1145/2981561
https://doi.org/10.1145/2981561
https://doi.org/10.1137/S0097539701398594
https://doi.org/10.1137/S0097539701398594
https://doi.org/10.1007/978-3-642-22006-7_30
https://doi.org/10.1109/FOCS.2011.34
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1137/1.9781611977554.ch37
https://doi.org/10.1137/1.9781611973105.23
https://doi.org/10.1137/1.9781611973105.23

Workshop, WG 2004, pages 245–256, 2004. doi: 10.1007/978-3-540-30559-0_21. URL https:
//doi.org/10.1007/978-3-540-30559-0_21.

[19] Satoru Fujishige. Submodular functions and optimization, volume 58 of Annals of Discrete Mathe-
matics. Elsevier, 2nd edition, 2005.

[20] Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses for

online combinatorial optimization problems. In 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, pages 942–951, 2008. URL http://dl.acm.org/citation.cfm?id=
1347082.1347185.

[21] Kishen N. Gowda, Thomas W. Pensyl, Aravind Srinivasan, and Khoa Trinh. Improved bi-point

rounding algorithms and a golden barrier for k-median. In 34th ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, pages 987–1011, 2023. doi: 10.1137/1.9781611977554.ch38. URL
https://doi.org/10.1137/1.9781611977554.ch38.

[22] Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski, and

Mohit Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830, 2013. doi:

10.1137/100802888. URL https://doi.org/10.1137/100802888.
[23] Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat. A

refined approximation for Euclidean k-means. Inf. Process. Lett., 176:106251, 2022. doi: 10.1016/j.
ipl.2022.106251. URL https://doi.org/10.1016/j.ipl.2022.106251.

[24] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. J.
Algorithms, 31(1):228–248, 1999. doi: 10.1006/JAGM.1998.0993.

[25] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Sampling and cost-sharing: Approxima-

tion algorithms for stochastic optimization problems. SIAM J. Comput., 40(5):1361–1401, 2011. doi:
10.1137/080732250. URL https://doi.org/10.1137/080732250.

[26] Shalmoli Gupta. Approximation algorithms for clustering and facility location problems. PhD thesis,

University of Illinois Urbana-Champaign, USA, 2018. URL https://hdl.handle.net/2142/
102419.

[27] Nicole Immorlica, David R. Karger, Maria Minkoff, and Vahab S. Mirrokni. On the costs and benefits

of procrastination: Approximation algorithms for stochastic combinatorial optimization problems.

In 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 691–700, 2004.
URL http://dl.acm.org/citation.cfm?id=982792.982898.

[28] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algorithm

for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777, 2001. doi:

10.1145/502090.502096. URL https://doi.org/10.1145/502090.502096.
[29] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and

k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM
(JACM), 48(2):274–296, 2001. doi: 10.1145/375827.375845. URL https://doi.org/10.1145/
375827.375845.

[30] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani. Greedy

facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal of the
ACM (JACM), 50(6):795–824, 2003. doi: 10.1145/950620.950621. URL https://doi.org/10.1145/
950620.950621.

[31] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013. doi: 10.1016/J.IC.2012.01.007.

[32] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J. Comput.,
45(2):530–547, 2016. doi: 10.1137/130938645. URL https://doi.org/10.1137/130938645.

[33] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for metric facility

location problems. SIAM J. Comput., 36(2):411–432, 2006. doi: 10.1137/S0097539703435716. URL
https://doi.org/10.1137/S0097539703435716.

[34] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pages 426–431, 2001. doi: 10.1109/SFCS.2001.959917. URL https://doi.org/
10.1109/SFCS.2001.959917.

https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
http://dl.acm.org/citation.cfm?id=1347082.1347185
http://dl.acm.org/citation.cfm?id=1347082.1347185
https://doi.org/10.1137/1.9781611977554.ch38
https://doi.org/10.1137/100802888
https://doi.org/10.1016/j.ipl.2022.106251
https://doi.org/10.1137/080732250
https://hdl.handle.net/2142/102419
https://hdl.handle.net/2142/102419
http://dl.acm.org/citation.cfm?id=982792.982898
https://doi.org/10.1145/502090.502096
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/950620.950621
https://doi.org/10.1137/130938645
https://doi.org/10.1137/S0097539703435716
https://doi.org/10.1109/SFCS.2001.959917
https://doi.org/10.1109/SFCS.2001.959917

[35] Simon Rey and Jan Maly. The (computational) social choice take on indivisible participatory

budgeting. CoRR, abs/2303.00621, 2023. doi: 10.48550/ARXIV.2303.00621. URL https://doi.
org/10.48550/arXiv.2303.00621.

[36] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1999. ISBN

978-0-471-98232-6.

[37] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility location

problems (extended abstract). In 29th Annual ACM Symposium on the Theory of Computing,
STOC 1997, pages 265–274, 1997. doi: 10.1145/258533.258600. URL https://doi.org/10.1145/
258533.258600.

[38] David B. Shmoys, Chaitanya Swamy, and Retsef Levi. Facility location with service installation

costs. In 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 1088–1097,
2004. URL http://dl.acm.org/citation.cfm?id=982792.982953.

[39] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. In Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pages 153–161,
2006. URL http://dl.acm.org/citation.cfm?id=1109557.1109576.

[40] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM Trans.
Algorithms, 6(2):37:1–37:22, 2010. doi: 10.1145/1721837.1721853. URL https://doi.org/10.
1145/1721837.1721853.

[41] Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiexchange local search algorithm for the capacitated

facility location problem. Math. Oper. Res., 30(2):389–403, 2005. doi: 10.1287/MOOR.1040.0125.

A Some Omitted Proofs about SFL

Proof of Lemma 1.2. Considering the dual of (Conf-LP):

max
{∑

c∈C
αc +

∑
f∈F

βf :
∑
c∈R

αc + βf ≤ g(R) +
∑
c∈R

d(c, f), ∀R ⊆ C, ∀f ∈ F
}
. (Conf-DLP)

Notice that for fixed α and β, the functions gf (R) := g(R) +
∑

c∈R d(c, f) −
∑

c∈R αc − βf are

submodular. Thus, a call of a separation oracle on (Conf-DLP) is equivalent to a minimization of

all functions gf (·), which can be done using polynomially many oracle calls of g(·) [28]. Therefore,
an optimal primal solution with poly(N) many non-zero variables for (Conf-LP) can be found in

polynomial time [36, Corollary 14.1g(v)].

Proof of Lemma 1.7. Let I = (C,F, d, g(·)) be the considered instance of SFL. Consider the complete

weighted graph on nodes C ∪ F , with weights induced by d. For each client c, let f(c) be the facility
closest to c. We create a dummy facility f ′(c) and add a dummy edge {c, f ′(c)} of weight d(c, f(c)).
Let F ′

be the set of newly created facilities. Observe that |F ′| = n. Finally we remove F and consider

the metric d′ over C ∪F ′
induced by the distances over the resulting graph. Let I ′ = (C,F ′, d′, g(·)) be

the obtained instance of SFL. Given a solution φ′
for I ′, we obtain a solution φ for I by simply assigning

to f(c) each client c′ assigned to f ′(c) in φ′
.

Let us analyze the approximation factor introduced by this reduction. We first observe that costI(φ) ≤
costI′(φ

′). Indeed, openI(φ) = openI′(φ
′). Furthermore, for each each client c′ assigned to f ′(c) by

φ′
, the associated connection cost w.r.t. I is d(c′, f(c)) ≤ d(c′, c) + d(c, f(c)) = d′(c′, f ′(c)). Hence

connI(φ) ≤ connI′(φ
′).

Next consider an optimal solution opt for I . For each facility f with opt−1(f) ̸= ∅, let c ∈ opt−1(f) be
the client closest to f . We define a solution opt′ for I ′ by assigning all the clients in opt−1(f) to f ′(c).
Again, openI(φ) = openI′(φ

′). For each client c′ assigned to f in opt, its connection cost in I ′ is

d′(c′, f ′(c)) = d(c, c′) + d(c, f(c)) ≤ d(c′, f) + d(c, f) + d(c, f(c)) ≤ d(c′, f) + 2d(c, f) ≤ 3d(c′, f).

https://doi.org/10.48550/arXiv.2303.00621
https://doi.org/10.48550/arXiv.2303.00621
https://doi.org/10.1145/258533.258600
https://doi.org/10.1145/258533.258600
http://dl.acm.org/citation.cfm?id=982792.982953
http://dl.acm.org/citation.cfm?id=1109557.1109576
https://doi.org/10.1145/1721837.1721853
https://doi.org/10.1145/1721837.1721853

Hence connI′(opt
′) ≤ 3 connI(opt). The claim follows.

Proof of Lemma 1.8. Let us guess the value L = maxc∈C d(c, opt(c)) for some optimal solution opt.
W.l.o.g. assume L > 0, otherwise the problem is trivial. Consider the complete weighted graph on

nodes C ∪ F with weights induced by d. Remove the edges of weight larger than L. We next compute

a feasible solution in each connected component of the resulting graph separately. Notice that this part

of the reduction is approximation preserving since no client can be assigned to a facility in a different

connected component in opt.

Let C ′
and F ′

be the clients and facilities, resp., in one such connected component G′
, X ′ = C ′ ∪ F ′

,

and d′ be the metric induced by the distances in G′
. Consider the corresponding SFL instance I ′ =

(C ′, F ′, d′, g(·)). Notice that in each such instance I ′ one has d′max ≤ NL. We next change the

location of elements of X ′
as follows. We consider the ball B(x) := {y ∈ X ′ : d′(x, y) ≤ ε

2nL}
of radius

ε
2nL around each x ∈ X ′

. Let I be a maximal (independent) set of such balls so that, if

B(x), B(y) ∈ I for x ̸= y, then B(x) ∩ B(y) = ∅. For each y with B(y) /∈ I , we consider any

B(x) ∈ I with B(x) ∩ B(y) ̸= ∅ (which must exist since I is maximal) and colocate y with x. Let
I ′′ = (C ′, F ′, d′′, g(·)) be the resulting instance of SFL. Observe that d′′max ≤ NL and d′′min ≥ ε

nL.

Let Ĩ be the union of all the instances I ′′, and d̃ be the associated distances (where inter-component

distances can be considered to be +∞). Given a solution φ for Ĩ (obtained by the union of all the

solutions obtained for each instance I ′′), we return exactly the same solution φ for I .

Let us analyze the approximation factor. Notice that openI(φ) = openĨ(φ). Furthermore, for each client

c, d(c, φ(c)) ≤ d̃(c, φ(c))+ 2ε
n L, where in the latter termwe consider the fact that each client and facility

is moved at most at distance
ε
nL from the original location. Hence connI(φ) ≤ connĨ(φ)+2εL. Given

an optimum solution opt for I , by a symmetric argument one has costĨ(opt) ≤ costI(opt) + 2εL ≤
(1 + 2ε) costI(opt), where we used the fact that costI(opt) ≥ L. Altogether an α ≥ 1 approximation

algorithm for each instance I ′′ implies an α(1 + 2ε) + 2ε ≤ α(1 + 4ε) approximation for I .

Finally, we scale the distance d′′ and g(·) by the same factor
2n
εL so that d′′min = 2 and d′′max ≤ 2nN

ε .

Clearly this final scaling is approximation preserving.

B Generalizations of SFL

In this section we discuss some generalizations of SFL.

B.1 Reduction of the Number of Facilities

In this section we consider the generalization of SFL, next called Affine SFL, where the opening cost of

each facility f with assigned clients R ̸= ∅ is gf (R) := pf + wf · g(R), where pf , wf ≥ 0 are input

values. Notice that this generalizes SFL with Additive (resp., Multiplicative) Opening Costs. We

also observe that each gf (·) is non-negative monotone submodular.

We show how to reduce to the case where m = poly(n) (hence N = poly(n)) while loosing a

constant factor in the approximation. We will use this reduction in the following sections to convert an

O(log logN) approximation into an O(log log n) one.

Lemma B.1. For any constant ε > 0, there is a (3 + 37ε)-approximate reduction from Affine SFL to the
special case where the number of facilities is Oε(n

3).

Proof. First of all, consider the case m ≥ 2n. In this case we can solve the problem optimally in

polynomial time via the following reduction to the Weighted Set Cover problem. For an instance

I = (C,F, d, g(·)) of Affine SFL, consider the instance J = (U ,R, κ) of Weighted Set Cover

with universe U = C , set collection R = 2C and weight function κ given as κR = 0 if R = ∅ and

κR = minf∈F (pf +wf · g(R) +
∑

c∈R d(c, f)) for R ∈ 2C \ {∅} (which can be computed in poly(N)

time). Notice that 2|U| = 2n which is polynomially bounded in the input size of I . The optimal solution

to J induces a solution of exactly the same cost to I and vice versa. There is a simple dynamic program

which solves Weighted Set Cover in time O(2|U | · |U | · |R|) [18, Lemma 2]. Applying this algorithm

to J , one obtains an optimal solution for the input instance I in time O(2n · poly(n,m)), which is

polynomial inm.

Hence it remains to consider the case m ≤ 2n. We show how to reduce the number of facilities

to Oε(n
2 log(nN)) = Oε(n

3), while losing the approximation factor in the claim. By exactly the

same reduction as in Lemma 1.8, we can assume that in the input metric d the maximum distance is

0 < dmax ≤ NL and the minimum non-zero distance is dmin ≥ ε
nL while loosing a factor (1 + 4ε)

in the approximation. Here L is some value that lower bounds the cost of a given optimum solution

opt. Let us guess the largest value P of pf over the facilities with at least one assigned client in opt.
We discard all the facilities f with pf > P . Now, assuming P > 0, we replace each pf with the value

p′f := ⌈pf ·nεP ⌉ · εP
n (p′f = pf for P = 0). Notice that this can only increase the cost of a given solution φ,

however this increase is upper bounded by n · εP
n ≤ ε · costI(opt), where I is the input instance of the

problem. Hence this reduction preserves the approximation guarantee up to a factor 1 + ε. After this
reduction, the set P ′

of different possible values of p′f has cardinality at most
n
ε .

Let I = (C,F, d, p′, w, g(·)) be the instance of Affine SFL obtained after the above two reductions.

Consider the complete edge-weighted graph on nodes C ∪ F , with weights induced by d. We modify

this graph as follows. For each client c and value p′ ∈ P ′
, we consider the set of facilities Fp′ with

p′f = p′. Let Fp′(c, i), i ≥ 0, be the facilities in Fp′ whose distances from c are in the range [εnL · (1 +
ε)i, ε

nL · (1+ ε)i+1). We also define the set Fp′(c,−1) of the facilities in Fp′ at distance 0 from c. Notice
that there are at most 1 + ⌈log1+ε

nN
ε ⌉ sets Fp′(c, i) which are non-empty. For each Fp′(c, i) ̸= ∅, we

choose a facility f = fp′(c, i) with minimum value of wf . We create a dummy facility f ′ = f ′
p′(c, i)

with opening cost g′f ′(C ′) = p′ + wf · g(C ′) for C ′ ̸= ∅, and add a dummy edge {c, f ′} of weight

d(c, f). Let F ′
be the set of dummy facilities. Notice that, considering also the previous reduction, one

has |F ′| ≤ n · n
ε · (1 + ⌈log1+ε

nN
ε ⌉) = O(n2 log(nN)). We remove the original facilities F , and let d′

be the metric given by the distances in the resulting graph G′
on nodes C ∪ F ′

. We solve the problem

on the resulting instance I ′ = (C,F ′, d′, p′, w, g(·)). Given a solution φ′
for I ′, we obtain a solution φ

for I naturally as follows: if φ′(c′) = f ′
p′(c, i), we assign c′ to fp′(c, i).

Let us analyze the approximation factor of this final reduction. The opening costs of φ and φ′
are

identical. Furthermore, for each client c′ assigned to f = fp′(c, i) in φ, and for f ′ = f ′
p′(c, i), one has

d(c′, f) ≤ d(c′, c) + d(c, f) = d′(c′, c) + d′(c, f ′) = d′(c′, f ′). Hence costI(φ) = costI′(φ
′).

Next consider an optimum solution opt for I . We construct a feasible solution opt′ for I ′ as follows.
Let Sf ̸= ∅ be the clients assigned to some f ∈ F in opt. Recall that the opening cost of f is

g′f (S
f) = p′f +wf · g(Sf). Let c ∈ Sf

be the client at minimum distance d(c, f) from f . Define i as−1

if d(c, f) = 0, and otherwise, i such that d(c, f) ∈ [εnL · (1 + ε)i, ε
nL · (1 + ε)i+1). In opt′ we reassign

all the clients in Sf
to f ′ = f ′

p′f
(c, i). The opening cost associated with f ′

in opt′ is no larger than the

corresponding cost in opt since

p′f ′ + wf ′ · g(Sf ′
) = p′f + wf ′ · g(Sf) ≤ p′f + wf · g(Sf).

In the last inequality above we used the fact that f ∈ Fp′f
(c, i) and fp′f (c, i) is the facility in the latter

set with minimum wf value. The connection cost of each c′ ∈ Sf
w.r.t. opt′ satisfies

d′(c′, f ′) = d′(c′, c) + d′(c, f ′) = d(c, c′) + d(c, fp′f (c, i))

≤ d(c′, f) + d(c, f) + (1 + ε)d(c, f) ≤ (3 + ε)d(c′, f).

Altogether, costI′(opt
′) ≤ (3 + ε) costI(opt). Considering also the first two reductions, we obtain a

global reduction which preserves the approximation guarantee up to a factor (1 + 4ε)(1 + ε)(3 + ε) ≤
3 + 37ε.

B.2 SFL with Multiplicative Opening Costs

In this section we sketch the proof of Theorem 1.3. By Lemma B.1, it is sufficient to provide an

O(log logN) approximation.

For f ∈ F andR ⊆ C let gf (R) := wf ·g(R). Note that gf (·) is submodular, monotone and has g(∅) = 0

for every f ∈ F . For any (partial) assignment S = (Sf) and any vector (xfR)
f∈F
R⊆C let also open′(S) :=∑

f∈F gf (S
f), resp. open′(x) :=

∑
f∈F

∑
R⊆C gf (R) · xfR and cost′(S) := open′(S) + conn(S) resp.

cost′(x) := open′(x) + conn(x).

By these definitions, the LP-relaxation of the multSFL is given by the constraints from (Conf-LP) and

the objective cost′(·). In particular, the LP-relaxation of multSFL can be solved with the approach from

Lemma 1.2. We keep the merging rule defined in Section 1.4 and the sampling procedure from Section 2.

It is easy to verify that the vector ẍ resulting from this procedure fulfills Lemma 2.2 w.r.t. open′ instead
of open.

We reduce multSFL to a similar problem to DLA which we call DLA
∗
which is the same problem

as DLA and with the same input variables as DLA, additional inputs w̃f ≥ 0 for every f ∈ F̃
and cost cost∗DLA(φ) =

∑
f∈F̃ hf (φ

−1(f)) where hf (·) := w̃fh(·) for every f ∈ F̃ . Its convex

relaxation is given by the constraints in (DLA-CP) with the cost function cost∗DLA(z) :=
∑

f∈F̃ ĥf (z
f)

(where ĥf is the Lovász extension of hf). The reduction described in Lemma 3.2 can be reproduced

to reduce multSFL to DLA
∗
. We define the input values of DLA

∗
w.r.t. multSFL in the same way we

define the input values of DLA w.r.t. SFL, with additionally w̃f = wf for every f ∈ F . Notice that

hf (·) = w̃fh(·) = gf (·) = wfg(·). Every reasoning made in the proof of Lemma 3.2 stays valid.

We now adjust Algorithm 1 for DLA
∗
as follows: in Step 3, we select the facility fv ∈ F̃v with minimum

weight w̃fv . In the if-clause 4, we search and verify for supportedness w.r.t. hfv instead of h (which is

equivalent unless w̃fv = 0, in which case Lθ(z
fv) is supported for every θ). Since the new algorithm

functions exactly like Algorithm 1, except for an arbitrary selection step becoming determined (in

particular, the new algorithm is a possible implementation of Algorithm 1), its correctness is implied by

the correctness of Algorithm 1.

Notice that since fv in Step 3 is now chosen to have minimal weight, we have for any f ′ ∈ F̃v \ {fv}

ĥfv
(
zfv + zf

′) ≤ ĥfv
(
zfv

)
+ ĥfv

(
zf

′) ≤ ĥfv
(
zfv

)
+ ĥf ′

(
zf

′)
,

which means that the cost of z does not increase at any time by the arguments as before. Also, notice

that since hf is submodular, monotone and hf (∅) = 0 we can apply Lemma 3.4 with respect to hfv
instead of h. Thus, the cost of the sets added at Step 5 and Step 7 is still bounded as in (4) and (5).

B.3 SFL with Additive Opening Costs

In this section we sketch the proof of Theorem 1.4. As in the previous section, by Lemma B.1, it is

sufficient to provide an O(log logN) approximation.

Similarly to the previous section, we define the set function gf (·) as gf (R) = g(R) + pf for R ̸= ∅ and

gf (∅) = 0. As argued in the previous section, we can find an optimum to the LP relaxation of addSFL

and reduce it to the problem DLA
∗
as defined in the last section, but with input weights p̃f instead of

w̃f and hf (·) as hf (R) := h(R) + pf for R ̸= ∅, and hf (∅) = 0.

We adapt Algorithm 1 like in the previous section: in Step 3, we select the facility fv ∈ F̃v with minimum

weight p̃fv . In the if-clause 4, we search and verify for supportedness w.r.t. hfv instead of h. The

correctness of the new algorithm here is given by the same argument as in the previous section. Notice

that by (2) we have ĥf (z) = ĥ(z)+pf ·maxc∈C̃ zc, which implies ĥfv(z
fv +zf

′
) ≤ ĥfv(z

fv)+ ĥf ′(zf
′
)

with fv chosen as in Step 3 in Algorithm 1. The cost of z does therefore not increase throughout the
algorithm. Bounding the cost of sets added to the solution at Step 5 and Step 7 can be done, like for

multSFL, by applying Lemma 3.4 to hfv .

Fateme Abbasi

University of Wrocław

Wrocław, Poland

Email: fateme.abbasi@cs.uni.wroc.pl

Marek Adamczyk

University of Wrocław

Wrocław, Poland

Email: marek.adamczyk@cs.uni.wroc.pl

Miguel Bosch-Calvo

IDSIA, USI-SUPSI

Lugano, Switzerland

Email: miguel.boschcalvo@idsia.ch

Jarosław Byrka

University of Wrocław

Wrocław, Poland

Email: jby@cs.uni.wroc.pl

Fabrizio Grandoni

IDSIA, USI-SUPSI

Lugano, Switzerland

Email: fabrizio.grandoni@idsia.ch

Krzysztof Sornat

AGH University

Kraków, Poland

Email: sornat@agh.edu.pl

Antoine Tinguely

IDSIA, USI-SUPSI

Lugano, Switzerland

Email: antoine.tinguely@idsia.ch

fateme.abbasi@cs.uni.wroc.pl
marek.adamczyk@cs.uni.wroc.pl
miguel.boschcalvo@idsia.ch
jby@cs.uni.wroc.pl
fabrizio.grandoni@idsia.ch
sornat@agh.edu.pl
antoine.tinguely@idsia.ch

	Introduction
	Our Results and Techniques
	Generalizations and Variants
	Related Work
	Preliminaries and Notation

	Reducing the Connection Cost
	Approximating SFL on an HST
	A Reduction to DLA
	An Approximation Algorithm for DLA

	Universal Stochastic Facility Location
	Some Omitted Proofs about SFL
	Generalizations of SFL
	Reduction of the Number of Facilities
	SFL with Multiplicative Opening Costs
	SFL with Additive Opening Costs

