
On Iterative Voting Outcomes in Plurality Elections

Vincent Mousseau
1
, Henri Surugue

1
, Magdaléna Tydrichová

1
and Anaëlle Wilczynski

1

1
Affiliation: MICS, CentraleSupélec, Université Paris-Saclay

{firstname.lastname}@centralesupelec.fr

Abstract

This article deals with iterative voting under the plurality rule, where voters can strategically

perform sequential deviations. Most works in iterative voting focus on convergence properties

or evaluate the quality of the resulting outcome. However, the iterative winner depends on the

sequence of voters’ deviations. We propose to analyze to what extent this impacts the outcome of

iterative voting by adopting a qualitative, quantitative and computational approach. In particular,

we introduce the notions of possible and necessary iterative winners. We first study the extreme

scenario for the existence of a necessary winner, where no voter has an incentive to deviate from

her truthful ballot. We show that this phenomenon occurs with high probability under impartial

cultures. Then, we explore the computational complexity of determining possible and necessary

iterative winners, proving that the two problems fall in different complexity classes. Finally, we

investigate the election of the Condorcet winner as an iterative winner and theoretically prove

that the Condorcet efficiency of plurality is increased by considering its iterative voting version.

1 Introduction

Strategic voting [20] occurs when voters have an incentive to manipulate by not giving their true

preferences. By Gibbard-Satterthwaite theorem [14, 26], no reasonable voting rule is strategy-proof.

Therefore, some works have investigated how making manipulation difficult in a computational point of

view [1] or have identified preference domains on which manipulation is not beneficial (see, e.g., [24]).

Another perspective to circumvent this impossibility result is, on the contrary, to allow manipulation

and analyze what happens, e.g., by considering voting as a strategic game and analyzing its outcomes.

Iterative voting [19] is a particular voting game where voters are allowed to manipulate by performing

successive moves. Since voters manipulate sequentially, different possible outcomes can arise, depending

on which voters’ deviations are chosen. A natural question is thus to know which candidates can turn

to be winner, for some sequence of deviations, once convergence is reached. We propose to answer this

question by adapting the well-known notions of possible and necessary winners [18] to the iterative

context. More precisely, a possible iterative winner is a candidate for which there exists a sequence of

deviations eventually electing her at equilibrium. Analogously, a necessary iterative winner is elected

in all possible equilibria that can be reached by the iterative voting process.

In this article, we follow the classical initial model of Meir et al. [22] where the voting rule is plurality,

and voters perform direct best responses when they are pivotal, i.e., they vote for the candidate they

prefer the most among those they can make the new winner. Under these assumptions, the iterative

voting process is guaranteed to converge to a situation of equilibrium. In such a setting, we analyze the

iterative voting outcomes quantitatively and qualitatively, and in particular the problems of possible

and necessary iterative winner.

For the necessary iterative winner problem, we have two possibilities: either there are several deviation

sequences but they all eventually elect the same candidate, or a more extreme scenario occurs where no

voter can deviate from her truthful ballot and thus the initial winner turns out to be the only iterative

winner. We propose to quantify the occurrence of such a phenomenon by analyzing how frequently

a preference profile is already an equilibrium. We show, under impartial (anonymous) cultures, a
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rather high lower bound for the probability of this extreme scenario, and thus for the probability of the

existence of a necessary iterative winner.

In general, we investigate the computational complexity of the existence problem of a possible/necessary

iterative winner. It turns out that the problems fall into different complexity classes since the possible

iterative winner problem is NP-complete, while the necessary one is polynomial-time solvable.

Finally, we evaluate the quality of iterative voting outcomes by considering the election of the Condorcet

winner, when she exists, as an iterative winner. In particular, we theoretically prove that the Condorcet

efficiency, (i.e., the probability to elect a Condorcet winner when she exists) increases through the

iterative process. More precisely, under impartial (anonymous) cultures, the iterative version of plurality

improves the Condorcet efficiency compared to the one of plurality, confirming and generalizing

experimental results [15].

Due to space restrictions, some proofs or parts of proofs are deferred to the supplementary material.

2 Related work

The iterative voting model has been introduced by the seminal work of Meir et al. [22]. Since then,

many articles have investigated iterative voting under different voters’ strategic behaviors and voting

rules (see Meir [19] for a recent survey).

In this article, we introduce the notion of possible and necessary iterative winners, which are adaptations

of the well-known concepts of possible and necessary winners under incomplete preferences [18]. Up

to our best knowledge, these notions have not been used so far to capture iterative voting outcomes.

Nevertheless, in the context of manipulation in voting, they have been applied, e.g., to deal with

incomplete information of the manipulators [7], as a list of intermediate results in an iterative elicitation

process where voters can answer to the queries strategically [8], or to determine the outcome of

sequential voting in the context of social networks [12]. Our computational results, stating a difference

in complexity classes between the possible and necessary iterative winner problems, are consistent with

the results of the literature regarding the initial notions. Notably, while the necessary winner problem

under partial preferences is in P for all positional scoring rules, the possible one is NP-complete on this

large class of rules except for the plurality and veto rules [2, 4, 18, 28].

Note that considering all possible iterative outcomes that can arise, depending on the sequence of voters’

deviations, is similar in spirit to the notion of “parallel-universe” tie-breaking where the outcome is the

set of all candidates who could win using a particular tie breaking method. This has been particularly

investigated for multi-stage voting rules where the choice of the candidates to eliminate at a given

stage can highly impact the final winner of the voting procedure [10, 27]. The different sequences of

eliminated candidates at the different stages can then be represented as a tree [10], and we can use a

similar representation for all possible sequences of deviations potentially leading to different winners.

Instead of considering the diversity of iterative voting outcomes, where two equilibria are indistin-

guishable if they elect the same winner, one can focus more specifically on the possible equilibria that

can be reached. This study has notably been conducted by Rabinovich et al. [25], who establish that

checking whether a given ballot profile is a reachable equilibrium is NP-hard, in a similar idea as our

NP-completeness proof for the possible iterative winner problem.

In an orthogonal perspective, one can examine how good or bad are the outcomes of iterative voting.

In particular, several works have analyzed the iterative voting outcomes by comparing them to the

initial truthful one, following either a worst-case analysis based on an approach similar to the price

of anarchy, or an average-case analysis [6, 16, 17]. Mostly, the outcomes have been evaluated via

their social welfare, but it is also possible to consider other measures, such as the probability to elect

the Condorcet winner when she exists [13]. Grandi et al. [15] have followed this latter approach by
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experimentally analyzing the Condorcet efficiency of the iterative voting process. We go a bit further by

theoretically demonstrate that indeed the iterative variant of plurality has a higher Condorcet efficiency

compared to the initial plurality rule, where we consider the probability of electing a Condorcet winner

over all possible deviation sequences with equal weights, under impartial (anonymous) cultures.

3 The Model

For any positive integer k, let [k] define the set {1, . . . , k}. LetN be a set of voters whereN = [n], and
M be a set of candidates whereM = [m]. Each voter i ∈ N has preferences over candidates represented

by a linear order ≻i over candidates. Let top(≻i) be the preferred candidate of i, i.e. top(≻i) ⪰i x, for
every x ∈ M . The set of all voters’ preferences is called a preference profile and is denoted by ≻, i.e.,

≻:= (≻1, . . . ,≻n).

Let Nx
be the set of voters who prefer x to any other candidate, i.e., Nx := {i ∈ N : top(≻i) = x}

and, for a given subset of voters A ⊆ N , let Ax≻y
be the set of voters who prefer x to y, i.e., Ax≻y :=

{i ∈ A : x ≻i y}. A candidate x is the Condorcet winner if she beats all the other candidates in pairwise

comparisons, i.e., |Nx≻y| > |Ny≻x|, for every candidate y ∈ M \ {x}. A weak Condorcet winner x is

such that |Nx≻y| ≥ |Ny≻x|, for every candidate y ∈ M \ {x}. We define symmetrically the (weak)

Condorcet loser.

The plurality rule is considered to determine the winner of an election. Let bi ∈ M denote the ballot

submitted by voter i and b ∈ Mn
denote the ballot profile, i.e., b := (b1, . . . , bn). Let b

⊤
denote the

truthful ballot profile where all voters submit their sincere preferences, i.e., b⊤i = top(≻i) for every
voter i ∈ N . The winner under plurality of the ballot profile b isWP (b) ∈ argmaxx∈M sx(b), where
sx(b) := |{i ∈ N : bi = x}| and a lexicographic tie-breaking, denoted by �, is used if necessary. By

abuse of notation, we sometimes write sx instead of sx(b). Let I
m
n be the set of all possible candidates’

scores under plurality, i.e., Imn := {s ∈ Nm |
∑m

j=1 sj = n}. By abuse of notation, we sometimes write

WP (s) to refer to the winner of a score vector s. Let s⊤ denote the candidates’ scores in b⊤.

An election is given by the tuple (N,M,≻,�). In this study, we examine the classical iterative voting

model introduced by Meir et al. [22]. Initially, all voters vote truthfully, therefore the initial ballot

profile b0 is exactly the truthful ballot profile b⊤. Then they change their ballot strategically following

a best response strategy which consists in supporting their preferred candidate within the set of so-

called potential winners. A candidate y is a potential winner for voter i, at a given step where the

current score vector is s, if i believes that voting for y will make candidate y the new winner, i.e.,

s−i
WP (s−i)

− s−i
y + 1WP (s−i)�y ⩽ 1, where s−i

denotes the score vector s without counting the current

ballot bi of voter i. Let PW t
i denote the set of potential winners for voter i at step t, and PW t

the set

of all potential winners at step t, i.e., PW t :=
⋃

i∈N PW t
i . When only a score vector is mentioned

without a reference to a specific time step t, we may directly write PW (s) to denote the set of potential
winners according to a given score vector s.

We introduce the following notion to group the scores by the number of potential winners.

Definition 3.1. Let Sj
n be the set of all score vectors in an n-voter election such that the union of potential

winner sets over all voters contains exactly j candidates, i.e., Sj
n = {s ∈ Imn : |PW (s)| = j}.

Note that (Sj
n)mj=1 forms a partition of Imn . Especially, S1

n corresponds to all score vectors with a unique

potential winner. More precisely, for every score vector s in S1
n, there exists a candidate which is the

unique potential winner for all voters, and thus it is the winner in s.

We consider the following best response for each voter i at step t, where the current winner is denoted
by wt−1

: i deviates from her current ballot bt−1
i to another ballot bti supporting candidate y ∈ PW t−1

i \
{wt−1} if y is her most preferred candidate within PW t−1

i . We then consider a best response dynamics

which is defined via deviation sequences.
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Definition 3.2 (Deviation sequence). A sequence of strategy profiles ⟨b0, b1, . . . , br⟩ is a deviation

sequence for preference profile ≻ if:

• b0 corresponds to the initial truthful ballot profile b⊤,

• for every step t ∈ [r], state bt results from a best response by exactly one voter from state bt−1
, i.e.,

for every step t ∈ [r], there exists one voter i ∈ N and one candidate y ∈ PW t−1
i \ {wt−1} such

that y ≻i z for every z ∈ PW t−1
i , where bti = y and btj = bt−1

j for every voter j ∈ N \ {i},

• the sequence is maximal, i.e., br is an equilibrium where no voter has interest to change her ballot.

We distinguish two types of strategic moves, one from a potential winner (FPW) (i.e., a deviation by

voter i at step t from bt−1
i to bti where b

t−1
i = x and x ∈ PW t−1

) and one from a non potential winner

(FNPW) (i.e., a move by voter i at step t from bt−1
i to bti where b

t−1
i = x and x /∈ PW t−1

).

A deviation sequence is said to be empty if it is restricted to the initial ballot profile ⟨b0⟩which is already

an equilibrium.

From Meir et al. [22], we have an upper bound on the number of moves before convergence, in plurality

iterative voting, which is given by O(m ·n). We state below that this bound can be improved (the proof

is deferred to appendix).

Proposition 3.3. The number of moves in any deviation sequence is in O(m+ n · log(m)).

Let us denote by DS(≻) the set of all possible deviation sequences for preference profile ≻. Indeed,

since voters’ deviations are performed sequentially, different deviation sequences can occur depending

on which voter is selected to perform a strategic deviation at each step. The following example shows

the potential diversity of iterative voting outcomes depending on the choice of the deviation sequence.

Example 3.4. Consider an election with five voters and four candidates, with voters’ preferences as follows:

a ≻1 c ≻1 d ≻1 b
b ≻2 a ≻2 c ≻2 d
c ≻3 b ≻3 a ≻3 d
d ≻4 b ≻4 a ≻4 c
d ≻5 c ≻5 a ≻5 b

When needed, a lexicographic tie-breaking rule is used. Initially, in the truthful preference profile, d is the

winner. We show that each candidate can be the final winner in a different deviation sequence:

(a) If voter 2 deviates from b to a, then no other voter has an incentive to deviate afterwards and thus a
is finally elected.

(b) If voter 3 deviates to b, followed by voter 5 who deviates to a and voter 4 who deviates to b, then no

other voter has an incentive to deviate afterwards and thus b is finally elected.

(c) If voter 1 deviates to c, followed by voter 4 who deviates to b and voter 5 who deviates to c, then no

other voter has an incentive to deviate afterwards and thus c is finally elected.

(d) If voter 3 deviates to b, followed by voter 1 who deviates to d, then no other voter has an incentive to

deviate afterwards and thus d is finally elected.

Consequently, the notions of possible and necessary iterative winners naturally follow from the fact that

different iterative winners can arise from different deviation sequences.

Definition 3.5 (Possible iterative winner). A candidate x is a possible iterative winner for preference

profile ≻ if there exists a deviation sequence ⟨b0, b1, . . . , br⟩ ∈ DS(≻) such that wr = x.
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Definition 3.6 (Necessary iterative winner). A candidate x is a necessary iterative winner for preference

profile ≻ if, for every deviation sequence ⟨b0, b1, . . . , br⟩ ∈ DS(≻) we have wr = x.

By definition, a necessary iterative winner is also a possible iterative winner.

Let us provide below some observations to make the connections between these two concepts of iterative

winner and the best response deviations based on potential winners. First of all, strategic moves are

only possible towards potential winners. Thus, once a candidate leaves the set of potential winners, she

can never return again.

Observation 3.7. If a candidate x is a possible iterative winner for preference profile ≻, then there exists

a deviation sequence ⟨b0, b1, . . . , br⟩ ∈ DS(≻) such that x is a potential winner all along the sequence:

∀t ∈ {0, 1, . . . , r}, x ∈ PW t
. In particular, x ∈ PW 0

.

Moreover, from the definition of potential winner, if we remove one vote to a not currently winning

potential winner, then she does not fulfill anymore the definition.

Observation 3.8. Let us consider a deviation sequence ⟨b0, b1, . . . , bT ⟩ ∈ DS(≻) and the potential

winner x ∈ PW t \ {wt} such that the best response at step t+ 1 is a FPW move, i.e., the deviation from

state bt to reach bt+1
is performed by a voter i ∈ N with bti = x. Then x /∈ PW t+1

.

The concepts of possible and necessary iterative winners evaluate the outcomes of iterative voting

processes from a qualitative perspective. Indeed, all deviation sequences must reach the same winner

for the necessary iterative winner, whereas only one deviation sequence is required for the possible

iterative winner. Another perspective is to take a more quantitative point of view. To this end, we will

provide a probabilistic analysis of iterative voting outcomes.

Let Πm
be the set of all possible preference orders for m candidates. Let us denote as C(n,Πm) the

probability distribution of drawing n preference orders from Πm
to constitute a preference profile

≻∈ (Πm)n. Such a probability distribution is called a culture, and is simply denoted by C when the

context is clear. The probability that a given event E occurs under culture C is denoted by PC(E).

We will consider two commonly used cultures, namely impartial culture (IC) and impartial anonymous

culture (IAC) [13].

Definition 3.9 (Impartial culture). The impartial culture, called IC , draws every preference order ≻i

independently from Πm
with uniform probability.

Definition 3.10 (Impartial anonymous culture). The impartial anonymous culture, called IAC , draws

every preference profile ≻ from (Πm)n with uniform probability.

Let us now start our analysis of deviation sequences both from a qualitative and quantitative perspective.

4 Diversity of Iterative Winners

In this section, we will investigate how diverse iterative winners can be. We will first study the number

of possible iterative winners and then focus on the extreme case with a necessary iterative winner, by

analyzing the particular scenario where the deviation sequence is empty.

4.1 Number of possible iterative winners

We first observe that the iterative winner is determined when there are at most two potential winners.
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Observation 4.1. For any deviation sequence ⟨b0, . . . , br⟩, if |PW t| = 2 for a given step t ∈ {0, 1, . . . , r},
then the iterative winner of this sequence will be the winner of the pairwise comparison between the two

candidates in PW t
.

Observation 4.1 yields directly some straightforward corollaries:

Corollary 4.2. If there exists a Condorcet winner c∗, and if c∗ ∈ PW 0
with |PW 0| = 2, then c∗ is the

necessary iterative winner.

Corollary 4.3. A Condorcet loser can never be a possible iterative winner.

Moreover, it can be used to bound the number of possible winners when there are only three candidates.

Proposition 4.4. Whenm = 3, there exist at most two possible iterative winners.

Nevertheless, there exist situations where no candidate can be excluded from the set of possible iterative

winners. We generalize below the observation made in Example 3.4 to show that for any number m of

candidates, there exists a preference profile where allm candidates are possible iterative winners.

Proposition 4.5. There exist elections where all m candidates are possible iterative winners, for every

m ≥ 4.

Proof sketch. The case ofm = 4 has already been shown in Example 3.4.

We provide here a general construction for everym ≥ 5. Let us build a preference profile ≻ withm+1
voters and candidates x1, . . . , xm, where the tie-breaking is given by x1 � · · ·� xm. To this purpose,

we start with a preference profile ≻0
where each voter i ∈ [m− 1] has the preferences xi ≻i xi+1 ≻i

· · · ≻i xm ≻i x1 ≻i · · · ≻i xi−1, voter m has the preferences xm ≻m xm−1 ≻m · · · ≻m x2 ≻m x1,
and voter m + 1 has the preferences xm ≻m+1 xm−2 ≻m+1 · · · ≻m+1 x⌊m−1

2
⌋+1 ≻m+1 x1 ≻m+1

x2 ≻m+1 · · · ≻m+1 x⌊m−1
2

⌋ ≻m+1 xm−1. Then, we obtain our final profile ≻ from ≻0
by swapping

the positions of the adjacent candidates x1 and xm in agent 3 to agent m− 1’s preference orders. For
each candidate, one can exhibit a different deviation sequence which leads to her election.

A natural question is how often this situation occurs or, more generally, what is the typical number of

possible iterative winners. To get quickly some first insights, we have drawn 1,000 elections, under

impartial culture, where the preference profile is not an equilibrium, for each couple (m,n) with
m ∈ {3, 4, 5}, and 5 ≤ n ≤ 15, and we have computed the average number of possible iterative

winners, represented in Figure 1. We note that, regardless the value of m, this average is rather low

(less than 1.6 for all cases studied), and suggests a decreasing trend.
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Figure 1: Average number of possible iterative winners in function of n (form ∈ {3, 4, 5})

For a more in-depth view, we also provide in Figure 2 the distribution of the number of possible

iterative winners of these randomly generated elections. We indeed observe that the vast majority of
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instances have a unique possible (and thus necessary) iterative winner. While for each m, there are still

about 20% of instances with two possible iterative winners, the situations with more than two possible

iterative winners, and in particular the extreme situation from Proposition 4.5, seem to be extremely rare.
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Figure 2: Distribution of the number of possible iterative winners in function of n (form ∈ {3, 4, 5})

4.2 Extreme case of necessary iterative winner

Let us now examine how frequently the initial ballot profile is already an equilibrium, leading hence

to an empty deviation sequence, where the initial winner turns out to be the only possible iterative

winner, and thus the necessary iterative winner. From Mousseau et al. [23], we know that, for each

m, the proportion of truthful ballot profiles from which no voter has an incentive to deviate, tends

to 1 as n increases. To better understand the behavior of iterative voting processes, even in small

elections, we are particularly interested here in the rate of this convergence. While deriving an exact

formula seems challenging, we propose, for each pair (m,n), an increasing lower bound in n for the

proportion of equilibrium profiles. Let Em
n be the set of all preference profiles ≻ that are equilibria. We

start by providing some general results on the set of potential winners that will be used to establish

the above-mentioned lower bound. Indeed, one way to deal with iterative voting is to track the set of

potential winners over time t, i.e., PW t
.

The next lemma provides a characterization of potential winners:

Lemma 4.6. Given a score vector s ∈ Imn , a candidate y is a potential winner for at least one voter i ∈ [n],
i.e., y ∈ PW (s), if and only if all conditions (i) - (v) hold:

(i) ∀x� y, sx ≤ sy + 1

(ii) ∀x� y, z � y, sx ≤ sy or sz ≤ sy

(iii) ∀x, z such that y � x, z, sx ≤ sy + 1 or sz ≤ sy + 1

(iv) ∀x such that y � x, sx ≤ sy + 2

(v) ∀x, z such that x� y � z, sx > sy ⇒ sz ≤ sy + 1

Lemma 4.6 allows to determine the size of Sm
n , as stated below.

Lemma 4.7. The number of score vectors in Imn withm potential winners is equal tom, i.e., |Sm
n | = m.

Using the result of Lemma 4.7 as base case, we can finally determine the size of Sj
n for each j ∈ [m].

Lemma 4.8. For each k ∈ [m], |Sm−k
n | = (m− k) ·

(
n+k−2

k

)
.

We are now ready to present the main results of this section, which establish a lower bound on the

probability that a preference profile (under impartial anonymous culture or impartial culture) is an

equilibrium. We begin with the case of impartial anonymous culture.
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Theorem 4.9. Under impartial anonymous culture (IAC), PIAC(E
m
n ) ≥ PIAC(S

1
n), where PIAC(S

1
n)

increases with respect to n.

Proof. As S1
n ⊂ Em

n , we have PIAC(E
m
n ) ⩾ PIAC(S

1
n). Under IAC, we have PIAC(S

1
n) =

|S1
n|

|Imn | . By

Lemma 4.8 (applied for k = m− 1), we get |S1
n| =

(
n+(m−1)−2

m−1

)
, and we have |Imn | =

(
n+m−1
m−1

)
.

Put together, we obtain, after simplification, PIAC(S
1
n) = n·(n−1)

(n+m−1)(n+m−2) . It remains to be

proven that PIAC(S
1
n) increases with respect to n. Indeed, we have PIAC(S

1
n+1) − PIAC(S

1
n) =

2m−2
(n+1)·(n+2)·(n+3) > 0 whenever n > 0 andm > 2.

We provide below a brief illustration of the growth rate of this lower bound.

Example 4.10. In an election with 3 candidates, the probability for a preference profile to be at equilibrium
under IAC is at least 0.68 for 10 voters and at least 0.82 for 20 voters. In an election with 5 candidates, this

probability is at least 0.49 for 10 voters and at least 0.69 for 20 voters.

We now establish an analogous result under impartial culture, starting with the following observation,

based on the fact that there are n voters’ preferences independently sampled from the same distribution,

and we havem possibilities for the most preferred candidate of each voter.

Observation 4.11. Whenever all voters’ preferences are sampled with independent and identical random

variables, then the resulting score vector s⊤ follows a multinomial law Multi(q, n) where q = (q1, . . . , qm)
and qj := PC({WP (s

⊤) = j}), for every j ∈ M .

Under impartial culture, computing explicitly PIC(S
1
n) becomes much more harder. Instead, we prove

the existence of an increasing lower bound in n. The proof, based on a similar idea as the proof of

Theorem 4.9 but required also new technical ideas, is deferred to the appendix.

Theorem 4.12. Under impartial culture (IC), PIC(E
m
n ) ≥ 1+ m·(m−1)

2 · (ϕ( −2
σ·
√
n
)−ϕ( 2

σ·
√
n
)), where ϕ

is the cumulative distribution function of a standard Gaussian, σ =
√

2
m and this probability is increasing

with respect to n.

This lower bound increases slowly compared to that of IAC :

Example 4.13. In an election with 3 candidates, 70 voters are needed for the probability to exceed 0.33, and
137 voters for it to exceed 0.5. In an election with 5 candidates, 1000 voters are needed for the probability to

exceed 0.2.

5 Possible and Necessary Winner Problems

The situation analyzed in the previous section, where no deviation can occur from the initial ballot

profile, is an extreme case of a scenario with a necessary iterative winner. In this section, we aim to

go further on the recognition of situations where given candidates are possible or necessary iterative

winners, by investigating the complexity of the associated existence problems. More precisely, we will

study the following decision problem PossibleIterativeWinner (resp., NecessaryIterativeWinner):

Given an election (N,M,≻,�) and a candidate x ∈ M , is x a possible (resp., necessary) iterative winner?

First of all, the two problems turn out to be equivalent when the initial potential winner set is limited

to at most two candidates.

Proposition 5.1. PossibleIterativeWinner and NecessaryIterativeWinner are equivalent and can be

solved in polynomial time when |PW 0| ≤ 2.
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Proof. If |PW 0| = {x} then, by Observation 3.7, x is the unique possible–and thus necessary–winner.

If PW 0 = {x, y} with x = w0
then, by Observation 3.7, only x or y can be iterative winners. Since

voters can only deviate to favor x or y and voters in Nx ∪Ny
have no incentive to deviate, candidate

x (resp., y) is the unique possible–and thus necessary–iterative winner iff |(N \ (Nx ∪Ny))x≻y| ≥
|(N \ (Nx ∪Ny))y≻x| (resp., |(N \ (Nx ∪Ny))y≻x| > |(N \ (Nx ∪Ny))x≻y|).

Note that the equivalence between the two problems does not hold starting with three candidates in

the initial potential winner set. Consider, e.g., the following preference profile with n = 3 voters and
m = 3 candidates where a ≻1 b ≻1 c, b ≻2 c ≻2 a, and c ≻3 b ≻3 a, and a is the initial winner. If

voter 2 (resp., voter 3) first deviates then c (resp., b) is the iterative winner. It follows that b and c are
the two possible iterative winners, but none of them is a necessary iterative winner.

In addition of the non-equivalence of the two problems, even their complexity class differs. We first

establish below that the necessary iterative winner problem can be solved in polynomial time.

Theorem 5.2. NecessaryIterativeWinner is in P.

Proof sketch. We will provide a polynomial number of conditions, which can be checked in polynomial

time, on the preference profile ≻ to determine whether a given candidate y is a necessary winner. We

distinguish the cases where y is the initial truthful winner w0
or not. The case where y = w0

, a little

more tedious, is deferred to the supplementary material.

Is candidate y ̸= w0 a necessary winner? Trivially, by Observation 3.7, if y /∈ PW 0
, then she is

not a necessary iterative winner. Therefore, we assume from now on that y ∈ PW 0
. We give some

necessary conditions for y to be a potential winner along each possible deviation sequence:

(i) For all z ∈ PW 0 \ {w0, y} and all i ∈ Ny
, we have w0 ≻i z: Otherwise, there exists a candidate

z ∈ PW 0 \{w0, y} and a voter i ∈ Ny
such that z ≻i w

0
. There exists then a deviation sequence

where i is the first voter to deviate, from her initial ballot for y to a ballot for z. By Observation 3.8,

y is not a potential winner anymore after this first step and thus, by Observation 3.7, y will not

be the iterative winner in this deviation sequence.

(ii) Assume that (i) holds. For every candidate z1 ∈ M \ {w0, y} and voter i ∈ N z1
, we must have

either w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, or y ≻i w
0
. Otherwise, there exist a candidate

z1 ∈ M \ {w0, y}, a potential winner z2 ∈ PW 0 \ {w0, y, z1} and a voter i ∈ N z1
such that

z2 ≻i z, for every z ∈ PW 0 \ {z1, z2}. There exists then a deviation sequence where i is the first
voter to deviate, from her initial ballot for z1 to a ballot for z2 (that she prefers to w0

). Since w0

was the initial winner, she is still a potential winner after this deviation. Therefore, there exists a

second deviation in which a voter j ∈ Ny
deviates from her initial ballot for y to a ballot for w0

(that she prefers over all potential winners other than y, by (i)). Thus, by Observations 3.7 and

3.8, y will not be the iterative winner in this deviation sequence.

Therefore, assume now that conditions (i) and (ii) hold.

• If, for every candidate z1 ∈ M \ {w0, y} and voter i ∈ N z1
, we have w0 ≻i z for every

z ∈ PW 0 \ {w0, z1}, then no deviation can occur. It follows that the initial winner w0
will be

the unique possible–and thus necessary–winner, implying that y cannot be a necessary winner.

• Otherwise, there exist a candidate z1 ∈ M \ {w0, y} and a voter i ∈ N z1
such that y ≻i w

0
. In

that case, by Observation 4.1, y is the unique possible–and thus necessary–iterative winner iff

|(
⋃

z∈M\{w0,y}N
z)y≻w0 | > |(

⋃
z∈M\{w0,y}N

z)w
0≻y|.

In contrast, the possible iterative winner problem is NP-complete.

Theorem 5.3. PossibleIterativeWinner is NP-complete.
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Now that we have investigated whether an arbitrary candidate can be a possible or necessary iterative

winner, it makes sense to focus on particularly desirable candidates.

6 About Electing the Condorcet Winner

Since electing the Condorcet winner is commonly considered as a desirable property for a voting rule,

we now investigate the ability of the iterative voting process to elect it.

6.1 The Condorcet winner as an iterative winner

If a Condorcet winner exists, the natural question is whether she is guaranteed to be a possible or even

a necessary iterative winner. We first study the question of a necessary iterative winner.

Proposition 6.1. Ifm = 3 and the Condorcet winner is the initial winner, then she is also a necessary

iterative winner.

Proof. Let c∗ be the Condorcet and initial winner. If no strategic move can be performed, we are done.

Otherwise, the first strategic move of each deviation sequence cannot be neither towards nor from c∗,
and by Observation 3.8, there are at most two potential winners after this move, c∗ being one of them.

Observation 4.1 implies that c∗ is the winner of each sequence, hence the necessary winner.

The following example shows that if the Condorcet winner is not initially winning, then she is not

guaranteed to be the necessary iterative winner, even ifm = 3.

Example 6.2. Let us consider the profile ≻= {b ≻1 c ≻1 a, a ≻2 b ≻2 c, c ≻3 b ≻3 a} where b is the
Condorcet but not initial winner (a initially wins by tie-breaking), and PW 0 = M . If voter 1 deviates

from b to c, we get PW 1 = {a, c}. Since b /∈ PW 1
, she cannot win in this deviation sequence, therefore,

she is not the necessary winner.

Similarly, the following example shows that if m > 3, then the Condorcet winner is not guaranteed to

be the necessary iterative winner, and this is true even if she is the initial winner:

Example 6.3. Let us consider the profile ≻= {d ≻1 c ≻1 a ≻1 b, a ≻2 d ≻2 c ≻2 b, c ≻3 b ≻3

d ≻3 a, b ≻4 c ≻4 a ≻4 d, d ≻5 a ≻5 b ≻5 c} with d the Condorcet and initial winner, and

PW 0 = M . Let us exhibit a deviation sequence in which d is not winning. First, voter 4 deviates from

b to c, making c the current winner and PW 1 = {a, c, d}. Then voter 5 deviates from d to a, yielding
PW 2 = {a, c}. Since d /∈ PW 2

, she cannot win in this deviation sequence and is not the necessary winner.

On the other hand, the Condorcet winner is always guaranteed to be a possible iterative winner:

Proposition 6.4. If the Condorcet winner is a potential winner of the truthful ballot b0 (given a profile ≻),

then she is a possible iterative winner.

6.2 Condorcet efficiency of the iterative rule

We have previously examined the conditions under which a Condorcet winner is a necessary or possible

iterative winner. In this section, we go further by investigating how the iterative voting process affects

the probability of electing the Condorcet winner.

More formally, wemodel iterative voting (under plurality) as a randomized voting rule, called randomized

iterative plurality. Given the initial truthful score vector s ∈ Imn , we enumerate all possible deviation

10



sequences and define the outcome as a probability distribution πs
over candidates, where for each

x ∈ M , πs(x) denotes the proportion of sequences in which x is elected. Any branch has the same

weight whatever its length. In particular, for a given score vector s, a candidate x is a possible iterative

winner iff πs(x) > 0, and a necessary iterative winner iff πs(x) = 1.

For any given voting rule, the Condorcet efficiency (CE) is defined as the probability of electing the

Condorcet winner when one exists:

Definition 6.5 (Condorcet efficiency). When the Condorcet winner exists, we define the Condorcet

efficiency as the probability to elect the Condorcet winner with respect to a voting rule.

Note that for plurality, the Condorcet efficiency corresponds to PC(c
∗ = WP (b

0) | c∗ exists) while the
Condorcet efficiency under randomized iterative plurality corresponds to PC(c

∗ = WP (b
r) | c∗ exists),

for any deviation sequence ⟨b0, . . . , br⟩. To study whether the iterative voting increases the Condorcet

efficiency it remains thus to study the sign of the value∆CE = PC(c
∗ = WP (b

r) | c∗ exists)−PC(c
∗ =

WP (b
0) | c∗ exists).

This question has already been studied empirically by Grandi et al. [15]. However, it has been done

for a particular turn function which arbitrarily selects the voter allowed to deviate at each step. In

contrast, our proof does not assume any turn function and considers all possible deviation sequences,

via randomized iterative plurality.

In practice, we draw a preference profile under a certain culture C , and denote by C∗
, similarly as

Gehrlein and Lepelley [13], the culture associated with C that is reduced to preference profiles where

the Condorcet winner exists.

Lemma 6.6. Let C be a culture and c∗ the Condorcet winner, when c∗ exists, we have the following

decomposition: ∆CE = PC(c
∗ = WP (b

r) ∩ c∗ ̸= WP (b
0))− PC(c

∗ ̸= WP (b
r) ∩ c∗ = WP (b

0)).

We start this formal work with a proof of the increase of the Condorcet efficiency under impartial

anonymous culture (IAC).

Theorem 6.7. Under IAC, the iterative voting process increases the Condorcet efficiency of plurality for

anym, and n sufficiently larger thanm.

Proof sketch. To simplify the notations, we denotePIAC(· | c∗ exists) byPIAC∗(·). Also, to shorten for-

mulas and thus improve the readability of the proof, we use interchangeably the notations {|PW 0(s)| =
k} (resp., |PW 0| = k) and s ∈ Sk

. To prove that∆CE > 0whenever c∗ exists, it suffices by Lemma 6.6

to show that PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0)) > PIAC∗(c∗ ̸= WP (b
r) ∩ c∗ = WP (b

0)).

The proof is organized as follows (technical details of each step are deferred to the appendix):

Upper bound on PIAC∗(c∗ ̸= WP (b
r) ∩ c∗ = WP (b

0)): We show that this term is upper bounded

by

∑m
k=4PIAC∗(s ∈ Sk).

Lower bound on PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0)): We then show that this other term can be

lower bounded by (12 − ϵ) · 2
m · PIAC∗(s ∈ S2).

Intermediate step: Implication between IAC and IAC∗: To conclude, we now need to prove:

m∑
k=4

PIAC∗(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIAC∗(s ∈ S2) (1)

Since working directly under IAC∗
is challenging, we rather prove the analogous inequality under

IAC . Indeed, we can prove that if this inequality holds under IAC , it also holds under IAC∗
.

Putting the bounds together under IAC: It remains to prove that eq. (1) holds when considering

IAC , which can be done using Lemma 4.8 and a couple of combinatorial identities.
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We now state the analogous result under impartial culture (IC).

Theorem 6.8. Under IC, the iterative voting process increases the Condorcet efficiency of plurality for any

m, and n sufficiently larger thanm.

Proof sketch. Following the same steps as in the proof of Theorem 6.7 but for IC, it remains to show:

m∑
k=4

PIC(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIC(s ∈ S2) (2)

Since ϵ is going to 0 when n is large then we can just remove it. To prove eq. (2), we first prove the case

ofm = 4, and then we generalize its idea tom > 4.

If m = 4, eq. (2) writes as PIC(s ∈ S4) ⩽ 1
4 · PIC(s ∈ S2). Let us denote by S4→2

the set of score

vectors with 2 potential winners obtained from some score vector of S4
by transferring at most two votes

between candidates. More formally, S4→2 = {s ∈ S2|∃s′ ∈ S4
such that s differs from s′ in 2 votes}.

Also, for s′ ∈ S4
, we denote by S4→2(s′) all score vectors of S4→2

built from s′, i.e., S4→2(s′) = {s ∈
S2|s differs from s′ in 2 votes}. To prove eq. (2) form = 4, it is sufficient to prove that for each score

vector s ∈ S4
, there exists a function f4 : S4 → [S4→2]8 associating each score vector s ∈ S4

with 8

different score vectors from S4→2(s) in a way that:

• ∀s′ ∈ f4(s),PIC(s
′) ⩾ 1

2PIC(s)

• for each couple s, s′ ∈ S4
, f4(s) ∩ f4(s′) = ∅.

The construction of f4
and its generalization form > 4 are deferred to the supplementary material.

7 Conclusion

In this article, we have examined the outcomes of iterative voting for the plurality rule under different

aspects. We have particularly investigated the potential diversity of outcomes via the concepts of

possible and necessary iterative winners. Although we may find instances where all candidates can be

elected in some sequence of voters’ deviations, we have experimentally shown that this situation rarely

occurs. Indeed, the most frequent situations are when a few different candidates turn out to be possible

iterative winners. This is partly due to the existence of a necessary iterative winner, an event which

is itself “biased” by the extreme scenario where no deviation is initially possible. We show that this

extreme situation actually often occurs in our setting under impartial (anonymous) cultures.

In a computational point of view, the existence problem for a possible iterative winner is harder than

for the necessary variant. It shows in a way that the kind of robustness created by the election of the

same candidate at every sequence is easily detectable while more fluctuating scenarios are difficult to

predict. Beyond quantitative or computational results on possible outcomes, our analysis also helps

provide theoretical insights on how beneficial manipulation can be. Indeed, we show that the frequency

of election of the Condorcet winner is increased, when considering all possible iterative sequences with

equal weights, under impartial (anonymous) cultures, compared to the single outcome of the initial

plurality rule. This confirms and generalizes previous observations that were only made experimentally.

Our work opens several avenues for future work. While we have focused on a specific iterative voting

setting, one could examine the impact of other types of strategic behaviors and voting rules [20]. Another

natural direct extension would be to consider other–more realistic–voting cultures for probabilistic

analyses, such as single-peaked ones, Mallows distributions, or even Polya-Eggenberger urns [5]. Finally,

another more subtle study would be to analyze the strategic power of the voters (or their coalitions) on

the iterative outcome, with respect to their position of deviation in the sequence or their preferences.
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Technical Appendix
Proposition 3.3. The number of moves in any deviation sequence is in O(m+ n · log(m)).

Proof. We identify the worst case scenario for the number of strategic moves in a deviation sequence.

We start with a score vector in Sm
n . By Observation 3.8, the first move yields a score vector in Sm−1

n , in

which the (unique) non-potential winner y1 has less than
n
m votes. Since each voter i such that b1i = y1

can deviate to one of them−1 remaining potential winners, we have at most
n
m FNPW deviations, each

yielding, in the worst case, a new score vector in Sm−1
n . These are then followed by a FPW deviation

that yields a score vector in Sm−2
n . We repeat the process–for each k ∈ [m], when we reach a score of

Sm−k
n , we have, in the worst case:

• m− k potential winners, each obtaining approximately
n

m−(k−1) votes,

• one non-potential winner obtaining less than
n

(m−(k−1)) votes,

• k − 1 additional non-potential winners, each receiving zero votes.

We can thus perform at most FNPW moves and one FPW move before the next decrease of the number

of potential winners. By Meir [21], |PW t| can only decrease with t, so the process will terminate, and

we will have at most

1 +
m∑
k=2

1 +
n

m− k
= m+ n ·

m∑
k=2

1

m− k

= m+ n ·
m−2∑
l=0

1

l
⩽ m+ n · log(m)

strategic moves.

A Diversity of Iterative Winners

A.1 Number of possible iterative winners

Proposition 4.4. Whenm = 3, there exist at most two possible iterative winners.

Proof. If there exists a Condorcet winner x then, sincem = 3, there exists a weak Condorcet loser. In

fact, x is winning every pairwise comparison therefore comparing the two other candidates tells us

who is the Condorcet loser (resp., the two weak Condorcet losers). By Observation 4.1, the Condorcet

loser (resp., the weak Condorcet loser, which is disadvantaged by the tie-breaking) cannot win. Hence,

there can be at most two possible iterative winners.

If there does not exist a Condorcet winner then, sincem = 3, we have to get either a strict or a weak

Condorcet cycle of pairwise comparisons between these three candidates. In the case of a strict cycle, if

we name y the initial winner, after the first strategic move we necessarily have a comparison between

y and one of the other two candidates. However, with the strict Condorcet cycle one of these two need

to lose against y thus, by Observation 4.1, this candidate cannot be elected. In the second case, the loser

of the tie-breaking is also losing, helping us concluding the proof.

Proposition 4.5. There exist elections where all m candidates are possible iterative winners, for every

m ≥ 4.
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Proof. The case of m = 4 has already been shown in Example 3.4. We will provide here a general

construction for everym ≥ 5.

We will build a preference profile ≻ with m + 1 voters and candidates x1, . . . , xm. To this purpose,

we start with a preference profile ≻0
where each voter i ∈ [m− 1] has the preferences xi ≻i xi+1 ≻i

· · · ≻i xm ≻i x1 ≻i · · · ≻i xi−1, voter m has the preferences xm ≻m xm−1 ≻m · · · ≻m x2 ≻m x1,
and voter m + 1 has the preferences xm ≻m+1 xm−2 ≻m+1 · · · ≻m+1 x⌊m−1

2
⌋+1 ≻m+1 x1 ≻m+1

x2 ≻m+1 · · · ≻m+1 x⌊m−1
2

⌋ ≻m+1 xm−1. Then, we obtain our final preference profile ≻ from ≻0
by

swapping the positions of the adjacent candidates x1 and xm in agent 3 to agentm− 1’s preference
orders.

For each candidate, we will describe a deviation sequence which leads to her election. When needed,

we use the lexicographic tie-breaking rule.

• x1: Voterm−1 deviates to x1, then voter 2 deviates to xm, and voter 3 deviates to x1. Afterwards,
the only potential winners are x1 and xm and, by construction, more voters prefer x1 to xm. It

follows that the deviation sequence will finally elect x1.

• xi, for 2 ≤ i ≤ m−1
2 : Voter i+ 1 deviates to xi+2, then voter i− 1 deviates to xi, and voter m

deviates to xi+2. Afterwards, the only potential winners are xi and xi+2 and, by construction,

more voters prefer xi to xi+2. It follows that the deviation sequence will finally elect xi.

• xi, for
m−1
2 < i < m− 1: Voter i− 1 deviates to xi, then voterm− 1 deviates to x1, and then

voterm deviates to xi. Afterwards, the only potential winners are xi and x1 and, by construction,
more voters prefer xi to x1. It follows that the deviation sequence will finally elect xi.

• xm−1 if m > 5: Voter m − 2 deviates to xm−1, then voter 1 deviates to x2, and then voter m
deviates to m− 1. Afterwards, the only potential winners are x2 and xm−1 and, by construction,

more voters prefer xm−1 to x2. It follows that the deviation sequence will finally elect xm−1.

• xm−1 if m = 5: Voter m − 2 deviates to xm−1, then voter m + 1 deviates to x1 (this is a best
response because xm−2 = x⌊m−1

2
⌋+1 whenm = 5 and xm−2 is not a potential winner anymore

because of the first deviation). Then, voter 2 deviates to xm−1. Afterwards, the only potential

winners are x1 and xm−1 and, by construction, more voters prefer xm−1 to x1. It follows that
the deviation sequence will finally elect xm−1.

• xm: Voter 1 deviates to x2, then voter 3 deviates to xm. Afterwards, the only potential winners

are x2 and xm and, by construction, more voters prefer xm to x2. It follows that the deviation
sequence will finally elect xm.

A.2 Extreme case of necessary iterative winner

Lemma 4.6. Given a score vector s ∈ Imn , a candidate y is a potential winner for at least one voter i ∈ [n],
i.e., y ∈ PW (s), if and only if all conditions (i) - (v) hold:

(i) ∀x� y, sx ≤ sy + 1

(ii) ∀x� y, z � y, sx ≤ sy or sz ≤ sy

(iii) ∀x, z such that y � x, z, sx ≤ sy + 1 or sz ≤ sy + 1

(iv) ∀x such that y � x, sx ≤ sy + 2

(v) ∀x, z such that x� y � z, sx > sy ⇒ sz ≤ sy + 1

Proof. ⇐ We suppose the conditions (i)− (v) all hold, and we show that they are sufficient for y to be

a potential winner for at least one voter. Conditions (i) and (iv) together imply that for each candidate

x, we have sx ≤ sy + 2:
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• Suppose that there exists a candidate z such that sz = sy + 2. Condition (i) implies that y � z.
Therefore, y is a potential winner for each voter voting for z: indeed, we have sy + 1 = sz − 1,
and y beats z by tie-breaking. Moreover:

– condition (iii) ensures that for each x such that y � x, sx ≤ sy + 1, and in case of equality,

y beats x by tie-breaking.

– condition (v) implies that for each x� y, we have sx ≤ sy < sy + 1, so y wins over x.

• Suppose now that for each candidate z, sz < sy + 2, and that there exists a candidate x � y
such that sx = sy + 1. Therefore, y is a potential winner for each voter voting for x. Indeed,
sx − 1 < sy + 1, so y wins over x if ever it receives one vote from x. Moreover:

– condition (ii) implies that for each x′ � y, x′ ̸= x, we have sx′ ≤ sy , so sx′ < sy + 1.

– condition (v) implies that for each z such that y � z, sz ≤ sy + 1, and in case of equality, y
beats z by tie-breaking.

• Finally, it is easy to see that whenever sy ≥ sx for all x� y, and sz ≤ sy + 1 for each z such that

y � z, y is a potential winner for all voters.

⇒ Now we need to prove that each of these conditions is actually necessary:

• if (i) does not hold, then there is a candidate x such that sx > sy +1. Hence, even if one voter of

x deviates to y, we will still have sx − 1 ≥ sy + 1, and since x wins over y by tie-breaking, y can

not be a potential winner for any voter.

• if (ii) does not hold, then there exist two candidates x and z with x, z� y, such that sx > sy and
sy > sy . Therefore, sx ≥ sy +1 and sz ≥ sy +1, and as both x and z win over y by tie-breaking,

y can not be a potential winner.

• if (iii) does not hold, there exist two different candidates x, z such that y� x, z and sx > sy + 1,
sz > sy +1. In other words, even if y obtains one more vote (possible from one of the candidates

x and z), there will be at least one of y, z having a strictly higher score than y, and therefore y
can not be a potential winner.

• if (iv) does not hold, there exists a candidate x such that sx > sy + 2, in other words, sx − 1 >
sy + 1, so y can not be a potential winner.

• if (v) does not hold, there exist x� y and z such that y� z such that sx > sy and sz > sy +1. If
y obtains one extra vote from z, we will still have sx ≥ sy + 1, so x wins over y by tie-breaking.

Otherwise, z wins over y. Hence, y can not be a potential winner.

Lemma 4.7. The number of score vectors in Imn withm potential winners is equal tom, i.e., |Sm
n | = m.

Proof. Let n = qm + r, r ∈ {0, . . . ,m − 1}, and s ∈ Sm
n . Let us denote by mins, resp. maxs, the

minimum, resp. maximum, score value in s. Without loss of generality, we can rename the candidates

as 1, 2, . . . ,m so that i� j iff i < j, and the score of candidate i corresponds to the i-th component si
of s.

Since s ∈ Sm
n , the conditions (i)− (v) of Lemma 4.6 must be satisfied for each component si of s. In

particular, we can make the following three observations:

O1 : mins ≥ q − 1: let us assume for contradiction that mins ≤ q − 2. Then the condition (iv) of
Lemma 4.6 implies that maxs ≤ q for each i ∈ [m], so

m∑
i=1

si ≤ (q − 2) + (m− 1)q < n.
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O2 : maxs ≤ q+2: similarly to the previous case, let us assume for contradiction thatmaxs ≥ q+3.
Then mins ≥ q + 1, and

m∑
i=1

si ≥ (q + 3) + (m− 1)(q + 1) = qm+ q + 2 > n.

O3 : It is easy to see that mins ≤ q and maxs ≥ q.

We are now ready to prove the statement by case distinction on r:

• r = 0 : There are two possible values of mins:

– mins = q−1. Then we necessarily havemaxs = q+1, otherwise, the sum of all components

of s would be strictly less than n. Conditions (ii) and (iii) of Lemma 4.6 imply that there is

a unique component of scoremaxs, which implies that there is also a unique component

of score mins (to ensure that

∑m
i=1 si = n). The condition (v) implies that s1 = q − 1.

We then need to choose the candidate i ∈ {2, . . . ,m} such that si = q + 1, all remaining

candidates achieving the score of q–we note that for each possible value of i, the resulting
vector satisfies Lemma 4.6. This yieldsm− 1 vectors of Sm

n .

– mins = q. We have thenmaxs = q–otherwise, the sum of all components is greater than

mq = n. There is a unique vector of this type, where all components are of value q.

Put together, we have |Sm
n | = (m− 1) + 1 = m.

• r ≥ 1 : The previous case implies that there is no s ∈ Sm
n such thatmins = q−1, and it is easy to

see thatmaxs > q. Hence, the above observations imply thatmins = q, andmaxs ∈ {q+1, q+2}:

– maxs = q+1: there are r components of s of value q+1, and (m− r) components of value

q. The condition (ii) of Lemma 4.6 implies that for each i ∈ [m] such that si = q, there is
at most one j < i such that sj = q + 1. Therefore, for each i > (m− r) + 1, si = q + 1–in
other words, the (r−1) last components of s equal q+1. There is one remaining component

of value q + 1 to be placed to one of the (m− r) + 1 first positions. It is easy to check that

regardless the choice, the score will satisfy all conditions of Lemma 4.6. Hence, there are

(m− r + 1) scores of this type in Sm
n . Note that if r = 1, we are done, and |Sm

n | = m.

– maxs = q+ 2 - note that this can only occur for r ≥ 2. There are then (r− 2) components

of value q + 1, and (m − r + 1) components of value q. Note that there always exist (at
least two) components of value q, so conditions (ii) and (iii) of Lemma 4.6 imply that there

is a unique component of scoremaxs = q+ 2. The condition (v) of Lemma 4.6 implies that

for each pair i, j such that si = q, sj = q + 1, we have i < j. Similarly, the condition (i)
implies that for each pair i, j such that si = q, sj = q + 2, we have i < j. In other words,

the (m− r + 1) first components of s are all of value q, and we need to place the unique

component of value q+2 to one of the remaining (r− 1) places. As previously, it is easy to

check that each possible choice yields a score satisfying Lemma 4.6. Hence, there are (r− 1)
scores of this type in Sm

n .

Putting both types together, we have |Sm
n | = (m− r + 1) + (r − 1) = m.

Lemma 4.8. For each k ∈ [m], |Sm−k
n | = (m− k) ·

(
n+k−2

k

)
.

Proof. Let us start by defining the set of partial scores S̃m−k
n as follows: for each s ∈ Sm−k

n , we define

s̃ ∈ S̃m−k
n such that s̃i = si for each i /∈ PW (s), and for each j ∈ PW (s), s̃j is a variable such that

we have ∑
j∈PW (s)

s̃j = n−
∑

i/∈PW (s)

si.
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Note that two (or more) scores s, s′ ∈ Sm−k
n can yield the same partial score of

¯Sm−k
n - this happens

if PW (s) = PW (s′) and each non-potential winner gets the same number of votes in both s and s′.
We remove these duplicates from S̃m−k

n . Lemma 4.7 implies that each partial score of S̃m−k
n can be

completed into (m−k) scores of Sm−k
n . Therefore, we have |Sm−k

n | = (m−k) · |S̃m−k
n |, and it remains

to prove that |S̃m−k
n | =

(
n+k−2

k

)
.

We proceed by induction on k. If k = 0, Lemma 4.7 implies that |Sm−k
n | = (m − k), and |S̃m−k

n | =
1 =

(
n−2
0

)
. Let us now suppose that for given k, we have, for each n ⩾ 0, S̃m−k

n =
(
n+k−2

k

)
, and let us

prove that, for every n ⩾ 0, S̃
m−(k+1)
n =

(
n+k−1
k+1

)
.

We have:

S̃m−k
n+1 =

(
n+ 1 + k − 2

k

)
=

(n+ k − 1)!

k!(n− 1)!
=

=
(n+ k − 1)!(k + 1)

k!(k + 1)(n− 2)!(n− 1)
=

=

(
n+ (k + 1)− 2

k + 1

)
· k + 1

n− 1
=

= S̃m−(k+1)
n · k + 1

n− 1

Therefore, we get, for every n ⩾ 0, S̃
m−(k+1)
n = S̃m−k

n+1 · n−1
k+1 =

((n+1)+k−2
k

)
· n−1
k+1 = (n+k−1)!(n−1)

k!(k+1)(n−1)! =
(n+k−1)!(n−1)
k!(k+1)(n−1)! =

(
n+k−1
k+1

)
, which ends the proof.

Theorem 4.12. Under impartial culture (IC), PIC(E
m
n ) ≥ 1+ m·(m−1)

2 · (ϕ( −2
σ·
√
n
)−ϕ( 2

σ·
√
n
)), where ϕ

is the cumulative distribution function of a standard Gaussian, σ =
√

2
m and this probability is increasing

with respect to n.

Proof. As in the proof of Theorem 4.9, we use PIC(E
m
n ) ⩾ PIC(S

1
n) We start by the following remark:

“if for each pair of candidates i, j ∈ M , |si−sj | ≥ 2, then there is a unique potential winners in score s".

Therefore, PIC(S
1
n) ≥ PIC(∀i, j ∈ M, |si − sj | ≥ 2) There exist

(
m
2

)
= m·(m−1)

2 pairs of candidates.

We denote X
(i)
k the random variable that equals if the k-th voter has voted for the i-th candidate, and 0

otherwise. We then denote Y i,j
k = X

(i)
k −X

(j)
k , ∀i ̸= j the difference of those random variables such that

si−sj =
∑n

k=0 Y
i,j
k . Note that (Y i,j

k )1⩽k⩽n are independent,PIC(Yk = 1) = PIC(Yk = −1) = 1
m and

PIC(Yk = 0) = 1− 2
m Therefore,PIC(∀i, j ∈ M, |Si−Sj | ≥ 2) = PIC(∀i, j ∈ M, |

∑n
k=0 Y

i,j
k | ≥ 2).

By Bonferroni’s inequality, PIC(∀i, j ∈ M, |
∑n

k=0 Y
i,j
k | ≥ 2) ≥

∑m·(m−1)
2

k=0 PIC(|
∑n

k=0 Y
i,j
k | ≥

2) − (m·(m−1)
2 − 1). As all Y i,j

k follow the same law we have:

∑m·(m−1)
2

k=0 PIC(|
∑n

k=0 Y
i,j
k | ≥ 2) −

(m·(m−1)
2 − 1) = 1 + m·(m−1)

2 · (PIC(|
∑n

k=0 Y
i,j
k | ≥ 2) − 1). It remains to find a lower bound to

PIC(|
∑n

k=0 Y
i,j
k | ≥ 2) = PIC(

∑n
k=0 Y

i,j
k ≥ 2) + PIC(

∑n
k=0 Y

i,j
k ⩽ −2). Using Berry-Essen’s

theorem [3, 9] we get the following lower bounds: PIC(
∑n

k=0 Y
i,j
k ⩽ −2) ≥ ϕ( −2

σ·
√
n
) − C·ρ

σ3·
√
n
and

PIC(
∑n

k=0 Y
i,j
k ≥ 2) ≥ PIC(

∑n
k=0 Y

i,j
k > 2) = 1 − PIC(

∑n
k=0 Y

i,j
k ⩽ 2) ≥ 1 − ϕ( 2

σ·
√
n
) − C·ρ

σ3·
√
n
,

where σ is the standard deviation, C is a constant, ρ the moment of order 3, ϕ is the repartition of

a standard gaussian and t · σ
√
n = 2, t from the original formula. However, if we compute ρ for∑n

k=0 Y
i,j
k , we obtain ρ = 0, therefore simplifying the inequality as follows: PIC(|

∑n
k=0 Y

i,j
k | ≥

ϕ( −2
σ·
√
n
)+1−ϕ( 2

σ·
√
n
). As expected, this converges to 1 asymptotically in n since ϕ(0) = 0. We finally

get: PIC(E
m
n ) ≥ 1 + m·(m−1)

2 · (ϕ( −2
σ·
√
n
)− ϕ( 2

σ·
√
n
)). Note that ϕ( −2

σ·
√
n
)− ϕ( 2

σ·
√
n
) can be verified to

be negative since this the repartition of a standard gaussian. Therefore, this bound is increasing and

goes to 1 asymptotically in n.
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B Possible and Necessary Winner Problems

Theorem 5.2. NecessaryIterativeWinner is in P.

Proof. Wewill provide a polynomial number of conditions, which can be checked in polynomial time, on

the preference profile≻ to determine whether a given candidate y is a necessary winner. We distinguish

the cases where y is the initial truthful winner w0
or not.

Is candidate y ̸= w0 a necessary winner? Trivially, by Observation 3.7, if y /∈ PW 0
, then she

is not a possible, and thus not a necessary iterative winner. Therefore, we assume from now on that

y ∈ PW 0
. Let us give some necessary conditions for y to be a potential winner along each possible

deviation sequence:

(i) For all z ∈ PW 0 \ {w0, y} and all i ∈ Ny
, we have x ≻i z: Otherwise, there exists a candidate

z ∈ PW 0 \ {w0, y} and a voter i ∈ Ny
such that z ≻i x. There exists then a deviation sequence

where i is the first voter to deviate, and she will do so from her initial ballot for y to a ballot for z.
It follows from Observation 3.8 that y is not a potential winner anymore after this first step and

thus, by Observation 3.7, y will not be the iterative winner in this deviation sequence, implying

that y is not a necessary iterative winner.

(ii) Assume that (i) holds. For every candidate z1 ∈ M \ {w0, y} and voter i ∈ N z1
, we must have

either w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, or y ≻i w
0
. Otherwise, there exist a candidate

z1 ∈ M \ {w0, y}, a potential winner z2 ∈ PW 0 \ {w0, y, z1} and a voter i ∈ N z1
such that

z2 ≻i z, for every z ∈ PW 0 \ {z1, z2}. There exists then a deviation sequence where i is the
first voter to deviate, and she will do so from her initial ballot for z1 to a ballot for z2 (that she
prefers to w0

). Since w0
was the initial winner, she is still a potential winner after this deviation.

Therefore, there exists a second deviation in which a voter j ∈ Ny
deviates from her initial ballot

for y to a ballot for w0
(that she prefers over all potential winners other than y, by (i)). Thus, by

Observations 3.7 and 3.8, y will not be the iterative winner in this deviation sequence, implying

that y is not a necessary iterative winner.

Assume that the conditions (i) and (ii) hold, and let us look closer to point (ii) where there are two cases

to distinguish:

• If, for every candidate z1 ∈ M \ {w0, y} and voter i ∈ N z1
, we have w0 ≻i z for every

z ∈ PW 0 \ {w0, z1}, then no deviation can occur. It follows that the initial winner w0
will be

the unique possible–and thus necessary–iterative winner, implying that y cannot be a necessary

iterative winner.

• Otherwise, there exist a candidate z1 ∈ M \ {w0, y} and a voter i ∈ N z1
such that y ≻i w

0
. In

that case, by Observation 4.1, y is the unique possible–and thus necessary–iterative winner iff

|(
⋃

z∈M\{w0,y}N
z)y≻w0 | > |(

⋃
z∈M\{w0,y}N

z)w
0≻y|.

Is candidate w0 a necessary winner? If, for every candidate z1 ∈ M \ {w0} and voter i ∈ N z1
, we

have w0 ≻i z for every z ∈ PW 0 \ {w0, z1}, then no deviation can occur and w0
is a necessary winner.

Therefore, we assume from now on that there exists a candidate z1 ∈ M \ {w0}, a voter i ∈ N z1
and a

candidate z2 ∈ PW 0 \ {w0, z1} such that z2 ≻i w
0
, i.e., there is a voter with an incentive to deviate

from the initial truthful profile b0.
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For a candidate y ∈ PW 0 \{w0}, let PW 1,y ⊆ PW 0
denote the set of potential winners in the strategy

profile b1,y resulting from a best response electing candidate y, where a voter changes her initial ballot
to a ballot for y, performed from the initial truthful profile b0. Suppose that there exist a candidate
z1 ∈ M \ {w0}, a potential winner z2 ∈ PW 0 \ {w0, z1}, a voter i ∈ N z1

such that z2 ≻i z for every

z ∈ PW 0 \ {z1, z2}, a candidate y ∈ PW 1,z2 \ {w0, z2} and a voter j ∈ Nw0
such that y ≻i z for

every z ∈ PW 1,z2 \ {w0, y}. It means that there exists a deviation sequence where voter i is the first
voter to deviate and she does so from her initial ballot for z1 to a ballot for z2 (that she prefers to w0

),

and then voter j is the second voter to deviate and she does so from her initial ballot for w0
to a ballot

for y (that she prefers to the current winner z2). It follows from Observations 3.7 and 3.8 that w0
will

not be the iterative winner in this deviation sequence, implying that w0
is not a necessary iterative

winner. Therefore, we assume from now on that, for every candidate z1 ∈ M \ {w0}, potential winner
z2 ∈ PW 0 \ {w0, z1}, voter i ∈ N z1

such that z2 ≻i z for every z ∈ PW 0 \ {z1, z2}, we have all
voters j ∈ Nw0

who prefer z2 over all potential winners in PW 1,z2 \ {w0, z2}.

Let Z denote the set of all potential winners to which there is a voter who has an incentive to deviate

andA(y) the set of voters having an incentive to deviate to y ∈ Z , i.e., Z := {y ∈ PW 0 \{w0} : ∃z1 ∈
M \{w0, y}, i ∈ N z1

s.t. y ≻i z, ∀z ∈ PW 0\{y, z1}} andA(y) := {i ∈ N : ∃z1 ∈ M \{w0} s.t. i ∈
N z1 , y ≻i z, ∀z ∈ PW 0 \ {y, z1}}. By definition, we have |A(y)| > 0 for every y ∈ Z . If |Z| = 1
with Z = {y}, then the only first deviations that can occur are towards candidate y and no further

deviation can then occur for a candidate different from w0
or y and, by assumption, voters in Nw0

are satisfied by both candidates w0
and y and thus do not deviate. It follows that w0

is the unique

possible–and thus necessary–iterative winner iff (
⋃

z∈M\{w0,y}N
z)w

0≻y ≥ (
⋃

z∈M\{w0,y}N
z)y≻w0

.

Let us thus assume, from now on, that |Z| > 1.

By assumption, for every potential winner z ∈ Z , every voter j ∈ Nw0
prefers z to any other potential

winner y ∈ Z∩PW 1,z
. It follows that, for every candidates z1, z2 ∈ Z such that z1 ̸= z2, we have either

z1 /∈ PW 1,z2
or z2 /∈ PW 1,z1

. Note that both cannot hold simultaneously because for z2 /∈ PW 1,z1
to

hold, since z2 ∈ PW 0
, we need that z1 � z2 or that z2 � w0 � z1 while z2 has one vote less than both

z1 and w0
in the initial scores; under either condition z1 is still a potential winner in the ballot profile

b1,z2 resulting from a best response from the truthful initial profile where z2 gets one additional vote.
Consequently, for every z1, z2 ∈ Z , we have either z1 /∈ PW 1,z2

and z2 ∈ PW 1,z1
and all voters in

Nw0
prefer z1 to z2, or z2 /∈ PW 1,z1

and z1 ∈ PW 1,z2
and all voters in Nw0

prefer z2 to z1. We can

thus assume, w.l.o.g., that Z = {z1, . . . , zℓ}, with zt /∈ PW 1,zt′ , zt′ ∈ PW 1,zt
, and zt ≻j zt′ for every

voter j ∈ Nw0
and every 1 < t < t′ < ℓ.

For given indices t1 < t2 < t3 ∈ [ℓ], let At2,t3(t1) denote the set of voters in A(zt1) who prefer zt2 to
w0

and to zt for all t3 ≤ t ≤ ℓ, i.e., At2,t3(t1) := {i ∈ A(zt1) : zt2 ≻i w
0
and zt2 ≻i zt, ∀t3 ≤ t ≤ ℓ}.

If there exist t, t′ ∈ [ℓ] such that t < t′ with |A(zt) ∪
⋃

t′′∈[t′−1]A
t,t′(t′′)| > 1, then there exists a

deviation sequence where a voter i1 ∈ A(zt) first deviates to a ballot for zt, then a voter j ∈ A(zt′)
deviates to a ballot for zt′ , and another voter i2 ∈ A(zt) ∪

⋃
t′′∈[t′−1]A

t,t′(t′′) then deviates to a ballot

for zt, creating a gap too important between the score of the current winner and the score of w0
, which

thus cannot be a potential winner anymore. Consequently, by Observation 3.7, w0
will not be the

iterative winner in this deviation sequence, implying that w0
is not a necessary winner.

Otherwise, it means that, for every candidate zt ∈ Z , all voters in A(zt) prefer zℓ or w
0
to every

zt′ ∈ Z \ {zt, zℓ} (if not, |At′,ℓ(t)| > 0, and the previous condition would hold). Since, by definition, all

voters inN\
⋃

t∈[ℓ−1]A(zt) preferw
0
to all candidates inZ , it follows thatw0

will be the unique possible–

and thus necessary–iterative winner iff (
⋃

z∈M\{w0,zℓ}N
z)w

0≻zℓ ≥ (
⋃

z∈M\{w0,zℓ}N
z)zℓ≻w0

.

Theorem 5.3. PossibleIterativeWinner is NP-complete.

Proof. The problem belongs to NP because, given a sequence of voter strategic deviations, we can check

in polynomial time whether it is valid and eventually elects a target candidate t at equilibrium because
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the length of such a sequence is polynomially bounded (see Proposition 3.3).

For hardness, we perform a reduction from Exact Cover by 3-Sets (X3C), a problem known to

be NP-complete [11]. In an instance of X3C, we are given a set X = {x1, x2, . . . , x3q} and a set

S = {S1, S2, . . . , Sr} of 3-element subsets of X and we ask whether there exists an exact cover, i.e., a

subset S′ ⊆ S of size |S′| = q such that every element of X occurs in exactly one member of S′
, in

other words, S′
is a partition of X . We consider the variant of the problem, that is still hard, where

each element xi occurs in exactly three subsets of S, implying that r = 3q.

For each element xi ∈ X , we create a corresponding element-candidate yi. For each subset Sj ∈ S, we
create one candidate dj and three subset-candidates s1j , s

2
j , and s3j associated with the three elements

of subset Sj . For each ℓ ∈ [2q], we create an candidate zℓ, supposed to correspond to the 2q elements

of S which are not chosen for the partition of X . We additionally create five candidates, namely

a, b, c, e, and t. The tie-breaking rule is given by the following linear order over the candidates:

a� b� c� z1� · · ·� z2q�y1� · · ·�y3q� t�d1� · · ·�d3q� e� s11� s21� s31� · · ·� s13q� s23q� s33q .

For each element xi ∈ X , we create 3q element-voters Y ℓ
i , for ℓ ∈ [3q], whose preferences are as

follows for each i ∈ [3q], where sℓ(xi) stands for the subset-candidate s
k
j such that the kth element of

subset Sj is the ℓ
th
occurrence of element xi, when ℓ ∈ [3]:

Y ℓ
i : yi ≻ sℓ(xi) ≻ a ≻ t ≻ [. . . ] if ℓ ∈ [3]

Y ℓ
i : yi ≻ a ≻ t ≻ [. . . ] if 4 ≤ ℓ ≤ 3q

For each ℓ ∈ [2q], we create 3q voters Zj
ℓ , for j ∈ [3q], with the following preferences:

Zj
ℓ : zℓ ≻ c ≻ y1 ≻ · · · ≻ y3q ≻ s1j ≻ s2j ≻ s3j ≻ dj ≻ a ≻ t ≻ [. . . ]

To allow all candidates to be potential winners, we create the voters Aℓ
, Bℓ

, Cℓ
, Dℓ

j , E
ℓ
, Sℓ

j,k, and T ℓ
,

for j, ℓ ∈ [3q] and k ∈ [3], with the following preferences:

Aℓ
: a ≻ b ≻ t ≻ [. . . ]

Bℓ
: b ≻ a ≻ t ≻ [. . . ]

Cℓ
: c ≻ e ≻ a ≻ t ≻ [. . . ]

U ℓ
: u ≻ a ≻ t ≻ [. . . ]

for (U, u) ∈
⋃

j∈[3q]{(Dj , dj), (Sj,k, s
k
j )} ∪ {(E, e)}

T ℓ
: t ≻ a ≻ b ≻ [. . . ]

We finally create an candidate f and a voter F with the following preferences:

F : f ≻ z1 ≻ · · · ≻ z2q ≻ y1 ≻ · · · ≻ y3q ≻ t ≻ a ≻ b ≻ [. . . ]

By construction, in the truthful initial profile, there are exactly 3q votes for each candidate except f ,
and thus candidate a is winning, thank to the tie-breaking rule.

We claim that there exists a subset S′ ⊆ S which is a partition of X iff there exists a sequence of voter

strategic deviations which leads to the victory of candidate t.

=⇒ : Suppose first that there exists a subsetS′ ⊆ S which is a partition ofX , sayS′ = {Sj′1
, . . . , Sj′q}

where j′1 < · · · < j′q . By definition, each element xi is covered by exactly one element of S′
, say that

xi is covered by the element of S′
which contains the kthi occurrence of element xi, for ki ∈ [3]. We

will thus let voter Y ki
i deviate to subset-candidate ski(xi). We will schedule these deviations with

respect to the tie-breaking order �, i.e., voter Xki
i deviates before voter X

ki′
i′ , with skj := ski(xi) and
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sk
′

j′ := ski′ (xi′), iff j > j′, or j = j′ and k > k′. It follows that each candidate yi loses one vote, while

each candidate skj′ℓ
gains one vote, for each ℓ ∈ [q] and k ∈ [3], by decreasing order of indices.

Then, voter C1
deviates from her vote for candidate c to a vote for candidate e, and thus c loses one

vote. It follows that none of the candidates y1 . . . , y3q and c are potential winners anymore, nor are any

of the subset-candidates associated with elements of S \ S′
.

Let us consider the set of non-chosen elements of S, i.e., S \S′ = {Sj1 , . . . , Sj2q} where j1 < · · · < j2q .

For ℓ = 2q to ℓ = 1, we let voter Zjℓ
ℓ deviate from candidate zℓ to candidate djℓ . This is a best response

because none of the candidates y1 . . . , y3q , c, and s1jℓ , s
2
jℓ
and s3jℓ are potential winners.

Afterwards, voter F deviates from her vote for candidate f to a vote for candidate t. This is a best
response because none of the candidates z1, . . . , z2q and y1, . . . , y3q are potential winners. Now let

voter A1
deviate from her vote for candidate a to a vote for candidate b. It follows that candidate a

is not a potential winner anymore. If we then let, e.g., voter D1
1 deviate from her vote for candidate

d1 to a vote for candidate t, then b and t are the only remaining potential winners, with 3q + 1 and

3q + 2 votes, respectively, while the other candidates which are less (resp., more) favored than t (resp.,
except b) have at most 3q + 1 (resp., 3q − 1) votes. Since there are more voters preferring t to b than
the reverse, among the voters who do not currently vote for any of them, it thus leads to a sequence of

voter deviations eventually electing candidate t at the equilibrium.

⇐= : Suppose now that there exists a sequence of voter strategic deviations which leads to the

victory of candidate t. First observe that, since all candidates (except f ) have initially the same score,

any iterative winner must gain at least one vote and thus must have at least 3q + 1 votes. Therefore,
candidate t must gain at least one vote. Since candidates a, b, c, z1, . . . , z2q , y1, . . . , y3q are more

favored by the tie-breaking order � than t, none of them can gain a new vote before t gets one, because
otherwise t would not be a potential winner anymore. All voters prefer a to t, except voters T ℓ

, who

already vote for t, and voter F . Moreover, the only possibility for a to not be a potential winner before

t can gain one vote, would be that some voter Aℓ
deviates, and the only possible deviation would be

towards b, a contradiction. Therefore, we need that voter F deviates to t, and this is the only possible

first deviation to t.

However, voter F prefers all candidates z1, . . . , z2q and y1, . . . , y3q , initially potential winners, to

candidate t. Therefore, we need for F to deviate to t as a first deviation to t, that none of the candidates
z1, . . . , z2q and y1, . . . , y3q are potential winners, while t is still a potential winner. The only possible

way to achieve this situation, is that every candidate zℓ and yi, for ℓ ∈ [2q] and i ∈ [3q], loses at least
one vote.

Therefore, we need that at least one voter Y ℓ
i , for some ℓ ∈ [3q], deviates from her current vote for

yi, for each i ∈ [3q]. The only possible deviation which can still enable the future election of t is by a

voter Y k
i for k ∈ [3] towards sk(xi). Let us construct the subset S

′ ⊆ S such that all elements of S′

correspond to subset-candidates sk(xi) to which some voter Y k
i deviates to, so that yi is not a potential

winner anymore, for each i ∈ [3q]. By definition of sk(xi), it follows that S
′
covers all elements of X .

We also need that at least one voter Zj
ℓ , for some j ∈ [3q], deviates from her current vote for zℓ, for each

ℓ ∈ [2q]. To enable the first deviation of F to t, such a voter Zj
ℓ should not deviate to c or y1, . . . , y3q ,

and thus none of these candidates should be a potential winner. It follows that all previously described

deviations of voters Y ℓ
i should occur before those of Zj

ℓ . Moreover, the only possibility for c not being
a potential winner anymore is that it loses one vote, with a deviation by a voter Cℓ

, for some ℓ ∈ [3q].
Such a voter must deviate to candidate e. Then, by the tie-breaking order, none of the subset-candidates

not chosen for deviation by voters Y ℓ
i can be a potential winner anymore. Voter Zj

ℓ can thus deviate to

a subset-candidate skj for k ∈ [3] which has previously been chosen for deviation by a voter Y ℓ
i or, if

none of them has been chosen, to candidate dj if not already the winner. However, it is not possible for
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the future election of t that Zj
ℓ deviates to a subset-candidate skj or to a candidate dj which has already

gained votes because, otherwise, such candidates would get at least 3q + 2 votes and t would not be a

potential winner anymore. It follows that each such voter Zj
ℓ deviates to a different candidate dj , and

that no subset-candidate skj , associated with the same element Sj ∈ S, has been chosen for deviation

by voters Y ℓ
i . Since there are 2q different such voters Zj

ℓ associated with different elements Sj ∈ S
which are not part of S′

, it means that |S′| = q and thus it is an exact cover of X .

C About Electing the Condorcet Winner

C.1 The Condorcet winner as an iterative winner

Proposition 6.4. If the Condorcet winner is a potential winner of the truthful ballot b0 (given a profile ≻),

then she is a possible iterative winner.

Proof. Let c∗ be the Condorcet winner of given profile ≻, c∗ ∈ PW 0
. We show by construction that

there exists a deviation sequence ⟨b0, b1, . . . , br⟩ ∈ DS(≻) such that wr = c∗.

If |PW 0| ≤ 2, then, by Corollary 4.2, c∗ is a necessary and thus possible winner. Let us assume from

now that |PW 0| ≥ 3. In order to build a deviation sequence in which c∗ is elected, we repeatedly use

observation 3.8 to rule out potential winners one by one, until we reach the situation where there are

only two potential winners including c∗ (hence, c∗ is guaranteed to be elected). For each iteration t of
the deviation sequence, there are two cases to distinguish:

• c∗ is not the current winner: if there exists a potential winner y ∈ PW t
and a voter i such

that bti = y and c∗ ≻i y, then i can change her ballot from y to c∗, and by Observation 3.8,

y /∈ PW t+1
. Otherwise, all voters that vote for a potential winner at iteration t prefer all

potential winners to c∗. By definition of the Condorcet winner, there are less than
n
2 such voters,

and there are less than
n
2 voting for c∗ (otherwise, we could not have more than 2 potential

winners). Therefore, there exists a candidate z /∈ PW t
and a voter j such that btj = z and c∗ ≻j y

for each y ∈ PW t
. j can make a strategic move from z to c∗, making c∗ the current winner. If

after this move, |PW t+1| ≤ 2, let k be a voter such that bt+1
k = btk = x ∈ PW t+1

. As for any

y ∈ PW t+1 \ {c∗, x}, we have y ≻k c∗, the voter k can change her ballot from x to any other

y ∈ PW t+1 \ {c∗, x}, so by Observation 3.8, x /∈ PW t+2
.

• c∗ is the current winner: if no strategic move is possible, we are done. Let us now assume the

opposite. If there exists a voter i such that bti = x ∈ PW t
, and y ∈ PW t

i such that y ≻i c
∗
, then

i can change her ballot for x to a ballot for y, and by Observation 3.8, x /∈ PW t+1
. Otherwise,

each voter casting her ballot for a potential winner at iteration t prefers c∗ to any other potential

winner. Then only FNPW moves are possible. Let j be a voter such that btj = z /∈ PW t
, and

y ∈ PW t
j such that y ≻j c∗. Then j can change her ballot for z to a ballot for y. If after

this FNPW move, PW t+1 = {y, c∗}, c∗ is a necessary (and thus possible) winner. Otherwise,

there exists a candidate x ∈ PW t+1
, and we have assumed that each voter of x prefers c∗ over

all the other potential winners (different from x). In particular, there is a voter k such that

bt+1
k = x who prefers c∗ to the current winner y. k will then move to c∗, and by Observation 3.8,

x /∈ PW t+2.

C.2 Condorcet efficiency of the iterative rule

Lemma 6.6. Let C be a culture and c∗ the Condorcet winner, when c∗ exists, we have the following

decomposition: ∆CE = PC(c
∗ = WP (b

r) ∩ c∗ ̸= WP (b
0))− PC(c

∗ ̸= WP (b
r) ∩ c∗ = WP (b

0)).
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Proof.

∆CE = PC∗(c∗ = WP (b
r))− PC∗(c∗ = WP (b

0))

= PC∗(c∗ = WP (b
r) ∩ c∗ = WP (b

0))

+PC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0))

−PC∗(c∗ = WP (b
0) ∩ c∗ = WP (b

r))

−PC∗(c∗ = WP (b
0) ∩ c∗ ̸= WP (b

r))

= PC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0))

−PC∗(c∗ ̸= WP (b
r) ∩ c∗ = WP (b

0))

Theorem 6.7. Under IAC, the iterative voting process increases the Condorcet efficiency of plurality for

anym, and n sufficiently larger thanm.

Proof. To prove that ∆CE > 0 whenever c∗ exists, it suffices by Lemma 6.6 to show that

PIAC(c
∗ = WP (b

r) ∩ c∗ ̸= WP (b
0) | c∗ exists)

> PIAC(c
∗ ̸= WP (b

r) ∩ c∗ = WP (b
0) | c∗ exists)

To simplify the notations, we denote PIAC(· | c∗ exists) by PIAC∗(·). Also, to shorten formulas and

thus improve the readability of the proof, we use interchangeably the notations {|PW 0(s)| = k} (resp.

|PW 0| = k) and s ∈ Sk
.

Upper bound on PIAC∗(c∗ ̸= WP (b
r) ∩ c∗ = WP (b

0)): We first note that {c∗ ̸= WP (b
r) ∩ c∗ =

WP (b
0)} ⊂ {∪m

k=4S
k
n}. Indeed, if s(b0) ∈ Si

n for i ≤ 2, then by Corollary 4.2, c∗ = WP (b
r). By

Proposition 6.1, we also have c∗ = WP (b
r) when s(b0) ∈ S3

n and c∗ = WP (b
0). Therefore,

PIAC∗(c∗ ̸= WP (b
r) ∩ c∗ = WP (b

0))

⩽ PIAC∗(∪m
k=4{|PW 0| = k}) =

m∑
k=4

PIAC∗(|PW 0| = k)

The last equality is obtained because {|PW 0| = k}4⩽k⩽m is a partition.

Lower bound on PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0)):
We have:

PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0)) ⩾

⩾ PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) ∩ s ∈ S2)

= PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) | s ∈ S2)

· PIAC∗(s ∈ S2)

⩾ PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) ∩ c∗ ∈ PW 0(s) | s ∈ S2)

· PIAC∗(s ∈ S2) ⩾

⩾ PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) | c∗ ∈ PW 0(s), s ∈ S2)

· PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2) · PIAC∗(s ∈ S2)

Let us now look closer to the two first terms of the last product:
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(i) PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) | c∗ ∈ PW 0(s), s ∈ S2):
As the distribution over scores is uniform under IAC, if PW 0 = {c, c′}, then each of these

two candidates has the same probability to be the initial winner. In other words, PIAC(c =
Wp(b

0)) = PIAC(c
′ = Wp(b

0)) = 1
2 . Under IAC

∗
, the distribution over scores is biased in favor

of the Condorcet winner c∗ - we have

PIAC∗(c∗ ̸= Wp(b
0) | c∗ ∈ PW 0(s), s ∈ S2) =

1

2
− ϵ,

with ϵ going to 0 when n grows and m is fixed. In addition, under assumptions that s ∈ S2
and

c∗ ∈ PW 0(s), by Corollary 4.2, c∗ is the necessary winner, thus

{c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0)} = {c∗ ̸= WP (b
0)}

and hence

PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0) | c∗ ∈ PW 0(s), s ∈ S2) =

=
1

2
− ϵ.

(ii) PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2):
Again by the uniformity of scores under IAC, we have, for anym and any candidate c, for any
m, PIAC(c ∈ PW 0(s) | s ∈ S2) = 2

m . Indeed, among the

(
m
2

)
equally likely pairs of potential

winners, c appears inm− 1 of them. Under IAC∗
, this distribution is again biased in favor of

the Condorcet winner c∗, which yields

PIAC∗(c∗ ∈ PW 0(s) | s ∈ S2) ⩾
2

m

Put together, we get:

PIAC∗(c∗ = WP (b
r) ∩ c∗ ̸= WP (b

0))

⩾ (
1

2
− ϵ) · 2

m
· PIAC∗(s ∈ S2)

Intermediate step: Implication between IAC and IAC∗: To conclude the proof, we now need to

prove that:

m∑
k=4

PIAC∗(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIAC∗(s ∈ S2) (3)

As working directly under the IAC∗
distribution seems challenging, we will rather prove the analogous

inequality under IAC:

m∑
k=4

PIAC(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2) (4)

We can actually prove that Equation (4) implies Equation (3). Indeed, let us assume that Equation (4)

holds. We note that

PIAC(c
∗
exists | s ∈ ∪k⩽4S

k) ⩽ PIAC(c
∗
exists | s ∈ S2)

since the probability of Condorcet winner existence increases as the score becomes unbalanced. There-

fore, we obtain
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m∑
k=4

PIAC(s ∈ Sk) · PIAC(c
∗
exists | ∪k⩽4 S

k)

⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2) · PIAC(c

∗
exists | s ∈ S2)

Dividing by PIAC(c
∗
exists), we get:

∑m
k=4PIAC(s ∈ Sk) · PIAC(c

∗
exists | ∪k⩽4 S

k)

PIAC(c
∗
exists)

⩽
(12 − ϵ) · 2

m · PIAC(s ∈ S2) · PIAC(c
∗
exists | s ∈ S2)

PIAC(c
∗
exists)

By the conditional Bayes’s formula, we end up having:

m∑
k=4

PIAC(s ∈ Sk | c∗ exists)

⩽ (
1

2
− ϵ) · 2

m
· PIAC(s ∈ S2 | c∗ exists)

which is nothing but Equation (3):

Putting the bounds together under IAC: It remains to prove that Equation (4) holds. Using

Lemma 4.8, we get: ∑m−4
k=0 (m− k) ·

(
n+k−2

k

)(
n+m−1
m−1

)
⩽ (

1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)(
n+m−1
m−1

)
With some algebraic simplifications and the use of the identity k ·

(
n+k−2

k

)
= (n− 1) ·

(
n+k−2
k−1

)
and

perform a change of variable. This yields:

m ·
m−4∑
k=0

(
n+ k − 2

k

)
− (n− 1) ·

m−5∑
k=0

(
n+ k − 1

k

)

⩽ (
1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)
m

Using the following inequality (that can be easily proven by mathematical induction)

M∑
k=0

(
A+ k

k

)
=

(
A+M + 1

M

)
with A = n− 2 and M = m− 4 for the first sum and A = n− 1 and M = m− 5 for the second, we

get:

m ·
(
n+m− 5

m− 4

)
− (n− 1) ·

(
n+m− 5

m− 5

)
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⩽ (
1

2
− ϵ) · 2

m

2 ·
(
n+m−4
m−2

)
m

In other words:

m2 ·
(
n+m− 5

m− 4

)
−m · (n− 1) ·

(
n+m− 5

m− 5

)
⩽ (

1

2
− ϵ) · 2

m
2 ·

(
n+m− 4

m− 2

)
If we increase n, we will see that the inequality has to become true at some point. Indeed, ϵ becomes

small as n grows and for m fixed and n large enough the left hand side becomes negative thanks to the

second term while the second is increasing in n and is positive.

Theorem 6.8. Under IC, the iterative voting process increases the Condorcet efficiency of plurality for any

m, and n sufficiently larger thanm.

Proof. Following the same steps as in the proof of Theorem 6.7 but for IC, it remains to show:

m∑
k=4

PIC(s ∈ Sk) ⩽ (
1

2
− ϵ) · 2

m
· PIC(s ∈ S2) (5)

Since ϵ is going to 0 when n is large then we can just remove it.

To prove eq. (5), we first prove the case ofm = 4, and then we generalizes its idea tom > 4.

Case ofm = 4:
We need to prove that

PIC(s ∈ S4) ⩽
1

4
· PIC(s ∈ S2) (6)

Let us denote by S4→2
the set of scores with 2 potential winners obtained from some score of S4

by transferring at most two votes between candidates. More formally, S4→2 = {s ∈ S2|∃s′ ∈
S4

such that s differs from s′ in 2 votes}. Also, for s′ ∈ S4
, we denote by S4→2(s′) all scores de S4→2

built from s′, ie., S4→2(s′) = {s ∈ S2|s differs from s′ in 2 votes}. To prove Equation (6), it is sufficient

to prove that for each score s ∈ S4
, there exists a function f4 : S4 −→ [S4→2]8 association each score

s ∈ S4
with 8 different scores from S4→2(s) in a way that:

• ∀s′ ∈ f4(s),PIC(s
′) ⩾ 1

2PIC(s)

• for each couple s, s′ ∈ S4
, f4(s) ∩ f4(s′) = ∅.

We define below the function f4
. Let s4 ∈ S4

. It remains to find 8 scores of S4→2(s) such that for each

s2 ∈ S4→2(s4), PIC(s2)
PIC(s4)

⩾ 1
2 . We define f4

so that all scores of f4
are of the two following types:

• Type 1: s2 ∈ f4(s4) was built from s4 by transferring two votes from a unique candidate j to
two different candidates i and k.

• Type 2: s2 ∈ f4(s4) was built from s4 by transferring one vote from candidates j, l to two

remaining candidates i, k
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We denote s4 = (s41, s
4
2, s

4
3, s

4
4), s

4 ∈ S4
n, and s2 = (s21, s

2
2, s

2
3, s

2
4), s

2 ∈ S2
n, and we have We have:

PIC(s
4) =

n!

s41! · s42! · s43! · s44!
(
1

m
)n

and

PIC(s
2) =

n!

s21! · s22! · s23! · s24!
(
1

m
)n.

Let us show that for each of these types, we have
PIC(s2)
PIC(s4)

⩾ 1
2 for n sufficiently large.

• Type 1: in all cases where we don’t change the winner (resp. the winner changes), |s4j − s4i | ≤ 1

(resp. |s4j − s4i | ≤ 2) and s4k ≥ q − 1 for each k ∈ {1, 2, 3, 4}.
Then we get:

PIC(s
2)

PIC(s4)
=

s4j (s
4
j − 1)

(s4i + 1)(s4k + 1)
.

The smallest ratio is reached when s4j = q − 1, s4i = q and s4k = q if we don’t change the winner

and for s4j = q + 2, s4i = q and s4k = q + 1 otherwise.

Therefore,

PIC(s
2)

PIC(s4)
⩾

(q − 1)(q − 2)

(q + 1)2

We find this ratio is greater than
1
2 for q ≥ 8, ie., n ≥ 32.

• Type 2: two votes are transferred from two different candidates j, l to two different candidates

i, k. We get

PIC(s
2)

PIC(s4)
=

(s4j − 1)(s4l − 1)

(s4i + 1)(s4k + 1)
.

The same as in the previous cas, s4p ≥ q−1 for each p ∈ {1, 2, 3, 4}, and for each p, p′ ∈ {1, 2, 3, 4},
we have |s4p − s4p′ | ≤ 2. Therefore,

PIC(s
2)

PIC(s4)
⩾

(q − 2)2

(q + 2)2
,

which is greater than
1
2 for q ≥ 12, ie., n ≥ 48.

We will now build 8 scores of f(s4) as follows:

• We will create 5 scores of type 1, by distinguishing three sub-types:

– 2 scores where the winner of s4 gets one more vote and the looser of s4 is not modified. We

can then choose arbitrary which of the two remaining candidates x and y will get one more

vote, and which one will loose two votes - indeed, each of these both choices yields a score

of two potential winners, namely the winner of s4 and the other candidate that gets one

vote.

– 1 scores where the the winner of s4 gets one more vote, the third-ranked candidate of s4 is
not modified, and the second-ranked candidate looses two votes.

– 2 scores vectors where the winner looses two votes. The candidate that is not modified

needs to be the third or fourth ranked candidate of s4 in order to ensure that the resulting

score has two potential winners.
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• Finally, we will create 3 more scores of type 2. The winner can not loose a vote because, depending

of the number of votes of remaining candidates, we might reach a score with 3 potential winners.

Therefore, the winner will get one more vote, and we have 3 choices for the second candidate to

get one more vote, each of these yielding a score with 2 potential winners.

Moreover, all scores built by this construction are different, i.e |f4(s)| = 8. Indeed, when starting from

the same winner and adding one to her then the subtraction part differentiates the score of case 1 and 2.

The last thing to check is that f4(s) ∩ f4(s′) = ∅. Is is easy to see that for all cases where the winner

gets one more vote (and in particular remains the winner), we can not have duplicates. Indeed, every

score in S4
n yields a different winner, so winners will also be different in new scores. In the case we

allow the winner to loose points (only for type 1) then this candidate who is now outside the potential

winner set is last and characterized different new scores also.

General case: m > 4
We now explain how the construction of f4

can be generalized for anym > 5. Letm = 5, for the case
where the number of potential winners is 5, we can apply the same reasoning and we will have more

cases to enumerate. For instance, for type 1, there is one more candidate that can loose 2 votes. Therefore,

we can apply exactly the same idea of transformation as previously, namely f5 : S5 −→ [S5→2]h,
where h > 8 and f5(s) ∩ f4(s′) = ∅ because we start from different scores.

Let us show that h− 8 ≥ 2 to preserve our probability ratio greater than
1
2 . Indeed, in case 2 we are

able to build 3 more scores by taking a point to the fifth candidate, i.e. we now have

(
3
2

)
= 3 choices to

subtract a point to two candidates. The case where this candidate has no vote can be treated separately.

We see that these scores do not intersect. By recurrence, we apply the same reasoning when considering

one more candidate and see that all the difficulty remains in the case of four potential winners for any

m.
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