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Abstract

Many different voting rules have been proposed in the literature and they can select very
different alternatives. This naturally raises the question of whether this diversity in outcomes
often occurs. Previous works have shown that the probability that voting rules agree on the
same outcome is generally quite low under impartial culture. In this article, we use a similar
probabilistic approach on single-peaked cultures, which are more structured and typically more
realistic than impartial culture. We provide conditions for voting rules to agree under standard
single-peaked cultures, and show that the probability of agreement between rather large families
of voting rules is much higher under such cultures, with fast convergence of this probability with
respect to the number of voters. We finally provide some insights on other structured preference
distributions, observing that many exhibit similar convergence in agreement, including the
Mallows’ distribution. Our study reveals a tendency of several well-known voting cultures to
bias the outcome of voting rules, which is worth knowing before conducting experiments on
synthetic data.

1 Introduction

A major topic in voting theory is the design of good voting rules. However, the social choice literature
is famous for impossibility theorems, e.g., Arrow’s [1] or Gibbard-Satterthwaite [26, 44] theorems,
basically stating that no perfect voting rule exists. Many different voting rules have been designed
along the years, and a large body of literature is devoted to their axiomatic characterization [2]. In
fact, different voting rules can select very different alternatives. However, does this behavior often
occur? This question has been raised by many articles [25] which study the probability that different
voting rules disagree on their outcome. Indeed, exploring the agreement among voting rules can help
understand the similarity between voting rules, in an orthogonal perspective than the axiomatic study.

Most of the works on voting rules’ agreement focus on the impartial (anonymous) culture, where each
preference order (or score), is uniformly drawn from the whole set of linear orders over candidates. Such
study is necessary because the impartial culture can arguably be seen as the most neutral. However,
it does not capture real voters’ preferences, which are usually far from being uniformly distributed.
Moreover, most results on impartial culture highlight that voting rules rarely agree. Therefore, exploring
more structured and realistic cultures may provide new insights on differences between voting rules.
In this article, we will focus on cultures generating single-peaked preferences [6], which make sense
in several contexts such as, e.g., political elections where a left-right axis can structure most voters’
preferences. Even though single-peaked cultures are still far from being a perfect match to real data
[19], they are much more realistic than impartial culture, so these models can be seen as a better
approximation of the reality in some contexts.

In another point of view, studying agreement between voting rules under single-peaked cultures can
also improve the understanding of such cultures. A key question in computational social choice, and in
particular in voting theory, is how to generate relevant synthetic data for experiments on elections [8].
Conducting an empirical study via computer simulations can indeed be very useful to support or
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complement theoretical results for many voting problems, e.g., manipulation, winner determination,
bribery and control, or the analysis of possible and necessary winners [10]. The ideal solution to
perform experiments would be to use real-world data [15, 41, 42], see, e.g., the Preflib platform [35].
However, typically, we only have access to limited and context-dependent real-world data, which
makes the experimental results potentially difficult to generalize. In contrast, using synthetic data
allows to simulate elections of any size and to control the experiments’ parameters. However, for
experiments to be meaningful, we also need to simulate realistic elections, raising the question of a
compromise between realism and flexibility. A large number of statistical cultures exist for generating
elections [45]. Among them, single-peaked distributions are quite often used, as reported by Boehmer
et al. [8]. Therefore, exploring voting rules’ agreement under single-peaked cultures is relevant to better
understand these commonly used cultures and better interpret experimental studies.

Let us illustrate possible issues in the interpretation of experiments. For instance, if one would like to
compare how often different rules violate the majority criterion (i.e., a candidate ranked first by half
of the voters should be elected), then experiments could be used. However, the conclusions may be
very different depending on the voting culture used to generate synthetic data. In particular, using
single-peaked cultures may lead to different conclusions compared to impartial culture, especially if
the results on voting rules’ agreement are very different. In particular, if two voting rules frequently
agree under a given culture then the results will be similar because the voting rules are close under
that culture, not because of the problem itself. In any case, knowing how the statistical tool works is a
prerequisite for a good empirical study.

In this article, we study the probability of agreement of different voting rules under single-peaked
cultures. Up to our best knowledge, this question has been surprisingly neglected for cultures more
structured than impartial ones. One notable exception is the work of Chatterjee and Storcken [13] on
unimodal profiles. We focus our study on two well-known models to generate single-peaked elections:
Walsh’s [46] and Conitzer’s [14] models. They consider different ways of uniformly drawing single-
peaked preference orders: either uniformly within the whole single-peaked domain [46], or uniformly
with respect to the peak candidate in the order [14].

We particularly examine positional scoring rules (PSRs), which compute scores for the candidates based
on their position in the voters’ preferences. This family covers many famous voting rules, such as
k-approval rules like plurality or veto, and the Borda rule. We show that for both Walsh’s and Conitzer’s
distributions, many PSRs tend to elect the median candidate(s) in the single-peaked axis, which turns out
to be the asymptotic Condorcet winner, implying that these rules also agree with Condorcet-consistent
rules. We also provide a lower bound on the speed of convergence to such a winner, meaning that this
result holds for reasonable election sizes. We characterize these rules for both cultures and observe that
this set is larger for Walsh’s distribution, which is coherent with its definition. Conitzer’s distribution
seems to be more neutral toward the candidates, in the sense of probability to be elected. We further
study this aspect by examining when single-peaked distributions are unbiased, i.e., when they do not
favor any candidate with respect to a given voting rule.

Finally, we provide some insights on the agreement among voting rules under two other structured
preference distributions: unimodal distributions, which include Mallows’ cultures [34], where we
complete Theorem 4.1 of Chatterjee and Storcken [13] to prove a rapid convergence to a large probability
of agreement; and Pólya-Eggenberger urns [17], where we show that even if the probability of agreement
remains high, the convergence toward one is not guaranteed.

Due to space restrictions, some proofs or parts of proofs are deferred to the supplementary material.
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2 Related Work

The question of agreement among voting rules was initiated by Gehrlein and Fishburn [22, 23] who
give an explicit probability of agreement between two positional scoring rules in the case of three
candidates under impartial culture. They prove that the probability of all scoring rules to agree in large
elections is 0.5346. Many necessary conditions have then been derived to characterize the agreement
of all positional scoring rules [39, 40, 43]. In particular, Merlin et al. [39] give the probability (i.e.,
0.50116) under impartial culture that many rules (including positional scoring rules, elimination rules
and Condorcet-consistent rules) agree on the same winner in the case of three candidates. This work
was complemented via Monte-Carlo simulations by Lepelley et al. [32] for more than three candidates.
Similar results with explicit formulas have been found under anonymous impartial culture for three
candidates [20]. Most of these works focus on three candidates, sometimes four [30], under the impartial
(sometimes anonymous) culture and try to provide explicit formulas. In contrast, we focus on single-
peaked distributions with an arbitrary number of candidates and analyze the conditions of convergence
toward the same outcome.

In another perspective, many works have studied the Condorcet efficiency of voting rules (see Gehrlein
and Lepelley [25] for a survey), i.e., their probability to elect a Condorcet winner, which can be seen as
exploring how much these rules agree with Condorcet-consistent rules. This question has also been
investigated for structured cultures, such as impartial (anonymous) culture over the single-peaked
domain [21, 31, 33], and Pólya-Eggenberger urns [24, 37] but, as far as we know, only for three candidates.

Another close question is the notion of consensus [18, 28], which is essentially setting a distance to find
the closest election that satisfies consensus, i.e., the one where the minimum number of voters would
disagree. Beyond voting rule agreement, the likelihood of the occurrence of voting paradoxes has been
widely investigated [25, 48]. In addition, following the idea of asymptotic results, many studies have
been conducted in machine learning, making the link between a voting rule and a maximum likelihood
estimator [4, 12, 47]. In the same perspective, a work on the asymptotic probability of ties in elections
was proposed [49]. While these directions may sometimes be outside of voting theory, it highlights the
importance of our research question.

3 The Model

For any positive integer k, let [k] denote the set {1, . . . , k}. Let N be a set of voters where N = [n],
and M be a set of m candidates where M = {x1, . . . , xm}. Each voter i ∈ N has preferences over
candidates represented by a linear order ≻i over M ; the preference profile is denoted by ≻= (≻i)i∈N .
Let Πm be the set of all possible preference orders for m candidates. For a given preference order
≻i∈ Πm, the rank of candidate x in ≻i is denoted by r≻i(x), i.e., r≻i(x) := |{y ∈ M : y ⪰i x}|.

We consider a common preference restriction, namely single-peakedness [6]. A preference profile
≻∈ (Πm)n is single-peaked if there exists an axis > onM such that, for every voter i ∈ N , and each
triple of candidates x > y > z, we have y ≻i x or y ≻i z. All along the article, we consider, w.l.o.g.,
an axis > onM such that x1 > · · · > xm. Let Πm

> be the set of all possible single-peaked preference
orders w.r.t. axis > onM .

3.1 Voting Rules

A voting rule F : (Πm)n → 2M \ {∅} selects a non-empty subset of candidates for each preference
profile ≻∈ (Πm)n. A scoring rule F is associated with a score function sF : M → R and selects
the candidates maximizing this score, i.e., F(≻) ∈ argmaxx∈M sF (x) for every preference profile
≻∈ (Πm)n.
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A positional scoring rule (PSR) F is characterized by a positional score vector α = (α1, . . . , αm) such
that α1 ≥ · · · ≥ αm and α1 > αm, in such a way that the winner of the election under F maximizes
the sum of the position scores given by each voter according to the position of the candidate in the
voter’s preferences, i.e., F(≻) ∈ argmaxx∈M

∑
i∈N αr≻i (x)

for every preference profile ≻ ∈ (Πm)n.
The k-approval voting rule, for k ∈ [m− 1], is a particular case of PSR where αj = 1 for all j ∈ [k],
and αj = 0 for all k < j ≤ m. The plurality rule corresponds to the 1-approval rule and the veto rule
is the (m− 1)-approval rule. The Borda rule is the PSR characterized by an evenly spaced positional
score vector, e.g., α = (m− 1,m− 2, . . . , 1, 0).

Instead of evaluating the candidates on their absolute position in the voters’ preferences, other voting
rules take into account pairwise comparisons of candidates. A candidate x is the Condorcet winner
in preference profile ≻∈ (Πm)n if it beats all the other candidates in pairwise comparisons, i.e.,
|{i ∈ N : x ≻i y}| > |{i ∈ N : y ≻i x}|, for every candidate y ∈ M \ {x}. A weak Condorcet winner
x is such that |{i ∈ N : x ≻i y}| ≥ |{i ∈ N : y ≻i x}|, for every candidate y ∈ M \ {x}. In general,
a (weak) Condorcet winner does not always exist. However, a weak Condorcet winner always exists
when the preferences are single-peaked as well as a Condorcet winner when, additionally, m is odd [7].
A voting rule which always elects the Condorcet winner, when it exists, is called Condorcet-consistent.
Note that PSRs are not Condorcet-consistent [16].

3.2 Voting Cultures

Let us denote asC(n,Πm
sub) the probability distribution of drawing n preference orders fromΠm

sub ⊆ Πm

to constitute a preference profile ≻∈ (Πm)n. Such a probability distribution C(n,Πm
sub) is called a

culture.

When voters’ preferences are selected independently and identically distributed, the culture can be
defined as drawing n preference orders ≻i from a given preference distribution πm : Πm → [0, 1]
with

∑
≻i∈Πm πm(≻i) = 1. The probability for a candidate xj to be ranked at position k ∈ [m]

under preference distribution πm is given by Pm
π (j, k) =

∑
≻i∈Πm:r≻i (xj)=k π

m(≻i). Moreover, the
probability for a candidate x to be ranked before a candidate y under preference distribution πm is
given by Pm

π (x ≻i y) =
∑

≻i∈Πm:x≻iy
πm(≻i). When the context is clear, the superscriptm may be

omitted.

Let SF (x) denote the random variable giving the score of a candidate x ∈ M for a voting rule F . Let
Eπ[S

F (x)] denote the expected score of candidate x for voting rule F under distribution π. For a PSR
F characterized by a positional score vector α and a preference distribution π, the expected score of
each candidate x is given by Eπ[S

F (x)] =
∑

≻i∈Πm π(≻i) · αr≻i (x)
.

3.3 Convergence to the Expected Winners

When voters’ preferences are identically and independently drawn w.r.t. distribution π and Eπ[S
F (x)]

is finite for any x ∈ M , by the law of large numbers, the expected winners Wπ(F) of F under π are
Wπ(F) := argmaxx∈M Eπ[S

F (x)]. A candidate x is an asymptotic (weak) Condorcet winner under
distribution π if Pπ(x ≻i y) >

1
2 (resp., Pπ(x ≻i y) ≥ 1

2 ), for every y ∈ M \ {x}.

In addition to the guarantee of convergence to the election of expected winners, we provide below a
lower bound on the probability that an expected winner actually wins, when we draw voters’ preferences
independently and identically with respect to a distribution π.

Theorem 1. Consider a positional scoring rule F defined by a score vector α, and a preference dis-
tribution π over the set of candidates M . When the set of expected winners, defined as Wπ(F) =
argmaxx∈M Eπ[S

F (x)], is a singleton, i.e.,Wπ(F) = {x}, the probability that F elects x satisfies

Pπ(x ∈ F(≻)) ≥ Lπ(F),
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where:

Lπ(F) := 1− 2 · max
y∈M\Wπ(F)

exp

(
−2n ·

(
µF
π (y)− Eπ[S

F (y)]
)2

(maxj αj −minj αj)
2

)

and µF
π (y) :=

maxx∈M Eπ[S
F (x)] + Eπ[S

F (y)]

2

We can thus deduce a lower bound for the speed of convergence for the agreement of several voting
rules.

Corollary 2. For two positional scoring rules F1 and F2 whose expected winner set under a preference
distribution π is the same, i.e., C := Wπ(F1) = Wπ(F2), the probability of their agreement for electing
the same unique candidate from C is such that: Pπ(F1(≻) = F2(≻)) ⩾ min{Lπ(F1), Lπ(F2)}.

3.4 Single-Peaked Distributions

We particularly consider distributions based on the single-peaked domain. For a given axis > over M ,
a culture C(n,Πm) is single-peaked if C(n,Πm) = C(n,Πm

> ).

Let us define the symmetry with respect to the single-peaked axis via the bijection τ : [m] → [m]which
associates with each candidate xj its symmetric candidate xτ(j) where τ(j) = m−j+1. A single-peaked
preference distribution π : Πm

> → [0, 1] is said to be symmetric if Pm
π (j, 1) = Pm

π (τ(j), 1), for every
candidate xj ∈ M . Symmetric single-peaked distributions form a rather large family of single-peaked
distributions which include, e.g., the distributions π such thatPm

π (xj ≻i xj+1) = P
m
π (xτ(j) ≻i xτ(j+1))

for every j ∈ [⌊m2 ⌋], but not only. Using symmetric single-peaked distributions turns out to be very
natural, in order to derive experiments on the single-peaked domain, without any additional information
than the single-peaked axis. In particular, two distributions are commonly used in the literature to
sample single-peaked elections: Walsh’s [46] and Conitzer’s [14] distributions; they are symmetric and
capture different types of impartial culture on the single-peaked domain. Roughly, the idea is either to
uniformly draw every single-peaked preference order [46], or to uniformly draw every peak candidate
and then construct the rest of the preference order by uniformly choosing the next candidate to rank
between the closest available candidates on the single-peaked axis [14].

Definition 1 (Walsh’s distribution). Walsh’s distribution πW : Πm
> → [0, 1] is such that πW (≻i) =

1
2m−1 ,

for every ≻i∈ Πm
> .

Definition 2 (Conitzer’s distribution). Conitzer’s distribution πC : Πm
> → [0, 1] is such that πC(≻i) =

1
m · 1

2
min{r≻i

(x1),r≻i
(xm)}−1 for every ≻i∈ Πm

> .

This definition adequately translates the algorithm proposed by Conitzer [14]. The peak is selected
uniformly at random, corresponding to the 1

m term. Once the peak is fixed, the next candidate is chosen
uniformly among the two candidates adjacent on the axis >, making the process dependent on the
relative positions of the two extreme candidates. Specifically, once one of these two extreme candidates
is selected, the rest of the ranking is completed by successively adding the remaining candidates on the
same side with respect to the axis >.

In this article, we aim at understanding the behavior of voting rules under single-peaked distributions.
In particular, we analyze the conditions under which PSRs agree, how the expected winners are located
with respect to the single-peaked axis and whether they are asymptotic (weak) Condorcet winners.

4 The Single-Peaked Domain

Let us start with structural properties of the single-peaked domain. We first recall that |Πm
> | = 2m−1.

We give below a useful observation on possible candidates’ positions in single-peaked orders.
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Observation 3. Candidate xj can never be ranked at a position k > max{j,m−j+1} in a single-peaked
order.

We continue our preliminary remarks on the structure of the single-peaked domain with the next
lemma, already stated by Boehmer et al. [9], which will be useful to compute the probability for a
candidate to be ranked at a given position.

Lemma 4 (Boehmer et al. [9]). The number of single-peaked preference orders in Πm
> in which candidate

xj is ranked at position k is given by the following formula, for each j, k ∈ [m]:

Dm(j, k) = 2k−2

((
m− k

j − 1

)
+

(
m− k

j − k

))
.1

Let C∗ denote the set of median candidates in the single-peaked axis, this set is a singleton in case m is
odd and is a pair of candidates in casem is even, i.e.,

C∗ :=

{
{x⌈m

2
⌉} ifm is odd

{xm
2
, xm

2
+1} ifm is even .

These candidates play an important role in the single-peaked domain. We first show below that more
preference orders rank them at good positions compared to the other candidates.

Lemma 5. For every median candidate xc ∈ C∗ and any other candidate xj ∈ M \ C∗, there exists
an index γm(j) ∈ [max{j,m− j + 1}] such that Dm(c, k) ≥ Dm(j, k) for every 1 ≤ k ≤ γm(j) and
Dm(j, k) > Dm(c, k) for every γm(j) < k ≤ max{j,m− j + 1}.

Moreover, we show below that many natural single-peaked distributions favor the median candidates
by tending to make them (weak) Condorcet winners.

Proposition 6. Every symmetric single-peaked preference distribution makes the median candidate(s)
asymptotic weak Condorcet winner(s). When m is odd, the unique median candidate is the asymptotic
Condorcet winner under any symmetric single-peaked distribution π which assigns a positive probability
to rank the median candidate first, i.e., Pπ(c, 1) > 0 for xc ∈ C∗.

Proof. Let us consider a symmetric single-peaked distribution π. Let us compare a median candidate
xc ∈ C∗ and any other candidate xj ∈ M \C∗ where, w.l.o.g., c = ⌈m2 ⌉ and j < c. By single-peakedness,
a preference order with a candidate xℓ as a peak candidate must rank xc before xj if ℓ ≥ c. It follows
that Pπ(xc ≻i xj) ≥

∑m
ℓ=cPπ(ℓ, 1). Recall that

∑m
ℓ=1Pπ(ℓ, 1) = 1.

If m is odd then, by symmetry, we have
∑c−1

ℓ=1 Pπ(ℓ, 1) =
∑m

ℓ=c+1Pπ(ℓ, 1), and thus Pπ(xc ≻i xj) ≥∑m
ℓ=cPπ(ℓ, 1) ≥ 1

2 . This inequality is strict if Pπ(c, 1) > 0.

Ifm is even then, by symmetry, we have
∑c

ℓ=1Pπ(ℓ, 1) =
∑m

ℓ=c+1Pπ(ℓ, 1), and thus Pπ(xc ≻i xj) ≥∑m
ℓ=cPπ(ℓ, 1) ≥ 1

2 . It remains to compare xc with the other median candidate xc+1. The arguments
are similar: a preference order with a candidate xℓ as a peak candidate must rank xc before xc+1 if
ℓ ≤ c. Therefore, Pπ(xc ≻i xc+1) ≥

∑c
ℓ=1Pπ(ℓ, 1) =

1
2 .

5 Walsh’s Distribution

We first study Walsh’s distribution (Definition 1), which corresponds to impartial culture on the single-
peaked domain. The probability that a candidate appears at a given rank then directly follows from
Lemma 4.

1By convention,
(
n
k

)
= 0 when k > n or k < 0.

6



Observation 7. The probability PπW (j, k) that candidate xj is ranked at position k under Walsh’s
distribution, for each j, k ∈ [m], is equal to PπW (j, k) = Dm(j,k)

2m−1 .

We first establish that this distribution favors the median candidates since their expected score under
every PSR is at least as large as the one of any other candidate.

Proposition 8. For every PSR F , the median candidates always belong to the expected winners of F under
Walsh’s distribution, i.e., C∗ ⊆ WπW (F).

Sketch of proof. One can show that the expected score of a median candidate is at least as large as the
expected score of any other candidate, no matter the chosen positional score vector for the PSR. When
comparing the expected score of a candidate c ∈ C∗ with the one of any other candidate xj ∈ M \ C∗,
we can restrict our attention, w.l.o.g., to the median candidate xc := x⌈m

2
⌉ ∈ C∗ and to any candidate

xj such that j < ⌈m2 ⌉ (by symmetry w.r.t. the single-peaked axis). By Observation 3, the expected score
of a candidate xj , for Walsh’s distribution and a PSR F characterized by the positional score vector
α, is given by EπW [SF (xj)] =

∑m−j+1
k=1

Dm(j,k)
2m−1 · αk and EπW [SF (xc)] =

∑⌊m
2
⌋+1

k=1
Dm(j,k)
2m−1 · αk. One

can then show to conclude that EπW [SF (xc)]− EπW [SF (xj)] ≥ 0.

We now aim to characterize the PSRs for which the median candidates are the only expected winners.
We identify them as the PSRs whose associated positional score vector α is such that there exists an
index ℓ ∈ [⌊m2 ⌋+1] with αℓ > αℓ+1. We call them first-prioritizing PSRs. Note that all k-approval rules
for k ≤ ⌊m2 ⌋+ 1 are first-prioritizing, as well as the Borda rule.

Theorem 9. The median candidates are the unique expected winners of a PSRF under Walsh’s distribution,
i.e.,WπW (F) = C∗, iff F is first-prioritizing.

Sketch of proof. Consider a PSR F characterized by a score vector α such that there exists an index
ℓ ∈ [⌊m2 ⌋+ 1] for which αℓ > αℓ+1. We compare a median candidate xc ∈ C∗ and another candidate
xj ∈ M \ C∗ where, w.l.o.g., c := ⌈m2 ⌉ and j < c. By Observations 3 and 7 and Lemma 5, one can
prove that:

EπW [SF (xc)]− EπW [SF (xj)]

=
∑⌊m

2
⌋+1

k=1
Dm(c,k)
2m−1 · αk −

∑m−j+1
k=1

Dm(j,k)
2m−1 · αk

= 1
2m−1

(∑γm(j)
k=1 (Dm(c, k)− Dm(j, k)) · αk+∑m−j+1

k=γm(j)+1(Dm(c, k)− Dm(j, k)) · αk

)
>

αγm(j)

2m−1

(∑⌊m
2
⌋+1

k=1 Dm(c, k)−
∑m−j+1

k=1 Dm(j, k)
)
= 0

Hence, the expected score of a median candidate is always greater than the one of any other candidate
xj .

For a PSR F characterized by a vector α where α1 = · · · = αℓ, with ℓ > ⌊m2 ⌋+ 1, one can prove that
both x⌈m

2
⌉ ∈ C∗ and x⌈m

2
⌉−1 ∈ M \ C∗ are expected winners.

By Proposition 6 and Theorem 9, the first-prioritizing PSRs tend to elect the (weak) Condorcet winner(s)
under Walsh’s distribution.

Corollary 10. Under Walsh’s distribution, all first-prioritizing PSRs and Condorcet-consistent rules
asymptotically agree to elect the median candidates.

We show a good lower bound for the convergence to the same outcome for a subset of first-prioritizing
PSRs, which contains k-approval rules and the Borda rule.
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Proposition 11. For all k-approval voting rules that are first-prioritizing and the Borda rule, under
Walsh’s distribution, the probability of their agreement for electing one candidate from C∗ is lower bounded
by Lπ(F1) where F1 refers to the plurality rule.

As an illustration, by Proposition 11, for m = 5, we have PπW (F1(≻) = C∗) ⩾ 1 − 2e−
n

128 and for
n = 600, the probability of agreement is lower bounded by 0.98.

6 Conitzer’s Distribution

We now analyze Conitzer’s distribution (Definition 2), which considers a uniform distribution not on the
whole single-peaked domain, as Walsh’s distribution, but on the peak candidates of the single-peaked
orders. It follows that the probability for a given candidate to be ranked at a given rank is a bit less
direct, as already stated by Boehmer et al. [9].

Lemma 12 (Boehmer et al. [9]). The probability that candidate xj is ranked at position k under
Conitzer’s distribution, for each j, k ∈ [m], is equal to PπC (j, k) = Q(j, k) +Q(m− j + 1, k) where:

Q(j, k) =


1
2m if k < j
k
2m if k = j
0 otherwise

We first characterize the expected winners of all k-approval rules.

Proposition 13. The expected winners of the k-approval rule F under Conitzer’s distribution are:

WπC (F) =


M if k = 1
{xk, xm−k+1} if 1 < k ≤ ⌊m2 ⌋+ 1
{xj ∈ M : max{j,m− j + 1} ≤ k} otherwise

.

Sketch of proof. We compute the expected score of a candidate xj where, w.l.o.g., j ∈ [⌈m2 ⌉]. By Lemma
12,

EπC [S
F (xj)] =


2k
2m if k < j
3k−1
2m + k

2m · 1{j=⌈m
2
⌉} if k = j

2j−1+k
2m if j < k < m− j + 1

1 if k ≥ m− j + 1

We can then derive the expected

winners w.r.t. k.

Hence, the only k-approval rule which tends to elect the median candidate(s) as unique expected
winner(s) is ⌈m2 ⌉-approval (and

m
2 + 1-approval ifm is even).

We now characterize more precisely the PSRs which tend to elect the median candidate(s).

Theorem 14. The median candidates are the unique expected winners of a PSR F under Conitzer’s
distribution iff the positional score vector α associated with F satisfies the following inequality, for every
1 ≤ j < ⌈m2 ⌉:

⌈m
2
⌉−1∑

ℓ=j+1

αℓ + β(m) + αm
2
1{m even} >

m−j∑
ℓ=⌈m

2
⌉+1

αℓ + δ(j,m)

where β(m) := (⌈m2 ⌉− 1)α⌈m
2
⌉ + (⌊m2 ⌋+1)α⌊m

2
⌋+1 and δ(j,m) := (j − 1)αj + (m− j +1)αm−j+1.

A sufficient condition is β(m) > δ(j,m), for every j < ⌈m2 ⌉.
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Sketch of proof. Consider a PSRF characterized by a score vector α. Let us compare a median candidate
xc ∈ C∗ and another candidate xj ∈ M \ C∗ where, w.l.o.g., j < c := ⌈m2 ⌉. The median candidates
are unique expected winners iff, for every j < c, we have EπC [S

F (xc)]− EπC [S
F (xj)] > 0. One can

prove that this is equivalent to
∑⌈m

2
⌉−1

ℓ=j+1 αℓ + (⌈m2 ⌉ − 1)α⌈m
2
⌉ + (⌊m2 ⌋+ 1)α⌊m

2
⌋+1 + αm

2
1{m even} >

(j − 1)αj +
∑m−j

ℓ=⌈m
2
⌉+1 αℓ + (m− j + 1)αm−j+1.

We always have
∑⌈m

2
⌉−1

ℓ=j+1 αℓ + αm
2
1{m even} ≥

∑m−j
ℓ=⌈m

2
⌉+1 αℓ. Hence, a sufficient condition is (⌈m2 ⌉ −

1)α⌈m
2
⌉ + (⌊m2 ⌋+ 1)α⌊m

2
⌋+1 > (j − 1)αj + (m− j + 1)αm−j+1.

We observe that the Borda rule satisfies the sufficient condition of Theorem 14, as well as ⌈m2 ⌉-approval
(and (m2 + 1)-approval ifm is even), proving that these rules eventually elect the median candidates
(as already observed in Proposition 13 for the approval rules). While Theorem 14 is not immediately
interpretable, the following provides some intuition. Indeed, the underlying intuition is that the
characterization corresponds to PSRs associated with a score vector (α1, · · · , αm) such that the first
half of the scores is strictly greater than the second half but, for more than 4 candidates, not with too big
a gap. More precisely, for m=3 and m=4, we must have α2 > α3 and α2 > α3 or α3 > α4, respectively,
and for m=5, we must have α2 > α3 or α3 > α4 and α2 < 5 · α3 − 4 · α4. Note that, in addition to
Borda and ⌈m/2⌉-approval, this also includes, e.g., all PSRs such that αi = 0 if i > ⌊m/2⌋ + 1 and
α2 < 2 · α⌊m/2⌋+1.

Corollary 15. The median candidates are the unique expected winners of the Borda rule and the ⌈m2 ⌉-
approval rule (as well as (m2 + 1)-approval ifm is even) under Conitzer’s distribution.

By Proposition 6 and Corollary 15, the Borda rule, ⌈m2 ⌉-approval, as well as all rules identified in
Theorem 14 tend to elect the (weak) Condorcet winner(s).

Corollary 16. Under Conitzer’s distribution, the Borda rule, ⌈m2 ⌉-approval, and Condorcet-consistent
rules asymptotically agree to elect the median candidates.

As an illustration, when we apply Theorem 1 with Borda for m = 5, we have PπC (F(≻) = C∗) ⩾

1− 2e−
9n

3200 . For example, for n = 2000, we have a lower bound of 0.99 for the probability to elect the
median candidate.

7 Unbiased Distributions

In this section, we aim to identify single-peaked distributions which do not favor any candidate by
design, with respect to a given PSR. A preference distribution π : Πm → [0, 1] is said to be unbiased
w.r.t. a given PSR F if all candidates are expected winners of F under π, i.e., Eπ[S

F (x)] = Eπ[S
F (y)],

for every x, y ∈ M . Note that the existence of an unbiased distribution w.r.t. a given PSR can be decided
in polynomial time by solving a system of linear equations with real variables.

We first characterize the single-peaked distributions which are unbiased w.r.t. k-approval rules.

Theorem 17. There exists an unbiased single-peaked distribution w.r.t. the k-approval rule iff k divides
m.

Sketch of proof. If k dividesm, then there is an integer q such thatm = k ·q. We partition the candidates
M in q groups of size k where Xj := {x(j−1)k+1, . . . , xjk} for each j ∈ [q], andM =

⊔
j∈[q]Xj . For

each group Xj , let Pj denote the non-empty set of single-peaked preference orders where the k
candidates inXj are ranked among the first k candidates, i.e., Pj := {≻i∈ Πm

> : r≻i(x) ≤ k, ∀x ∈ Xj}.
One can prove that the distribution π such that

∑
≻i∈Pj

π(≻i) =
1
q for each j ∈ [q], and π(≻i) = 0 for

all ≻i∈ Πm
> \

⋃
j∈[q] Pj is unbiased w.r.t. k-approval.
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From Theorem 17, no single-peaked distribution can be unbiased w.r.t. k-approval, for any k > m/2
whenm > 2, which includes the veto rule (i.e., (m− 1)-approval). Alternatively, there exists a family
of single-peaked distributions which are unbiased w.r.t. the plurality rule (i.e., 1-approval), including
Conitzer’s distribution. In addition, we show that Conitzer’s distribution is unbiased only w.r.t. plurality,
leading to the following statement.

Proposition 18. Conitzer’s distribution is unbiased w.r.t. a positional scoring rule F iff F is the plurality
rule.

Sketch of proof. Suppose that Conitzer’s distribution πC is unbiased w.r.t. some PSR F defined by
the positional score vector α. Since all candidates are expected winners of F , we have in particular
EπC [S

F (x1)] = EπC [S
F (x2)], which leads to αm = 2

m · α2 +
m−2
m · αm−1. Because α2 ≥ · · · ≥ αm,

it implies that α2 = · · · = αm, and α1 > αm, thus F corresponds to the plurality rule.

In contrast, we prove that Walsh’s distribution can never be unbiased because, no matter the chosen
positional score vector, the expected score of a median candidate will always be strictly greater than
the one of an extreme candidate in the single-peaked axis.

Proposition 19. No PSR can make Walsh’s distribution unbiased.

Proof sketch. One can prove that, no matter the chosen positional score vector, the expected score
of a median candidate will always be strictly greater than the one of an extreme candidate in the
single-peaked axis.

We now consider a very degenerate distribution which only puts positive equal probability on the two
extreme orders in the single-peaked domain.

Definition 3 (Polarized distribution). The polarized single-peaked distribution π : Πm
> → [0, 1] is defined

as:

π(≻i) =

{
1
2 if x1 ≻i · · · ≻i xm or xm ≻i · · · ≻i x1
0 otherwise

.

Although it is degenerate, the polarized distribution is nevertheless symmetric and is the only single-
peaked distribution which is unbiased w.r.t. the Borda rule.

Theorem 20. A single-peaked distribution is unbiased w.r.t. the Borda rule iff it is the polarized distribution.

Proof. The Borda rule is characterized by, e.g., the positional score vector (m − 1,m − 2, . . . , 1, 0).
Under the polarized distribution, each candidate xj can be ranked either at position j or at position
m− j + 1, with equal probability. It follows that the expected score of each candidate xj is equal to
1
2(m− j) + 1

2(j − 1) = 1
2(m− 1). Therefore, the polarized distribution is unbiased w.r.t. the Borda

rule.

Let us now prove that no other distribution is unbiased w.r.t. the Borda rule. Suppose that there exists a
single-peaked distribution π which is unbiased w.r.t. the Borda rule. Observe that, globally, all the Borda
scores that have been distributed to the candidates are equal to

∑
≻i∈Πm

>
π(≻i) ·

∑
x∈M (m−r≻i(x)) =∑

≻i∈Πm
>
π(≻i) · m(m−1)

2 = m(m−1)
2 . Therefore, since allm candidates must have the same expected

score, it must be equal to m−1
2 . Let us denote byΠm

> (1) andΠm
> (m) the set of single-peaked orders where

candidate x1 and xm are ranked last, respectively. We have Πm
> = Πm

> (1)⊔Πm
> (m). Candidates x1 and

xm get zero points in Πm
> (1) and Πm

> (m), respectively. Since the maximum number of points to get is
(m− 1), for x1 and xm to get an expected score of m−1

2 , the distribution should be balanced between
Πm

> (1) and Πm
> (m), i.e., we must have

∑
≻i∈Πm

> (1) π(≻i) =
∑

≻i∈Πm
> (m) π(≻i) = 1

2 . Moreover, for
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x1 and xm to reach an expected score of exactly m−1
2 on only half of the single-peaked orders, they

must get m − 1 points, i.e., be ranked at the first position, in the orders with positive probability in
their half. Since both x1 and xm are ranked first in exactly one single-peaked order, i.e., in the extreme
orders x1 ≻i x2 ≻i · · · ≻i xm and xm ≻i · · · ≻i x2 ≻i x1, respectively, π must assign positive equal
probability to exactly these two orders, leading to π being the polarized distribution.

8 Other Structured Distributions

Finally, we explore structured preference distributions other than single-peaked ones in order to
determine whether similar results can be reached. In particular, we study unimodal distributions,
including the famous Mallows’ distributions [34], introduced in voting theory by Goldsmith et al. [27],
and Pólya-Eggenberger urn [17] introduced in voting theory by Berg [5].

8.1 Unimodal Distributions

The Kendall tau distance evaluates the similarity between two preference orders by counting the number
of pairwise comparisons on which the two orders disagree, i.e., distKT (≻i,≻j) = |{(x, y) ∈ M2 :
x ≻i y and y ≻j x}|, for every ≻i,≻j∈ Πm. The frequency of a preference order ≻i∈ Πm in a
preference profile ≻∈ (Πm)n is denoted by f(≻i,≻). A preference profile ≻∈ (Πm)n is unimodal [13]
if there exists a mode ≻∗∈ Πm, i.e., a reference preference order, such that f(≻i,≻) > f(≻j ,≻
) iff distKT (≻∗,≻i) < distKT (≻∗,≻j), for every pair of preference orders ≻i,≻j∈≻. Positively
discriminating rules [13] are social welfare functions which always return the mode as the outcome of
the election. Both PSRs and Condorcet-consistent rules are positively discriminating.

We adapt the definition of unimodal profile to distributions. A preference distribution π : Πm → [0, 1]
is said to be unimodal if there exists a mode ≻∗∈ Πm such that π(≻i) > π(≻′

i) iff distKT (≻∗,≻i) <
distKT (≻∗,≻′

i), for every pair of preference orders≻i,≻′
i∈ Πm. We consider independent and identical

voter preference drawings. By using the Glivenko-Cantelli theorem [11], we deduce that any unimodal
distribution will asymptotically generate a unimodal profile, where PSRs and Condorcet-consistent
rules agree to select the winner of the mode.

Corollary 21. Under unimodal distributions, all PSRs and Condorcet-consistent rules asymptotically agree
to elect the first-ranked candidate of the mode.

We go further and give a bound for the speed of convergence toward agreement in terms of election
size.

Proposition 22. For a unimodal preference distribution π, the probability that all PSRs and Condorcet-
consistent rules agree is lower bounded byBπ := 1−2exp(−2nε2), for ε := min≻i,≻j∈Πm |π(≻i)−π(≻j

)|.

A typical example of unimodal distributions are Mallows’ distributions Mϕ,σ , for given σ ∈ Πm and
ϕ ∈ [0, 1], defined by PMϕ,σ(≻i) = 1

Zϕ
distKT (≻i,σ) where Z =

∑
≻i∈Πm ϕdistKT (≻i,σ). Mallows’

distributions are unimodal when ϕ < 1. We give below an example of the speed of convergence under
Mallows’ distributions.

Example 1. Under a Mallows’ distribution πϕ,σ , we get ε = ϕk · (1− ϕ) with k := max≻ distKT (σ,≻i)

and thus the bound for agreement is Bπϕ,σ = 1− 2exp(−2n(ϕ
k·(1−ϕ)

Z )2).

If ϕ = 0.1, m = 3 (then k = 3) and n = 2, 000, 000, we have Bπϕ,σ = 0.92. If ϕ = 0.9, m = 3 and
n = 400, Bπϕ,σ = 0.97. When more weight is given to orders close to the mode, voting rules agree faster
than when the Mallows’ distribution gets closer to impartial culture (i.e., ϕ = 1).
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8.2 Pólya-Eggenberger Urn

In the Pólya-Eggenberger urn model, we consider an urn initially containing m! balls representing the
m! different preference orders from Πm, i.e., each ℓth preference order from Πm is initially drawn with
probability βℓ = 1

m! . To draw our preference profile ≻ with n voters, for each voter, we draw a ball and
assign to the voter the corresponding preference order and put it back into the urn with R additional
balls with the same preference order and R > 0. We will assume R = m! · r, for a given parameter r.

The following result generalizes the asymptotic result from Gehrlein [20] for three candidates under
impartial anonymous culture (when R = 1).

Proposition 23. Under the Pólya-Eggenberger urn culture, the probability that all PSRs asymptotically
agree is lower bounded by 1

2 if r < 2
3 andm = 3, and by 1

4 if r < 1
6 andm = 4.

We now analyze the agreement between plurality and Borda rule.

Proposition 24. Under the Pólya-Eggenberger urn culture, the probability that plurality and Borda
asymptotically agree is lower bounded by 3

4 if r < 2
3 andm = 3, and by 3

5 if r < 1
6 andm = 4.

To give a comparison, under Walsh’s distribution, for the agreement of plurality and the Borda rule
to the election of median candidates C∗, we have a lower bound given by the plurality rule F1 (by
Proposition 11) which is as follows: if m = 4, PπW (F1(≻) = C∗) ⩾ 1 − 2e−

n
32 is larger than 3

5
when n ⩾ 52. Therefore, we are able to compare lower bounds and tell that the lower bound of
Pólya-Eggenberger urn for r < 1

6 is reached from n ≥ 52 for the lower bound of Walsh’s distribution.

We finally prove a positive probability of disagreement asymptotically for every pair of PSRs.

Proposition 25. If the election is drawn with a Pólya-Eggenberger urn culture with R < 4 then ev-
ery pair of positional scoring rules F1 and F2 asymptotically disagree with a positive probability, i.e.,
limn→∞P(F1(≻) ̸= F2(≻)) > 0.

This result means that any pair of positional scoring rules will disagree on a nonempty set asymptotically.
Thus, we cannot achieve the same type of convergence results as in single-peaked distributions.

9 Conclusion

We have studied the probability of agreement of different voting rules under two single-peaked cultures,
classically used for experiments in social choice, namely Walsh’s and Conitzer’s distributions. These
distributions tend to favor the election of median candidate(s) in the single-peaked axis, and these
candidates also turn out to be (weak) Condorcet winner(s), implying the agreement of several positional
scoring rules (PSRs) with all Condorcet-consistent rules. This (weak) Condorcet efficiency holds in
general for all symmetric single-peaked distributions, which are natural distributions for experiments
when no additional information other than the single-peaked axis is available. We nevertheless observe
that Conitzer’s distribution is less biased toward the median candidates because it happens to be
unbiased w.r.t. one PSR (namely plurality), contrary to Walsh’s distribution. While these single-peaked
distributions enable fast convergence to agreement, this is also the case for other structured distributions,
such as unimodal ones, where the agreement is very general among voting rules and convergence is rapid.
This behavior cannot be extended to Pólya-Eggenberger urns where the probability of disagreement is
non-negligible, even if it remains high in some particular cases.

Our findings highlight that particular attention should be taken when using voting cultures for ex-
periments in social choice. Indeed, since we identify cultures in which the agreement of different
voting rules rapidly agree as the number of voters increases, conclusions drawn from experiments
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testing different voting rules for a problem should be interpreted with caution. One could imagine very
different conclusions about a problem, not because of the problem itself, but because of the culture
used: impartial cultures versus single-peaked cultures, for example. The take-home message of our
results is to warn the community to be careful when using such cultures in experiments because some
interpretations could be biased by the fact that voting rules mostly agree under these cultures.

Future work could consider bounds on the probability to agree in finite elections with Pólya-Eggenberger
urn. The difficulty, however, lies in the dependent structure of this distribution. One idea could also be
to consider nearly single-peaked distributions to bridge the gap between impartial and single-peaked
cultures and be closer to real political elections. Furthermore, when voting rules asymptotically agree,
we might conjecture that the probability of not satisfying certain axioms might also decrease as the
election size increases. Finally, the same study could be done in a strategic model where voters can
manipulate [38].
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Technical Appendix

A The Model

In the case of m = 2 candidates, all PSRs coincide and gaining one point for a candidate in a PSR is
equivalent for this candidate to be ranked before the other candidate, breaking the gap between absolute
and relative evaluation of candidates. In that case, majority voting can appear as the only reasonable
voting rule [36]. Therefore, given the focus of our paper, we reasonably assume thatm > 2.

Lemma 26 (Hoeffding [29]). Let Xk be some independent real random variables, and (ak)k∈[n] and
(bk)k∈[n] two real sequences such that for every k ∈ [n], we have ak < bk and P(ak ⩽ Xk ⩽ bk) = 1.

Then, for every t > 0, P(Sn − E(Sn) ⩾ t) ⩽ e
−2t2∑n

k=1
(bk−ak)2 , where Sn =

∑n
k=1Xk.

Lemma 27 (Hoeffding [29]). Let Xk be some independent real random variables, and (ak)k∈[n] and
(bk)k∈[n] two real sequences such that for every k ∈ [n], we have ak < bk and P(ak ⩽ Xk ⩽ bk) = 1.

Then, for every t > 0, P(Sn − E(Sn) ⩽ −t) ⩽ e
−2t2∑n

k=1
(bk−ak)2 , where Sn =

∑n
k=1Xk.

Theorem 1. Consider a positional scoring rule F defined by a score vector α, and a preference dis-
tribution π over the set of candidates M . When the set of expected winners, defined as Wπ(F) =
argmaxx∈M Eπ[S

F (x)], is a singleton, i.e.,Wπ(F) = {x}, the probability that F elects x satisfies

Pπ(x ∈ F(≻)) ≥ Lπ(F),

where:

Lπ(F) := 1− 2 · max
y∈M\Wπ(F)

exp

(
−2n ·

(
µF
π (y)− Eπ[S

F (y)]
)2

(maxj αj −minj αj)
2

)

and µF
π (y) :=

maxx∈M Eπ[S
F (x)] + Eπ[S

F (y)]

2

Proof. Let Eπ[S
F (y)]i be the expected score of candidate y with rule F for voter i. Let Wπ(F) = {x},

we have:

Pπ(x ∈ F(≻)) = Pπ[∀y ̸= x,

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

Using Bonferroni’s inequality we get:

Pπ[∀y ̸= x,
n∑

i=1

SF (x)i >
n∑

i=1

SF (y)i]

⩾
∑
x̸=y

Pπ[
n∑

i=1

SF (x)i >
n∑

i=1

SF (y)i]− (m− 2)

⩾ (m− 1) ·min
y ̸=x

Pπ[

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]− (m− 2)

Let us now compute a lower bound for Pπ[
∑n

i=1 S
F (x)i >

∑n
i=1 S

F (y)i]. Using again Bonferroni’s
inequality we have:

Pπ[

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

17



⩾ Pπ[
n∑

i=1

SF (x)i < n · µF
π (y)] + Pπ[

n∑
i=1

SF (x)i > n · µF
π (y)]− 1

Now, we work on each term separately,

Pπ[
n∑

i=1

SF (x)i < n · µF
π (y)]

= 1− Pπ[

n∑
i=1

SF (x)i ⩾ n · µF
π (y)]

Using the first Hoeffding’s inequality (Lemma 26) with ai = miny αy and bi = maxy αy ,

Pπ[
n∑

i=1

SF (x)i ⩾ n · µF
π (y)]

= Pπ[
n∑

i=1

SF (x)i − n · Eπ[S
F (y)]i ⩾ n · µF

π (y)− n · Eπ[S
F (y)]i]

⩽ e
−2n(µF

π (y)−Eπ [SF (y)]i)
2

(maxy αy−miny αy)2

We reproduce the exact same reasoning for the second term Pπ[
∑n

i=1 S
F (x)i > n · µF

π (y)] but we use
the second Hoeffding’s inequality (Lemma 27). We summarize and find:

Pπ[

n∑
i=1

SF (x)i >

n∑
i=1

SF (y)i]

⩽ 1− e
−2n(µFπ (y)−Eπ [SF (y)]i)

2

(maxy αy−miny αy)2 − e
−2n(µF

π (y)−Eπ [SF (x)]i)
2

(maxy αy−miny αy)2

Finally, we get:
Pπ(x ∈ F(≻))

⩾ 1− 2 ·max
y ̸=x

e
−2n·(µFπ (y)−Eπ [SF (y)])2

(maxy αy−miny αy)2

Corollary 2. For two positional scoring rules F1 and F2 whose expected winner set under a preference
distribution π is the same, i.e., C := Wπ(F1) = Wπ(F2), the probability of their agreement for electing
the same unique candidate from C is such that: Pπ(F1(≻) = F2(≻)) ⩾ min{Lπ(F1), Lπ(F2)}.

Proof. We apply twice Theorem 1 and deduce that both rules F1 and F2 have to agree on the same
outcome with a probability higher than the minimum of both lower bounds.

B The Single-Peaked Domain

Observation 3. Candidate xj can never be ranked at a position k > max{j,m−j+1} in a single-peaked
order.

Proof. If k > m − j + 1 (resp., k > j), then it means that there are not enough positions between
position k and positionm to place at least all candidates x1, . . . , xj−1 (resp., xj+1, . . . , xm), which is
necessary in order to rank xj at position k, by single-peakedness. It follows that, under such a condition,
no single-peaked preference order can rank xj at position k.
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Lemma 5. For every median candidate xc ∈ C∗ and any other candidate xj ∈ M \ C∗, there exists
an index γm(j) ∈ [max{j,m− j + 1}] such that Dm(c, k) ≥ Dm(j, k) for every 1 ≤ k ≤ γm(j) and
Dm(j, k) > Dm(c, k) for every γm(j) < k ≤ max{j,m− j + 1}.

proof. Let us compare a median candidate xc ∈ C∗ and another candidate xj ∈ M \ C∗ where,
w.l.o.g., c := ⌈m2 ⌉ and j < c. Our goal is to compare Dm(c, k) and Dm(j, k) for a given position
k ∈ [m− j + 1], and thus, by Lemma 4, to compare

(
m−k
c−1

)
+
(
m−k
c−k

)
and

(
m−k
j−1

)
+
(
m−k
j−k

)
. Observe that(

m−k
c−k

)
=
(
m−k
m−c

)
=
(
m−k
⌊m

2
⌋
)
, and thus

(
m−k
c−k

)
=
(

m−k
c−1{m odd}

)
, implying that

(
m−k
c−k

)
=
(
m−k
c−1

)
when m is

odd.

Let us recall that, when n is fixed, the binomial coefficient
(
n
ℓ

)
is strictly increasing from ℓ = 0 to ℓ = n

2
and then strictly decreasing from ℓ = n

2 to ℓ = n (in case n is odd, the two maximal values are taken
for ℓ = ⌊n2 ⌋ and ℓ = ⌈n2 ⌉, so it is fine to simply consider that the closest ℓ is to n

2 , the biggest the value(
n
ℓ

)
. In our case, we have n = m− k, therefore the maximal value of

(
m−k
ℓ

)
is taken for ℓ the closest to

m−k
2 . Observe that m−k

2 ≥ c− k. It follows that
(
m−k
c−k

)
≥
(
m−k
j−k

)
, since we are in the increasing part.

Moreover, the maximal value ℓ = m−k
2 is always closer to c − 1 than to j − k: if m−k

2 ≥ c − 1 it is
obvious and if m−k

2 < c− 1, then supposing j − k is closer would imply m−k
2 − j + k < c− 1− m−k

2
and thus, because j < c = ⌈m2 ⌉, we would have c > m− j + 1 ≥ ⌊m2 ⌋+ 2, a contradiction. It follows
that

(
m−k
c−1

)
≥
(
m−k
j−k

)
.

First observe that if k ≤ c− j+1, then we have j− 1 ≤ c− k and thus j− k ≤ j− 1 ≤ c− k ≤ c− 1.
Since c − k ≤ m−k

2 , it follows that
(
m−k
c−k

)
≥
(
m−k
j−1

)
, and thus, since

(
m−k
c−1

)
≥
(
m−k
j−k

)
, we have that

Dm(c, k) ≥ Dm(j, k).

By Observation 3, we know that Dm(j, k) = 0 iff k > max{j,m − j + 1}, therefore Dm(c, k) = 0
when k > ⌊m2 ⌋+ 1 and Dm(j, k) = 0 when j > m− j + 1. It follows that Dm(j, k) > Dm(c, k) for
all ⌊m2 ⌋+ 1 < k ≤ m− j + 1.

To summarize, now we know that when k ≤ c − j + 1, we have Dm(c, k) ≥ Dm(j, k) and when
k > ⌊m2 ⌋+1, we haveDm(j, k) > Dm(c, k). It means that there exists an index k such thatDm(c, k) ≥
Dm(j, k) and Dm(j, k+1) > Dm(c, k+1). Let us consider the greatest such index k0 as our base case
and suppose, by induction, that Dm(c, k′) ≥ Dm(j, k′) for all indices k′ such that k ≤ k′ ≤ k0 for a
given index k ≤ k0. We will prove that ifDm(c, k) ≥ Dm(j, k) holds, thenDm(c, k−1) ≥ Dm(j, k−1)
also holds, which will be sufficient to prove our statement about the existence of a unique threshold
γm(j) to distinguish when Dm(c, k) ≥ Dm(j, k) and when Dm(j, k) > Dm(c, k).

Suppose that Dm(c, k) ≥ Dm(j, k) holds for a given position k. By Lemma 4, it means that(
m−k
c−1

)
+
(

m−k
c−1{m odd}

)
≥
(
m−k
j−1

)
+
(
m−k
j−k

)
. By Pascal’s identity, we thus have

(
m−k+1
c−1

)
−
(
m−k
c−2

)
+(

m−k+1
c−1{m odd}

)
−
(

m−k
c−1−1{m odd}

)
≥
(
m−k+1
j−1

)
−
(
m−k
j−2

)
+
(
m−k+1
j−k+1

)
−
(

m−k
j−k+1

)
, which is equivalent to(

m−k+1
c−1

)
+
(

m−k+1
c−1{m odd}

)
≥
(
m−k+1
j−1

)
+
(
m−k+1
j−k+1

)
+
(
m−k
c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

)
. If(

m−k
c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

)
≥ 0 holds, then we have

(
m−k+1
c−1

)
+
(

m−k+1
c−1{m odd}

)
≥(

m−k+1
j−1

)
+
(
m−k+1
j−k+1

)
and our claim follows, i.e., we have Dm(c, k − 1) ≥ Dm(j, k − 1). Let us thus

assume, for the sake of contradiction, that
(
m−k
c−2

)
+
(

m−k
c−1−1{m odd}

)
−
(
m−k
j−2

)
−
(

m−k
j−k+1

)
< 0.

(
m− k

c− 2

)
+

(
m− k

c− 1− 1{m odd}

)
<

(
m− k

j − 2

)
+

(
m− k

j − k + 1

)
⇔
(
m− k

c− 1

)
· c− 1

m− k − c+ 2
+

(
m− k

c− 1{m odd}

)
·

c− 1{m odd}

m− k − c+ 1 + 1{m odd}

<

(
m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1
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⇔ c− 1

m− k − c+ 2
·
((

m− k

c− 1

)
+

(
m− k

c− 1{m odd}

))
+(

m− k

c

)
·

(m− k + 1) · 1{m even}

(m− k − c+ 2)(m− k − c+ 1)
<(

m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1

Since we have assumed Dm(c, k) ≥ Dm(j, k), it follows that:

c− 1

m− k − c+ 2
·
((

m− k

j − 1

)
+

(
m− k

j − k

))
+(

m− k

c

)
·

(m− k + 1) · 1{m even}

(m− k − c+ 2)(m− k − c+ 1)
<(

m− k

j − 1

)
· j − 1

m− k − j + 2
+

(
m− k

j − k

)
· m− j

j − k + 1

⇔
(
m− k

j − 1

)
·
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+(

m− k

c

)
·

(m− k + 1) · 1{m even}

(m− k − c+ 2)(m− k − c+ 1)
<(

m− k

j − k

)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔
(
m− k

j − 1

)
·
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+(

m− k

j − 1

)
·
∏c−j+1

p=1 (m− k − c+ p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)(m− k − c+ 1)
<

(
m− k

j − 1

)
·

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔
(

c− 1

m− k − c+ 2
− j − 1

m− k − j + 2

)
+∏c−j

p=1(m− k − c+ 1 + p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)
<

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
·
(

m− j

j − k + 1
− c− 1

m− k − c+ 2

)
⇔ (c− j)(m− k + 1)

(m− k − c+ 2)(m− k − j + 2)
+∏c−j

p=1(m− k − c+ 1 + p)∏c−j+1
p=1 (j − 1 + p)

·
(m− k + 1) · 1{m even}

(m− k − c+ 2)
<

∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
· (m− k + 1)(m− c− j + 1)

(j − k + 1)(m− k − c+ 2)

⇔ (c− j)

(m− k − j + 2)
+

∏c−j
p=1(m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
· 1{m even} <
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∏k−1
p=1(j − k + p)∏k−1

p=1(m− k − j + 1 + p)
· (m− c− j + 1)

(j − k + 1)

⇔(c− j) +

∏c−j+1
p=1 (m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
· 1{m even} <∏k−1

p=2(j − k + p)∏k−1
p=2(m− k − j + 1 + p)

· (m− c− j + 1)

⇔(c− j) ·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

+

∏c−j+1
p=1 (m− k − c+ 1 + p)∏c−j+1

p=1 (j − 1 + p)
·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

· 1{m even}

< (m− c− j + 1)

⇔(c− j) ·
∏k−1

p=2(m− k − j + 1 + p)∏k−1
p=2(j − k + p)

+

∏k+c−j−1
p=1 (m− k − c+ 1 + p)∏k+c−j−1

p=1 (j − k + 1 + p)
· 1{m even} < (m− c− j + 1)

Since j < c = ⌈m2 ⌉, we have m − j + 1 > j and m − c ≥ j, therefore
∏k−1

p=2(m−k−j+1+p)∏k−1
p=2(j−k+p)

> 1

and
∏k+c−j−1

p=1 (m−k−c+1+p)∏k+c−j−1
p=1 (j−k+1+p)

≥ 1. It follows that (c − j) + 1{m even} < (m − c − j + 1), whereas

m− c+ 1 = ⌊m2 ⌋+ 1 = c+ 1{m even}, a contradiction.

C The Walsh’s Distribution

Proposition 8. For every PSR F , the median candidates always belong to the expected winners of F under
Walsh’s distribution, i.e., C∗ ⊆ WπW (F).

Proof. When comparing the expected score of a candidate c ∈ C∗ with the one of any other candidate
xj ∈ M \ C∗, we can restrict our attention, w.l.o.g., to the median candidate xc := x⌈m

2
⌉ ∈ C∗ and to

any candidate xj such that j < ⌈m2 ⌉ (by symmetry w.r.t. the single-peaked axis). The expected score of
a candidate xj , for the Walsh’s distribution and a PSR F characterized by the positional score vector α,
is given by EπW [SF (xj)] =

∑m
k=1PπW (j, k) · αk =

∑m
k=1

Dm(j,k)
2m−1 · αk . By the fact that j < c = ⌈m2 ⌉,

we havemax{j,m− j+1} = m− j+1 andmax{c,m− c+1} = ⌊m2 ⌋+1. And thus, by Observation
3, Dm(c, k) = 0 for every k > ⌊m2 ⌋ + 1 and Dm(j, k) = 0 for every k > m − j + 1 > ⌊m2 ⌋ + 1.
Therefore, we have EπW [SF (xj)] =

∑m−j+1
k=1

Dm(j,k)
2m−1 · αk and EπW [SF (xc)] =

∑⌊m
2
⌋+1

k=1
Dm(j,k)
2m−1 · αk

Let us compare the expected scores of both candidates:
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EπW [SF (xc)]− EπW [SF (xj)]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

m−j+1∑
k=1

Dm(j, k)

2m−1
· αk

=
1

2m−1

γm(j)∑
k=1

(Dm(c, k)− Dm(j, k)) · αk+

m−j+1∑
k=γm(j)+1

(Dm(c, k)− Dm(j, k)) · αk


≥
αγm(j)

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
m−j+1∑
k=1

Dm(j, k)


=0

The inequality comes from the fact that, by Lemma 5, Dm(c, k) ≥ Dm(j, k), for every k ∈ [γm(j)] and
Dm(c, k) < Dm(j, k) for every γm(j) < k ≤ m − j + 1, and that α1 ≥ · · · ≥ αγ ≥ · · · ≥ αm. The
last equality to 0 is because

∑⌊m
2
⌋+1

k=1 Dm(c, k) =
∑m−j+1

k=1 Dm(j, k) = 2m−1.

Hence, the expected score of a median candidate xc is always at least as good as the expected score of
any other candidate, which completes the proof.

Theorem 9. The median candidates are the unique expected winners of a PSRF under Walsh’s distribution,
i.e.,WπW (F) = C∗, iff F is first-prioritizing.

Proof. Consider first a PSRF characterized by a positional score vector α such that there exists an index
ℓ ∈ [⌊m2 ⌋+ 1] for which αℓ > αℓ+1. Let us compare, w.l.o.g., the median candidate xc with c := ⌈m2 ⌉
and a candidate xj such that 1 ≤ j < cwhere, by definition, xj ∈ M \C∗. By the fact that j < c = ⌈m2 ⌉,
we havemax{j,m− j+1} = m− j+1 andmax{c,m− c+1} = ⌊m2 ⌋+1. And thus, by Observation
3, Dm(c, k) = 0 for every k > ⌊m2 ⌋+ 1 and Dm(j, k) = 0 for every k > m− j + 1 > ⌊m2 ⌋+ 1. Let us
compare the expected scores of both candidates:

EπW [SF (xc)]− EπW [SF (xj)]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

m−j+1∑
k=1

Dm(j, k)

2m−1
· αk

=
1

2m−1

γm(j)∑
k=1

(Dm(c, k)− Dm(j, k)) · αk+

m−j+1∑
k=γm(j)+1

(Dm(c, k)− Dm(j, k)) · αk


>
αγm(j)

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
m−j+1∑
k=1

Dm(j, k)


=0
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The inequality comes from the fact that, by Lemma 5, Dm(c, k) ≥ Dm(j, k), for every k ∈ [γm(j)] and
Dm(c, k) < Dm(j, k) for every γm(j) < k ≤ m − j + 1, and that α1 ≥ · · · ≥ αγm(j) ≥ · · · ≥ αm.
This inequality is strict because there exists an index ℓ such that 1 ≤ ℓ ≤ ⌊m2 ⌋+ 1 < m− j + 1 for
which αℓ > αℓ+1. Hence, the expected score of a median candidate is always greater than the expected
score of any other candidate xj , and thus the median candidates are the only expected winners.

Consider now a PSR F characterized by a positional score vector α where α1 = · · · = αℓ for a given
ℓ > ⌊m2 ⌋+ 1. Let us compare, w.l.o.g., the median candidate xc with c := ⌈m2 ⌉ and the candidate xc−1

(which must exist sincem > 2) where, by definition, xc−1 ∈ M \C∗. By the fact that c− 1 < c = ⌈m2 ⌉,
we have max{c,m− c+ 1} = ⌊m2 ⌋+ 1 andmax{c− 1,m− (c− 1) + 1} = ⌊m2 ⌋+ 2. And thus, by
Observation 3, Dm(c, k) = 0 for every k > ⌊m2 ⌋ + 1 and Dm(c − 1, k) = 0 for every k > ⌊m2 ⌋ + 2.
Note that, by assumption, we have ℓ > ⌊m2 ⌋ + 1, and thus α1 = · · · = α⌊m

2
⌋+1 = α⌊m

2
⌋+2. Let us

compare the expected scores of both candidates:

EπW [SF (xc)]− EπW [SF (xc−1))]

=

⌊m
2
⌋+1∑

k=1

Dm(c, k)

2m−1
· αk −

⌊m
2
⌋+2∑

k=1

Dm(c− 1, k)

2m−1
· αk

=
α1

2m−1

⌊m
2
⌋+1∑

k=1

Dm(c, k)−
⌊m

2
⌋+2∑

k=1

Dm(c− 1, k)


=0

Hence, the expected scores of xc and xc−1 are equal, whereas xc−1 is not a median candidate. Therefore,
the median candidates are not the only expected winners.

Proposition 11. For all k-approval voting rules that are first-prioritizing and the Borda rule, under
Walsh’s distribution, the probability of their agreement for electing one candidate from C∗ is lower bounded
by Lπ(F1) where F1 refers to the plurality rule.

Proof. Let A be the set of all k-approval rules that are first-prioritizing. Thanks to Corollary 2, it is
enough to look atminF∈A{Lπ(F)}. Using the expression of L in Theorem 1, we can greatly simplify
our question to the finding of F such that maxx∈M EπW [SF (x)] − EπW [SF (y)] is minimal, where
maxx∈M EπW [SF (x)] = EπW [SF (c)] if c ∈ C∗ and y ∈ M \ C∗. However, maxx∈M EπW [SF (x)]−
EπW [SF (y)] =

∑⌊m
2
⌋+1

k=1
Dm(c,k)
2m−1 · αk −

∑m−j+1
k=1

Dm(y,k)
2m−1 · αk. This can again be reduced to the

following minimization:
∑⌊m

2
⌋+1

k=1 Dm(c, k) −
∑m−j+1

k=1 Dm(y, k). Thanks to Lemma 5 and the fact
that

∑⌊m
2
⌋+1

k=1 Dm(c, k) = 2m−1, we can conclude that the plurality rule minimizes this quantity. It
remains to show that the Borda rule always reaches a higher bound L. In fact, it is enough to show
that maxx∈M EπW [SF (x)] − EπW [SF (y)] is at least m − 1 times bigger than for plurality since we
will divide by (maxj αj −minj αj) = m− 1. Nevertheless, the Borda score for the candidate ranked
first is m − 1, so that this quantity has to be larger for Borda. It is even strictly larger thanks to the
next Borda scores.

D The Conitzer’s Distribution

Proposition 13. The expected winners of the k-approval rule F under Conitzer’s distribution are:

WπC (F) =


M if k = 1
{xk, xm−k+1} if 1 < k ≤ ⌊m2 ⌋+ 1
{xj ∈ M : max{j,m− j + 1} ≤ k} otherwise

.
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Proof. Since the Conitzer’s distribution is symmetric, we restrict our analysis, w.l.o.g., to the case of a
candidate xj where j ∈ [⌈m2 ⌉]. By Lemma 12, we have the following expected score for xj :

EπC [S
F (xj)] =

∑k
ℓ=1PπC (j, k)

=
∑min{k,j}

ℓ=1 Q(j, ℓ) +
∑min{k,m−j+1}

ℓ=1 Q(m− j + 1, ℓ)

=


2k
2m if k < j
3k−1
2m + k

2m · 1{j=⌈m
2
⌉} if k = j

2j−1+k
2m if j < k < m− j + 1

1 if k ≥ m− j + 1

If k ≥ ⌊m2 ⌋+1, then there exist candidates xj such that k ≥ m− j+1, and all of them get the maximal
expected score of 1, thus they are all expected winners. If k = 1, then EπC [S

F (x1)] =
3k−1
2m = 1

m and
EπC [S

F (xj)] =
2k
2m = 1

m for all other candidates xj . It follows that all candidates are expected winners.
Finally, if 1 < k ≤ ⌊m2 ⌋ + 1, then the expected winners are those corresponding to the case where
k = j because 3k − 1 > 2k when k > 1 and 2j − 1 + k < 3k − 1 when j < k.

Theorem 14. The median candidates are the unique expected winners of a PSR F under Conitzer’s
distribution iff the positional score vector α associated with F satisfies the following inequality, for every
1 ≤ j < ⌈m2 ⌉:

⌈m
2
⌉−1∑

ℓ=j+1

αℓ + β(m) + αm
2
1{m even} >

m−j∑
ℓ=⌈m

2
⌉+1

αℓ + δ(j,m)

where β(m) := (⌈m2 ⌉− 1)α⌈m
2
⌉ + (⌊m2 ⌋+1)α⌊m

2
⌋+1 and δ(j,m) := (j − 1)αj + (m− j +1)αm−j+1.

A sufficient condition is β(m) > δ(j,m), for every j < ⌈m2 ⌉.

Proof. Consider a PSRF characterized by a positional score vectorα. Let us compare a median candidate
xc ∈ C∗ and another candidate xj ∈ M \C∗ where, w.l.o.g., j < c := ⌈m2 ⌉. By Lemma 12, the expected
score of candidate xc is given by: EπC [S

F (xc)] =
1
m

∑⌈m
2
⌉−1

ℓ=1 αℓ +
⌈m

2
⌉

2m · α⌈m
2
⌉ +

⌊m
2
⌋+1

2m · α⌊m
2
⌋+1 +

1
2m · αm

2
· 1{m even}.

Moreover, the expected score of candidate xj is given by: EπC [S
F (xj)] =

1
m

∑j−1
ℓ=1 αℓ +

j+1
2m αj +

1
2m

∑m−j
ℓ=j+1 αℓ +

m−j+1
2m αm−j+1.

It follows that the median candidates are unique expected winners iff, for every j < c, we have:

EπC [S
F (xc)]− EπC [S

F (xj)] > 0

⇔

1

m

⌈m
2
⌉−1∑

ℓ=1

αℓ +
⌈m2 ⌉
2m

α⌈m
2
⌉ +

⌊m2 ⌋+ 1

2m
α⌊m

2
⌋+1 +

1

2m
αm

2
1{m even}

− 1

m

j−1∑
ℓ=1

αℓ −
j + 1

2m
αj −

1

2m

m−j∑
ℓ=j+1

αℓ −
m− j + 1

2m
αm−j+1 > 0

⇔

1

2m

⌈m
2
⌉−1∑

ℓ=j+1

αℓ +
⌈m2 ⌉ − 1

2m
α⌈m

2
⌉ +

⌊m2 ⌋+ 1

2m
α⌊m

2
⌋+1 +

1

2m
αm

2
1{m even}

>
j − 1

2m
αj +

1

2m

m−j∑
ℓ=⌈m

2
⌉+1

αℓ +
m− j + 1

2m
αm−j+1
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⇔
⌈m

2
⌉−1∑

ℓ=j+1

αℓ + (⌈m
2
⌉ − 1)α⌈m

2
⌉ + (⌊m

2
⌋+ 1)α⌊m

2
⌋+1 + αm

2
1{m even}

> (j − 1)αj +

m−j∑
ℓ=⌈m

2
⌉+1

αℓ + (m− j + 1)αm−j+1

We always have
∑⌈m

2
⌉−1

ℓ=j+1 αℓ + αm
2
1{m even} ≥

∑m−j
ℓ=⌈m

2
⌉+1 αℓ. It follows that a sufficient condition to

get EπC [S
F (xc)]−EπC [S

F (xj)] > 0 is (⌈m2 ⌉− 1)α⌈m
2
⌉ + (⌊m2 ⌋+1)α⌊m

2
⌋+1 > (j − 1)αj + (m− j +

1)αm−j+1, for every 1 ≤ j < ⌈m2 ⌉.

Corollary 15. The median candidates are the unique expected winners of the Borda rule and the ⌈m2 ⌉-
approval rule (as well as (m2 + 1)-approval ifm is even) under Conitzer’s distribution.

Proof. We simply show that these rules satisfy the sufficient condition of Theorem 14.

The Borda rule is characterized by the positional score vector α = (m− 1, . . . , 0), therefore we have
αj = m− j, for every j ∈ [m]. Thus, for every 1 ≤ j < ⌈m2 ⌉, we have:

(⌈m
2
⌉ − 1)α⌈m

2
⌉ + (⌊m

2
⌋+ 1)α⌊m

2
⌋+1

− (j − 1)αj − (m− j + 1)αm−j+1

=(⌈m
2
⌉ − 1)⌊m

2
⌋+ (⌊m

2
⌋+ 1)(⌈m

2
⌉ − 1)

− (j − 1)(m− j)− (m− j + 1)(j − 1)

=(⌈m
2
⌉ − 1)(2⌊m

2
⌋+ 1)− (j − 1)(2m− 2j + 1)

The previous quantity is decreasing w.r.t. j, therefore it takes its minimum value for j = ⌈m2 ⌉ − 1,
where this quantity is equal to:

(⌈m
2
⌉ − 1)(2⌊m

2
⌋+ 1)− (⌈m

2
⌉ − 2)(2m− 2⌈m

2
⌉+ 3)

=(⌈m
2
⌉ − 2)(2⌊m

2
⌋+ 1− 2m+ 2⌈m

2
⌉ − 3) + (2⌊m

2
⌋+ 1)

=(⌈m
2
⌉ − 2)(−2) + (2⌊m

2
⌋+ 1)

=− 2⌈m
2
⌉+ 4 + 2⌊m

2
⌋+ 1

=− 1{m odd} + 4− 1{m odd} + 1

=− 2 · 1{m odd} + 5

>0

Hence, the Borda rule satisfies the sufficient condition of Theorem 14.

Under the ⌈m2 ⌉-approval rule, αj = 1 for all 1 ≤ j ≤ ⌈m2 ⌉ and αj = 0 for all j > ⌈m2 ⌉. Therefore, for
every 1 ≤ j < ⌈m2 ⌉, we have (⌈

m
2 ⌉−1)α⌈m

2
⌉+(⌊m2 ⌋+1)α⌊m

2
⌋+1− (j−1)αj− (m− j+1)αm−j+1 =

⌈m2 ⌉ − 1 + (⌊m2 ⌋ + 1)1{m odd} − (j − 1) > 0, because j < ⌈m2 ⌉. Hence, ⌈
m
2 ⌉-approval satisfies the

sufficient condition of Theorem 14. If m is even, then (m2 + 1)-approval also satisfies the sufficient
condition of Theorem 14 because α⌊m

2
⌋+1 = 1 and thus we have ⌈m2 ⌉− 1+ ⌊m2 ⌋+1− (j− 1) > 0.
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E Unbiased Distributions

Theorem 17. There exists an unbiased single-peaked distribution w.r.t. the k-approval rule iff k divides
m.

Proof. Let us assume that k divides m, i.e., there exists an integer q such that m = k · q. Let us
partition the set of candidatesM in q groups of size k as follows: {x1, x2, . . . , xk}, {xk+1, . . . , x2k},
. . . , {x(q−1)k+1, . . . , xqk} whereXj denotes the group {x(j−1)k+1, . . . , xjk} for each j ∈ [q] andM =⊔

j∈[q]Xj . For each group Xj , let us denote by Pj the set of single-peaked preference orders where the
k candidates inXj are ranked among the first k candidates, i.e., Pj : {≻i∈ Πm

> : r≻i(x) ≤ k, ∀x ∈ Xj}.
Observe that Pj is necessarily non-empty for every j ∈ [q] because, e.g., the following single-peaked
order ≻i belongs to Pj : x(j−1)k+1 ≻i · · · ≻i xjk ≻i x(j−1)k ≻i · · · ≻i x1 ≻i xjk+1 ≻i · · · ≻i xm. We
consider the single-peaked preference distribution π : Πm

> → [0, 1] such that
∑

≻i∈Pj
π(≻i) =

k
m = 1

q

for each j ∈ [q], and π(≻i) = 0 for all ≻i∈ Πm
> \

⋃
j∈[q] Pj . We can check that π is a valid distribution

because
∑

≻i∈Πm
>
π(≻i) =

∑
j∈[q]

∑
≻i∈Pj

π(≻i) = q · k
m = 1.

In the k-approval rule, each candidate gains one point per preference order where it is ranked among
the first k candidates. Under the described preference distribution π, it occurs for candidate xℓ with a
positive probability only in preference orders in Pj with the unique j such that xℓ ∈ Xj . It follows that
the expected score of each candidate xℓ is equal to

∑
≻i∈Pj :xℓ∈Xj

π(≻i) · 1 = k
m .

Let us now assume that k does not dividem. Let us denote by q and r the unique integers such that
m = k · q + r with 0 < r < k. Suppose, for the sake of contradiction, that there exists a single-peaked
distribution π unbiased with respect to the k-approval rule. We will prove by induction that a preference
order ranking candidate x(j−1)k+ℓ among the first k candidates, for ℓ ∈ [k], can be assigned a positive
probability in π only if all the k candidates x(j−1)k+1, . . . , xjk are ranked among the first k candidates
in this preference order, for every j ∈ [q]. For the base case, candidate x1 gets one point under the
k-approval rule iff it is ranked among the first k candidates. However, if x1 is ranked among the first
k candidates then, by single-peakedness, it must also be the case of all candidates xj for 1 < j ≤ k.
Since the expected score of x1 must be the same as the one of all candidates xj for 1 < j ≤ k, then no
positive probability can be assigned to other preference orders where some candidate xj , for 1 < j ≤ k,
is ranked among the first k candidates. We now assume that a preference order ranking candidate
x(j′−1)k+ℓ among the first k candidates, for ℓ ∈ [k], can be assigned a positive probability in π only if
all the k candidates x(j′−1)k+1, . . . , xj′k are ranked among the first k candidates in this preference order,
for every 1 ≤ j′ < j, for a given j ∈ [q]. It follows that candidate x(j−1)q+1 cannot be ranked within
the top k of a preference order with positive probability where some candidate xℓ′ , for ℓ′ < (j−1)q+1,
is also ranked within the top k. Therefore, if x(j−1)q+1 is ranked within the top k of a preference order
with positive probability, then it must also be the case of all the candidates x(j−1)k+2, . . . , xjk . Since the
expected score of x(j−1)q+1 must be the same as the one of all candidates x(j−1)k+2, . . . , xjk, then no
positive probability can be assigned to other preference orders where some candidate among x(j−1)k+2,
. . . , xjk, is ranked among the first k candidates, proving the claim.

Now, let us analyze the case of candidate xm. If xm is ranked among the first k candidates then, by
single-peakedness, it must also be the case of all the k− 1 candidates xj , form− k+1 ≤ j < m. Since
k does not dividem, there exist integers j ∈ [q] and ℓ ∈ [k] such thatm− k + 1 = (j − 1)k + ℓ and
thus candidate xm−k+1 is approved in single-peaked orders approving candidates (j − 1)k + ℓ′, for
ℓ′ ∈ [k], and in the disjoint ones approving candidate xm, therefore its expected score would be equal
to the sum of the expected score of xm and the expected score of xm−k , contradicting the fact that π is
unbiased.

Proposition 18. Conitzer’s distribution is unbiased w.r.t. a positional scoring rule F iff F is the plurality
rule.
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Proof. By Proposition 13, all candidates are expected winners of the 1-approval rule (i.e., plurality)
under the Conitzer’s distribution. Therefore, the Conitzer’s distribution is unbiased w.r.t. plurality.

Suppose that the Conitzer’s distribution is unbiased w.r.t. some positional scoring rule F defined by the
positional score vector α = (α1, . . . , αm) such that, by definition, α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm.
It follows that all candidates are expected winners of F , i.e., EπC [S

F (xi)] = EπC [S
F (xj)], for every

i, j ∈ [m]. By Lemma 12, the expected score of a candidate xj is the following:

EπC [S
F (xj)] =

m∑
k=1

PπC (j, k) · αk

=

m∑
k=1

(Q(j, k) +Q(m− j + 1, k)) · αk

=

j−1∑
k=1

1

2m
· αk +

j

2m
· αj+

m−j∑
k=1

1

2m
· αk +

m− j + 1

2m
· αm−j+1

By considering, in particular, candidates x1 and x2, we have EπC [S
F (x1)] =

1
2mα1 +

1
2m

∑m−1
k=1 αk +

1
2αm and EπC [S

F (x2)] =
1
2mα1 +

2
2m · α2 +

1
2m

∑m−2
k=1 αk +

m−1
2m · αm−1. For candidates x1 and x2

to be both expected winners, they need to have the same expected score. It follows that:

EπC [S
F (x1)] = EπC [S

F (x2)] ⇔

1

2m
α1 +

1

2m

m−1∑
k=1

αk +
1

2
αm =

1

2m
α1 +

2

2m
· α2+

1

2m

m−2∑
k=1

αk +
m− 1

2m
· αm−1 ⇔

1

2m

m−1∑
k=1

αk +
1

2
αm =

2

2m
· α2 +

1

2m

m−2∑
k=1

αk +
m− 1

2m
· αm−1 ⇔

1

2m
αm−1 +

1

2
αm =

2

2m
· α2 +

m− 1

2m
· αm−1 ⇔

1

2
αm =

2

2m
· α2 +

m− 2

2m
· αm−1 ⇔

αm =
2

m
· α2 +

m− 2

m
· αm−1

Because α2 ≥ · · · ≥ αm−1 ≥ αm, the fact that αm = 2
m ·α2+

m−2
m ·αm−1 implies α2 = · · · = αm−1 =

αm. It follows that α1 > α2 = · · · = αm−1 = αm, and thus F corresponds to the plurality rule.

Proposition 19. No PSR can make Walsh’s distribution unbiased.

Proof. Suppose, for the sake of contradiction, that the Walsh’s distribution πW is unbiased with respect
to a given PSR F characterized by the positional score vector α = (α1, . . . , αm). We can assume,
w.l.o.g., that α1 = 1, αm = 0, and αy ∈ [0, 1] for every 1 < j < m. By definition, for every candidates
x and y, we have EπW [SF (x)] = EπW [SF (y)], i.e.,

∑
≻i∈Πm πW (≻i) · αr≻i (x)

=
∑

≻i∈Πm πW (≻i

)·αr≻i (y)
, and thus

∑
≻i∈Πm

1
2m−1 ·αr≻i (x)

=
∑

≻i∈Πm
1

2m−1 ·αr≻i (y)
which implies

∑
≻i∈Πm αr≻i (x)

=∑
≻i∈Πm αr≻i (y)

.
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Consider the extreme candidate x1 and the median candidate xc := x⌈m
2
⌉. We must have∑

≻i∈Πm αr≻i (x1) =
∑

≻i∈Πm αr≻i (c)
. By Observation 3, candidate c can never be ranked at a po-

sition worse than γ := ⌊m2 ⌋ + 1, and thus we have
∑

≻i∈Πm αr≻i (c)
=
∑m

k=1 Dm(xc, k) · αk =∑γ
k=1 Dm(xc, k) · αk where

∑γ
k=1 Dm(xc, k) = 2m−1. Since x1 is an extreme candidate, it is ranked

last in half of the single-peaked orders. Therefore, by the fact that αm = 0, we have
∑

≻i∈Πm αr≻i (x1) =∑m
k=1 Dm(x1, k) · αk =

∑m−1
k=1 Dm(x1, k) · αk where

∑m−1
k=1 Dm(x1, k) · αk = 2m−2. Let us now ana-

lyze the difference between
∑

≻i∈Πm αr≻i (xc) and
∑

≻i∈Πm αr≻i (x1):

∑
≻i∈Πm

αr≻i (xc) −
∑

≻i∈Πm

αr≻i (x1)

=

γ∑
k=1

Dm(xc, k) · αk −
m−1∑
k=1

Dm(x1, k) · αk

=

γ∑
k=1

(Dm(xc, k)− Dm(x1, k)) · αk −
m−1∑

k=γ+1

Dm(x1, k) · αk

However, by Lemma 4, we have Dm(xc, k) = 2k−2(
(
m−k
c−1

)
+
(
m−k
c−k

)
) ≥ 2k−2 for k ∈ {2, . . . , γ},

while Dm(x1, k) = 2k−2(
(
m−k
0

)
+
(
m−k
1−k

)
) = 2k−2 for k ∈ {2, . . . , γ}, and Dm(xc, 1) =

(
m−1
c−1

)
and

Dm(x1, 1) = 1. Therefore, Dm(xc, k)− Dm(x1, k) ≥ 0 for every k ∈ [γ].

Since α1 ≥ α2 ≥ . . . αm, it follows that:

γ∑
k=1

(Dm(xc, k)− Dm(x1, k)) · αk −
m−1∑

k=γ+1

Dm(x1, k) · αk

≥
γ∑

k=1

(Dm(xc, k)− Dm(x1, k)) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

=(2m−1 − (1 +

⌊m/2⌋+1∑
k=2

2k−2) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

=(2m−1 − 2⌊m/2⌋) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αk

≥(2m−1 − 2⌊m/2⌋) · αγ −
m−1∑

k=γ+1

Dm(x1, k) · αγ

=(2m−1 − 2⌊m/2⌋) · αγ − (2m−2 − 2⌊m/2⌋) · αγ

>0

Hence, we always have
∑

≻i∈Πm αr≻i (xc) >
∑

≻i∈Πm αr≻i (x1), no matter the chosen positional score
vector, a contradiction.

Finally, the polarized distribution is also unbiased w.r.t. other rather natural PSRs.

Proposition 28. The polarized distribution is unbiased with respect to:

1. the PSR characterized by the score vector (2, 1, . . . , 1, 0),

2. them/2-approval rule, whenm is even.
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Proof. 1. Consider the PSR rule characterized the positional score vector (2, 1, . . . , 1, 0). Under
the polarized distribution, candidates x1 and xm can be ranked either at the first or at the last
position, with equal probability, and all other candidates are surely ranked at another position.
It follows that the expected score of candidates x1 and xm is equal to 1

2 · 2 + 1
2 · 0 = 1 and the

expected score of each candidate xj , where 1 < j < m, is equal to 1
2 · 1 + 1

2 · 1 = 1.

2. In the m
2 -approval rule, wherem is even, each candidate gains one point per preference order

where it is ranked among the firstm/2 candidates, and zero points otherwise. Under the polarized
distribution, each candidate xj can be ranked either at position j, and thus among the topm/2
iff j ≤ m/2, or at position m − j + 1, and thus among the top m/2 iff j > m/2, with equal
probability. It follows that the expected score of each candidate xj is equal to 1

2 · 1 + 1
2 · 0 = 1

2 .

F Other Structured Distributions

Lemma 29 (DKW inequality). Let X1, ..., Xn be some independent and identical random variables
distributed with a law F . Let Fn(x, ω) =

1
n

∑n
i=1 1{Xi(ω)≤x} then P(supx∈R |Fn(x) − F (x)| > ε) ≤

2e−2nε2 , ∀ε > 0.

Proposition 22. For a unimodal preference distribution π, the probability that all PSRs and Condorcet-
consistent rules agree is lower bounded byBπ := 1−2exp(−2nε2), for ε := min≻i,≻j∈Πm |π(≻i)−π(≻j

)|.

Proof. We remark that for ε sufficiently small, i.e. ε = min{≻i,≻′
i} |Pπ(≻i) − Pπ(≻′

i)|, we have
{||Fn(., ω)− F ||∞ ≤ ε} = {Fn is unimodal}. Applying Lemma 29 on the contrary event and using
theorem 4.1 from Chatterjee and Storcken [13], we get that the described voting rules agree with
probability at least 1− 2e−2nε2 .

Definition 4 (Dirichlet law). Let d ≥ 2 be an integer. Let Σ be the (d− 1)-dimensional simplex

Σ =

{
(x1, . . . , xd) ∈ [0, 1]d |

d∑
k=1

xk = 1

}

then
f(x1, . . . , xd) dΣ(x1, . . . , xd)

= f

(
x1, . . . , xd−1, 1−

d−1∑
k=1

xk

)
1{x∈[0,1]d−1,

∑d−1
k=1 xk≤1} dx1 · · · dxd−1

for any continuous function f .

Lemma 30 (Asymptotic convergence of Pólya-Eggenberger urn [3]). Let d ≥ 2 andR ≥ 1 be an integer.
Let also β = (β1, . . . , βd) ∈ Nd \ {0}. Let (Pn)n≥0 be the d-color Pólya-Eggenberger urn random process
having R as reinforcement parameter and β as initial composition. Then, almost surely and in any Lt,
t ≥ 1,

Pn

nR
−−−→
n→∞

V

where V is a d-dimensional Dirichlet-distributed random vector, with parameters
(
β1

R , . . . , βd
R

)
.

Remark 31. Let us recall that the convergence in Lt, t ≥ 1 implies the convergence in law.

Proposition 23. Under the Pólya-Eggenberger urn culture, the probability that all PSRs asymptotically
agree is lower bounded by 1

2 if r < 2
3 andm = 3, and by 1

4 if r < 1
6 andm = 4.
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Proof. Let us recall (see Lemma 30) that a Pólya-Eggenberger urn asymptotically converges to the
Dirichlet law (see Definition 4). Thus, we can calculate the probability that a specific distribution of
preferences occurs.

We now need to describe the event Dm where all positional scoring rules agree. We use the known
fact that all positional scoring rules will agree if all k-approval voting rules agree with each other [43]
and get for example for m = 3: D3 = {(p1, p2, p3, p4, p5, p6) ∈ Σ | p1 + p2 > p3 + p4, p1 + p2 >
p5 + p6, p2 + p5 > p4 + p6, p1 + p3 > p4 + p6} using the following notation (p1, p2, p3, p4, p5, p6) for
the proportion of each preference in the election in the following order (a ≻ b ≻ c), (a ≻ c ≻ b), (b ≻
a ≻ c), (b ≻ c ≻ a), (c ≻ a ≻ b), (c ≻ b ≻ a).

We now come back to our initial question which is to compute limn→∞PP−E(D3). Using Lemma 30,
we are able to identify the limit law and to compute PV (D), for every 0 < R ⩽ 4. Since the analytical
is fastidious, we use the Monte-Carlo method with a very high precision (n = 10, 000, 000) to compute
the integral and get the desired result. We recover the result on r by doing the change of variable.

We follow the exact same framework for m = 4, compute D4 which is much more complicated and get
the desired result.

Proposition 24. Under the Pólya-Eggenberger urn culture, the probability that plurality and Borda
asymptotically agree is lower bounded by 3

4 if r < 2
3 andm = 3, and by 3

5 if r < 1
6 andm = 4.

Proof. We follow the exact same steps as in the previous proof but we need to construct a different
space to find where Plurality and Borda agree. For example for m = 3, D3 = {(p1, p2, p3, p4, p5, p6) ∈
Σ | p1+p2 > p3+p4, p1+p2 > p5+p6, p1+2·p2+p5 > p3+2·p4+p6, 2·p1+p2+p3 > p4+p5+2·p6}
using the following notation (p1, p2, p3, p4, p5, p6) for the proportion of each preference in the election in
the following order (a ≻ b ≻ c), (a ≻ c ≻ b), (b ≻ a ≻ c), (b ≻ c ≻ a), (c ≻ a ≻ b), (c ≻ b ≻ a).

Proposition 25. If the election is drawn with a Pólya-Eggenberger urn culture with R < 4 then ev-
ery pair of positional scoring rules F1 and F2 asymptotically disagree with a positive probability, i.e.,
limn→∞P(F1(≻) ̸= F2(≻)) > 0.

Proof. Let F1,F2 be two positional scoring rules. There exist two positional score vectors α1 and
α2 corresponding to these two rules. Since F1 and F2 are different, α1 and α2 differ on at least one
component, i.e., there exists i ∈ [m] such that α1

i ̸= α2
i . Let us denote ε = α1

i − α2
i > 0. We will show

that there exists a profile ≻ such that limn→∞P(F1(≻) ̸= F2(≻)) > 0. Specifically, to build such a
profile we consider an arbitrary profile such that the jth candidate has an asymptotic score of 0, then
we slowly increase the proportion of one preference such that candidate j is ranked in position i until
F1(≻) ̸= F2(≻). By doing so, we find that we can still increase this proportion from δ < ε and keep
the disagreement between the two rules. Thus, there exists a non negligible set where F1(≻) ̸= F2(≻).
Finally, we identify the limit law of a Pólya-Eggenberger urn as the Dirichlet random variable thanks to
Lemma 30 and conclude that limn→∞P(F1(≻) ̸= F2(≻)) > 0 because this is a continuous density on
a non negligible set.
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