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Abstract

In the Submodular Facility Location problem (SFL) we are given a collection of n clients and
m facilities in a metric space. A feasible solution consists of an assignment of each client to
some facility. For each client, one has to pay the distance to the associated facility. Furthermore,
for each facility f to which we assign the subset of clients S/, one has to pay the opening cost
g(S7), where g(-) is a monotone submodular function with g((}) = 0.

SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still
“tractable”) function of the set of served clients. For example, each client might have differ-
ent types of needs, and satisfying such needs might have a submodular impact on the opening
cost (regardless of the facility location). SFL can model participatory budgeting within a spatial
voting framework, where clients are voters positioned in a metric space, and facilities correspond
to projects considered for implementation.

SFL is NP-hard and, more strongly, APX-hard since it includes the classical (metric uncapacitated)
Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [39,
SODA’06] gave the current-best O(log n) approximation algorithm for SFL. The same authors
pose the open problem whether SFL admits a constant approximation and provide such an
approximation for a very restricted special case of the problem.

We make some progress towards the solution of the above open problem by presenting an
O(loglogn) approximation. Our approach is rather flexible and can be easily extended to
generalizations and variants of SFL. In more detail, we achieve the same approximation factor
for the natural generalizations of SFL where the opening cost of each facility f is of the form
pr+g(ST) orwy - g(SY), where py,w; > 0 are input values.

We also obtain an improved approximation algorithm for the related Universal Stochastic Facility
Location problem. In this problem one is given a classical (metric) facility location instance and
has to a priori assign each client to some facility. Then a subset of active clients is sampled from
some given distribution, and one has to pay (a posteriori) only the connection and opening costs
induced by the active clients. The expected opening cost of each facility f can be modelled with
a submodular function of the set of clients assigned to f.

1 Introduction

In the SuBMODULAR FAcCILITY LOCATION problem (SFL), we are given a set C' of n clients and set F' of m
facilities, with metric distances d : (C' U F') x (C'U F') — Rx¢. Furthermore, we are given a monotone
submodular? (opening cost) function g : 2¢ — Rx>q with g(#)) = 0. Notice that g(-) is non-negative. A
feasible solution consists of an assignment ¢ : C' — F' of each client to some facility (we also say that
¢(c) serves c). The opening cost of f € F in this solution is g(¢~!(f)). The cost of the solution, that
we wish to minimize, is the sum of the distances from each client to the corresponding facility plus the
total opening cost of the facilities, in other words

cost(p) = Z d(e,o(c)) + Z gl (f)).
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'A conference version of this work appeared in ICALP 2024 [2]. A full version of the paper is available at arXiv [1].

*We recall that g(-) is submodular iff, for every S, T C C, g(S) + g(T) > g(SNT) + g(S U T). The function is also
monotone if g(T') < g(S) for every T'C S C C. As usual in this framework, we assume to have an oracle access to g(-):
given S C C, we can obtain the value of g(S) in polynomial time.



SFL captures practical scenarios where the cost of opening a facility is a (non-linear, still “tractable”)
function of the set of served clients. For example, each client might have different types of needs, and
satisfying such needs might have a submodular impact on the opening cost (regardless of the facility
location). SFL can model participatory budgeting [9, 35] within a spatial voting framework [16], where
clients are voters positioned in a metric space, and facilities correspond to projects considered for
implementation. In such a participatory budgeting setting, the cost of implementing a project is not
constant—it depends on the specific group of voters who will use it, including both their types and their
numbers.

Let us illustrate this with a conceptual example: building multiple sports facilities across a city. Our goal
is to serve all citizens, whom we categorize into three primary age groups: children, adults, and seniors.
Naturally, these groups have different needs in terms of the types of sports facilities they use, as well as
their available times of usage (e.g., constrained by school or work schedules). These differences imply
that the cost of building a facility depends on both the type and the number of citizens it serves. The
cost increases in a concave manner with the size of each demographic group. For instance, a facility
serving 50 children and 50 seniors will likely incur a higher cost than a facility serving 100 children or
100 seniors, due to the need to accommodate diverse requirements. Such dependencies can be effectively
modeled using a submodular opening cost function in the SFL objective function. Furthermore, we also
account for the travel cost associated with reaching a facility. That is, we aim to avoid assigning citizens
to facilities that are too far from their locations. Incorporating distance as a cost component in the
SFL objective function (with distances appropriately scaled to be comparable to facility opening costs)
introduces a meaningful trade-off between opening costs and travel costs. Indeed, if travel costs were
ignored, the optimal solution would be to open a single facility to minimize opening cost. However,
this would result in high societal costs due to excessive travel distances for many citizens.

As we will discuss, SFL is also closely related to certain stochastic optimization problems which recently
attracted a lot of attention (see, e.g, [3, 22, 20, 25, 27] and references therein). In particular, there are
scenarios where one has to pay (a posteriori) the connection and opening costs related only to a random
subset of activated clients, and this naturally induces objective functions with submodular opening
costs.

SFL is APX-hard since it includes the classical FAciLITY LoCcATION problem (with uniform facility costs)
as a special case [24]. Hence the best we can hope for, in terms of approximation algorithms, is a constant
approximation. Finding such an approximation algorithm is explicitly posed as an open problem, e.g.,
by Svitkina and Tardos [39, 40]. The same authors present an O(logn) approximation, based on a
greedy approach, for a generalization of SFL where each facility f has a distinct monotone submodular
function g¢(-) (and this result is tight for this generalization due to a reduction from SET CovEer by
Shmoys, Swamy and Levi [38]). Chekuri and Ene [11] obtain an alternative O(log n) approximation for
the same generalization of SFL based on rounding a convex relaxation exploiting Lovasz extensions (see
also the related work on submodular partitioning problems [12, 15]). Svitkina and Tardos also present a
constant approximation for a rather restrictive (still practically motivated) special case of SFL where
g(+) is induced by certain subtrees of a node-weighted tree over the clients.

1.1 Our Results and Techniques

We make some progress towards the resolution of the mentioned open problem by presenting an
improved approximation algorithm for SFL.

Theorem 1.1. There is a polynomial-time O(log log n)-approximation algorithm for SFL.

Our approach is surprisingly simple (modulo exploiting some non-trivial results in the literature). By
standard reductions (see Section 1.4) we can assume that N = n + m is polynomial in n, hence it is
sufficient to provide an O(loglog N) approximation. Our starting point is a natural (configuration) LP



relaxation for the problem:

min Z Z 9(R) - xﬂ + Z Z Z d(e, f) - xé (Conf-LP)

feF RCC ceC feF R>c

s.t. ZZxézl Ve € C
fEF R>c
Zxﬁ:l Vf e F,
RCC
vh>0 VRC C, Vf e F.

In an integral solution, we interpret z3, = 1 as assigning exactly the set of clients R to the facility f.
Notice that we impose ) pc x{% = 1. This is w.l.o.g. since g({)) = 0 (intuitively, xé = 1 means that
no client is assigned to f). We can solve the above LP in polynomial time (see Appendix A for a proof).

Lemma 1.2. In poly(N) time one can find an optimal solution to (Conf-LP) with poly(N) non-zero
entries.

Given an optimal solution & = (xj;) fer rcc to (Conf-LP) of cost cost(4) as in Lemma 1.2, we proceed
with two main stages. In the first stage (discussed in Section 2) we simply sample partial assignments of
clients to facilities with the distribution induced by & for InIn N many times. This cost at most InIn NV
times the optimal LP cost in expectation, and leads to a partial solution that covers a random subset
C1 C C of clients.

In the second stage (discussed in Section 3) we take care of the remaining uncovered clients Cy = C'\ C}.
Let us consider the restriction & of @ to Cs. The opening cost of & might be as large as the opening cost
of . However, in expectation, the connection cost of & is only a 1/In N fraction of the connection cost
of & (as we will show).

At this point, using the probabilistic tree embedding algorithm in [17], we embed the original metric d
into a (rooted) tree metric d’ over a hierarchically well-separated tree (HST) T (see Section 1.4 for the
details). The opening cost of & w.r.t. to the new tree instance does not change, while its connection cost
grows by a factor at most O(log V) in expectation. Altogether we obtain a feasible fractional solution
& over the tree instance whose expected cost is at most O(cost(#)). Hence it is sufficient to develop an
O(loglog N)-approximate LP-rounding algorithm for the considered tree instance.

The next step is at the heart of our approach. Using the properties of HSTs and losing a constant factor
in the approximation, we can further reduce our SFL tree instance to the following DESCENDANT-LEAF
ASSIGNMENT problem (DLA): the facilities are leaves of 7" and the clients are arbitrary nodes of T
Each client ¢ must be served by a facility contained in the subtree 7. rooted at c. The opening cost of
each facility is given by ¢(-), and there are no connection costs at all. Bosman and Olver [6] describe
a reduction of SUBMODULAR JOINT REPLENISHMENT and INVENTORY ROUTING problems to the Nice
SuBADDITIVE COVER OVER TIME problem. We critically observed that DLA has some similarities with
the latter problem (though this connection might not be obvious at first sight, see the discussion in
Section 1.3). In particular, we were able to adapt their approach to achieve the desired O(loglog N)
approximation for our DLA problem.

We remark that we do not know how to get an O(1) approximation for SFL on trees (even on HSTs).
Though such approximation would not imply an O(1) approximation for SFL with our approach (due
to the first stage), finding it seems to be a natural intermediate problem to address.

The first stage of our construction might be helpful in other related problems, in particular to reduce the
input problem to one on HSTs while introducing an additive O(loglogn) term in the approximation
ratio.



1.2 Generalizations and Variants

Our basic approach is rather flexible, and it can be applied to generalizations and variants of SFL. We next
describe some other applications of our approach, and we expect to see a few more ones in the future.
For example, we can handle the case where the opening cost of the facility f is g7 (S7) = w; - g(S),
where wy > 0 is some input value: we call this the SFL wiTH MULTIPLICATIVE OPENING COSTS problem
(MULTSFL).

Theorem 1.3. There is a polynomial-time O(log log n)-approximation algorithm for MULTSFL.

Similarly, we can address the SFL witH ADDITIVE OPENING COsTs problem (apDSFL), where g¢(S/) =
pr+ g(ST) for ST # 0, g¢(P) = 0, and py > 0 is some input value.

Theorem 1.4. There is a polynomial-time O(log log n)-approximation algorithm for ADDSFL.

The above generalizations are discussed in Appendix B. We remark that we do not know how to
obtain an O(log log n)-approximation for the AFFINE SFL case, where the opening costs are submodular
functions of the form g¢(S7) = py +wy - g(S7). Notice that this generalizes both ApbpSFL and MULTSFL.
This is left as an interesting open problem.

As mentioned earlier, SFL is closely related to stochastic variants of FAcILITY LocaTION. In particular, our
approach also extends to the following UNIVERSAL STOCHASTIC FACILITY LOCATION problem (UNIVFL).
Here we are given clients C' and facilities F' with metric distances d like in SFL, plus an opening
cost wy for each f € F. Furthermore, we have an oracle access to a probability distribution 7 :
2¢ — R specifying the probability m(A) that a given subset of clients A C C' is activated. A
feasible solution is an (universal) mapping ¢ : C' — F. The cost of ¢ w.rt. clients A C C is
costa(p) = D cea dlc, 0(€)) + 3 rep.p1(f)nazp Wy- In words, this is the cost of connecting clients
in A to the corresponding facilities, plus the cost of opening the facilities that serve at least one client
in A. Our goal is to minimize E 4.r[cost 4(¢)]. The main motivation for universal problems of this
type is to allow a very quick (possibly distributed) reaction to requests that arrive over time. Let
opt: C'— F minimize E 4~ [cost 4 (opt)], in other words opt is an optimal (universal) mapping. We
say that an algorithm for uNIVFL is a-approximate® if it returns a universal mapping ¢ satisfying
Ea~rlcosta(¢)] < a-Exr[cost4(opt)].

Notice that the objective function of UNIVFL can be rewritten as

S dleple) Pacsl{e} N A2 0]+ wy - Paale™ (/)N A #0).
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Hence UNIVFL is almost identical to SFL since g(R) = Pa~.[R N A # (] is a monotone submodular
function of R which is 0 for R = (). We can therefore adapt our techniques to achieve the following
result (see Section 4). Let Ty := min.cc{Pa~r[c € A]} be the smallest probability of any client to be
activated. W.l.o.g. we will assume 7pip, > 0.

Theorem 1.5. There is a polynomial-time O(log log —"—)-approximation algorithm for the UNIVERSAL
StocHAsTIC FaciLiTY LOCATION problem.

For a comparison, Adamczyk, Grandoni, Leonardi and Wtodarczyk [3] obtain an O(log n) approxima-
tion which also holds for non-metric distances. In the case of metric distances, they obtain an O(1)
approximation but only in the independent activation case, i.e., when the sampled set A of active clients
is obtained by independently sampling each client ¢ according to some input probability 7’(¢) for k
times.

*In Section 1.3 we describe alternative ways to define the approximation ratio.



1.3 Related Work

As mentioned earlier, Bosman and Olver [6] consider the N1CE SUBADDITIVE COVER OVER TIME problem:
roughly speaking, here we are given a set ' of items and a time interval {1,..., L}. Eachitemv € V
is associated with a time window F, = {s,...,t}, 1 < s <t < L. The time windows altogether have
a special left-aligned structure whose definition we skip here. A feasible solution consists of a subset
Sy C V foreacht € {1,..., L}, such that, for each v € V, one has v € S, for some r € F,. The
goal is to minimize >~ | g(S;), where g(-) is a monotone submodular set function with g(f)) = 0. For
this problem they give a O(log log L) approximation, using a clever rounding algorithm for a convex
optimization problem involving the Lovasz extension of g(-). Intuitively, in our DLA problem (defined
in Section 3.1) the time interval is replaced by the leaves (associated with some facility) of the tree T,
and the time window of ¢ € C by the set F... Our time windows naturally induce a laminar family,
which is a special case of the left-aligned structure mentioned before. The parameter log L in their
construction is replaced by the depth D of T in our case.

In the (METRIC UNCAPACITATED) FaciLiTY LocATiON problem (FL) we are given a set of clients and
a set of facilities in a metric space d, where each facility has an opening cost oy. One has to select a
subset of facilities F” C F' and assign each client c to the closest facility F’(c) in F’ so as to minimize
> cecd(e, F'(c)) + 3 e 0. FL is a special case of both ADDSFL and MULTSFL (and of SFL in the
case of uniform opening costs). FL is among the best-studied problems in the literature from the
point of view of approximation algorithms (see, e.g., [10, 33, 37]). It is known to be APX-hard [24]
and the current best-known 1.488-approximation algorithm [31] is a randomized combination of the
greedy JMS algorithm [30] with an LP-rounding algorithm from [7]. Lagrangian-multiplier preserving
algorithms for FL are at the heart of several approximation algorithms for fundamental clustering
problems, including k-MEDIAN [4, 8, 13, 14, 21, 30, 29, 32] and k-MEANS [4, 13, 23].

Various variants of FL were studied in the literature and for most of them (at least with metric connection
costs) a constant approximation was eventually discovered. A notable example is the CAPACITATED
FaciLiTy LocATION problem in which the number of clients that can be served from a facility is restricted
by a location-specific bound. A local-search-based constant approximation for the latter problem is given
in [41] (see also [5] for a more recent LP-based result). SFL is one of the most natural generalizations of
(metric) FL where a constant approximation is still not known.

Grandoni, Gupta, Leonardi, Miettinen, Sankowski, and Singh [22], among other universal stochastic
problems, studied UNIVFL in the independent activation case. However, they compare the cost of their
solution with E 4 [cost 4 (opt(A))], where opt(A) is the optimal facility location solution restricted
to clients A (while we compare with E 4.[cost 4(opt)]). For this setting they obtain a O(logn)
approximation, which also holds for non-metric connection costs.

Gupta, Pal, Ravi, and Sinha [25] consider a 2-stage stochastic version of FL. Here in a first stage, one
buys some facilities, then a subset of active clients is sampled from a given distribution. Finally, one can
buy some more facilities, however at an opening cost which is increased by a multiplicative inflation
factor o. For this setting they present a constant approximation.

Universal stochastic problems have a natural online stochastic counterpart. For example, in the ONLINE
StocHASTIC FACILITY LOCATION problem clients are sampled one by one, and when client ¢ is sampled
one has to connect ¢ to an already open facility or open a new facility f and connect c to f. Garg, Gupta,
Leonardi and Sankowski [20] consider this problem in the independent activation case, i.e. when the
next client to be served is sampled from a probability distribution 7 : C' — R>(. For this setting, they
present an O(1) approximation. Meyerson [34] studied a variant of the problem where an adversary
chooses the set of input clients, and then a random permutation of them is presented in input (random
order model).

We believe that it is plausible that SFL admits a constant approximation. In particular, one might
consider greedy algorithms. Gupta [26] considered a natural set-cover type greedy algorithm for SFL.



The same algorithm gives a 1.861-approximation when applied to the classical FaciLity LocaTioN
problem [30]. Gupta [26, Section 2.3] showed that this algorithm produces an Q(log n) approximate
solutions for SFL. Hence our algorithm is provably better than that one.

1.4 Preliminaries and Notation

We use log for the logarithm with base 2 and In for the natural logarithm. Define X = C'U F’, and
N = |X| =|C U F|. Given a metric d over X, we let dy,ip be the smallest non-zero distance and dyax
be the largest distance (that we assume to be positive w.l.o.g). We use g(c) as a shortcut for g({c}).

We sometimes express a feasible solution to SFL in the form S = (SY) fcr, where S/ C C specifies
the clients 0! (f) assigned to f. Notice that for each ¢ € C there is precisely one f € F with ¢ € S/,
We define a partial assignment as S = (Sf)feF, where S/ C C. We say that S covers the clients
C'=U ferS I C C. Notice that, for technical reasons, in a partial assignment we allow S f'nsf # )
for two distinct f, f' € F (i.e. we allow to simultaneously assign a client to more than one facility).
The cost of a (partial) assignment S of the above type is defined as cost(S) := conn(S) + open(S5),
where conn(S) == > s p D .esr d(c, f)is the connection cost of S and open(S) = 3 ¢ o g(S7)isthe

opening cost of S. Given a (possibly infeasible) fractional solution x for (Conf-LP), we analogously define

cost(z) = conn(z) + open(z), where conn(z) = > .cc > rer 2opscdlc f) - xé, and open(z) =

Zfep ZRQC’ g(R) - fﬁg

It is convenient to define the merge S = S; + S2 of two partial assignments S; and S naturally
as follows: (1) for each facility f € F, we initially set S/ = S{ U Sg ; (2) while there exist two
distinct facilities f and f’ with S¥ N ST £ 0, replace S7’ with S\ S (intuitively this second step
guarantees that each client is assigned to no more than one facility). We observe that merging two
partial assignments cannot increase the total cost.

Lemma 1.6. For any two partial assignments Sy and So, cost(S1 + S2) < cost(S1) + cost(.S2).

Proof. Let S = S + S3, and S’ be the intermediate value of S obtained by executing only step (1) of
the merge operation. One has conn(S’) = conn(S1) + conn(S3). Furthermore, by the submodularity
(hence subadditivity) of ¢g(-), open(S’) < open(Si) + open(Sz). Clearly conn(S) < conn(S’), and the
monotonicity of g(-) implies that open(S) < open(S”). The claim follows. O

We will exploit the following fairly standard reductions (proofs in Appendix A), thanks to which in the
following it will be sufficient to obtain an O(loglog V) approximation for SFL. In order to distinguish
between distinct instances .J of the problem, we use cost s () to denote the cost of ¢ w.r.t. J and define
similarly open ;(¢) etc.

Lemma 1.7. There is a 3-approximate reduction from SFL to the special case where m = n.

Lemma 1.8. For any constant ¢ > 0, There is a (1 + 4¢)-approximate reduction from SFL to the special

case where the metric d satisfies dpin = 2 and dpax < @

One of the key tools that we use is the notion of probabilistic tree embedding, which we use to map the
input metric into a metric on a hierarchically well-separated tree (HST) while stretching the distances
by a small enough factor. We recall that an HST is an edge weighted rooted tree where all the leaves
are at the same distance from the root r. Furthermore, on every path from a leaf to r the edge weights
are 1,2,4, ... In particular, edges at the same level have the same weight. We will use the following
construction* by Fakcharoenphol, Rao and Talwar [17].

*We slightly and trivially extend their claim to consider nodes at distance 0.



Theorem 1.9 (FRT metric tree embedding [17]). For any finite metric space (M, d) with dmin > 1, there
exists a randomized polynomial-time algorithm returning an HSTT' such that:

1. Everya € M is mapped to some leaf map(a) of T (with elements at distance zero being mapped to
the same leaf);

2. Let d"(a,b) := d” (map(a), map(b)) be the length of the path between the leaves map(a) and
map(b) of T. Then d* (a,b) > d(a,b) and E [d" (a,b)] < 8log|M]| - d(a,b);
3. T has depth O(log dmax)-

For a given set C, let h: 2¢ — R be a monotone submodular function with h(f)) = 0. The Lovasz
extension h: [0,1]¢ — R of h(-) is defined as

il —mln{Zh ZZuRzyCVCGC,ZuR:LMEO}. (1)

RCC RCC R>c RCC

The function &(-) is convex. We remark that (y) can be alternatively defined as

n—1

iL(Z/ = Z h ({Clﬂ R Ck}) (ka - yck+1) + h(C)nd, (2)
k=1

where the components of y are sorted in decreasing order, i.e. Yo, > Yo, > -+ > Y¢,, [19, Section 6.3].
By the monotonicity of h(-), h(-) is also non-decreasing in the sense that h( ) > h(y)ify >y

2 Reducing the Connection Cost

In this section, we show how to compute a random partial assignment 57 = (S { ) fe covering a random
subset of clients C'1 := U FS{ C C with the following high-level properties: the expected cost of S;
is “small enough” and (2) each client belongs to C; with “large enough” probability. In the next section,
we will describe a different partial assignment Sy = (5’2f ) e, again of small enough cost, covering
the remaining clients Cy := C'\ C}. By merging these two partial assignments we obtain a feasible
solution for the input problem of small enough total cost.

Let 4 be an optimal solution to (Conf-LP) with at most poly (V) non-zero entries that can be computed
via Lemma 1.2. The basic idea behind the next lemma is fairly standard: we sample partial assignments
according to the distribution induced by & for InIn N times, and merge them together.

Lemma 2.1. In polynomial time one can compute a random partial assignment S1 covering a random subset
of clients Cy such that: (1)E [cost(S1)] < InIn(N)-cost(i) and (2) Foreachc € C,P[c € C1] > 1— %

Proof. Fori € {1,2,...,Inln N} and for every R C C, we define a partial assignment S(i, R) by
setting S/ (i, R) = R independently with probability x‘é and S/ (i, R) = () otherwise. Let S; =
Zln N > rcc S(i, R) be obtained by merging all these solutions, and let C; = UfeFS{. Observe
that

e ¢ C1] = H H lnlnN < e~ IInN Y p Yo ik < e~ nlN _ 1n1N'
fEF R>c¢

Furthermore, by Lemma 1.6, E[cost(.S1)] is upper-bounded by

Inln N
Z Z E[cost(S(i, R))] = Inln N - Z j:g- (g(R) + Zd(c, f)) =Inln N -cost(z). O

i=1 RCC fEF,RCC cER



Consider the partial assignment 57 covering the random subset of clients C'; as in the previous lemma.

Let Cy := C'\ C4 be the remaining (uncovered) clients. Let also & be & restricted to Cy, i.e. a'jﬁ =

dRrCO, y'cﬁu p for R C Cyand f € F'. The following lemma upper bounds the expected opening and
connection cost of 2.

Lemma 2.2. One has open(i) < open(i) and E[conn(i)] < X5 conn(#).

Proof. We have open(#) < open(#) by the monotonicity of g(-). For the connection cost, notice that
the probability of a client ¢ being in C is at most 1/1n NV, and only in that case one has to pay the
associated connection cost. Thus by linearity of expectation, the expected connection cost of & is at
most conn(z)/In N. The claim follows. O

Notice that  is a feasible fractional solution for (Conf-LP) limited to C. In the following section,
we show how to randomly round & to a partial assignment Sy which covers Cs at expected cost
O(loglog N) - cost(&). It will then follow that S; + Ss is a feasible O(log log N )-approximate solution
to the input SFL instance.

3 Approximating SFL on an HST

Given an SFL instance and a tree embedding of (C'U F, d) into an HST T as in Theorem 1.9, we say that
(CUF,dT, g(-),map(-)) is the corresponding HST-type instance. We remark that we allow multiple
clients C'(v) and facilities F'(v) to be colocated at each leaf v of T'. In this section we will describe an
O(log log N)-approximate LP-rounding algorithm for the considered instances w.r.t. (Conf-LP).

Lemma 3.1. Given a feasible fractional solution x to (Conf-LP) for an HST-type SFL instance, in polynomial
time one can compute a feasible (integral) solution for the same instance with cost at most O(loglog N) -
cost(z).

Theorem 1.1 directly follows.

Proof of Theorem 1.1. By Lemma 1.7 it is sufficient to describe an O(loglog N)-approximation. Further-

more by Lemma 1.8, we can assume that dpi, = 2 and dpax < @

By applying the construction of Section 2 we compute a random partial assignment S7 = (S{ )fer

covering the clients Cy = UfepS{ with expected cost at most O(loglog IV) - cost(&), where & is an
optimal solution to (Conf-LP). Furthermore, by Lemma 2.2, we obtain a feasible solution & to (Conf-LP)

restricted to clients Cy := C' \ C which satisfies open(i) < open(i) and E[conn(#)] < 5 conn().
By applying the probabilistic tree embedding from Theorem 1.9 to the metric (Co U F', d), we obtain
an HST-type SFL instance (Cy U F,d", g(-), map(-)) where the tree has depth D = O(log diax) =
O(log N). Observe that 7 is a feasible fractional solution for (Conf-LP) restricted to C'y on the HST-type
instance. Furthermore, let conny (i) denote the connection cost of # w.r.t. the HST-type instance, and

define similarly open (%) and costy (). Then one has
E[costr(Z)] = open(&) + E[conny(Z)] < open(z) + O(log N) - E[conn(z)] < O(cost(%)).

By applying the LP-rounding algorithm from Lemma 3.1 to 2 one obtains a partial assignment (S{ )fer
covering the clients C5 of cost at most O(loglog N) cost (). The same solution has no larger cost in
the original problem (on a non-tree metric). Altogether S; + 52 is a feasible solution to the input SFL
problem of expected cost at most O(loglog N) - cost(4) < O(loglog N) - cost(opt). O

In the rest of this section, we prove Lemma 3.1. To this aim, we will first present a reduction to a
different problem that we call the DESCENDENT-LEAF ASSIGNMENT problem (DLA) (see Section 3.1).
Then, we will present a good-enough approximation algorithm for DLA (see Section 3.2).



3.1 A Reduction to DLA

In the DESCENDENT-LEAF ASSIGNMENT problem (DLA) we are given a rooted tree T with depth D, a
set of facilities F" and a set of clients C. Each z € F'U C' is mapped to some node v(z) of T', with the
restriction that facilities are mapped to leaves of T. By F,, we denote the facilities which are mapped to
nodes that are descendants of v(c) in T' (v(c) included if it is a leaf). A feasible solution consists of an

assignment ¢ : C' — F of each ¢ € C to some f € F,. The cost of this solution is Zfeﬁ (7 1(f)),

where h(-) is a monotone submodular function over C’ with A(()) = 0. Similarly to SFL, we also express
a feasible solution as S = (Sf)feF, where ST = ¢71(f), and let costpra(S) = > feF h(S7) be the
associated cost. We define a convex-programming (CP) relaxation for DLA as follows:

> k() (DLA-CP)
fer
s.t. Zz({zl Vee C,
fere
ZZZO Vee C, Vf e F.
In a 0-1 integral solution we interpret 2 =1asc being assigned to f. Recall that iz() is convex,

which makes (DLA-CP) a convex program. We also notice that each feasible assignment S = (S7) feF
corresponds to a feasible integral solution z = (z/) e to (DLA-CP) with costpra (S) = costpra(z) =
> teF h(z7) and vice versa. Hence indeed (DLA-CP) is a CP-relaxation of DLA.

The next lemma provides the claimed reduction from SFL on HST-type instances to DLA.

Lemma 3.2. Given a polynomial-time O(log D)-approximate CP-rounding algorithm for DLA w.r.t.
(DLA-CP), where D is the depth of the tree, there is polynomial-time O(loglog N)-approximate LP-
rounding algorithm for SFL on HST-type instances with tree-depth O(log N') w.r.t. (Conf-LP).

Proof. Let (C'U F,d*, g(-), map(-)) be the considered HST-type instance of SFL over an HST 7', and
be an input feasible fractional solution to (Conf-LP) for this instance.

We build an instance (C U F, T', h(-), v(-)) of DLA as follows. First, let y/ := 3 RCCwceR x{%: intuitively
this is the fractional amount by which c is assigned to f in . We set i(-) = g(-) and T = T. Notice
that D = O(log N). We set F' = F and v(f) = map(f) for each f € F. We associate to each ¢ € C a
new client & € C. Let T}, be the subtree rooted at v (containing v and all its descendants) and F, be the
facilities located in the leaves of T}, according to map(-). We map ¢ into the lowest ancestor v(¢) of
map(c) such that 3 Fuo yl > 1/2. Notice that v(¢) = map(c) is possible (in which case there is at
least one facility f colocated with ¢ in T)).

We next define a feasible fractional solution z for (DLA-CP) w.r.t this DLA instance as follows. For
each & € C' we set Z~ = ye /(Zf’eF (J;N) if f € Fy(z), and otherwise zg = 0. Let ¢ be a solution to
the DLA instance obtained with the CP -rounding algorithm in the claim w.r.t. z. We obtain a feasible
solution ¢ for the input instance by simply setting ¢ (c) = @(¢).

It remains to analyze the cost of ¢. Define Eg = yf/(zf,eFv@ yéw) for all f € F. Notice that
Z > 2. By the definition of h(-) and its monotonicity, h(zf) < h(z/) = h(yf/(zf’eFv<;) yl)) <
2h(y!) = 24(y’). Notice that by plugging in xé for g in the set in (1) and by how y is defined w.r.t.

x above, we get §(y/) < > rcc9(R) - :cé and in particular ) ;o §(yf) < open(z). Thus, we have
costpra(z) < 2open(z) and

open(y) = costpra (@) = O(log D) - costpra(z) < O(loglog N) - 2 open(z). (3)



Consider next the connection cost of a given ¢ € C. If v(¢) = map(c), i.e v(¢) has no child, then
d¥(c,0(c)) =0 < dofer d” (¢, f)yl. Otherwise, let w(c) be the child of v(¢) along the v(&)-map(c)
path in T'. Let A be the weight of the edge between v(¢) and w(c). Observe that the distance between
v(C) and the leaves in T,z is exactly 2A — 1. Furthermore, both ¢ and ¢(c) are located in the leaves of
T,(z) in the HST mapping map(-). Hence d” (¢, p(c)) < 2(2A —1).

By the definition of v(¢), it must be the case that Zfer<c) yl < 1, and consequently ZfeF\Fw<c) yl >
1. Foreach f € F\ Fy(c), the map(f)-map(c) path in T has length at least 2(2A — 1). Thus

S d (el > Y d eyl > Jaea 1),

feF fEF\Fw(c)

Therefore, the connection cost of ¢ in ¢ is at most 2 times its connection cost in . We conclude
that conn(p) < 2conn(z). Altogether we have cost(¢) < 2conn(z) + O(loglog N) - 2open(z) <
O(loglog N) - cost(x). O

3.2 An Approximation Algorithm for DLA

In this section, we present a CP-rounding algorithm for DLA. Lemma 3.1 follows by chaining Lemmas
3.2 and 3.3.

Lemma 3.3. Given a feasible fractional solution z to (DLA-CP) on an instance of DLA with tree-depth
D, in polynomial time one can compute a feasible (integral) solution to the same instance of cost at most
O(log D) - costpra(z).

The CP-rounding algorithm from Lemma 3.3 is essentially the algorithm by Bosman and Olver [6] with
minor modifications that we introduced to simplify our correctness analysis. Also, the analysis of its
approximation ratio is essentially identical to [6], but we reproduce it for the sake of completeness.
In particular, we will exploit the following definitions and lemma from [6]. Let h : 2 — R>q be a
monotone submodular function with A(0)) = 0. For a given f € F and a (possibly infeasible) solution
z to (DLA-CP), let Ly(2f) = {c € C : zl > 0} be the set of clients that are served fractionally by at
least some value 0 by f. Let also /1 be obtained from zf by rounding down to 6 the values larger than
0,ie 20" = min{z{, 0} for each ¢ € C. Given 6 € [0,1] and 2/ € [0, 1]0, we say that the set Ly(z/)
is a-supported (w.rt. h) if h(z)) — h(z/1?) > ah(Lg(z1)).

Lemma 3.4 (Lemma 5.2 from [6]). Given z/ € [0, 1]6 and o € (0, 1], at least one of the following holds:
(1) there exists § € [0, 1], which can be computed in polynomial time, such that Ly(z7) is &-supported; (2)
V(L (7)) < h(zh).

Our algorithm is Algorithm 1 in the figure. Recall that T}, is the subtree rooted at node v, where T,
includes v and all its descendants. Furthermore, F), is the set of facilities mapped to the leaves of T},. As
usual the level of a node is its hop-distance from the root.

Clearly Algorithm 1 runs in polynomial time. The next two lemmas analyze the correctness and the
approximation ratio of Algorithm 1, hence proving Lemma 3.3.

Lemma 3.5. Algorithm 1 computes a feasible DLA solution.

Proof. Consider a given client ¢ € C such that v(c)isatlevel D —i in T. Let us show that the following
invariant holds at the beginning of each iteration j < i: either ) ek 2l =1orce 7 forsome f € F,.
The invariant trivially holds for j = 0. Assume that it holds up to the beginning of iteration j < ¢, and
consider what happens during that iteration. Notice that for every node v at level D — j > D — i, we



Algorithm 1
Input: Feasible solution z to (DLA-CP)

1: sf<—®fora11feF
2: fori=0,...,D do

3: For every node v at level D — 4, choose an arbitrary f, € F, and set 2/ Zf,eF 2/ and 2/" « 0 for all
fre B\ {fo}

4: if there exists @ € [0, 1] such that Ly (2'") is m—supported then

5: For an arbitrary such 6, set S/ < S/ U Lg(2/*) and 2/* < O forall ¢ € Lg(2')

6 else

7: Set ST «+— STv U Li(2*) and 2{* < Oforall c € Ly (27)

8: For every ¢ € C choose f € F. such that ¢ € S/ and set s st \ {c} forall f' € F\ {f}
9: return (Sf)fep

either have that every f € F, is a descendant of v(c) or every f € F, is not in F,.. Therefore, in Step
(3) the value of > | ek, z{ does not change. In more detail, it remains 1 by inductive hypothesis. The

same value can decrease in Steps (5) or (7), however, this can only happen if c is added to S/ for some
fv € F¢. Thus the invariant holds at the end of the j-th iteration, hence at the beginning of the next
iteration 7 + 1.

Due to the invariant, during the iteration 4, when one considers the node v = v(c), one has that either
c already belongs to some ST with f € F,, or Zfeﬁc zéc = 1. In the latter case, after Step (3), zg” =1

where f, € F,, so ¢ belongs to every set Ly(2/*) with § € [0, 1]. As a consequence, ¢ is added to S/
either in Step (5) or in Step (7).

It might happen that a client ¢ is assigned also to a facility not in F,. Step (8) guarantees that the final
assignment of c is correct and unique. O

Lemma 3.6. Algorithm 1 outputs a solution of cost at most O(log D) - costpra (2).

Proof. Recall that costpra(z) = >_ cp h(z7). We start by observing that the value of costpy,a(z)
can not increase over time when z changes during the execution of the algorithm. Indeed, Steps (5)
and (7) can only decrease the entries of z, hence costpy,a(z) by the monotonicity of i(-). The only
other changes of z happen in Step (3). Let us interpret this step as iteratively decreasing to zero 21
for each f' € F, \ { fv} and increasing z/* by the same amount. The decrease of the cost at each step
is h(zv) 4+ h(z!") = h(zf* + 2I"). By the alternative definition of k(-) as in (2) and its convexity, one

has h(zf + 2/") = 2h (%) <2 (gh(zf”) %h(zf )) = h(z%*) + h(z!"). Hence the decrease
of the cost is non-negative as required.

For each facility f and level ¢, let Af( f) be the clients added to S¥ in Step (5) during iteration i (possibly
AY(f) = 0). We define similarly A}(f) w.rt. Step (7). Notice that, by the submodularity (hence
subadditivity) of h(-), the increase of the cost of the solution due to adding A to S/ is at most h(A).
Therefore we can upper bound the cost of the final solution S = (S7) fei by

D
costora(S) = > A(sT) < 303 (WAL +AAL(S).

feF i=0 feF

Let us upper bound the right-hand side of the above inequality. Let (1) denote the value of z at the
beginning of iteration i. From the previous observation, we have h( (1)) < ( ) for every i. By Lemma

3.4 with o = for any Al(f) one has h(AL(f)) < 757 h (2! (i ))_Thus

1
Tog(D+1)° D+1

D D

Z Z Z Z D T 1 )) < Z D i_ 1 costpra(2(7)) < costpra(z). (4)

=0 fef =0 fef 1=0




Let z(D+1) be the value of z at the end of the D-th iteration, hence in particular costpr,a (z(D+1)) > 0.
Notice that z = z(0). We can lower bound costppa (z) by

costpra(z) > Z (costDLA (1)) — costpra (2(7 + 1)))

Let 21 (7) be the value of z obtained from z(7) after applying Step (3) for all nodes of level D — i. Let
also z9(i) be the value obtalned from 2z (7) if, for all the facilities F where Step (5) is applied during

iteration %, instead of setting 2 = 0 one sets z{ = 6 for the corresponding value of 6. For the facilities
not in F/ we simply let zg(z) = z{(z) Observe that z(i + 1) < 29(7) < z1(7) < 2z(4). One has

costpra (2(4)) — costpra (z(i + 1)) > costpra (21(7)) — costpra (z(i + 1))

> costpra(21(4)) — costpra (z2(7))

=S () - (@) =3 A @) - h(0)
- fer]

feF
>ZfeFi’ h(Af(f)) - Zfeﬁ h(Af(f))
32log(D+1)  32log(D +1)

In the first two inequalities above we used the monotonicity of ﬁ(), while in the last inequality the
definition of a-supported. Altogether

ZD:Zh(A?(f)) < 32log(D +1)-

Mw

(costDLA (1)) — costpra(z(i + 1)))

i=0 fefr i=0
< O(log D) - costpra(2)- (5)
By the monotonicity of A(+), Step (8) cannot increase the cost of the solution, hence the claim. O

4 Universal Stochastic Facility Location

In this section we sketch our approximation algorithm for uN1vFL. We first present a weaker approxi-
mation factor O(loglog N + log log Cé'“&) Later we will show how to refine it.

Define g(R) :== P4~.[RN A # ()]. We observe that this function is monotone submodular and g(0) = 0.
Recall that g(c¢) = g({c}) for every ¢ € C. W.lo.g. we can assume g(c) > 0 since otherwise we can
discard c. We can define the objective function of UNIVFL for a given assignment ¢ : C' — F as

cost (i) = conn(e) + open(p) = Y _d(c, ¢(c)) - g(c) + > _wy - gl (f)).
ceC fer

Notice that only the connection cost changes w.r.t. MULTSFL. In more detail, the connection cost of each
client c is scaled by the factor g(c).

We can similarly define a configuration LP for uNIvFL, and solve it by the same arguments as in
Lemma 1.2. We next use an analogous notation as for SFL. Let & be an optimal solution to this
LP with poly(N) many non-zero variables. We can apply the first stage of our algorithm for SFL
(described in Section 2) with essentially no changes. This will lead to a partial assignment S; of
expected cost E[cost(S1)] < Inln N - cost(i) and serving the clients Cy, where Plc ¢ Cy] < .
Mapping the metric over an HST 7" and considering the restriction & of & to Cy := C'\ C, we obtain
that E[cost s7(%)] = O(cost(2)). A reduction similar to the one in Lemma 3.2 works also in this
case (since the scaling of the fractional solution is done on a per-client base). However in this case

D = O(log %) (since we did not reduce the ratio z:ﬁ in a preprocessing step). Hence we can apply



the result from Lemma 3.3 to obtain an assignment covering Cs of expected cost O(log log Cé"ﬂ) -cost(&).

This concludes the sketch of the O(loglog N + log log Z‘;ﬁ) approximation.

We next improve this bound via a preprocessing step. Recall that 0 < 7y, = mine.cc{g(c)}. We first
scale the ratio diyax /dmin- Let us guess® the largest distance L = max.cc{d(c, opt(c))} in some optimal
(universal) solution opt. Notice that cost(opt) > 7pin L. We use essentially the same arguments as in

Lemma 1.8, we can enforce that diax < NL and diin > = TminL. Hence we obtain 3"‘3" < E;LN

Now let us reduce the number of facilities m to O(n + log m) (hence N as well). Here we use
essentially the same argument as in the proof of Lemma B.1 (with p; = 0). In more detail, we can
assume that m < 2™. Indeed, otherwise we can reduce the input instance to a WEIGHTED SET COVER
instance (that we can solve exactly in polynomial time) in the same way as in the mentioned lemma,
with the difference that now, for R # (), we set kg = minyep{wy - g(R) +>_.cpd(c, f)-g(c)}. By the
rest of the construction in the same lemma, we can reduce (with a constant loss in the approximation
factor) our instance to one where there are O(log dm‘"‘") = O(log = n2" ) = O(n + log ﬁ) facilities

per client. Altogether we reduce N to N’ = O(n(n + log —)) Now we can apply again the above
scaling trick over the distances (with N replaced by N’) to obtain distances d’ which satisfy:

d;nax < nN, O <n + " log 7Tm1n>

7 =
d EMmin T'min

This leads to the approximation factor

d/
O(loglogrlmx—l—loglogN) :O<loglog )
d Tmin
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A Some Omitted Proofs about SFL

Proof of Lemma 1.2. Considering the dual of (Conf-LP):

maX{Zac—l-Zﬁf: S ac+ B <g(R)+ Y dle, f), VRCC, erF}. (Conf-DLP)

ceC fer cER cER

Notice that for fixed o and 3, the functions g;(R) = g(R) + > cpd(c, f) — > .cp e — By are
submodular. Thus, a call of a separation oracle on (Conf-DLP) is equivalent to a minimization of
all functions g¢(-), which can be done using polynomially many oracle calls of g(-) [28]. Therefore,
an optimal primal solution with poly(/NV) many non-zero variables for (Conf-LP) can be found in
polynomial time [36, Corollary 14.1g(v)]. O

Proof of Lemma 1.7. Let I = (C, F,d, g(-)) be the considered instance of SFL. Consider the complete
weighted graph on nodes C' U F', with weights induced by d. For each client ¢, let f(c) be the facility
closest to c. We create a dummy facility f’(c) and add a dummy edge {c, f'(c)} of weight d(c, f(c)).
Let F’ be the set of newly created facilities. Observe that |F’| = n. Finally we remove F and consider
the metric d’ over C'U F” induced by the distances over the resulting graph. Let I' = (C, F',d’, g(-)) be
the obtained instance of SFL. Given a solution ¢’ for I’, we obtain a solution ¢ for I by simply assigning
to f(c) each client ¢’ assigned to f'(c) in ¢'.

Let us analyze the approximation factor introduced by this reduction. We first observe that cost;(¢) <
costr (¢'). Indeed, open;(p) = openy (¢'). Furthermore, for each each client ¢’ assigned to f’(c) by

¢/, the associated connection cost w.r.t. [ is d(¢/, f(¢)) < d(c,¢) + d(c, f(c)) = d'(¢, f'(¢)). Hence
conny(p) < conny (¢').

Next consider an optimal solution opt for I. For each facility f with opt=(f) # 0, let ¢ € opt—!(f) be
the client closest to f. We define a solution opt’ for I’ by assigning all the clients in opt ~!(f) to f’(c).
Again, open; () = openy (¢'). For each client ¢’ assigned to f in opt, its connection cost in I’ is

d(d, £(c) = dle.d) +dle, f(e)) < (¢ ) +d(c, f) +dle. f(0)) < d(¢, ) +2d(c, f) < 3d(, f).
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Hence conny (opt’) < 3 conny(opt). The claim follows. O

Proof of Lemma 1.8. Let us guess the value L = max.c¢ d(c, opt(c)) for some optimal solution opt.
W.lo.g. assume L > 0, otherwise the problem is trivial. Consider the complete weighted graph on
nodes C'U F' with weights induced by d. Remove the edges of weight larger than L. We next compute
a feasible solution in each connected component of the resulting graph separately. Notice that this part
of the reduction is approximation preserving since no client can be assigned to a facility in a different
connected component in opt.

Let C" and F” be the clients and facilities, resp., in one such connected component G', X' = C" U F’,
and d’ be the metric induced by the distances in G’. Consider the corresponding SFL instance I’ =
(C',F',d,g(-)). Notice that in each such instance I’ one has d,,, < NL. We next change the
location of elements of X’ as follows. We consider the ball B(z) = {y € X' : d'(z,y) < 5L}
of radius oL around each x € X'. Let Z be a maximal (independent) set of such balls so that, if
B(z),B(y) € T for x # y, then B(xz) N B(y) = (). For each y with B(y) ¢ Z, we consider any
B(z) € Z with B(xz) N B(y) # 0 (which must exist since Z is maximal) and colocate y with z. Let
I" = (C', F',d", g(-)) be the resulting instance of SFL. Observe that d;;,, < NLandd]; > £L.

max min

Let I be the union of all the instances I” ,and d be the associated distances (where inter-component
distances can be considered to be +00). Given a solution ¢ for I (obtained by the union of all the
solutions obtained for each instance I”), we return exactly the same solution ¢ for I.

Let us analyze the approximation factor. Notice that open;(¢) = open;(¢y). Furthermore, for each client
¢, d(c, p(c)) < d(e, p(c))+ 2t I, where in the latter term we consider the fact that each client and facility
is moved at most at distance > L from the original location. Hence conn;(¢) < connj(y) + 2¢L. Given
an optimum solution opt for I, by a symmetric argument one has cost ;(opt) < costr(opt) 4 2L <
(1 4+ 2¢) costr(opt), where we used the fact that cost;(opt) > L. Altogether an o > 1 approximation
algorithm for each instance I” implies an a(1 4 2¢) + 2e < (1 + 4¢) approximation for I.

Finally, we scale the distance d” and g(-) by the same factor 2} so that d/; = 2 and djj,,, < 22

min max — g °
Clearly this final scaling is approximation preserving,. O

B Generalizations of SFL

In this section we discuss some generalizations of SFL.

B.1 Reduction of the Number of Facilities

In this section we consider the generalization of SFL, next called AFrINE SFL, where the opening cost of
each facility f with assigned clients R # () is gf(R) = pf + wy - g(R), where ps, ws > 0 are input
values. Notice that this generalizes SFL WITH ADDITIVE (resp., MULTIPLICATIVE) OPENING CosTs. We
also observe that each g¢(-) is non-negative monotone submodular.

We show how to reduce to the case where m = poly(n) (hence N = poly(n)) while loosing a
constant factor in the approximation. We will use this reduction in the following sections to convert an
O(loglog N) approximation into an O(loglogn) one.

Lemma B.1. For any constant ¢ > 0, there is a (3 + 37¢)-approximate reduction from AFFINE SFL to the
special case where the number of facilities is O¢(n?3).

Proof. First of all, consider the case m > 2". In this case we can solve the problem optimally in
polynomial time via the following reduction to the WEIGHTED SET COVER problem. For an instance
I = (C,F,d,g(-)) of AFFINE SFL, consider the instance J = (U, R, ) of WEIGHTED SET COVER



with universe U = C, set collection R = 2¢ and weight function  given as kg = 0 if R = () and
kg =mingep(ps +wy - g(R) + Y .cpd(c, f)) for R € 2\ {0} (which can be computed in poly (V)
time). Notice that 2/l = 2" which is polynomially bounded in the input size of I. The optimal solution
to J induces a solution of exactly the same cost to I and vice versa. There is a simple dynamic program
which solves WEIGHTED SET Cover in time O(2!Y! - |U| - |R|) [18, Lemma 2]. Applying this algorithm
to J, one obtains an optimal solution for the input instance [ in time O(2" - poly(n,m)), which is
polynomial in m.

Hence it remains to consider the case m < 2". We show how to reduce the number of facilities
to O:(n?log(nN)) = O.(n?), while losing the approximation factor in the claim. By exactly the
same reduction as in Lemma 1.8, we can assume that in the input metric d the maximum distance is
0 < dpmax < NL and the minimum non-zero distance is dyin > %L while loosing a factor (1 + 4¢)
in the approximation. Here L is some value that lower bounds the cost of a given optimum solution
opt. Let us guess the largest value P of p; over the facilities with at least one assigned client in opt.
We discard all the facilities f with p; > P. Now, assuming P > 0, we replace each p; with the value

p} = [ L in . % (p} = py for P = 0). Notice that this can only increase the cost of a given solution ¢,

however this increase is upper bounded by n - % < ¢ - costy(opt), where [ is the input instance of the
problem. Hence this reduction preserves the approximation guarantee up to a factor 1 + . After this
reduction, the set P’ of different possible values of p} has cardinality at most .

Let I = (C, F,d,p',w, g(-)) be the instance of AFFINE SFL obtained after the above two reductions.
Consider the complete edge-weighted graph on nodes C' U F', with weights induced by d. We modify
this graph as follows. For each client ¢ and value p’ € P’, we consider the set of facilities F,; with
p’f = p'. Let Fjy(c, i), > 0, be the facilities in F}y whose distances from c are in the range [ L - (1 +
e)', £L-(1+¢)"1). We also define the set F}y(c, —1) of the facilities in )y at distance 0 from c. Notice
that there are at most 1 + [log; . Y] sets F},(c, i) which are non-empty. For each Fjy(c, 1) # 0, we
choose a facility f = f,/(c, i) with minimum value of wy. We create a dummy facility ' = f},(c, %)
with opening cost g, (C") = p' + wy - g(C’) for C" # 0, and add a dummy edge {c, f'} of weight
d(c, f). Let F' be the set of dummy facilities. Notice that, considering also the previous reduction, one
has [F'| <n -2 (1+ [log ;. ") = O(n*log(nNN)). We remove the original facilities F', and let d’
be the metric given by the distances in the resulting graph G’ on nodes C' U F’. We solve the problem
on the resulting instance I’ = (C, F',d’, p', w, g(-)). Given a solution ¢’ for I’, we obtain a solution ¢

for I naturally as follows: if '(c') = £}, (c,7), we assign ¢ to fy(c, ).

Let us analyze the approximation factor of this final reduction. The opening costs of ¢ and ¢’ are
identical. Furthermore, for each client ¢’ assigned to f = f,/(c, %) in ¢, and for f = f;,(c, i), one has

d(d, f) <d(d,e)+d(c, f) =d'(d,e)+d(c, f') =d(, f'). Hence cost;(p) = costr (o).

Next consider an optimum solution opt for I. We construct a feasible solution opt’ for I as follows.
Let S/ # 0 be the clients assigned to some f € F in opt. Recall that the opening cost of f is
g}(Sf) = p’f +wpg-g(SY). Let ¢ € S/ be the client at minimum distance d(c, f) from f. Define i as —1

if d(c, f) = 0, and otherwise, i such that d(c, f) € [EL- (1 +¢)", £L- (14 ¢)"™!). In opt’ we reassign
all the clients in S/ to f/ = f;/ (¢,1). The opening cost associated with f’ in opt’ is no larger than the
f
corresponding cost in opt since
p'f, +wy ~g(Sf/) = p’f + wypr ~g(Sf) < p’f + wy - g(Sf).
In the last inequality above we used the fact that f € Fp} (c,7) and fp} (c,1) is the facility in the latter

set with minimum wy value. The connection cost of each ¢ € S f wrt. opt’ satisfies
dd, fYy=d(,c)+d(c,f)=d(c,c)+dlc, fp}(c,i))
<d(c, f) +d(c, f) + (1 +e)d(c, f) < (3+e)d(c, f).

Altogether, cost s (opt’) < (3 + €) costr(opt). Considering also the first two reductions, we obtain a



global reduction which preserves the approximation guarantee up to a factor (1 4+ 4¢)(1+¢)(3+¢) <
3+ 37e. O

B.2 SFL with Multiplicative Opening Costs

In this section we sketch the proof of Theorem 1.3. By Lemma B.1, it is sufficient to provide an
O(loglog N) approximation.

For f € Fand R C Cletg¢(R) = wy-g(R). Note that g(-) is submodular, monotone and has g()) = 0

for every f € F. For any (partial) assignment S = (S/) and any vector (:L‘JI;){%EQ% let also open’(S) :=

dorer g7 (S7), resp. open’(z) == >rer 2orce 9f (1) - ajﬂ and cost’(S) := open’(S) + conn(S) resp.
cost/(z) := open’(z) + conn(z). -

By these definitions, the LP-relaxation of the MULTSFL is given by the constraints from (Conf-LP) and
the objective cost’(+). In particular, the LP-relaxation of MULTSFL can be solved with the approach from
Lemma 1.2. We keep the merging rule defined in Section 1.4 and the sampling procedure from Section 2.
It is easy to verify that the vector i resulting from this procedure fulfills Lemma 2.2 w.r.t. open’ instead
of open.

We reduce MULTSFL to a similar problem to DLA which we call DLA® which is the same problem
as DLA and with the same input variables as DLA, additional inputs wy > 0 for every f € F
and cost costiyp s (9) = X jcp he(e~(f)) where hy(-) == wsh(-) for every f € F. Its convex

relaxation is given by the constraints in (DLA-CP) with the cost function costjy  (2) = >_ ¢ h (%)

(where h 7 is the Lovasz extension of /7). The reduction described in Lemma 3.2 can be reproduced
to reduce MULTSFL to DLA*. We define the input values of DLA* w.r.t. MULTSFL in the same way we
define the input values of DLA w.r.t. SFL, with additionally w; = wy for every f € F. Notice that
h¢(-) = wrh(-) = g7(-) = wyg(-). Every reasoning made in the proof of Lemma 3.2 stays valid.

We now adjust Algorithm 1 for DLA* as follows: in Step 3, we select the facility f, € F, with minimum
weight w0y, . In the if-clause 4, we search and verify for supportedness w.r.t. iy, instead of A (which is
equivalent unless wy, = 0, in which case Ly(2/*) is supported for every #). Since the new algorithm
functions exactly like Algorithm 1, except for an arbitrary selection step becoming determined (in
particular, the new algorithm is a possible implementation of Algorithm 1), its correctness is implied by
the correctness of Algorithm 1.

Notice that since f, in Step 3 is now chosen to have minimal weight, we have for any f’ € F,, \ {f,}
hp, (20 4+ 28 < by, (25) + by, (27) < by, (27) + by (),

which means that the cost of z does not increase at any time by the arguments as before. Also, notice
that since h ¢ is submodular, monotone and hs(()) = 0 we can apply Lemma 3.4 with respect to hy,
instead of h. Thus, the cost of the sets added at Step 5 and Step 7 is still bounded as in (4) and (5).

B.3 SFL with Additive Opening Costs

In this section we sketch the proof of Theorem 1.4. As in the previous section, by Lemma B.1, it is
sufficient to provide an O(loglog N') approximation.

Similarly to the previous section, we define the set function g (-) as g¢(R) = g(R) + py for R # () and
gf(0) = 0. As argued in the previous section, we can find an optimum to the LP relaxation of ADDSFL
and reduce it to the problem DLA* as defined in the last section, but with input weights p instead of
Wy and hy(-) as hf(R) == h(R) + py for R # (), and h () = 0.

We adapt Algorithm 1 like in the previous section: in Step 3, we select the facility f,, € F, with minimum
weight py, . In the if-clause 4, we search and verify for supportedness w.r.t. hy, instead of h. The



correctness of the new algorithm here is given by the same argument as in the previous section. Notice
that by (2) we have ﬁf(z) = h(2) +py-max, & ze, which implies izfv (zF +21") < iLfv (1) + ﬁf/ (=)
with f, chosen as in Step 3 in Algorithm 1. The cost of z does therefore not increase throughout the
algorithm. Bounding the cost of sets added to the solution at Step 5 and Step 7 can be done, like for
MULTSFL, by applying Lemma 3.4 to hy, .
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