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Abstract

This article deals with iterative voting under the plurality rule, where voters can strategically
perform sequential deviations. Most works in iterative voting focus on convergence properties
or evaluate the quality of the resulting outcome. However, the iterative winner depends on the
sequence of voters’ deviations. We propose to analyze to what extent this impacts the outcome of
iterative voting by adopting a qualitative, quantitative and computational approach. In particular,
we introduce the notions of possible and necessary iterative winners. We first study the extreme
scenario for the existence of a necessary winner, where no voter has an incentive to deviate from
her truthful ballot. We show that this phenomenon occurs with high probability under impartial
cultures. Then, we explore the computational complexity of determining possible and necessary
iterative winners, proving that the two problems fall in different complexity classes. Finally, we
investigate the election of the Condorcet winner as an iterative winner and theoretically prove
that the Condorcet efficiency of plurality is increased by considering its iterative voting version.

1 Introduction

Strategic voting [20] occurs when voters have an incentive to manipulate by not giving their true
preferences. By Gibbard-Satterthwaite theorem [14, 26], no reasonable voting rule is strategy-proof.
Therefore, some works have investigated how making manipulation difficult in a computational point of
view [1] or have identified preference domains on which manipulation is not beneficial (see, e.g., [24]).
Another perspective to circumvent this impossibility result is, on the contrary, to allow manipulation
and analyze what happens, e.g., by considering voting as a strategic game and analyzing its outcomes.

Iterative voting [19] is a particular voting game where voters are allowed to manipulate by performing
successive moves. Since voters manipulate sequentially, different possible outcomes can arise, depending
on which voters’ deviations are chosen. A natural question is thus to know which candidates can turn
to be winner, for some sequence of deviations, once convergence is reached. We propose to answer this
question by adapting the well-known notions of possible and necessary winners [18] to the iterative
context. More precisely, a possible iterative winner is a candidate for which there exists a sequence of
deviations eventually electing her at equilibrium. Analogously, a necessary iterative winner is elected
in all possible equilibria that can be reached by the iterative voting process.

In this article, we follow the classical initial model of Meir et al. [22] where the voting rule is plurality,
and voters perform direct best responses when they are pivotal, i.e., they vote for the candidate they
prefer the most among those they can make the new winner. Under these assumptions, the iterative
voting process is guaranteed to converge to a situation of equilibrium. In such a setting, we analyze the
iterative voting outcomes quantitatively and qualitatively, and in particular the problems of possible
and necessary iterative winner.

For the necessary iterative winner problem, we have two possibilities: either there are several deviation
sequences but they all eventually elect the same candidate, or a more extreme scenario occurs where no
voter can deviate from her truthful ballot and thus the initial winner turns out to be the only iterative
winner. We propose to quantify the occurrence of such a phenomenon by analyzing how frequently
a preference profile is already an equilibrium. We show, under impartial (anonymous) cultures, a



rather high lower bound for the probability of this extreme scenario, and thus for the probability of the
existence of a necessary iterative winner.

In general, we investigate the computational complexity of the existence problem of a possible/necessary
iterative winner. It turns out that the problems fall into different complexity classes since the possible
iterative winner problem is NP-complete, while the necessary one is polynomial-time solvable.

Finally, we evaluate the quality of iterative voting outcomes by considering the election of the Condorcet
winner, when she exists, as an iterative winner. In particular, we theoretically prove that the Condorcet
efficiency, (i.e., the probability to elect a Condorcet winner when she exists) increases through the
iterative process. More precisely, under impartial (anonymous) cultures, the iterative version of plurality
improves the Condorcet efficiency compared to the one of plurality, confirming and generalizing
experimental results [15].

Due to space restrictions, some proofs or parts of proofs are deferred to the supplementary material.

2 Related work

The iterative voting model has been introduced by the seminal work of Meir et al. [22]. Since then,
many articles have investigated iterative voting under different voters’ strategic behaviors and voting
rules (see Meir [19] for a recent survey).

In this article, we introduce the notion of possible and necessary iterative winners, which are adaptations
of the well-known concepts of possible and necessary winners under incomplete preferences [18]. Up
to our best knowledge, these notions have not been used so far to capture iterative voting outcomes.
Nevertheless, in the context of manipulation in voting, they have been applied, e.g., to deal with
incomplete information of the manipulators [7], as a list of intermediate results in an iterative elicitation
process where voters can answer to the queries strategically [8], or to determine the outcome of
sequential voting in the context of social networks [12]. Our computational results, stating a difference
in complexity classes between the possible and necessary iterative winner problems, are consistent with
the results of the literature regarding the initial notions. Notably, while the necessary winner problem
under partial preferences is in P for all positional scoring rules, the possible one is NP-complete on this
large class of rules except for the plurality and veto rules [2, 4, 18, 28].

Note that considering all possible iterative outcomes that can arise, depending on the sequence of voters’
deviations, is similar in spirit to the notion of “parallel-universe” tie-breaking where the outcome is the
set of all candidates who could win using a particular tie breaking method. This has been particularly
investigated for multi-stage voting rules where the choice of the candidates to eliminate at a given
stage can highly impact the final winner of the voting procedure [10, 27]. The different sequences of
eliminated candidates at the different stages can then be represented as a tree [10], and we can use a
similar representation for all possible sequences of deviations potentially leading to different winners.

Instead of considering the diversity of iterative voting outcomes, where two equilibria are indistin-
guishable if they elect the same winner, one can focus more specifically on the possible equilibria that
can be reached. This study has notably been conducted by Rabinovich et al. [25], who establish that
checking whether a given ballot profile is a reachable equilibrium is NP-hard, in a similar idea as our
NP-completeness proof for the possible iterative winner problem.

In an orthogonal perspective, one can examine how good or bad are the outcomes of iterative voting.
In particular, several works have analyzed the iterative voting outcomes by comparing them to the
initial truthful one, following either a worst-case analysis based on an approach similar to the price
of anarchy, or an average-case analysis [6, 16, 17]. Mostly, the outcomes have been evaluated via
their social welfare, but it is also possible to consider other measures, such as the probability to elect
the Condorcet winner when she exists [13]. Grandi et al. [15] have followed this latter approach by



experimentally analyzing the Condorcet efficiency of the iterative voting process. We go a bit further by
theoretically demonstrate that indeed the iterative variant of plurality has a higher Condorcet efficiency
compared to the initial plurality rule, where we consider the probability of electing a Condorcet winner
over all possible deviation sequences with equal weights, under impartial (anonymous) cultures.

3 The Model

For any positive integer k, let [k| define the set {1,..., k}. Let IV be a set of voters where N = [n], and
M be a set of candidates where M = [m]. Each voter i € N has preferences over candidates represented
by a linear order >; over candidates. Let top(>-;) be the preferred candidate of ¢, i.e. top(>~;) =; x, for
every x € M. The set of all voters’ preferences is called a preference profile and is denoted by >, i.e.,
== (1, )

Let N” be the set of voters who prefer = to any other candidate, i.e., N¥ := {i € N : top(>;) = x}
and, for a given subset of voters A C N, let A*~¥ be the set of voters who prefer x to y, i.e., A¥Y :=
{i € A: 2 >; y}. A candidate z is the Condorcet winner if she beats all the other candidates in pairwise
N=7Y| > |[N¥~*|, for every candidate y € M \ {z}. A weak Condorcet winner z is
> |NY~*|, for every candidate y € M \ {x}. We define symmetrically the (weak)

comparisons, i.e.,
such that |[N*7Y
Condorcet loser.

The plurality rule is considered to determine the winner of an election. Let b; € M denote the ballot
submitted by voter i and b € M™ denote the ballot profile, i.e., b := (b1,...,b,). Let b' denote the
truthful ballot profile where all voters submit their sincere preferences, i.e., b/ = top(>;) for every
voter i € N. The winner under plurality of the ballot profile b is Wp(b) € arg max,c s s;(b), where
sz(b) := [{i € N : b; = x}| and a lexicographic tie-breaking, denoted by >, is used if necessary. By
abuse of notation, we sometimes write s, instead of s, (b). Let I be the set of all possible candidates’
scores under plurality, ie., I}, := {s € N"" [ 37U, s; = n}. By abuse of notation, we sometimes write

Wp(s) to refer to the winner of a score vector s. Let s denote the candidates’ scoresin b .

An election is given by the tuple (N, M, >, t>). In this study, we examine the classical iterative voting
model introduced by Meir et al. [22]. Initially, all voters vote truthfully, therefore the initial ballot
profile b° is exactly the truthful ballot profile b . Then they change their ballot strategically following
a best response strategy which consists in supporting their preferred candidate within the set of so-
called potential winners. A candidate y is a potential winner for voter i, at a given step where the
current score vector is s, if ¢ believes that voting for y will make candidate y the new winner, i.e.,
s;\fp(s_i) - sy_i + Lyp(s—i)sy < 1, where 57" denotes the score vector s without counting the current
ballot b; of voter i. Let PW/ denote the set of potential winners for voter i at step ¢, and PW" the set
of all potential winners at step ¢, i.e., PW" := |,y PW/}. When only a score vector is mentioned
without a reference to a specific time step ¢, we may directly write PV (s) to denote the set of potential
winners according to a given score vector s.

We introduce the following notion to group the scores by the number of potential winners.

Definition 3.1. Let S, be the set of all score vectors in an n-voter election such that the union of potential
winner sets over all voters contains exactly j candidates, i.e., Sy = {s € I' : |PW (s)| = j}.

Note that (S%);”Zl forms a partition of I"". Especially, S corresponds to all score vectors with a unique
potential winner. More precisely, for every score vector s in S}, there exists a candidate which is the
unique potential winner for all voters, and thus it is the winner in s.

We consider the following best response for each voter i at step ¢, where the current winner is denoted
by w!~!: i deviates from her current ballot bffl to another ballot b! supporting candidate y € PI/Vit*1 \
{w!~1} if y is her most preferred candidate within PWit_l. We then consider a best response dynamics
which is defined via deviation sequences.



Definition 3.2 (Deviation sequence). A sequence of strategy profiles (', b',... b") is a deviation
sequence for preference profile > if:

« b0 corresponds to the initial truthful ballot profile b,

- for every stept € [r], state b® results from a best response by exactly one voter from state b' 1, i.e.,
for every step t € [r], there exists one voteri € N and one candidatey € PW}!™\ {w!™'} such
thaty >; z for every z € PWit_l, where bl = y and b; = bz-_l for every voter j € N \ {i},

« the sequence is maximal, i.e., b" is an equilibrium where no voter has interest to change her ballot.

We distinguish two types of strategic moves, one from a potential winner (FPW) (i.e., a deviation by
voter ¢ at step ¢ from b§_1 to b} where bg_l =z and z € PW!!) and one from a non potential winner
(FNPW) (i.e., a move by voter ¢ at step ¢ from bgil to b} where bffl =zandx ¢ PWY)

A deviation sequence is said to be empty if it is restricted to the initial ballot profile (b°) which is already
an equilibrium.

From Meir et al. [22], we have an upper bound on the number of moves before convergence, in plurality
iterative voting, which is given by O(m - n). We state below that this bound can be improved (the proof
is deferred to appendix).

Proposition 3.3. The number of moves in any deviation sequence is in O(m + n - log(m)).

Let us denote by DS(>-) the set of all possible deviation sequences for preference profile >-. Indeed,
since voters’ deviations are performed sequentially, different deviation sequences can occur depending
on which voter is selected to perform a strategic deviation at each step. The following example shows
the potential diversity of iterative voting outcomes depending on the choice of the deviation sequence.

Example 3.4. Consider an election with five voters and four candidates, with voters’ preferences as follows:

a =1 ¢ =1 d >=1 b
b =9 a =9 ¢ 9 d
c =3 b =3 a »=3 d
d =4 b =4 a =4 ¢
d =5 ¢ »5 a >5 b

When needed, a lexicographic tie-breaking rule is used. Initially, in the truthful preference profile, d is the
winner. We show that each candidate can be the final winner in a different deviation sequence:

(a) If voter 2 deviates from b to a, then no other voter has an incentive to deviate afterwards and thus a

is finally elected.

(b) If voter 3 deviates to b, followed by voter 5 who deviates to a and voter 4 who deviates to b, then no
other voter has an incentive to deviate afterwards and thus b is finally elected.

(c) If voter 1 deviates to c, followed by voter 4 who deviates to b and voter 5 who deviates to c, then no
other voter has an incentive to deviate afterwards and thus c is finally elected.

(d) If voter 3 deviates to b, followed by voter 1 who deviates to d, then no other voter has an incentive to
deviate afterwards and thus d is finally elected.

Consequently, the notions of possible and necessary iterative winners naturally follow from the fact that
different iterative winners can arise from different deviation sequences.

Definition 3.5 (Possible iterative winner). A candidate x is a possible iterative winner for preference
profile — if there exists a deviation sequence (b°,b',... b") € DS(~) such that w" = .



Definition 3.6 (Necessary iterative winner). A candidate x is a necessary iterative winner for preference
profile = if, for every deviation sequence (b°,b', ..., b") € DS(>~) we havew” = .

By definition, a necessary iterative winner is also a possible iterative winner.

Let us provide below some observations to make the connections between these two concepts of iterative
winner and the best response deviations based on potential winners. First of all, strategic moves are
only possible towards potential winners. Thus, once a candidate leaves the set of potential winners, she
can never return again.

Observation 3.7. If a candidate x is a possible iterative winner for preference profile -, then there exists
a deviation sequence (b°,b', ... b") € DS(>) such that x is a potential winner all along the sequence:
vt € {0,1,...,r},x € PW'. In particular, v € PW?.

Moreover, from the definition of potential winner, if we remove one vote to a not currently winning
potential winner, then she does not fulfill anymore the definition.

Observation 3.8. Let us consider a deviation sequence (b°,b',... b") € DS(>) and the potential
winner v € PW*'\ {w'} such that the best response at stept + 1 is a FPW move, i.e., the deviation from
state bt to reach b'™! is performed by a voteri € N with bt = x. Then x ¢ PW'T1,

The concepts of possible and necessary iterative winners evaluate the outcomes of iterative voting
processes from a qualitative perspective. Indeed, all deviation sequences must reach the same winner
for the necessary iterative winner, whereas only one deviation sequence is required for the possible
iterative winner. Another perspective is to take a more quantitative point of view. To this end, we will
provide a probabilistic analysis of iterative voting outcomes.

Let II"™ be the set of all possible preference orders for m candidates. Let us denote as C(n, 1) the
probability distribution of drawing n preference orders from II™ to constitute a preference profile
€ (II"™)™. Such a probability distribution is called a culture, and is simply denoted by C' when the
context is clear. The probability that a given event E occurs under culture C'is denoted by P (E).

We will consider two commonly used cultures, namely impartial culture (IC) and impartial anonymous
culture (IAC) [13].

Definition 3.9 (Impartial culture). The impartial culture, called IC, draws every preference order >;
independently from 11" with uniform probability.

Definition 3.10 (Impartial anonymous culture). The impartial anonymous culture, called I AC, draws
every preference profile = from (II")™ with uniform probability.

Let us now start our analysis of deviation sequences both from a qualitative and quantitative perspective.

4 Diversity of Iterative Winners

In this section, we will investigate how diverse iterative winners can be. We will first study the number
of possible iterative winners and then focus on the extreme case with a necessary iterative winner, by
analyzing the particular scenario where the deviation sequence is empty.

4.1 Number of possible iterative winners

We first observe that the iterative winner is determined when there are at most two potential winners.



Observation 4.1. For any deviation sequence (b°, ... b"), if|[PW?| = 2 for a given stept € {0,1,...,r},
then the iterative winner of this sequence will be the winner of the pairwise comparison between the two
candidates in PW*.

Observation 4.1 yields directly some straightforward corollaries:

Corollary 4.2. If there exists a Condorcet winner c*, and if ¢* € PW° with |PW°| = 2, then c* is the
necessary iterative winner.

Corollary 4.3. A Condorcet loser can never be a possible iterative winner.

Moreover, it can be used to bound the number of possible winners when there are only three candidates.

Proposition 4.4. When m = 3, there exist at most two possible iterative winners.

Nevertheless, there exist situations where no candidate can be excluded from the set of possible iterative
winners. We generalize below the observation made in Example 3.4 to show that for any number m of
candidates, there exists a preference profile where all m candidates are possible iterative winners.

Proposition 4.5. There exist elections where all m candidates are possible iterative winners, for every
m > 4.

Proof sketch. The case of m = 4 has already been shown in Example 3.4.

We provide here a general construction for every m > 5. Let us build a preference profile > with m + 1
voters and candidates x1, . . ., Ty, where the tie-breaking is given by 1 I> - - - I> x,. To this purpose,
we start with a preference profile >0 where each voter i € [m — 1] has the preferences z; >=; z;j+1 >=;
cee i Ty i X1 >4+ i Ti—1, voter m has the preferences ., M Tim—1 >m - m T2 —m T,
and voter m + 1 has the preferences ., >m+1 Tm—2 =m+1 *** >m+1 T|m1yy =m+1 T1 >m+1

T2 =matl c mal T m-1 >m+1 Tm—1. Then, we obtain our final profile > from >0 by swapping

the positions of the adjacent candidates x1 and z,, in agent 3 to agent m — 1’s preference orders. For
each candidate, one can exhibit a different deviation sequence which leads to her election. O

A natural question is how often this situation occurs or, more generally, what is the typical number of
possible iterative winners. To get quickly some first insights, we have drawn 1,000 elections, under
impartial culture, where the preference profile is not an equilibrium, for each couple (m,n) with
m € {3,4,5},and 5 < n < 15, and we have computed the average number of possible iterative
winners, represented in Figure 1. We note that, regardless the value of m, this average is rather low
(less than 1.6 for all cases studied), and suggests a decreasing trend.
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Figure 1: Average number of possible iterative winners in function of n (for m € {3,4, 5})

For a more in-depth view, we also provide in Figure 2 the distribution of the number of possible
iterative winners of these randomly generated elections. We indeed observe that the vast majority of



instances have a unique possible (and thus necessary) iterative winner. While for each m, there are still
about 20% of instances with two possible iterative winners, the situations with more than two possible
iterative winners, and in particular the extreme situation from Proposition 4.5, seem to be extremely rare.
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Figure 2: Distribution of the number of possible iterative winners in function of n (for m € {3,4,5})

4.2 Extreme case of necessary iterative winner

Let us now examine how frequently the initial ballot profile is already an equilibrium, leading hence
to an empty deviation sequence, where the initial winner turns out to be the only possible iterative
winner, and thus the necessary iterative winner. From Mousseau et al. [23], we know that, for each
m, the proportion of truthful ballot profiles from which no voter has an incentive to deviate, tends
to 1 as n increases. To better understand the behavior of iterative voting processes, even in small
elections, we are particularly interested here in the rate of this convergence. While deriving an exact
formula seems challenging, we propose, for each pair (m, n), an increasing lower bound in n for the
proportion of equilibrium profiles. Let E)* be the set of all preference profiles > that are equilibria. We
start by providing some general results on the set of potential winners that will be used to establish
the above-mentioned lower bound. Indeed, one way to deal with iterative voting is to track the set of
potential winners over time {, i.e., PWt,

The next lemma provides a characterization of potential winners:

Lemma 4.6. Given a score vector s € I, a candidate y is a potential winner for at least one voteri € [n],
ie,y € PW(s), if and only if all conditions (i) - (v) hold:
(i) Ve >y, s, < sy + 1
(ii) Ve D>y, 2>y, 8, < sy ors, < sy
(iii) Vx, z such thaty > x,2,5, < sy +1ors, < s, +1
(iv) Vo such thaty > x, s, < 5 + 2
(v) Vx,z such thatx >y > 2,5, > sy = 5, < 5y + 1

Lemma 4.6 allows to determine the size of 5], as stated below.

Lemma 4.7. The number of score vectors in I)"" with m potential winners is equal tom, i.e., |S]'| = m.

Using the result of Lemma 4.7 as base case, we can finally determine the size of SJ for each j € [m].

—k| +k—2
Lemma 4.8. Foreach k € [m], |S" % = (m — k) - ("77°).
We are now ready to present the main results of this section, which establish a lower bound on the
probability that a preference profile (under impartial anonymous culture or impartial culture) is an
equilibrium. We begin with the case of impartial anonymous culture.



Theorem 4.9. Under impartial anonymous culture (IAC), P;ac(E™) > Prac(SL), where P1ac(S})
increases with respect to n.

Proof. As S. C E™, we have Prac(E™) > Prac(S}). Under IAC, we have P;4c(S}) = |‘}9’%‘||' By
Lemma 4.8 (applied for k = m — 1), we get |S}| = (n+(:n”:i)_2), and we have |I]]'| = (nj;ﬁzl)

n-(n—1)

Fm—1)(nim=—g)+ 1t remains to be

Put together, we obtain, after simplification, P;4c(S})

proven that P;4c(S}) increases with respect to n. Indeed, we have IPIAC(S%,H) — Prac(Sh) =
2m—2

F D) (nr2) ) 0 whenever n > 0 and m > 2. O

We provide below a brief illustration of the growth rate of this lower bound.

Example 4.10. In an election with 3 candidates, the probability for a preference profile to be at equilibrium
under IAC is at least 0.68 for 10 voters and at least 0.82 for 20 voters. In an election with 5 candidates, this
probability is at least 0.49 for 10 voters and at least 0.69 for 20 voters.

We now establish an analogous result under impartial culture, starting with the following observation,
based on the fact that there are n voters’ preferences independently sampled from the same distribution,
and we have m possibilities for the most preferred candidate of each voter.

Observation 4.11. Whenever all voters’ preferences are sampled with independent and identical random
variables, then the resulting score vector s' follows a multinomial law Multi(q, n) where q = (q1, . .., Gm)
and gj := Pc({Wp(s") = j}), foreveryj € M.

Under impartial culture, computing explicitly P;-(S}}) becomes much more harder. Instead, we prove
the existence of an increasing lower bound in n. The proof, based on a similar idea as the proof of
Theorem 4.9 but required also new technical ideas, is deferred to the appendix.

Theorem 4.12. Under impartial culture (IC), Prc(E]") > 1+ mA(Tg_l) : (Qf)(ofjg) - Qb(g.z —)), where ¢

is the cumulative distribution function of a standard Gaussian, o = 4/ % and this probability is increasing
with respect ton.

This lower bound increases slowly compared to that of TAC:

Example 4.13. In an election with 3 candidates, 70 voters are needed for the probability to exceed 0.33, and
137 voters for it to exceed 0.5. In an election with 5 candidates, 1000 voters are needed for the probability to
exceed 0.2.

5 Possible and Necessary Winner Problems

The situation analyzed in the previous section, where no deviation can occur from the initial ballot
profile, is an extreme case of a scenario with a necessary iterative winner. In this section, we aim to
go further on the recognition of situations where given candidates are possible or necessary iterative
winners, by investigating the complexity of the associated existence problems. More precisely, we will
study the following decision problem PossIBLEITERATIVEWINNER (resp., NECESSARYITERATIVEWINNER):
Given an election (N, M, >, >) and a candidate x € M, is x a possible (resp., necessary) iterative winner?

First of all, the two problems turn out to be equivalent when the initial potential winner set is limited
to at most two candidates.

Proposition 5.1. PossiBLEITERATIVEWINNER and NECESSARYITERATIVEWINNER are equivalent and can be
solved in polynomial time when |PW°| < 2.



Proof. If [PW°| = {x} then, by Observation 3.7, x is the unique possible-and thus necessary—winner.

If PW° = {x,y} with x = w" then, by Observation 3.7, only x or  can be iterative winners. Since
voters can only deviate to favor « or y and voters in N* U N¥ have no incentive to deviate, candidate
x (resp., y) is the unique possible-and thus necessary-iterative winner iff (N \ (N® U NY))*7¥| >
(N (N7 U N))PZE] (resp., |[(N\ (N UNY)P7E] > (N (N7 UNY))#Y)). O

Note that the equivalence between the two problems does not hold starting with three candidates in
the initial potential winner set. Consider, e.g., the following preference profile with n = 3 voters and
m = 3 candidates where a =1 b =1 ¢, b =9 ¢ =2 a, and ¢ =3 b =3 a, and a is the initial winner. If
voter 2 (resp., voter 3) first deviates then c (resp., b) is the iterative winner. It follows that b and ¢ are
the two possible iterative winners, but none of them is a necessary iterative winner.

In addition of the non-equivalence of the two problems, even their complexity class differs. We first
establish below that the necessary iterative winner problem can be solved in polynomial time.

Theorem 5.2. NECESSARYITERATIVEWINNER is in P.

Proof sketch. We will provide a polynomial number of conditions, which can be checked in polynomial
time, on the preference profile > to determine whether a given candidate y is a necessary winner. We
distinguish the cases where ¥ is the initial truthful winner w" or not. The case where y = w", a little
more tedious, is deferred to the supplementary material.

Is candidate y # w” a necessary winner? Trivially, by Observation 3.7, if y ¢ PW?Y, then she is
not a necessary iterative winner. Therefore, we assume from now on that y € PW?. We give some
necessary conditions for y to be a potential winner along each possible deviation sequence:

(i) Forall z € PWO9\ {w®, y} and all i € N¥, we have w’ »~; 2: Otherwise, there exists a candidate
z € PW9\{w®, y} and avoter i € N¥ such that z =; w". There exists then a deviation sequence
where 7 is the first voter to deviate, from her initial ballot for y to a ballot for z. By Observation 3.8,
1 is not a potential winner anymore after this first step and thus, by Observation 3.7, y will not
be the iterative winner in this deviation sequence.

(ii) Assume that (i) holds. For every candidate z; € M \ {w", y} and voter i € N*', we must have
either w® =; z for every z € PW°\ {w?, 21}, or y =; wP. Otherwise, there exist a candidate
z1 € M\ {w,y}, a potential winner zz € PW°\ {w®,y, 21} and a voter i € N*! such that
29 =; 2, for every z € PWY\ {21, 20 }. There exists then a deviation sequence where i is the first
voter to deviate, from her initial ballot for 21 to a ballot for 2 (that she prefers to w"). Since w°
was the initial winner, she is still a potential winner after this deviation. Therefore, there exists a
second deviation in which a voter j € NY deviates from her initial ballot for y to a ballot for w°
(that she prefers over all potential winners other than y, by (i)). Thus, by Observations 3.7 and
3.8, y will not be the iterative winner in this deviation sequence.

Therefore, assume now that conditions (i) and (ii) hold.

« If, for every candidate z; € M \ {w’,y} and voter i € N*!, we have w’ »=; z for every
z € PWO\ {w", 21}, then no deviation can occur. It follows that the initial winner w° will be
the unique possible—and thus necessary—winner, implying that y cannot be a necessary winner.

« Otherwise, there exist a candidate z; € M \ {w’,y} and a voter i € N*! such that y =; w. In
that case, by Observation 4.1, y is the unique possible-and thus necessary—iterative winner iff

|(Uz€M\{w0,y} Nz)y>—w0‘ > ‘(UzEM\{’wO,y} Nz)w0>-y‘. 0

In contrast, the possible iterative winner problem is NP-complete.

Theorem 5.3. PossIBLEITERATIVEWINNER is NP-complete.



Now that we have investigated whether an arbitrary candidate can be a possible or necessary iterative
winner, it makes sense to focus on particularly desirable candidates.

6 About Electing the Condorcet Winner

Since electing the Condorcet winner is commonly considered as a desirable property for a voting rule,
we now investigate the ability of the iterative voting process to elect it.

6.1 The Condorcet winner as an iterative winner

If a Condorcet winner exists, the natural question is whether she is guaranteed to be a possible or even
a necessary iterative winner. We first study the question of a necessary iterative winner.

Proposition 6.1. If m = 3 and the Condorcet winner is the initial winner, then she is also a necessary
iterative winner.

Proof. Let c¢* be the Condorcet and initial winner. If no strategic move can be performed, we are done.
Otherwise, the first strategic move of each deviation sequence cannot be neither towards nor from c*,
and by Observation 3.8, there are at most two potential winners after this move, c¢* being one of them.
Observation 4.1 implies that c¢* is the winner of each sequence, hence the necessary winner. O

The following example shows that if the Condorcet winner is not initially winning, then she is not
guaranteed to be the necessary iterative winner, even if m = 3.

Example 6.2. Let us consider the profile == {b =1 ¢ =1 a,a =2 b =2 ¢,c =3 b =3 a} whereb is the
Condorcet but not initial winner (a initially wins by tie-breaking), and PW° = M. If voter 1 deviates
fromb to c, we get PW?! = {a,c}. Sinceb ¢ PW, she cannot win in this deviation sequence, therefore,
she is not the necessary winner.

Similarly, the following example shows that if 7 > 3, then the Condorcet winner is not guaranteed to
be the necessary iterative winner, and this is true even if she is the initial winner:

Example 6.3. Let us consider the profile == {d =1 ¢ >=1a >=1b, a>=2d>=2c>2b, c>3b>3
d>3a, b>=gcr4a>4d, d>=5a>5b>5c} withd the Condorcet and initial winner, and
PWO° = M. Let us exhibit a deviation sequence in which d is not winning. First, voter 4 deviates from
b to ¢, making c the current winner and PW' = {a,c,d}. Then voter 5 deviates from d to a, yielding
PW? = {a,c}. Sinced ¢ PW?, she cannot win in this deviation sequence and is not the necessary winner.

On the other hand, the Condorcet winner is always guaranteed to be a possible iterative winner:

Proposition 6.4. If the Condorcet winner is a potential winner of the truthful ballot b° (given a profile =),
then she is a possible iterative winner.

6.2 Condorcet efficiency of the iterative rule

We have previously examined the conditions under which a Condorcet winner is a necessary or possible
iterative winner. In this section, we go further by investigating how the iterative voting process affects
the probability of electing the Condorcet winner.

More formally, we model iterative voting (under plurality) as a randomized voting rule, called randomized
iterative plurality. Given the initial truthful score vector s € I, we enumerate all possible deviation
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sequences and define the outcome as a probability distribution 7° over candidates, where for each
x € M, °(x) denotes the proportion of sequences in which x is elected. Any branch has the same
weight whatever its length. In particular, for a given score vector s, a candidate x is a possible iterative
winner iff 7°(z) > 0, and a necessary iterative winner iff 7°(x) = 1.

For any given voting rule, the Condorcet efficiency (CE) is defined as the probability of electing the
Condorcet winner when one exists:

Definition 6.5 (Condorcet efficiency). When the Condorcet winner exists, we define the Condorcet
efficiency as the probability to elect the Condorcet winner with respect to a voting rule.

Note that for plurality, the Condorcet efficiency corresponds to P (c* = Wp(b°) | ¢* exists) while the
Condorcet efficiency under randomized iterative plurality corresponds to P (c¢* = Wp(b") | ¢* exists),
for any deviation sequence (b°, ..., b"). To study whether the iterative voting increases the Condorcet
efficiency it remains thus to study the sign of the value ACE = P (c¢* = Wp(b") | ¢* exists)—Pc(c* =
Wp(b0) | c* exists).

This question has already been studied empirically by Grandi et al. [15]. However, it has been done
for a particular turn function which arbitrarily selects the voter allowed to deviate at each step. In
contrast, our proof does not assume any turn function and considers all possible deviation sequences,
via randomized iterative plurality.

In practice, we draw a preference profile under a certain culture C, and denote by C*, similarly as
Gehrlein and Lepelley [13], the culture associated with C' that is reduced to preference profiles where
the Condorcet winner exists.

Lemma 6.6. Let C' be a culture and c* the Condorcet winner, when c* exists, we have the following
decomposition: ACE = Pc(c* = Wp(b") Nc* # Wp(bY)) — Po(c* # Wp(b") Nt = Wp(b?)).

We start this formal work with a proof of the increase of the Condorcet efficiency under impartial
anonymous culture (IAC).

Theorem 6.7. Under IAC, the iterative voting process increases the Condorcet efficiency of plurality for
any m, and n sufficiently larger than m.

Proof sketch. To simplify the notations, we denote P;4¢ (- | ¢* exists) by Prac+«(+). Also, to shorten for-
mulas and thus improve the readability of the proof, we use interchangeably the notations {| PW(s)| =
k} (resp., [PW°| = k)and s € S*. To prove that AC'E > 0 whenever c* exists, it suffices by Lemma 6.6
to show that Py ac«(c* = Wp(b") N c* # Wp(b°)) > Prac+(c* # Wp(b") N c* = Wp(b?)).

The proof is organized as follows (technical details of each step are deferred to the appendix):

Upper bound on P ac+(c* # Wp(b") N ¢* = Wp(b°)): We show that this term is upper bounded
by 2?24 Prac+ (S S Sk)

Lower bound on P ¢+ (c* = Wp(b") N ¢* # Wp(b°)): We then show that this other term can be
lower bounded by (3 —€) - 2 - Prac+(s € S?).

Intermediate step: Implication between [ AC' and I AC*: To conclude, we now need to prove:

Z]PIAC*(SES'IC)g(i_e)'E'PIAC*(SGSQ) (1)
k=4

Since working directly under /AC* is challenging, we rather prove the analogous inequality under
T AC. Indeed, we can prove that if this inequality holds under I AC, it also holds under TAC*.

Putting the bounds together under / AC: It remains to prove that eq. (1) holds when considering
I'AC, which can be done using Lemma 4.8 and a couple of combinatorial identities. d
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We now state the analogous result under impartial culture (IC).

Theorem 6.8. Under IC, the iterative voting process increases the Condorcet efficiency of plurality for any
m, and n sufficiently larger than m.

Proof sketch. Following the same steps as in the proof of Theorem 6.7 but for IC, it remains to show:

S Pre(s €8 < (5 -6 Profs € 8 @
k=4

Since € is going to 0 when n is large then we can just remove it. To prove eq. (2), we first prove the case
of m = 4, and then we generalize its idea to m > 4.

If m = 4, eq. (2) writes as P;c(s € $*) < 1 - Pjc(s € S?). Let us denote by 52 the set of score
vectors with 2 potential winners obtained from some score vector of S* by transferring at most two votes
between candidates. More formally, 572 = {s € $?|3s’ € S* such that s differs from s’ in 2 votes}.
Also, for s' € 54, we denote by S472(s') all score vectors of S4~2 built from s/, i.e., S472(s') = {s €
S2|s differs from s’ in 2 votes}. To prove eq. (2) for m = 4, it is sufficient to prove that for each score
vector s € S4, there exists a function f* : S* — [9472]® associating each score vector s € S* with 8
different score vectors from S472(s) in a way that:

. Vs e f4(s),Ich(S/) > %ch(s)
« for each couple s, s’ € S, f4(s) N f4(s') = 0.

The construction of f* and its generalization for m > 4 are deferred to the supplementary material. [J

7 Conclusion

In this article, we have examined the outcomes of iterative voting for the plurality rule under different
aspects. We have particularly investigated the potential diversity of outcomes via the concepts of
possible and necessary iterative winners. Although we may find instances where all candidates can be
elected in some sequence of voters’ deviations, we have experimentally shown that this situation rarely
occurs. Indeed, the most frequent situations are when a few different candidates turn out to be possible
iterative winners. This is partly due to the existence of a necessary iterative winner, an event which
is itself “biased” by the extreme scenario where no deviation is initially possible. We show that this
extreme situation actually often occurs in our setting under impartial (anonymous) cultures.

In a computational point of view, the existence problem for a possible iterative winner is harder than
for the necessary variant. It shows in a way that the kind of robustness created by the election of the
same candidate at every sequence is easily detectable while more fluctuating scenarios are difficult to
predict. Beyond quantitative or computational results on possible outcomes, our analysis also helps
provide theoretical insights on how beneficial manipulation can be. Indeed, we show that the frequency
of election of the Condorcet winner is increased, when considering all possible iterative sequences with
equal weights, under impartial (anonymous) cultures, compared to the single outcome of the initial
plurality rule. This confirms and generalizes previous observations that were only made experimentally.

Our work opens several avenues for future work. While we have focused on a specific iterative voting
setting, one could examine the impact of other types of strategic behaviors and voting rules [20]. Another
natural direct extension would be to consider other—-more realistic-voting cultures for probabilistic
analyses, such as single-peaked ones, Mallows distributions, or even Polya-Eggenberger urns [5]. Finally,
another more subtle study would be to analyze the strategic power of the voters (or their coalitions) on
the iterative outcome, with respect to their position of deviation in the sequence or their preferences.
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Technical Appendix

Proposition 3.3. The number of moves in any deviation sequence is in O(m + n - log(m)).

Proof. We identify the worst case scenario for the number of strategic moves in a deviation sequence.
We start with a score vector in S”*. By Observation 3.8, the first move yields a score vector in S 71, in
which the (unique) non-potential winner y; has less than - votes. Since each voter i such that bl =y
can deviate to one of the m — 1 remaining potential winners, we have at most % FNPW deviations, each
yielding, in the worst case, a new score vector in S™~!. These are then followed by a FPW deviation
that yields a score vector in S™ 2. We repeat the process—for each k € [m], when we reach a score of
S,T_k, we have, in the worst case:

« m — k potential winners, each obtaining approximately m votes,
« one non-potential winner obtaining less than m votes,

+ k — 1 additional non-potential winners, each receiving zero votes.

We can thus perform at most FNPW moves and one FPW move before the next decrease of the number
of potential winners. By Meir [21], |PW?| can only decrease with ¢, so the process will terminate, and
we will have at most

- n - 1
1 =
+) 1+ — =m+n mek
k=2 k=2
m721
:m+n-27<m+n-log(m)
=0

strategic moves. U

A Diversity of Iterative Winners

A.1 Number of possible iterative winners

Proposition 4.4. When m = 3, there exist at most two possible iterative winners.

Proof. 1f there exists a Condorcet winner « then, since m = 3, there exists a weak Condorcet loser. In
fact, = is winning every pairwise comparison therefore comparing the two other candidates tells us
who is the Condorcet loser (resp., the two weak Condorcet losers). By Observation 4.1, the Condorcet
loser (resp., the weak Condorcet loser, which is disadvantaged by the tie-breaking) cannot win. Hence,
there can be at most two possible iterative winners.

If there does not exist a Condorcet winner then, since m = 3, we have to get either a strict or a weak
Condorcet cycle of pairwise comparisons between these three candidates. In the case of a strict cycle, if
we name y the initial winner, after the first strategic move we necessarily have a comparison between
y and one of the other two candidates. However, with the strict Condorcet cycle one of these two need
to lose against y thus, by Observation 4.1, this candidate cannot be elected. In the second case, the loser
of the tie-breaking is also losing, helping us concluding the proof. O

Proposition 4.5. There exist elections where all m candidates are possible iterative winners, for every
m > 4.
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Proof. The case of m = 4 has already been shown in Example 3.4. We will provide here a general
construction for every m > 5.

We will build a preference profile > with m + 1 voters and candidates x1, ..., z,,. To this purpose,
we start with a preference profile =" where each voter i € [m — 1] has the preferences x; =; ;11 =
cee g Ty i X1 >4t i Ti—1, voter m has the preferences x,, M Tm—1 =m - m T2 m T,
and voter m + 1 has the preferences x,, >m+1 Tm—2 >m+1 - >m=+1 T|m=1yy =m+1 T1 =m+1
T2 >mtl " mmal meTfl | ZmA1 T Then, we obtain our final preference profile > from 0 by
swapping the positions of the adjacent candidates z; and x,,, in agent 3 to agent m — 1’s preference
orders.

For each candidate, we will describe a deviation sequence which leads to her election. When needed,
we use the lexicographic tie-breaking rule.

o x1: Voter m — 1 deviates to x1, then voter 2 deviates to x,,,, and voter 3 deviates to x1. Afterwards,
the only potential winners are 1 and z,, and, by construction, more voters prefer 1 to x,,. It
follows that the deviation sequence will finally elect ;.

e x5, for2 <i< mT—1: Voter ¢ + 1 deviates to x;9, then voter ¢ — 1 deviates to x;, and voter m
deviates to x;49. Afterwards, the only potential winners are x; and ;12 and, by construction,
more voters prefer x; to z; 2. It follows that the deviation sequence will finally elect x;.

e x;, for mTfl < i < m — 1: Voter i — 1 deviates to x;, then voter m — 1 deviates to x1, and then
voter m deviates to x;. Afterwards, the only potential winners are z; and z; and, by construction,
more voters prefer x; to x;. It follows that the deviation sequence will finally elect ;.

e Tm—_1 if m > 5: Voter m — 2 deviates to x,,_1, then voter 1 deviates to x2, and then voter m
deviates to m — 1. Afterwards, the only potential winners are x5 and ,,—; and, by construction,
more voters prefer x,,_1 to xo. It follows that the deviation sequence will finally elect x,,—1.

e Ty_1 if m = 5: Voter m — 2 deviates to x,,_1, then voter m + 1 deviates to x1 (this is a best
response because x,,_2 = Tym=1) 4y when m = 5 and z,,_2 is not a potential winner anymore
2

because of the first deviation). Then, voter 2 deviates to x,,_;. Afterwards, the only potential
winners are 1 and z,,—1 and, by construction, more voters prefer z,,_1 to 1. It follows that
the deviation sequence will finally elect x,,, .

« X, Voter 1 deviates to xo, then voter 3 deviates to x,,. Afterwards, the only potential winners
are x9 and x,, and, by construction, more voters prefer x,, to 2. It follows that the deviation
sequence will finally elect z,. O

A.2 Extreme case of necessary iterative winner

Lemma 4.6. Given a score vector s € I, a candidate y is a potential winner for at least one voteri € [n],

ie,y € PW(s), if and only if all conditions (i) - (v) hold:

(i) Ve > y,s, < sy + 1

(i) Ve >y, 2>y, 8, < sy ors, < sy
(iii) YV, z such thaty > x, 2,5, < sy +1ors, < s, +1
(iv) YV such thaty > x, s, < 5 + 2

(v) Vx,z such thatx >y > 2,5, > sy = 5, < 5y + 1

Proof. < We suppose the conditions (i) — (v) all hold, and we show that they are sufficient for y to be
a potential winner for at least one voter. Conditions (i) and (iv) together imply that for each candidate

x, we have s, < s, + 2:
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« Suppose that there exists a candidate z such that s, = s, + 2. Condition (¢) implies that y > 2.
Therefore, y is a potential winner for each voter voting for z: indeed, we have s, +1 =5, — 1,
and y beats z by tie-breaking. Moreover:

— condition (74i) ensures that for each « such that y > z, s, < s, + 1, and in case of equality,
y beats x by tie-breaking.

- condition (v) implies that for each x > y, we have s, < s, < s, + 1, so y wins over .

+ Suppose now that for each candidate z, s, < s, + 2, and that there exists a candidate x > y
such that s, = s, + 1. Therefore, y is a potential winner for each voter voting for x. Indeed,
sz —1 < sy + 1, so y wins over x if ever it receives one vote from x. Moreover:

- condition (i%) implies that for each 2’ 1> y, 2/ # x, we have s,/ < Sy, 80 Sy < Sy + 1.
— condition (v) implies that for each z such that y > z, s, < s, + 1, and in case of equality, y
beats z by tie-breaking.

« Finally, it is easy to see that whenever s, > s, for all x >y, and s, < s, + 1 for each z such that
y D> z, y is a potential winner for all voters.

= Now we need to prove that each of these conditions is actually necessary:

« if () does not hold, then there is a candidate « such that s, > s, + 1. Hence, even if one voter of
x deviates to y, we will still have s, — 1 > s, + 1, and since x wins over y by tie-breaking, y can
not be a potential winner for any voter.

« if (i) does not hold, then there exist two candidates x and z with , z >> y, such that s, > s, and
Sy > 8y. Therefore, s; > s, +1and s, > s, + 1, and as both x and z win over y by tie-breaking,
y can not be a potential winner.

« if (i77) does not hold, there exist two different candidates x, z such that y > z, z and s, > sy +1,
5, > sy + 1. In other words, even if y obtains one more vote (possible from one of the candidates
x and z), there will be at least one of y, 2z having a strictly higher score than y, and therefore y
can not be a potential winner.

« if (iv) does not hold, there exists a candidate x such that s, > s, + 2, in other words, s, — 1 >
sy + 1, so y can not be a potential winner.

« if (v) does not hold, there exist = > y and z such that y > z such that s, > s, and s, > s, + 1. I
y obtains one extra vote from z, we will still have s, > s, + 1, so x wins over y by tie-breaking.
Otherwise, z wins over y. Hence, y can not be a potential winner. O

S| = m.

Lemma 4.7. The number of score vectors in I))" with m potential winners is equal tom, i.e.,

Proof. Let n = gm + r,r € {0,...,m — 1}, and s € S]". Let us denote by min,, resp. max;, the
minimum, resp. maximum, score value in s. Without loss of generality, we can rename the candidates
as 1,2, ..., msothat > jiff ¢ < j, and the score of candidate i corresponds to the ¢-th component s;
of s.

Since s € S}, the conditions (i) — (v) of Lemma 4.6 must be satisfied for each component s; of s. In
particular, we can make the following three observations:

O1 : ming > g — 1: let us assume for contradiction that mins < ¢ — 2. Then the condition (iv) of
Lemma 4.6 implies that maxs < ¢ for each i € [m], so

si<(¢—2)+(m—1)g<n.
=1
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Oy : maxs < g+ 2: similarly to the previous case, let us assume for contradiction that maxs > ¢+ 3.
Then ming > g + 1, and

m
sz (g+3)+(m—1)(g+1)=gm+q+2>n
=1

O3 : Itis easy to see that ming < ¢ and maxs > g.
We are now ready to prove the statement by case distinction on 7:

o r = 0 : There are two possible values of min:

— ming = ¢—1. Then we necessarily have maxs = q+1, otherwise, the sum of all components
of s would be strictly less than n. Conditions (i7) and (ii7) of Lemma 4.6 imply that there is
a unique component of score max,, which implies that there is also a unique component
of score ming (to ensure that ) ", s; = n). The condition (v) implies that s; = ¢ — 1.
We then need to choose the candidate ¢ € {2,...,m} such that s; = ¢ + 1, all remaining
candidates achieving the score of g—we note that for each possible value of i, the resulting
vector satisfies Lemma 4.6. This yields m — 1 vectors of .S;".

- ming = q. We have then max; = g—otherwise, the sum of all components is greater than
mq = n. There is a unique vector of this type, where all components are of value g.

Put together, we have |S7'| = (m — 1) + 1 =m.

« r > 1 : The previous case implies that there isno s € S such that ming; = ¢ — 1, and it is easy to
see that max, > ¢. Hence, the above observations imply that ming, = ¢, and max; € {q+1, ¢+2}:

- maxg = ¢+ 1: there are r components of s of value ¢+ 1, and (m — 1) components of value
- The condition (ii) of Lemma 4.6 implies that for each i € [m] such that s; = ¢, there is
at most one j < ¢ such that s; = ¢ + 1. Therefore, for each i > (m —r) + 1,5, = ¢+ 1-in
other words, the (r — 1) last components of s equal ¢+ 1. There is one remaining component
of value ¢ + 1 to be placed to one of the (m — r) + 1 first positions. It is easy to check that
regardless the choice, the score will satisfy all conditions of Lemma 4.6. Hence, there are
(m — r + 1) scores of this type in S]". Note that if » = 1, we are done, and |S]"| = m.

- maxs = ¢ + 2 - note that this can only occur for » > 2. There are then (r — 2) components
of value ¢ + 1, and (m — r + 1) components of value ¢. Note that there always exist (at
least two) components of value ¢, so conditions (7i) and (7i7) of Lemma 4.6 imply that there
is a unique component of score maxs = ¢ + 2. The condition (v) of Lemma 4.6 implies that
for each pair ¢, j such that s; = ¢,s; = ¢ + 1, we have ¢ < j. Similarly, the condition (%)
implies that for each pair 7, j such that s; = ¢, s; = ¢ + 2, we have 7 < j. In other words,
the (m — r + 1) first components of s are all of value ¢, and we need to place the unique
component of value ¢ + 2 to one of the remaining (r — 1) places. As previously, it is easy to
check that each possible choice yields a score satisfying Lemma 4.6. Hence, there are (r — 1)
scores of this type in S]".

Putting both types together, we have |S]'| = (m —r+ 1)+ (r — 1) =m. O

St = (m = k) (1),

Lemma 4.8. For each k € [m)|, X

Proof. Let us start by defining the set of partial scores S,T_k as follows: for each s € ST, we define
§ € S™F such that §; = s; for each i ¢ PW (s), and for each j € PW (s), 3, is a variable such that
we have
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Note that two (or more) scores s, s’ € S7~F can yield the same partial score of Sm=F _ this happens
if PW(s) = PW(s) and each non-potential winner gets the same number of votes in both s and s'.
We remove these duplicates from 5’7’{‘*’“ Lemma 4.7 implies that each partial score of 5’7’{‘*’“ can be
completed into (m — k) scores of S7**. Therefore, we have |S7*~*| = (m — k) - |S™¥|, and it remains

to prove that |§m*k| = ("*’2_2)-

We proceed by induction on k. If k = 0, Lemma 4.7 implies that |S”"*| = (m — k), and |S7%| =

1= ( 0 ) Let us now suppose that for given k, we have, for eachn > 0, Sm k= ("—ka 2) and let us
prove that, for every n > 0, S)' —(HD) (”Z_Iil 1).

We have:

S n+1+k—2 n+k—1)!
S"+1k:< k )Z (k!(n—l)!) -
(e k-D(k+1)
SR+ D(n-2)!(n—-1)
_ <n+(k+1)—2>_k+1 _

kE+1 n—1
_gm-(kty) k1
" n—1

Therefore, we get, for every n > 0, Sy’ —OHD) _ gmek nl (("H),jkd) : 2%% = % =

% = (n;:f_l 1), which ends the proof. 0

Theorem 4.12. Under impartial culture (IC), P;c(E™) > 1+ ™ (m D (gb(a_jﬁ) —o(= f)) where ¢

is the cumulative distribution function of a standard Gaussian, ¢ = 4/ % and this probability is increasing
with respect ton.

Proof. As in the proof of Theorem 4.9, we use P;c(E™) > P;c(S}) We start by the following remark:
“if for each pair of candidates i, j € M, |s; — s;| > 2, then there is a unique potential winners in score s".

Therefore, P;c(Sy) > Pro(Vi, j € M,|s; — s;| > 2) There exist (') = M pairs of candidates.
We denote X ,g R the random variable that equals if the k-th voter has voted for the i-th candidate, and 0
otherwise. We then denote Yi’j X 0 _x ,ij ) , Vi # j the difference of those random variables such that

=YY ’] . Note that( )1<k<n are independent, P;(Yy, = 1) = Py (Yy = —1) = L and
IPIC(Yk =0) = 1—%Therefore, P,C(w,j € M,[S;—S;j| >2)=Prc(Vi,j € M,| Y o Y?| > 2).

m- (m 1)

By Bonferroni’s inequality, P;o(Vi,j € M,|> }_, ’J| > 2) > Zk o Pre(I3 0, k"vj| >
m-(m—1)

2) — (W —1). AsallY, "I follow the same law we have: Zk o P>z k’]\ > 2) —
(W -1)=1+ % (Pre(] Zk 0 ’J| > 2) — 1). It remains to find a lower bound to

Pro(|>ro Y]:’j] >2) = Pre(Xi, kJ > 2)+ P> 0 ’] < —2). Using Berry Essen’s
theorem [3, 9] we get the following lower bounds: P;c (>, Y,” < —2) > (j)(gfjﬁ) - 3 f and
Pro(Choo V! >2) > Pro(Sh_ Yy’ >2)=1- IPIC(Zk Vil <21 ¢(U.f/g) - Ug\%,
where o is the standard deviation, C is a constant, p the moment of order 3, ¢ is the repartition of
a standard gaussian and t - oy/n = 2, t from the original formula. However, if we compute p for
Py , we obtain p = 0, therefore simplifying the inequality as follows: Pro(|> oY, i’j | >

o f) + 1 — (= \f) As expected, this converges to 1 asymptotically in n since ¢(0) = 0. We ﬁnally

get: Pro(B)) > 1+ (7; L. ((;5(07\%) — (= f)) Note that ¢( f) - qﬁ(g—?/ﬁ) can be verified to

be negative since this the repartition of a standard gaussian. Therefore, this bound is increasing and
goes to 1 asymptotically in n.
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B Possible and Necessary Winner Problems

Theorem 5.2. NECESSARYITERATIVEWINNER is in P.

Proof. We will provide a polynomial number of conditions, which can be checked in polynomial time, on
the preference profile > to determine whether a given candidate y is a necessary winner. We distinguish
the cases where y is the initial truthful winner w® or not.

Is candidate y # w° a necessary winner? Trivially, by Observation 3.7, if y ¢ PW?0, then she
is not a possible, and thus not a necessary iterative winner. Therefore, we assume from now on that
y € PWY. Let us give some necessary conditions for 3 to be a potential winner along each possible
deviation sequence:

(i) Forall z € PWY\ {w®,y} and alli € NY, we have x >, z: Otherwise, there exists a candidate
z € PW9\ {w? y} and a voter i € N¥ such that z =; x. There exists then a deviation sequence
where ¢ is the first voter to deviate, and she will do so from her initial ballot for y to a ballot for z.
It follows from Observation 3.8 that y is not a potential winner anymore after this first step and
thus, by Observation 3.7, y will not be the iterative winner in this deviation sequence, implying
that y is not a necessary iterative winner.

(ii) Assume that (i) holds. For every candidate z; € M \ {w", y} and voter i € N*!, we must have
either w® =; z for every z € PW°\ {w®, 21}, or y =; w®. Otherwise, there exist a candidate
z1 € M\ {w®, y}, a potential winner zo € PW°\ {w®,y, 21} and a voter i € N*! such that
29 = 2, for every z € PWY\ {21, zo}. There exists then a deviation sequence where i is the
first voter to deviate, and she will do so from her initial ballot for z; to a ballot for z5 (that she
prefers to w?). Since w® was the initial winner, she is still a potential winner after this deviation.
Therefore, there exists a second deviation in which a voter j € NY deviates from her initial ballot
for 7 to a ballot for w" (that she prefers over all potential winners other than v, by (i)). Thus, by
Observations 3.7 and 3.8, y will not be the iterative winner in this deviation sequence, implying
that y is not a necessary iterative winner.

Assume that the conditions (i) and (ii) hold, and let us look closer to point (ii) where there are two cases
to distinguish:

. If, for every candidate z; € M \ {w,y} and voter i € N, we have w’ ~; z for every
z € PWY\ {w", 21}, then no deviation can occur. It follows that the initial winner w° will be
the unique possible—and thus necessary-iterative winner, implying that y cannot be a necessary
iterative winner.

« Otherwise, there exist a candidate z; € M \ {w’, y} and a voter i € N*! such that y =; w. In
that case, by Observation 4.1, y is the unique possible—and thus necessary—iterative winner iff

|(Uz€M\{fw0,y} Nz)y>_w0‘ > ‘(Uze]\/f\{wo,y} Nz)w0>—y‘.

Is candidate v a necessary winner? If, for every candidate z; € M \ {w"} and voter i € N*1, we
have w® >, z for every = € PW°\ {w", 2}, then no deviation can occur and w? is a necessary winner.
Therefore, we assume from now on that there exists a candidate z; € M \ {w®}, a voteri € N*' and a
candidate 2o € PWY\ {w", 21} such that zo >=; w’, i.e., there is a voter with an incentive to deviate
from the initial truthful profile b°.
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For a candidate y € PW°\ {w"}, let PW¥ C PW? denote the set of potential winners in the strategy
profile b>¥ resulting from a best response electing candidate 3, where a voter changes her initial ballot
to a ballot for 3, performed from the initial truthful profile b°. Suppose that there exist a candidate
21 € M \ {w"}, a potential winner zo € PW°\ {w?, 21}, a voter i € N* such that 2, ; 2 for every
z € PWO\ {21, 2}, a candidate y € PW#2 \ {w®, 2,} and a voter j € N*’ such that y >; z for
every z € PW1#2 \ {w®, y}. It means that there exists a deviation sequence where voter i is the first
voter to deviate and she does so from her initial ballot for z; to a ballot for 25 (that she prefers to wo),
and then voter j is the second voter to deviate and she does so from her initial ballot for w° to a ballot
for y (that she prefers to the current winner z3). It follows from Observations 3.7 and 3.8 that w” will
not be the iterative winner in this deviation sequence, implying that w° is not a necessary iterative
winner. Therefore, we assume from now on that, for every candidate 2; € M \ {w"}, potential winner
2o € PWO\ {w?, 21}, voter i € N*! such that zp =; 2 for every 2 € PWY \ {21, 22}, we have all
voters j € N who prefer 2, over all potential winners in PW 122 \ {w?, 2z},

Let Z denote the set of all potential winners to which there is a voter who has an incentive to deviate
and A(y) the set of voters having an incentive to deviate toy € 7, ie., Z := {y € PWO\ {w’} : 3z €
M\{w® y},i € N st.y =; 2, V2 € PWO\{y,z1}}and A(y) := {i € N : 3z € M\{u'} st.i €
N* gy = 2z, Vz € PWO\ {y, z1}}. By definition, we have |A(y)| > 0 foreveryy € Z. If |Z| = 1
with Z = {y}, then the only first deviations that can occur are towards candidate y and no further
deviation can then occur for a candidate different from w° or y and, by assumption, voters in N w’
are satisfied by both candidates w® and y and thus do not deviate. It follows that w" is the unique
possible-and thus necessary-iterative winner iff (U, 140, N>y > (Uen fud 41 N=)yy=v’
Let us thus assume, from now on, that |Z] > 1.

By assumption, for every potential winner z € Z, every voter j € N wh prefers z to any other potential
winnery € ZNPW 7. It follows that, for every candidates 21, zo € Z such that z; # 2o, we have either
21 ¢ PW1Y22 or 29 ¢ PW1*1, Note that both cannot hold simultaneously because for zo ¢ PW ! to
hold, since zo € PW?, we need that z; > 25 or that z5 > w" > z; while 25 has one vote less than both
21 and w' in the initial scores; under either condition z; is still a potential winner in the ballot profile
b*2 resulting from a best response from the truthful initial profile where zo gets one additional vote.
Consequently, for every 21, 2o € Z, we have either z; ¢ PW 2 and 2z, € PW'*! and all voters in
Nv' prefer z; to 2o, or 29 ¢ PW1# and z; € PWY#2 and all voters in Nv° prefer 22 to z;. We can
thus assume, w.lo.g, that Z = {z1,..., 2}, with z, ¢ PWY2, 2, € PW'* and 2 =; 2y for every
voter j € N*" andevery 1 < t <t/ < £.

For given indices t| < to < t3 € [(], let A>'3(¢;) denote the set of voters in A(z;,) who prefer z, to
w® and to 2 forall t3 <t < 4, e, A% (t1) := {i € A(z,) : 21, =; w¥ and 2y, =; 2, Vi3 < t < £},
If there exist ¢,¢' € [(] such that ¢ < ¢’ with |A(z) U Upep_q) ABY(#)] > 1, then there exists a
deviation sequence where a voter i; € A(z;) first deviates to a ballot for z;, then a voter j € A(zy)
deviates to a ballot for 2/, and another voter iz € A(z¢) U Uprepr_1; AYY(¢") then deviates to a ballot
for 2, creating a gap too important between the score of the current winner and the score of w”, which
thus cannot be a potential winner anymore. Consequently, by Observation 3.7, w® will not be the
iterative winner in this deviation sequence, implying that w? is not a necessary winner.

Otherwise, it means that, for every candidate z; € Z, all voters in A(z;) prefer z, or w to every
zp € Z\ {2, 20} (if not, [A¥(t)| > 0, and the previous condition would hold). Since, by definition, all
voters in N\ (,_1) A(2¢) prefer w” to all candidates in Z, it follows that w” will be the unique possible-

and thus necessary-iterative winner iff (U, (w0 2.} N=)w'=z > (U.enn fuwo 20} N#)zemw? O

Theorem 5.3. PossIBLEITERATIVEWINNER is NP-complete.

Proof. The problem belongs to NP because, given a sequence of voter strategic deviations, we can check
in polynomial time whether it is valid and eventually elects a target candidate ¢ at equilibrium because
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the length of such a sequence is polynomially bounded (see Proposition 3.3).

For hardness, we perform a reduction from Exact CoveRr By 3-SETs (X3C), a problem known to
be NP-complete [11]. In an instance of X3C, we are given a set X = {z1,22,...,23,} and a set
S =1{851,852,...,5,} of 3-element subsets of X and we ask whether there exists an exact cover, i.e., a
subset S" C S of size |S’| = ¢ such that every element of X occurs in exactly one member of S’, in
other words, S’ is a partition of X. We consider the variant of the problem, that is still hard, where
each element x; occurs in exactly three subsets of S, implying that r = 3q.

For each element z; € X, we create a corresponding element-candidate y;. For each subset S; € S, we
create one candidate d; and three subset-candidates s}, s?, and s? associated with the three elements
of subset S;. For each ¢ € [2¢], we create an candidate z;, supposed to correspond to the 2¢ elements
of S which are not chosen for the partition of X. We additionally create five candidates, namely
a, b, ¢, e, and t. The tie-breaking rule is given by the following linear order over the candidates:
CL\>b|>C|>Zl|>“'\>22q\>y1[>"'[>y3q|>t\>d1\>“‘[>d3q|>€\>5%DS%DS:{)D"'DS%(]DS%]DS%[T

For each element z; € X, we create 3¢ element-voters Yf, for ¢ € [3¢q], whose preferences are as
follows for each i € [3¢], where s°(z;) stands for the subset-candidate 5? such that the k' element of
subset S; is the /" occurrence of element z;, when ¢ € [3]:

Y oy st () =a-t=[..] ifle[3

(2

Vi yi=a=t=][..] if4 <¢<3q

(2

For each ¢ € [2q], we create 3¢ voters Z}, for j € [3¢], with the following preferences:
Z1: zpmcmyi - ysg st -2 di - a-t - [ ]
¢~ n Ysq = S; j j ]

To allow all candidates to be potential winners, we create the voters At, Bt Cf, Df , EX, Sf i and Tt,
for j, ¢ € [3¢] and k € [3], with the following preferences:

AL a=b=t-1...]
B b=a=t>][..]
Cl: c-e=a-t>]..]
Ut u=as=t>]..]
for (U,’LL) € Uje[gq]{(Dj7dj)’(Sj,kvsﬁ)}u{(E?e)}
T t=a=b>=]..]

We finally create an candidate f and a voter F' with the following preferences:

F: foz1>>290>y1 > >ysg>=t>=a>b>1[..]

By construction, in the truthful initial profile, there are exactly 3¢ votes for each candidate except f,
and thus candidate a is winning, thank to the tie-breaking rule.

We claim that there exists a subset S’ C S which is a partition of X iff there exists a sequence of voter
strategic deviations which leads to the victory of candidate ¢.

—: Suppose first that there exists a subset S’ C S which is a partition of X, say S’ = {Sji ey Sj(/]}
where ji < -+ < jé. By definition, each element z; is covered by exactly one element of S’, say that
x; is covered by the element of S’ which contains the klth occurrence of element x;, for k; € [3]. We
will thus let voter szl deviate to subset-candidate s*(x;). We will schedule these deviations with

respect to the tie-breaking order >, i.e., voter X lk ¢ deviates before voter X i’fi/, with sé? = gki (x;) and
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5?,/ := sk (xy),iff j > 4/, or j = j" and k > k'. It follows that each candidate y; loses one vote, while

each candidate s;?, gains one vote, for each ¢ € [¢] and k € [3], by decreasing order of indices.
4

Then, voter C'! deviates from her vote for candidate ¢ to a vote for candidate e, and thus ¢ loses one
vote. It follows that none of the candidates ¥, ..., y3, and c are potential winners anymore, nor are any
of the subset-candidates associated with elements of S\ S’.

Let us consider the set of non-chosen elements of S, i.e, S\ S = {S},,..., S}, } where j1 < --- < jog.

For £ = 2q to £ = 1, we let voter de deviate from candidate 2, to candidate d;,. This is a best response
because none of the candidates y; ..., y34, ¢, and sjl-e, 5?@ and 3?2 are potential winners.

Afterwards, voter F' deviates from her vote for candidate f to a vote for candidate ¢. This is a best
response because none of the candidates 21, ..., 294 and y1, ..., y3, are potential winners. Now let
voter A' deviate from her vote for candidate a to a vote for candidate b. It follows that candidate a
is not a potential winner anymore. If we then let, e.g., voter D1 deviate from her vote for candidate
d; to a vote for candidate ¢, then b and ¢ are the only remaining potential winners, with 3¢ 4+ 1 and
3q + 2 votes, respectively, while the other candidates which are less (resp., more) favored than ¢ (resp.,
except b) have at most 3¢ + 1 (resp., 3¢ — 1) votes. Since there are more voters preferring ¢ to b than
the reverse, among the voters who do not currently vote for any of them, it thus leads to a sequence of
voter deviations eventually electing candidate ¢ at the equilibrium.

<= : Suppose now that there exists a sequence of voter strategic deviations which leads to the
victory of candidate ¢. First observe that, since all candidates (except f) have initially the same score,
any iterative winner must gain at least one vote and thus must have at least 3¢ + 1 votes. Therefore,
candidate ¢ must gain at least one vote. Since candidates a, b, ¢, 21,..., 224, Y1, ..., Y34 are more
favored by the tie-breaking order I than ¢, none of them can gain a new vote before ¢ gets one, because
otherwise ¢ would not be a potential winner anymore. All voters prefer a to t, except voters T, who
already vote for ¢, and voter F'. Moreover, the only possibility for a to not be a potential winner before
t can gain one vote, would be that some voter A¢ deviates, and the only possible deviation would be
towards b, a contradiction. Therefore, we need that voter F' deviates to ¢, and this is the only possible
first deviation to ¢.

However, voter F' prefers all candidates 21, ..., 224 and y1, ..., y3,, initially potential winners, to
candidate ¢. Therefore, we need for I’ to deviate to t as a first deviation to ¢, that none of the candidates
21,...,%2¢ and y1, ..., y3, are potential winners, while ¢ is still a potential winner. The only possible
way to achieve this situation, is that every candidate z, and y;, for ¢ € [2¢] and i € [3¢], loses at least
one vote.

Therefore, we need that at least one voter YZ-Z, for some ¢ € [3¢]|, deviates from her current vote for
s, for each i € [3¢|. The only possible deviation which can still enable the future election of ¢ is by a
voter Y;* for k € [3] towards s¥(x;). Let us construct the subset S’ C S such that all elements of S’
correspond to subset-candidates s*(z;) to which some voter Y;* deviates to, so that y; is not a potential
winner anymore, for each i € [3¢g]. By definition of s*(z;), it follows that S’ covers all elements of X.

We also need that at least one voter Zg , for some j € [3¢], deviates from her current vote for zy, for each
¢ € [2q]. To enable the first deviation of F' to ¢, such a voter Zg should not deviate to c or y1, ..., Y34,
and thus none of these candidates should be a potential winner. It follows that all previously described
deviations of voters Y, should occur before those of Z]. Moreover, the only possibility for ¢ not being
a potential winner anymore is that it loses one vote, with a deviation by a voter C*, for some ¢ € [3¢].
Such a voter must deviate to candidate e. Then, by the tie-breaking order, none of the subset-candidates
not chosen for deviation by voters Y;g can be a potential winner anymore. Voter ZZ can thus deviate to
a subset-candidate s;? for k € [3] which has previously been chosen for deviation by a voter Y or, if
none of them has been chosen, to candidate d; if not already the winner. However, it is not possible for

23



the future election of ¢ that ZZ deviates to a subset-candidate s;‘? or to a candidate d; which has already
gained votes because, otherwise, such candidates would get at least 3¢ + 2 votes and ¢ would not be a
potential winner anymore. It follows that each such voter Z] deviates to a different candidate d;, and
that no subset-candidate sé‘? , associated with the same element S; € S, has been chosen for deviation

by voters Y;f . Since there are 2¢ different such voters ZZ associated with different elements S; € S
which are not part of S’, it means that |S’| = ¢ and thus it is an exact cover of X. O

C About Electing the Condorcet Winner

C.1 The Condorcet winner as an iterative winner

Proposition 6.4. If the Condorcet winner is a potential winner of the truthful ballot b° (given a profile ),
then she is a possible iterative winner.

Proof. Let c* be the Condorcet winner of given profile >, ¢* € PW". We show by construction that
there exists a deviation sequence (b°,b%,... ") € DS(>) such that w” = c*.

If |PWP°| < 2, then, by Corollary 4.2, ¢* is a necessary and thus possible winner. Let us assume from
now that |[PW?| > 3. In order to build a deviation sequence in which c* is elected, we repeatedly use
observation 3.8 to rule out potential winners one by one, until we reach the situation where there are
only two potential winners including ¢* (hence, c* is guaranteed to be elected). For each iteration ¢ of
the deviation sequence, there are two cases to distinguish:

« c* is not the current winner: if there exists a potential winner y € PW? and a voter i such
that bﬁ = y and ¢* >; y, then i can change her ballot from y to ¢*, and by Observation 3.8,
y ¢ PW'! | Otherwise, all voters that vote for a potential winner at iteration ¢ prefer all
potential winners to c*. By definition of the Condorcet winner, there are less than 5 such voters,
and there are less than 5 voting for c* (otherwise, we could not have more than 2 potential
winners). Therefore, there exists a candidate z ¢ PW' and a voter j such that b; =zandc" -,y
for each y € PW?. j can make a strategic move from z to c¢*, making c* the current winner. If
after this move, |[PW!*1| < 2, let k be a voter such that b = b, = 2 € PW* . As for any
y € PW'TL\ {c*, z}, we have y =, c*, the voter k can change her ballot from z to any other
y € PW1\ {¢*, 2}, so by Observation 3.8, x ¢ PW'*2,

+ c* is the current winner: if no strategic move is possible, we are done. Let us now assume the
opposite. If there exists a voter 4 such that b’;f =x € PW!, and Yy € PWZ.t such that y >; c*, then
i can change her ballot for x to a ballot for y, and by Observation 3.8, = ¢ PWttl Otherwise,
each voter casting her ballot for a potential winner at iteration ¢ prefers c¢* to any other potential
winner. Then only FNPW moves are possible. Let j be a voter such that b; =z ¢ PW?! and
Yy € PW} such that y >; c*. Then j can change her ballot for z to a ballot for y. If after
this FNPW move, PWitl = {y, c*}, ¢* is a necessary (and thus possible) winner. Otherwise,
there exists a candidate * € PW "1, and we have assumed that each voter of = prefers c* over
all the other potential winners (different from z). In particular, there is a voter k such that
b}tjl = z who prefers ¢* to the current winner y. k will then move to ¢*, and by Observation 3.8,

x ¢ P2, 0

C.2 Condorcet efficiency of the iterative rule

Lemma 6.6. Let C be a culture and c¢* the Condorcet winner, when c* exists, we have the following

decomposition: ACE = Pc(c* = Wp(b") Nc* # Wp(bY)) — Po(c* # Wp(b") Nt = Wp(bD)).
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Proof.

=Pe- (" = Wp(b") N ¢t =Wp(HY))
+Pex(c* = Wp(b") N c* # Wp(b?))
—Pe(c* =Wp@°) N ¢ = Wp(b))
—Pe-(c* =Wp°) N ¢ #Wp(b))
=Pc(c* =Wp(b") N c* #Wp(®Y))
—Peo(c* #Wp(") N & =Wp(t0))

O]

Theorem 6.7. Under IAC, the iterative voting process increases the Condorcet efficiency of plurality for
any m, and n sufficiently larger than m.

Proof. To prove that ACE > 0 whenever ¢* exists, it suffices by Lemma 6.6 to show that

Prac(c* = Wp(b") Nc* # Wp(b0) | ¢* exists)
> Prac(c* # Wp(b") Nt = Wp(b°) | ¢* exists)

To simplify the notations, we denote P;4¢ (- | ¢* exists) by Pyac+(+). Also, to shorten formulas and
thus improve the readability of the proof, we use interchangeably the notations {|PW?9(s)| = k} (resp.
|PW°| = k)and s € S*.

Upper bound on P ac+(c* # Wp(b") N ¢* = Wp(b?)):  We first note that {c* # Wp(b") N ¢* =
Wp(b0)} € {Ur,S*}. Indeed, if s(b°) € S¢ for i < 2, then by Corollary 4.2, ¢* = Wp(b"). By
Proposition 6.1, we also have c* = Wp(b") when s(b°) € S3 and ¢* = Wp(b°). Therefore,

Prac(c* #Wp(b') N ¢t =Wp(?))

< Prac (ULy{|PWO| = k}) = > Prac-(|PW°| = k)
k=4

The last equality is obtained because {|PW°| = k}4<r<nm, is a partition.

Lower bound on Py 4c+(c* = Wp(b") N ¢* # Wp()):
We have:

Pracs(c* = Wp(b') N ¢ # Wp(bY)) >
> Prac-(c" = Wp(b") N ¢ # Wp(°)
=Prac-(c" =Wp(b') N " #Wp(1)
Prac(s € §%)
> Prac(c* =Wp®") N ¢ #Wp°) N ¢ € PWO(s) | s € S?)
Prac-(s € §%) >
> Prac-(c" =Wp(b") N & #Wp(°) | ¢t € PWO(s),s € S?)
‘Prac+(c* € PWOs) | s € S?) - -Prac-(s € S?)

N seS?
| s € S%)

Let us now look closer to the two first terms of the last product:
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(i) Prac+(c* =Wp((b") N c* #Wp () | c* € PW(s),s € §?):
As the distribution over scores is uniform under IAC, if PW° = {¢, '}, then each of these
two candidates has the same probability to be the initial winner. In other words, Prac(c =

W,(8°)) = Prac(c = Wp(b°)) = 3. Under IAC*, the distribution over scores is biased in favor

of the Condorcet winner ¢* - we have
* 0 * 0 2 1
Prac-(c" # Wp(b7) [ " € PW7(s),s € §7) = 5 — ¢,

with € going to 0 when n grows and m is fixed. In addition, under assumptions that s € S? and
c* € PW9(s), by Corollary 4.2, c* is the necessary winner, thus

{c" =Wp(') Nt #Wp(H")} = {c* # Wp(1")}
and hence

Prac-(c" = Wp(b) 0 ¢ £ Wp(t") | & € PW(s), 5 € 57) =
1

25—6.

(i) Prac+(c* € PWO(s) | s € S?):
Again by the uniformity of scores under IAC, we have, for any m and any candidate c, for any
m, Prac(c € PWO(s)|s € S?) = % Indeed, among the (') equally likely pairs of potential
winners, ¢ appears in m — 1 of them. Under I AC*, this distribution is again biased in favor of
the Condorcet winner ¢*, which yields

2
Prac-(c* € PWO(s) | s e 5?) > —

Put together, we get:

Prac(c* =Wp(b") N c* £ Wp(b?))
1 2

> (5 —€)- E'PIAC*(S € S?)

Intermediate step: Implication between /AC and JAC*: To conclude the proof, we now need to
prove that:

> Prac-(s € 8) < (l—f)'%']PIAC*(SESQ) (3)

2
k=4
As working directly under the I AC* distribution seems challenging, we will rather prove the analogous
inequality under IAC:

m 1 5
> ]PIAC(SGSk)g(5—6).E.P1AC(8652) @
k=4

We can actually prove that Equation (4) implies Equation (3). Indeed, let us assume that Equation (4)
holds. We note that

Prac(c* exists | s € Uk<45k) < Prac(c” exists | s € 52)

since the probability of Condorcet winner existence increases as the score becomes unbalanced. There-
fore, we obtain
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m
ZIPIAC(S € Sk) - Prac(c* exists | Uggy Sk)
k=4

1

2
(5 —€)- ol Prac(s € 52) ‘Prac(c” exists | s € 52)

N

Dividing by P;sc(c* exists), we get:

S Prac(s € S*) - Prac(c* exists | Uges S*)
Prac(c* exists)

_ (3 —€) 2 Prac(s € S?) - Prac(c* exists | s € S?)

Prac(c* exists)

By the conditional Bayes’s formula, we end up having:

m
ZIP[Ac(S € 5% | ¢* exists)
k=4

1 2

<(=—¢)-—-P € S? | ¢* exist
(2 €) - 1Ac(s | ¢* exists)

which is nothing but Equation (3):

Putting the bounds together under I AC: It remains to prove that Equation (4) holds. Using

Lemma 4.8, we get:
—4 k—2
jeo (M — k) - (n+k )

(")
g 220000
2 m ()

With some algebraic simplifications and the use of the identity & - ("+£_2) =(n-1)- (nji;z) and
perform a change of variable. This yields:

m—4 m—>5
n+k—2 n+k—1
. —(n—1)-

k=0 =0
92 n+m—4
<. 22005
2 m m

Using the following inequality (that can be easily proven by mathematical induction)

;i(A;—k) _ (A+]J\\44+1>

with A = n — 2and M = m — 4 for the first sum and A = n — 1 and M = m — 5 for the second, we

get:
m n+m-—>5 C(n—1) n+m-—>5
m—4 m—2>5
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In other words:
2. n+m-—>5 Cme(n—1)- n+m-—>5
m — 4 m—>5

g(l_e).iz. <"+m_4>

2 m m— 2

If we increase n, we will see that the inequality has to become true at some point. Indeed, ¢ becomes
small as n grows and for m fixed and n large enough the left hand side becomes negative thanks to the
second term while the second is increasing in n and is positive. O]

Theorem 6.8. Under IC, the iterative voting process increases the Condorcet efficiency of plurality for any
m, and n sufficiently larger than m.

Proof. Following the same steps as in the proof of Theorem 6.7 but for IC, it remains to show:

S Pro(s € 8 < (% _ ). % Pro(s € $?) (5)
k=4

Since € is going to 0 when n is large then we can just remove it.

To prove eq. (5), we first prove the case of m = 4, and then we generalizes its idea to m > 4.

Case of m = 4:
We need to prove that

1

Pro(s € 54) < 1 ‘Pro(s € 52) (6)

Let us denote by S*7?2 the set of scores with 2 potential winners obtained from some score of S*
by transferring at most two votes between candidates. More formally, S*72 = {s € S?|3s' ¢
S such that s differs from s’ in 2 votes}. Also, for s’ € S*, we denote by S*72(s') all scores de S*72
built from s/, ie., S*72(s') = {s € S?|s differs from s’ in 2 votes}. To prove Equation (6), it is sufficient
to prove that for each score s € S%, there exists a function f4 : S* — [S472]® association each score
s € 8% with 8 different scores from S*72(s) in a way that:

. Vs e f4(s),]ch(s’) > %P[c(s)
. for each couple s, s’ € S, f4(s) N f4(s') = 0.

We define below the function f4. Let s* € S%. It remains to find 8 scores of S*~2(s) such that for each

52 € §472(s), E;ggzjg > 1. We define f* so that all scores of f* are of the two following types:

. Type 1: s? € f*4(s*) was built from s* by transferring two votes from a unique candidate j to

two different candidates ¢ and k.
. Type 2: s> € f*(s*) was built from s* by transferring one vote from candidates j,[ to two

remaining candidates i, k
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We denote s* = (s1, 53, s, s7), s* € S, and s? = (53, 53, 53, s7), s? € 52, and we have We have:

n! 1

P 4 T \n
1c(s") s%!'s%!-sél'sj!(m)
and | .
n!
P 3= il L
() = o ar a2t
Let us show that for each of these types, we have g ggzig > % for n sufficiently large.
« Type 1: in all cases where we don’t change the winner (resp. the winner changes), s? —st <1
(resp. |s§ — s} <2)and s{ > q—1foreachk € {1,2,3,4}.
Then we get:
Pro(s?) _ s5(s5-1)
Pro(st)  (si+1D(sp+1)

The smallest ratio is reached when 3;* =q—1, s? = ¢ and s% = q if we don’t change the winner
and for s? =q+2 sf =gqand s% = q + 1 otherwise.
Therefore,

Pro(s?) _ (¢=1)(g—2)

Pio(st) © (g+1)?

We find this ratio is greater than % for ¢ > 8,ie.,n > 32.

« Type 2: two votes are transferred from two different candidates j, ! to two different candidates
1, k. We get
Pro(s?) _ (57— 1(s —1)

Pro(st) — (sf+1)(s +1)

The same as in the previous cas, sé > g—1foreachp € {1,2,3,4},and foreachp,p’ € {1,2,3,4},
we have |5} — s§,| < 2. Therefore,

Pro(s?) S (q—2)?
Pro(st) = (¢+2)%

which is greater than % for ¢ > 12,ie., n > 48.

We will now build 8 scores of f(s?) as follows:

« We will create 5 scores of type 1, by distinguishing three sub-types:

— 2 scores where the winner of s gets one more vote and the looser of s* is not modified. We
can then choose arbitrary which of the two remaining candidates x and y will get one more
vote, and which one will loose two votes - indeed, each of these both choices yields a score
of two potential winners, namely the winner of s* and the other candidate that gets one
vote.

- 1 scores where the the winner of s* gets one more vote, the third-ranked candidate of stis
not modified, and the second-ranked candidate looses two votes.

— 2 scores vectors where the winner looses two votes. The candidate that is not modified
needs to be the third or fourth ranked candidate of s in order to ensure that the resulting
score has two potential winners.
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« Finally, we will create 3 more scores of type 2. The winner can not loose a vote because, depending
of the number of votes of remaining candidates, we might reach a score with 3 potential winners.
Therefore, the winner will get one more vote, and we have 3 choices for the second candidate to
get one more vote, each of these yielding a score with 2 potential winners.

Moreover, all scores built by this construction are different, i.e | f4(s)| = 8. Indeed, when starting from
the same winner and adding one to her then the subtraction part differentiates the score of case 1 and 2.

The last thing to check is that f4(s) N f4(s’) = (). Is is easy to see that for all cases where the winner
gets one more vote (and in particular remains the winner), we can not have duplicates. Indeed, every
score in Sfl yields a different winner, so winners will also be different in new scores. In the case we
allow the winner to loose points (only for type 1) then this candidate who is now outside the potential
winner set is last and characterized different new scores also.

General case: m > 4

We now explain how the construction of f* can be generalized for any m > 5. Let m = 5, for the case
where the number of potential winners is 5, we can apply the same reasoning and we will have more
cases to enumerate. For instance, for type 1, there is one more candidate that can loose 2 votes. Therefore,
we can apply exactly the same idea of transformation as previously, namely f° : S° — [S®72)",
where h > 8 and f°(s) N f4(s’) = 0 because we start from different scores.

Let us show that h — 8 > 2 to preserve our probability ratio greater than % Indeed, in case 2 we are
able to build 3 more scores by taking a point to the fifth candidate, i.e. we now have (;’) = 3 choices to
subtract a point to two candidates. The case where this candidate has no vote can be treated separately.
We see that these scores do not intersect. By recurrence, we apply the same reasoning when considering
one more candidate and see that all the difficulty remains in the case of four potential winners for any

m. OJ
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