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Abstract

We consider a voting model, where a number of candidates need to be selected subject to certain
feasibility constraints. The model generalizes committee elections (where there is a single
constraint on the number of candidates that need to be selected), various elections with diversity
constraints, the model of public decisions (where decisions need to be taken on a number of
independent issues), and the model of collective scheduling. A critical property of voting is
that it should be fair—not only to individuals but also to groups of voters with similar opinions
on the subject of the vote; in other words, the outcome of an election should proportionally
re�ect the voters’ preferences. We formulate axioms of proportionality in this general model.
Our axioms do not require prede�ning groups of voters; to the contrary, we ensure that the
opinions of every subset of voters whose preferences are cohesive-enough are taken into account
to the extent that is proportional to the size of the subset. Our axioms generalize the strongest
known satis�able axioms for the more speci�c models. We explain how to adapt two prominent
committee election rules, Proportional Approval Voting (PAV) and Phragmén Sequential Rule,
as well as the concept of stable-priceability to our general model. The two rules satisfy our
proportionality axioms if and only if the feasibility constraints are matroids.
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1 Introduction

We consider a general voting scenario, where a subset of candidates needs to be selected based on the
voters’ preferences. The generality of this model comes from the fact that we do not consider speci�c
types of elections, but rather assume we are given feasibility constraints as a part of an election. The
constraints encode the type of election by specifying which subsets of candidates can be elected. For
example, if the goal is to select a �xed number of candidates, say k of them, then the constraints would
simply indicate that all k-element subsets of the candidates are feasible. Naturally, the model allows the
incorporation of additional diversity constraints that specify lower and upper bounds on the number of
selected candidates from di�erent demographic groups.

Yet, the general feasibility constraints give much more �exibility and allow us to capture considerably
more complex scenarios, which at �rst might seem not to be about selecting subsets of candidates.
For example, consider the setting of public decisions where we need to make decisions on a number
of independent issues [16, 23, 39, 14, 26, 10]. For each alternative we can introduce a candidate and
the feasibility constraints would indicate that exactly one alternative needs to be selected on each
issue. Similarly, consider a model where the voters provide partial orders over the candidates and the
goal is to establish a ranking of the candidates [17, 41]. This can be also expressed in our model by
introducing auxiliary candidates: for each pair of candidates, ci and cj , an auxiliary candidate ci,j would
indicate that ci is ranked before cj (either in the resulting ranking or in the voters’ ballots). Our model
also captures committee elections with negative votes [5, 42] and judgement aggregation [29, 18]—we
explain this in Section 2.

While the aforementioned types of elections might appear very di�erent, certain common high-level
principles apply to all of them. In particular, in many scenarios, it is of utmost importance to ensure
that the outcomes of elections are fair—not only to individuals but also to groups of voters with similar
views. Indeed, fair elections provide equal opportunities for underrepresented groups to engage in the
process of decision-making, and lead to more inclusive and accountable decisions. Fairness has also a
positive e�ect on participation and enhances the legitimacy of the elected candidates.1 Accordingly,
group-fairness in elections is the central focus of this paper.

Our main contribution is conceptual. We propose an idea that gives rise to several axioms of pro-
portionality in the general model of elections with feasibility constraints. Our axioms di�er in their
strength, but they share the same intuitive explanation: if a group of voters has cohesive-enough
preferences, then they should have the right to decide about a proportional part of the outcome. Our
axioms generalize the strongest known properties from the literature on committee elections, namely
fully justi�ed representation (FJR) [36], extended justi�ed representation (EJR) [3], and proportional
justi�ed representation (PJR) [37]. One of the main results of this paper says that our axioms are
always satis�able—the base axioms are satis�able for all types of constraints, and the most demanding
strengthening of these axioms is satis�able for matroid constraints.

We further explain how to adapt two prominent committee election rules, Proportional Approval
Voting (PAV) and Phragmén Sequential Rule, to our general model. We provide a full characterization
explaining that the two rules satisfy the aforementioned proportionality axioms if and only if the
feasibility constraints are matroids (Theorems 6 and 7). We also adapt the concept of stable-priceability
to the model with general constraints, and we prove that the solutions that are stable-priceable satisfy
our strong notions of proportionality. Altogether, our results provide tools that allow us to guarantee
group-fairness in di�erent types of elections and in the presence of di�erent types of constraints.

1Fairness is also critically important in elections not involving humans. For example, proportional election rules are used
for selecting validators in the blockchain [13] (proportionality is important to provide resilience against coordinated attacks
of malicious users) or for improving the quality of genetic algorithms [20].
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2 The Model

For each natural number t ∈ N we set [t] = {1, 2, . . . , t}, and we use the convention that [0] = ∅.

An election is a quadruple E = (C,N,F,A), where C = {c1, . . . , cm} is a set of m candidates, N =
{1, 2, . . . n} is a set of n voters, F ⊆ 2C is a nonempty family of feasibility sets, and A = (A1, . . . , An)
is a collection of approval ballots; Ai ⊆ C for each voter i ∈ N . Intuitively, a voter’s approval ballot
is a subset of candidates that the voter supports. Analogously, for a candidate c ∈ C by N(c) we
denote the set of voters that approve c, N(c) = {i ∈ N : c ∈ Ai}. For each voter i we de�ne her
utility from a subset W ⊆ C as the number of candidates in W that the voter approves, that is
ui(W ) = |Ai ∩W |. Intuitively, ui(W ) quanti�es the satisfaction that voter i enjoys if the subset
W is selected. In Appendix E.1 we additionally discuss more expressive types of ballots, and the
corresponding more complex utility functions.

We say that a subset of candidates W ⊆ C is feasible if W ∈ F. A selection rule is a function R that
given an election returns a nonempty set of feasible outcomes.2 Without loss of generality, we assume
that F is closed under inclusion, i.e., if W ∈ F and W ′ ⊆W , then W ′ ∈ F. Indeed, if W ′ /∈ F, it could
be completed to a feasible set, and the voters would enjoy at least as high utility from the completed set
as from the original one. Accordingly, when de�ning feasibility constraints, we often indicate only the
maximal sets and implicitly assume that all the subsets are also feasible.

Feasibility Constraints

Our framework generalizes several important models considered in the literature, in particular:

Committee elections. Here, we assume the goal is to select a subset of candidates (called a committee)
of a given �xed size k. Thus, the feasibility constraints are of the following form:

F = {W ⊆ C : |W | = k} .

The model of committee elections has been extensively studied in the literature; we refer to the
book by Lackner and Skowron [27] and to the book chapter by Faliszewski et al. [21].

Public Decisions. Here, we assume that the set of candidates is divided into z disjoint pairs C =⋃
r∈[z]Cr , |Cr| = 2 for each r ∈ [z] and Cr ∩ Cs = ∅ for all r, s ∈ [z] with r 6= s. For each pair

we must select a single candidate, thus, the feasibility constraints are given as:

F = {W ⊂ C : |W ∩ Cr| = 1 for each r ∈ [z]} .

Intuitively, each pair corresponds to an issue on which a binary decision needs to be made; one
candidate in the pair corresponds to the “yes”-decision, and the other one to the “no”-decision.
This model has been studied by Freeman, Kahng, and Pennock [23], and Skowron and Górecki
[39]. One particularly appealing application domain for this model is to support negotiations
among groups of entities in order to establish a common policy (e.g., negotiations among political
parties that want to form a governing coalition). A variant of this model, where for each issue
r more than two alternative options are available—|Cr| > 2, has also been considered in the
literature [16, 9].

In this paper, we additionally introduce an intermediate model that is more speci�c than the general
model with arbitrary feasibility constraints, yet still more expressive than the models of committee
elections and public decisions. This model is similar to the one of committee elections with diversity
constraints, as studied by Bredereck, Faliszewski, Igarashi, Lackner, and Skowron [6], Celis, Huang, and
Vishnoi [12], and Aziz [1].

2We are typically interested in a single outcome, yet we allow for ties.
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Committee elections with disjoint attributes. Here, we assume that the set of candidates is divided
into z disjoint groupsC =

⋃
r∈[z]Cr , Cr∩Cs = ∅ for r, s ∈ [z], r 6= s. For each group r ∈ [z] we

are given two numbers: a lower and an upper quota, denoted respectively as q⊥r and q>r . The goal
is to select k candidates so that the number of candidates selected from each set Cr is between
q⊥r and q>r .

F =
{
W ⊆ C : |W | = k and q⊥r 6 |W ∩ Cr| 6 q>r for each r ∈ [z]

}
.

The feasibility constraints mentioned above are all special cases of a more general class of constraints
with a matroid structure [32]. We prove this in Appendix C.

De�nition 1 (Matroid constraints). The feasibility constraints are matroid if the following condition,
called the exchange property, is satis�ed:3

(EP) For each X,Y ∈ F such that |X| < |Y |, there exists c ∈ Y \X such that X ∪ {c} ∈ F.

Intuitively, in a matroid, all the candidates carry the same weight in the constraints. If we can remove
some two candidates to make space for some other candidate c, then it is su�cient to remove only one
of these two candidates.

While a large part of our results concerns matroids, our de�nitions also apply to computational social
choice models that do not have a matroid structure. In Appendix C we give a few examples of such
models that �t our general framework. Our model is also closely related to voting in combinatorial
domains [28].

3 De�nition of Proportionality

In this section, we formulate our main de�nition that captures the idea of group fairness. We start
by de�ning the base axiom, called Base Extended Justi�ed Representation (BEJR). This axiom already
implies the strongest notions of proportionality in the more speci�c models. Speci�cally, it implies
Extended Justi�ed Representation for committee elections [3], proportionality for cohesive groups in
the model of public decisions [39] and EJR [14] in the context of sequential decision making [26]. It is
always satis�able, and has an intuitive interpretation.

Next, we compare our axiom to the recent de�nition of Restrained EJR by Mavrov, Munagala, and Shen
[30]. We show that in many natural settings—for example, in the case of demographic constraints—our
axiom provides considerably stronger guarantees. There are, however cases, where Restrained EJR
is not implied by our Base EJR. This observation provides additional insights and leads to our main
de�nition of EJR. The main de�nition of EJR is very similar to its base counterpart, thus all our intuitive
explanations of the base EJR carry over. We believe it is most instructive to understand the base axiom
�rst rather than to go directly to our main de�nition of EJR.

The main de�nition always exists for matroid constraints and can be satis�ed by natural extensions of
known election rules (Theorems 1, 6, and 7). For non-matroid constraints the de�nition might be too
strict—for example, it cannot always be satis�ed together with Pareto optimality. This is in contrast to
the case of base EJR, which never contradicts Pareto optimality.

3.1 The Base Notion of Proportionality

Let us start by introducing the base variant of our main axiom. Next, we will provide its intuitive
explanation and will show a few structural properties of the proposed de�nition.

3Formally, this means that the pair (C,F) forms a matroid.
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De�nition 2 (Base Extended Justi�ed Representation (BEJR)). Given an election E = (C,N,F,A) we
say that a group of voters S ⊆ N deserves ` candidates if for each feasible set T ∈ F either there exists
X ⊆

⋂
i∈S Ai with |X| > ` such that T ∪X ∈ F, or the following inequality holds:

|S|
n
>

`

|T |+ `
. (1)

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es base extended justi�ed
representation (BEJR) if for each ` ∈ N and each group of voters S ⊆ N that deserves ` candidates there
exists a voter i ∈ S that approves at least ` candidates in W , i.e., ui(W ) > `. y

Note that for |S| 6= n and T 6= ∅ condition (1) can be equivalently written as:

|S|
n− |S|

>
`

|T |
. (2)

The latter formulation might look a bit more intuitive, but we will mainly use the former one since it
does not require considering the case of division by zero separately.

Let us intuitively explain De�nition 2. Consider a group of voters S ⊆ N and let us have a closer
look at the condition saying that this group deserves ` candidates. Why might providing ` candidates
to S possibly be incorrect? The main reason is it may prohibit us from selecting candidates that are
supported by other voters, namely the voters from N \ S. Consider a set T that is supported by those
fromN \S. If T ∪X ∈ F then giving ` candidates to S does not prohibit selecting T ; we can safely give
` candidates to S while satisfying the claim of the remaining voters. If T ∪X /∈ F then we are in (1); for
the sake of this explanation consider the (almost equivalent) formulation given in (2). This formulation
reads as follows: proportionally to its size the claim of the group S to ` candidates is stronger than the
claim of the remaining voters to set T . Thus, such a set T cannot be used as an evidence discouraging
us from giving ` candidates to S.

Yet another equivalent formulation of the condition in De�nition 2 is the following. A nonempty group
of voters S ⊆ N deserves ` candidates if for each feasible set T ∈ F with

|T | 6 ` · n− |S|
|S|

(3)

there exists X ⊆
⋂
i∈S Ai with |X| > ` such that T ∪ X ∈ F. This condition intuitively reads as

follows: S deserves ` candidates if they can complete each reasonable suggestion of the other voters, T ,
with ` commonly approved candidates.

Remark 1. We note that in De�nition 2 we might w.l.o.g. assume that X ∈ F. Indeed, if T ∪X ∈ F,
then in particular X ∈ F since F is closed under inclusion. y

Remark 2. If a group of voters S deserves ` candidates then in particular, there must exist a feasible set
X ⊆

⋂
i∈S Ai with |X| > `. This follows from the observation that for an empty set T = ∅ condition

(1) is never satis�ed. y

Let us now illustrate our de�nition through a couple of examples. This will also provide intuition on
why our de�nition generalizes the analogous de�nitions in the more speci�c models.

Example 1. Consider committee elections with approval utilities. Assume the goal is to select a subset
of k = 10 candidates, and consider a group S consisting of 30% of voters who jointly approve three
candidates, c1, c2, and c3. Indeed, consider a set T ⊆ C , and observe that X = {c1, c2, c3} always
satis�es the conditions from De�nition 2. If |T | 6 7 then T ∪X ∈ F. Otherwise,

3

|T |+ 3
6

3

8 + 3
<

3

10
=
|S|
n

.

Thus, BEJR implies that some voter in S approves at least three out of ten selected candidates. y
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Example 2. Consider the model of public decisions, and a group S of 30% of voters who have the
same opinion with respect to some p issues. We will prove that this group deserves b0.3 · pc candidates
(here, decisions). Consider a set T ∈ F. If |T | 6 p− b0.3 · pc, then we can �nd b0.3 · pc decisions that
S agrees on, and we can add them to T so that the set is feasible. Otherwise, we get:

b0.3 · pc
|T |+ b0.3 · pc

<
b0.3 · pc

p− b0.3 · pc+ b0.3 · pc
=
b0.3 · pc

p
6

0.3 · p
p

= 0.3 6
|S|
n

.

Thus, in both cases the conditions in De�nition 2 are satis�ed.

This example also shows why we cannot treat the constraints separately, and why it is not enough to
consider proportionality independently within each constraint. Indeed, if we did so, then the model
of public decisions would need to guarantee the proportionality with respect to every single decision
only. In e�ect, a group of less than 50% of voters would not be guaranteed to have any in�uence on the
outcome, even if they agreed with respect to all the issues. y

The same reasoning can be used to formally prove that De�nition 2 generalizes the classic de�nition
of EJR from the literature on committee elections [3], and that it corresponds to the de�nition of
proportionality for cohesive groups in the model of public decisions (De�nition 7 in [39]). Finally, our
de�nition implies the axiom of EJR by Chandak, Goel, and Peters [14] in the context of sequential
decision-making [26] (a weaker variant of EJR is strong PJR; this axiom has also been considered by
Bulteau, Hazon, Page, Rosenfeld, and Talmon [10], but they used the name “some periods intersection
PJR”). Let us consider yet another example.

Example 3. Consider the model of committee elections with disjoint attributes. Assume that z = 2
and so C = C1 ∪ C2. Assume that our goal is to select exactly 10 candidates from C1 and exactly 20
candidates from C2. Thus, q⊥1 = q>1 = 10, q⊥2 = q>2 = 20, and k = 30. Assume further that there are
enough candidates in each set, e.g., |C1| = |C2| = 100.

Let S consist of 41% of all the voters, who jointly approve some 11 candidates from C2. These voters
deserve 8 candidates. Indeed, let X be a set of 8 candidates jointly approved by S. If |T | < 13 then
T ∪X ∈ F; otherwise: 8

|T |+8 6 8
13+8 = 8

21 <
|S|
n .

Now assume that S additionally approves 4 candidates from C1. Then S deserves 10 candidates. Indeed,
consider two cases. If |T ∩ C1| 6 6 then we can add to X four candidates from C1 without violating
the constraints. In order to prevent adding 6 candidates from C2, it must hold that |T ∪ C2| > 15. But
then: 10

|T |+10 6 10
25 <

|S|
n . On the other hand, if |T ∩ C1| > 6 then we observe that it also must hold

that |T ∩ C2| > 11 (as otherwise we could add to X ten candidates from C2), and so |T | > 18. Thus,
also in this case the condition (1) from De�nition 2 holds. y

The main feature that makes our de�nitions powerful is that they are always satis�able, independently
of the speci�c types of constraints or voters’ preferences.

Theorem 1. For each election, there exists an outcome satisfying Base EJR.

The proof of Theorem 1 follows from a more general result, namely Theorem 11 in Appendix E.

Finally, note that BEJR also implies that the average utility of the voters from the group S is considerably
high. This is already known in the context of committee elections [37, 38], and below we generalize
this result to matroid constraints.4

Proposition 2 (♠). Consider an election with matroid feasibility constraints, and letW be an outcome
satisfying BEJR. Then, for each group of voters S deserving ` candidates, the average number of candidates

4Proofs of theorems marked by ♠ are postponed to Appendix A.
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fromW that the voters from S approve is at least:

1

|S|
∑
i∈S
|Ai ∩W | >

`− 1

2
. (4)

This estimation is tight up to the constant of 1.

3.2 Base EJR versus Restrained EJR

Recently, Mavrov, Munagala, and Shen [30] have considered the model of committee elections with
constraints. While they mainly focused on the notion of the core, they also proposed yet another variant
of EJR that applies to the model with constraints. Our initial work has been done independently, yet
it is important to compare the two de�nitions. First, let us recall the de�nition in [30]. We slightly
simpli�ed the original de�nition—this was possible because we assume the feasibility constraints are
closed under inclusion.5

De�nition 3 (Restrained EJR for Approval Utilities [30, De�nition 3.1]). Let k be the maximum size
of feasible outcomes, k = maxW∈F |W |. Let k′ =

⌊
|S|
n k
⌋

be the endowment of S ⊆ N . We say that
S ⊆ N with endowment k′ is a blocking coalition for some W ∈ F if it satis�es the following: For all
feasible outcomes Ŵ ⊆W with |Ŵ | 6 k − k′, there is W ′ with |W ′| 6 k′ such that:

1. T = Ŵ ∪W ′ ∈ F, and

2.
∣∣⋂

i∈S Ai ∩ T
∣∣ > maxi∈S ui(W ) + 1.

An outcome W ∈ F satis�es restrained EJR if there is no blocking coalition of voters S ⊆ N . y

We �rst complement the work of Mavrov, Munagala, and Shen [30] by showing two important results
concerning the satis�ability of the axiom. The proofs are given in Appendix F.

Theorem 3. For each election, there exists an outcome satisfying Restrained EJR.

Theorem 4. There exist systems of feasible sets and instances such that no outcome satis�es Restrained
EJR and Pareto optimality.

For matroid constraints Restrained EJR can be satis�ed together with Pareto optimality—this follows
from Theorem 6 in Section 5. This suggests that Restrained EJR might be better suited to the special case
of matroid constraints. The axiom of Base EJR, on the other hand, does not exclude Pareto optimality
even in the most general variant of the model.

In fact, there are even more substantial di�erences between Base and Restrained EJR, which we illustrate
through the following examples.

Example 4 (Restrained EJR fails intuitive proportionality for demographic constraints). Consider the
model of committee elections with disjoint attributes. Assume our goal is to select 100 candidates: 50
men and 50 women. Thus, z = 2, C = C1 ∪ C2 (e.g., C1 consists of men and C2 of women), k = 100,
q⊥1 = q>1 = q⊥2 = q>2 = 50. Assume there is a group S of 50% voters who vote for some 50 candidates
from C1, say for the candidates m1, . . . ,m50. The remaining 50% of voters vote for some other 50
candidates from C1 (m51, ...,m100). Then the committee consisting of m1, ...,m50 and some arbitrary
50 candidates from C2 satis�es Restrained EJR. Indeed, the group N \ S is not a blocking coalition
because for Ŵ = {m1, ...,m50} no candidates approved by N \ S can be added to Ŵ . At the same
time, Base EJR implies that at least half of the candidates approved by S must be selected. y

5The assumption that the feasibility constraints are closed under inclusion is very mild. In fact, it would be only restraining
if we assumed that some candidates can generate negative utilities. This, however, is not the case for dichotomous utilities
nor for general monotone utility functions that we consider in Appendix E.1.
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We believe that Example 4 illustrates a serious limitation of Restrained EJR since elections with such
simple demographic constraints are perhaps the most natural applications of the general model with
constraints. At the same time, there are cases where Restrained EJR provides stronger guarantees than
Base EJR, as illustrated below.

Example 5. Consider again a model of committee elections with two disjoint attributes. Thus, z = 2,
and C = C1 ∪ C2. We need to select 20 candidates in total, at most 14 from each set, thus k = 20,
q⊥1 = q⊥2 = 0, and q>1 = q>2 = 14. The group S of 50% of voters approves 10 candidates from C1—let us
call them a1, ..., a10. The remaining voters approve some other 3 candidates from C1 (call them a11, a12,
a13) and 10 candidates fromC2 (say, b1, . . . , b10). The committeeW = {a1, ..., a7, a11, ..., a13, b1, ..., b10}
satis�es Base EJR but fails Restrained EJR (S is a blocking coalition). A committee satisfying Restrained
EJR must contain all 10 candidates approved by S.

Let us have a closer look at Example 5. Note that the voters from S and N \ S disagree on which
candidates from C1 should be selected; there is no disagreement with respect to the candidates from
C2 since the voters from S do not like any candidate there. According to Base EJR, the group S is
guaranteed half of the candidates from the set they care about, i.e., 7 candidates. Restrained EJR on
the other hand guarantees that S gets half of the whole outcome, that is 10 candidates. While both
interpretations are reasonable, some may consider the stronger guarantee provided by Restrained EJR
more compelling. This motivates us to slightly strengthen the de�nition of Base EJR.

3.3 The Main De�nition of Proportionality

We are now ready to introduce our main de�nition that strengthens Base and Restrained EJR.

De�nition 4 (Extended Justi�ed Representation (EJR)). Given an election E = (C,N,F,A), and an
outcomeW ∈ F we say that a group of voters S ⊆ N deserves ` candidates inW if for each set T ⊆W
either there exists X ⊆

⋂
i∈S Ai with |X| > ` such that T ∪X ∈ F, or the following inequality holds:

|S|
n
>

`

|T |+ `
. (5)

We say that a feasible outcome W ∈ F satis�es extended justi�ed representation (EJR) if for each group
of voters S ⊆ N deserving ` candidates in W there is a voter i ∈ S such that ui(W ) > `. y

Intuitively, in the de�nition of EJR compared to Base EJR we consider only sets T that are subsets of W .
The justi�cation of this change is the following: the sets T that can prohibit us from giving ` candidates
to S (according to Base EJR) can consist of candidates that have very little support among the voters,
and thus would not be selected anyway. This motivates focusing on sets T that are being considered
for selection, namely the sets contained in the outcome at hand, W .

Another di�erence is that in Base EJR, the entitlement of a group of voters S ⊆ N depends solely on
the preferences of the voters from S. On the contrary, according to EJR, the group might be guaranteed
a di�erent number of candidates depending on what is the winning outcome, hence depending on the
preferences of the remaining voters. We see it as a small advantage of Base EJR, as it allows each group
of voters to understand what in�uence on the outcome they will have irrespectively of the preferences
of others.

De�nition 4 can be equivalently written in a way that more closely resembles Restrained EJR.

De�nition 5 (Extended Justi�ed Representation (EJR); equivalent de�nition). Given an election
E = (C,N,F,A), we say that a group of voters S ⊆ N deviates in an outcome W ∈ F if for
` = maxi∈S ui(W ) + 1 and for each set T ⊆ W either there exists X ⊆

⋂
i∈S Ai with |X| > ` such
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that T ∪X ∈ F, or the following inequality holds:

|S|
n
>

`

|T |+ `
. (6)

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es extended justi�ed
representation (EJR) if no group of voters S ⊆ N deviates in W . y

Below we prove that EJR is indeed stronger than both Base EJR and Restrained EJR.

Proposition 5 (♠). Let E = (C,N,F,A) be an election and letW ∈ F. IfW satis�es EJR thenW
satis�es both Base EJR and Restrained EJR.

It is an open problem whether there always exists an outcome satisfying EJR. However, we know that
this axiom is always satis�able for matroid constraints. For non-matroid constraints, the axiom might
contradict Pareto optimality (see Theorem 4), which suggests that considering the weaker variant, the
Base EJR, is more appropriate in this case.

Finally, we note that an analogous result to Proposition 2 also holds for EJR, that is EJR implies high
average utility for the groups of voters with cohesive preferences.

4 Overview of Our Results

The central concepts of our paper are the de�nitions of Base EJR and EJR, which we have already
discussed in Section 3. These de�nitions are appealing for several reasons. First, they generalize some
of the strongest known satis�able axioms for the more speci�c models [3, 39, 14, 10]. At the same time
they capture numerous other practically-relevant scenarios. Second, our de�nitions are satis�able: an
outcome satisfying Base EJR always exists, and EJR is satis�able provided feasibility constraints form
a matroid. Third, the classic rules for selecting proportional committees (that is, for the signi�cantly
restricted special case of our model) can be extended in a way that they preserve their proportionality
guarantees. This all indicates that the theory that we present in this paper is a proper extension of the
powerful theory of proportionality for committee elections [27]. Let us now discuss in more detail two
classes of election rules that we focus on in this paper.

We start by discussing Proportional Approval Voting (PAV), a committee election rule that is based
on the idea of optimising a certain concave function of voters’ utilities. Theorem 3 proves that PAV
meaningfully extends to our general setting, and that it satis�es EJR if and only if the constraints are a
matroid. While PAV is NP-hard to compute [40, 2], a polynomial time local-search algorithm for PAV
preserves its strong proportionality guarantees [4, 25]. It will follow from our proof that this is also the
case in our general setting.

Next, we move to election rules that can be described as if the voters were buying the candidates using
some virtual currency. Phragmén’s Sequential Method is one of such methods that is known to exhibit
good properties in the context of committee elections [7, 38]. We prove that the rule preserves its critical
properties for elections with matroid constraints. Speci�cally, we prove that it satis�es the axiom of
Proportional Justi�ed Representation (PJR) [37], a weaker variant of EJR. We also prove that while the
Phragmén’s Sequential Method may fail EJR (which can happen even for committee elections [7]), it
guarantees the degree of proportionality that is comparable to outcomes satisfying EJR (cf. Theorem 8
and Proposition 2).

We further consider the concept of stable-priceability, which can be viewed as a Lindahl equilibrium in
a market where the voters buy the candidates. Stable-priceability implies the strongest proportionality
guarantees. Theorem 10 proves that for elections with matroid constraints, all stable-priceable outcomes
satisfy EJR. Moreover, for elections with general constraints, each stable-priceable outcome such that all
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candidates have a common price satis�es EJR. The drawback is that a stable-priceable outcome might
not exist. Yet, the conditions for stable-priceability can be easily written as an Integer Linear Program
with the number of integer variables bounded by the number of candidates, and so the existence can
often be veri�ed for elections of moderate size.

Finally, in the course of explaining the di�erences between our de�nition and the de�nition of Restrained
EJR [30] we have found several interesting properties of the latter axiom. In particular, we have positvely
resolved the open question of whether for each election there exists an outcome satisfying Restrained
EJR (Theorem 3)6. Additionally, we have proved that for non-matroid elections Restrained EJR cannot
be satis�ed by any Pareto optimal algorithm. The proof uses a new technique of constructing hard
instances. Since our de�nition of EJR is stronger than Restrained EJR, this also shows that there are
elections where no feasible committee satis�es both EJR and Pareto optimality. On the other hand, our
axiom of Base EJR is closed under Pareto improvements.

5 Proportional Approval Voting

In this section, we consider a natural extension of Proportional Approval Voting (PAV) to our model
with general constraints. We characterize the structure of feasibility constraints for which PAV satis�es
our notions of proportionality. Thus, our characterization precisely identi�es the elections for which it
is appropriate to use Proportional Approval Voting.

De�nition 6 (Proportional Approval Voting (PAV)). Given an election E = (C,N,F,A), we de�ne
the PAV score of an outcome W ⊆ C as:

scorePAV(W ) =
∑
i∈N

H(|W ∩Ai|), where H(k) =

k∑
j=1

1/j.

Proportional Approval Voting (PAV) selects a feasible outcome with the maximal PAV score. y

PAV has excellent properties pertaining to proportionality in the model of committee elections [3, 4,
34, 8, 27] and public decision [39]. We will now prove that PAV exhibits good properties also when
applied to the model with more general constraints—precisely, that PAV satis�es EJR if and only if the
feasibility constraints have a matroid structure. One potential drawback of PAV is that it is NP-hard to
compute, even for committee elections [40, 2]. However, a polynomial time local-search algorithm for
PAV preserves its strong proportionality guarantees [4, 25]. It will follow from our proofs that this is
also the case for the more general case of matroid constraints.

Theorem 6 (♠). PAV satis�es EJR for all elections with matroid constraints. For each non-matroid
feasibility constraints there is an election where PAV fails Base EJR.

Let us now interpret Theorem 6. Intuitively, it says that PAV gives strong proportionality guarantees if
all the candidates carry the same weight in the feasibility constraints. An example type of elections
where PAV fails EJR is participatory budgeting [11], where di�erent candidates might have di�erent
costs, and so some candidates can exploit the feasibility constraints to a higher extent than the others.
We will discuss in more detail such types of constraints in Appendix E.2.

6 Priceable Outcomes

In this section, we take a di�erent approach to designing proportional selection rules. It is based on the
idea of priceability [34, 35], which can be intuitively described as follows: the voters are initially endowed

6Compared to [30] we are using an assumption that the feasibility constraints are closed under inclusion.

10



with some �xed amount of virtual money; this money can be spent only on buying the candidates.
The voters prefer to buy such candidates for which they are asked to pay the least; typically these are
candidates who have higher support, as for such candidates more voters are willing to participate in a
purchase. The outcome consists of the purchased candidates. This approach has already proved useful
in the design of selection rules for committee elections and participatory budgeting [34, 35, 36]. We
start by describing a rule that implements this idea in a sequential manner.

De�nition 7 (Phragmén’s Sequential Method). We start with an empty outcome W = ∅. The price for
each candidate c is 1 dollar; this cost needs to be covered by the supporters of c if c is selected. Voters
earn money continuously at a constant speed (say, 1 dollar per second). At each time moment, when a
group of supporters of some candidate c has 1 dollar in total, c is purchased: we set W ← W ∪ {c}
and reset the budgets of the voters from N(c) to 0. After that, we remove from the election all the
candidates c′ such that W ∪ {c′} /∈ F and continue the procedure until all the candidates are either
purchased or removed.

While the de�nition assumes that time and money are continuous, the exact moments of purchasing
the next candidates can be computed in polynomial time. It is known that in the context of committee
elections, the Phragmén’s sequential method fails EJR [7], but nevertheless, it has very good properties
pertaining to proportionality [27]. In particular, it satis�es the axiom of Proportional Justi�ed Represen-
tation (PJR) [37], a weaker variant of EJR. We will show that the method preserves its good properties
as long as the constraints have a matroid structure.

We start by generalizing the axiom of Proportional Justi�ed Representation to the case of general
constraints. It di�ers from EJR (De�nition 4) in a way how the value of ` is de�ned.

De�nition 8 (Proportional Justi�ed Representation (PJR)). Given an election E = (C,N,F,A), we
say that a group of voters S ⊆ N weakly deviates in an outcome W ∈ F if for ` = |(

⋃
i∈S Ai)∩W |+ 1

and for each set T ⊆ W either there exists X ⊆
⋂
i∈S Ai with |X| > ` such that T ∪X ∈ F, or the

following inequality holds:

|S|
n
>

`

|T |+ `
. (7)

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es proportional justi�ed
representation (PJR) if no group of voters S ⊆ N weakly deviates in W . y

The axiom of Base PJR is de�ned analogously.

De�nition 9 (Base Proportional Justi�ed Representation (BPJR)). We say that a feasible outcome
W ∈ F of an election E = (C,N,F,A) satis�es base proportional justi�ed representation (BPJR) if for
each ` ∈ N and each group of voters S ⊆ N that deserves ` candidates (according to De�nition 2) there
are at least ` candidates from

⋃
i∈S Ai in W .

We will now prove that Phragmén’s Sequential Method satis�es PJR if and only if the feasibility
constraints have a matroid structure.

Theorem 7 (♠). Phragmén’s Sequential Method satis�es PJR for elections with matroid constraints. For
each non-matroid feasibility constraints, there is an election where the method fails Base PJR.

While Phragmén’s Sequential Method does not satisfy (Base) EJR, it still guarantees that the voters
from a group deserving ` candidates have high utility on average—in fact as high as it would be implied
by Base EJR (cf. Proposition 2). This result also holds for the general class of matroid constraints. We
prove it by combining the ideas from Theorem 7 and from the work of Skowron [38]. This result,
together with the fact that the Phragmén’s method can be computed in polynomial time, makes the
rule particularly appealing and practical.
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Theorem 7 generalises the recent result by Chandak, Goel, and Peters[14], proved in the context of
sequential decision making.

Theorem 8 (♠). LetW be the outcome returned by Phragmén’s Sequential Method for an election with
matroid constraints. For each group of voters S that deserves ` candidates inW we have:

1

|S|
∑
i∈S
|Ai ∩W | >

`− 1

2
. (8)

So far our results applied to matroid constraints only. Interestingly, if the constraints are non-matroid,
then Phragmén’s Sequential Method still can be successfully applied—in the most general case, it
provides approximate proportionality guarantees (cf. Theorem 13).

Another approach would be to de�ne the outcomes as an equilibrium in a certain market. This idea
has been proposed by Peters, Pierczyński, Shah, and Skowron [35], who introduced the concept of
stable-priceability, inspired by the classic concept of Lindahl’s equilibrium [22]. We discuss this is detail
in Appendix D.

7 Conclusion

We have considered a general model of social choice, where the structure of output is given through
feasibility constraints. The feasibility constraints allow to encode di�erent types of elections (e.g., single-
winner and multi-winner elections, participatory budgeting, judgment aggregation, etc.). We have
proposed a new technique of extending classic notions of proportionality to the general model of social
choice with feasibility constraints. This way we have de�ned the axioms of justi�ed representation in
the model with constraints. Our technique also allows us to extend other notions of fairness such as the
core (see Appendix B).

Our strongest notion of proportionality, fully justi�ed representation, is always satis�able, even for
general monotone utility functions. We further show that natural adaptations of two committee election
rules, Proportional Approval Voting and Phragmén’s Sequential Method, satisfy strong notions of
proportionality if and only if the feasibility constraints are matroids. Phragmén’s Sequential Method ad-
ditionally provides a good approximation of some of our notions of fairness for non-matroid constraints.
This makes the rule suitable for elections of di�erent type and structure. We have also generalized the
concept of stable-priceabiliy to the case of elections with constraints.

There are several pressing open questions. First, our work mainly focuses on approval ballots and
corresponding dichotomous utility functions; many applications, however, require dealing with more
generic utility functions. Speci�cally, we are interested in the following two questions: (1) Can we
meaningfully de�ne Phragmén’s Sequential Method for additive utility functions, so that the rule
preserves its most compelling properties? (2) Can we de�ne the Method of Equal Shares for elections
with constraints? The answer to the second question seems challenging. The main di�culty lies in the
fact that we do not know how to set the prices of the candidates. If they are set too high, then some
groups of voters might not be able to a�ord to buy enough supported candidates. If we set them too low,
then the groups might be left with money that cannot be used for buying candidates without breaking
feasibility constraints.

It is further important to check how the considered rules perform on real and synthetic data.

The setting with weighted candidates also remains mostly unexplored. This setting is particularly
important since it models the increasingly popular process of participatory budgeting. Can we de�ne
an analog of matroid constraints for weighted candidates? This seems plausible given that the exchange
property seems to be naturally adaptable to weights. Can we design rules that satisfy the strong
proportionality axioms for such constraints?
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A Omited Proofs from Section 3

Proposition 2 (♠). Consider an election with matroid feasibility constraints, and letW be an outcome
satisfying BEJR. Then, for each group of voters S deserving ` candidates, the average number of candidates
fromW that the voters from S approve is at least:

1

|S|
∑
i∈S
|Ai ∩W | >

`− 1

2
. (4)

This estimation is tight up to the constant of 1.

Proof. Consider a group of voters S ⊆ N that deserves ` candidates.

Consider a group S′ ⊆ S with |S′| > |S| − i · |S|` for some natural number i ∈ [`]. We will �rst show
that S′ deserves `− i candidates. Fix a feasible subset of candidates T ∈ F. Let us remove i arbitrary
candidates from T , and denote the so-obtained subset as T ′; if |T | < i, then we simply set T ′ = ∅. Let
us consider two cases. First, assume that there exists X ⊆

⋂
i∈S Ai of size ` such that X ∪ T ′ ∈ F. Let

p = |T ′ ∩X|. Clearly:

|X ∪ T ′| − |T | > `+ |T ′| − p− |T | > `− p+ |T | − i− |T | = `− p− i.

Then, by the exchange property (EP) applied toX∪T ′ and T , we get that we can add `−p−i candidates
from X to T and the so obtained set would be feasible. Consequently, there exists a set X ′ ⊆ X of size
`− i such that X ′ ∪ T ∈ F and so the condition from De�nition 2 is satis�ed for S′.

Second, assume that for each X ⊆
⋂
i∈S Ai of size ` we have X ∪ T ′ /∈ F. Then, since S deserves `

candidates, we get that:

|S|
n
>

`

|T ′|+ `
.

This, in particular means that T ′ 6= ∅ and so |T ′| = |T | − i. Consequently:

|S′|
n

>
|S|
n
·
(

1− i

`

)
>

`

|T ′|+ `
· `− i

`
=

`− i
|T ′|+ `

=
`− i

|T |+ `− i
.

This again shows that the condition from De�nition 2 is satis�ed for S′.

Thus, by BEJR we know that there must exist a voter v1 who approves at least ` candidates in the
outcome W . We can apply BEJR to S \ {v1} and infer that there exists a voter v2 with a given number
of approved candidates inW , and so on. Altogether, we get that at least one voter approves ` candidates
at least

⌊
|S|
`

⌋
voters approve `− 1 candidates, and so on. Thus:

1

|S|
∑
i∈S
|Ai ∩W | >

1

|S|
·

`+

`−1∑
j=1

⌊
|S|
`

⌋
· j

 >
1

|S|
·

`−1∑
j=1

|S|
`
· j


=

1

`
·
`−1∑
j=1

j =
1

`
· (`− 1)`

2
=
`− 1

2
.

The implication from the theorem statement is (almost) tight even for committee elections. For example,
it is known that the method of equal shares satis�es the axiom of extended justi�ed representation [34]
(which corresponds to satisfying BEJR in our setting) and that the average number of candidates
approved by the voters from S might be equal to `+1

2 [27].
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Proposition 5 (♠). Let E = (C,N,F,A) be an election and letW ∈ F. IfW satis�es EJR thenW
satis�es both Base EJR and Restrained EJR.

Proof. Consider an outcome W that satis�es EJR. First, we show that W satis�es Base EJR. Towards a
contradiction suppose there is a group of voters S ⊆ N that deserves ` candidates, but for all voters
i ∈ S we have ui(W ) < `. Let `′ = maxi∈S ui(W ) + 1. Since S deserves ` candidates we know that
for each T ∈ F either there exists X ⊆

⋂
i∈S Ai with |X| > ` > `′ such that T ∪X ∈ F, or

|S|
n
>

`

|T |+ `
>

`′

|T |+ `′
.

This in particular holds for every T ⊆W . Thus, S deviates in W , a contradiction.

Second, we show that W satis�es Restrained EJR. For the sake of contradiction, assume the opposite.
Let k be the maximum size of the committee in F, and consider a blocking coalition S. Let k′ =

⌊
|S|
n k
⌋

and let ` = maxi∈S ui(W ) + 1. From the condition on the blocking coalition applied to Ŵ = ∅ we
infer that ` 6 k′. We will prove that then S deviates in W . Consider a set T ⊆W . If |T | > k− k′, then
we have:

`

`+ |T |
6

k′

k′ + |T |
<

k′

k′ + k − k′
=
k′

k
6
|S|
n

.

Thus, Condition (5) is satis�ed. If |T | 6 k − k′ then as S is a blocking coalition, by setting Ŵ = T we
infer that there exists W ′ such that Ŵ ∪W ′ ∈ F and |

⋂
i∈S Ai ∩ (Ŵ ∪W ′)| > `. Thus, there exists

X ⊆
⋂
i∈S Ai with |X| > ` such that T ∪X ∈ F. Consequently, S deviates in W .

Theorem 6 (♠). PAV satis�es EJR for all elections with matroid constraints. For each non-matroid
feasibility constraints there is an election where PAV fails Base EJR.

Let us �rst show a useful lemma about matroid constraints.

Lemma 9. For all elections with matroid constraints, all feasible sets W ⊆ C , c /∈ W and W ′ ⊆ W
(W ′ 6= ∅) such thatW \W ′ ∪ {c} ∈ F there exists c′ ∈W ′ such that (W \ {c′}) ∪ {c} ∈ F.

Proof. Suppose that (EP) is satis�ed and the statement is violated. Consider W , W ′ and c witnessing
this violation. Assume that the witness is chosen so that |W ′| is minimized (yet still |W ′| > 1, as
otherwise the only member of W ′ would be clearly the required candidate). Now let us de�ne sets
X,Y ∈ F as follows: X = W \W ′ ∪ {c}, Y = W . From the observation that |W ′| > 1 we have that
|X| < |Y |. Then by (EP) we have that there exists a ∈ Y \X = W ′ such that X ∪ {a} ∈ F. Therefore,
after removing a from W ′ we would obtain a smaller witness of the violation of the lemma statement, a
contradiction.

Proof of Theorem 6. First, we prove that if the election has matroid constraints, then PAV satis�es EJR.

Suppose that the statement does not hold for some election E. Let W be an outcome returned by PAV
forE. Let S ⊆ N be a group of voters that deviates inW , and let ` = maxi∈S ui(W )+1. Let us denote
by AS the set

⋂
i∈S Ai. Further, let

W ′ = {c ∈W : ∃ac ∈ AS s.t. (W \ {c}) ∪ {ac} ∈ F} .

Intuitively, for each candidate c ∈W ′ we can swap c with ac, and after such a swap the outcome will
still be feasible. Of course, for each candidate c ∈W \W ′ we can also swap c with herself (such a swap
does not change the outcome).
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Let us denote by ∆(c, c′) the change in the PAV score obtained by swapping some c ∈W with some
c′ ∈ C . We know that for each such pair of candidates, we have ∆(c, c′) 6 0 (as otherwise W would
not be an outcome maximizing PAV score). Let us estimate the following expression, which describes
the sum of the score change if we swap each time a di�erent element of W :∑

c∈W ′
∆(c, ac) +

∑
c/∈W ′

∆(c, c).

Swapping a pair of candidates can be viewed as a two-step process, where �rst we remove one candidate
fromW and then we add one. Let us �rst estimate the sum of decreases in the PAV score due to removing
candidates. As we removed each candidate exactly once, for each voter having x > 0 representatives in
W , we can subtract x times the score of 1/x. Let us denote by S0 ⊆ S the subset of voters from S who
have no representatives in W . Hence, the total decrease may be equal to n− |S0| at most.

The additions of new candidates to the committee increase the PAV score in total by at least:∑
i∈S\S0

(
|W ′ \Ai|
|W ∩Ai|+ 1

+
|W ∩Ai|
|W ∩Ai|

)
+
∑
i∈S0

|W ′ \Ai|
|W ∩Ai|+ 1

>
∑
i∈S

(
|W ′ \Ai|
|W ∩Ai|+ 1

+ 1

)
− |S0| =

∑
i∈S

|W ′ \Ai|+ |W ∩Ai|+ 1

|W ∩Ai|+ 1
− |S0|

>
∑
i∈S

|W ′|+ |(W \W ′) ∩Ai|+ 1

`
− |S0| >

∑
i∈S

|W ′|+ |(W \W ′) ∩AS |+ 1

`
− |S0|

> |S| · |W
′ \AS |+ |W ∩AS |+ 1

`
− |S0|.

Intuitively, for each voter i ∈ S, if the removed candidate was from W ∩Ai, we add the (|W ∩Ai|)th
candidate supported by her, otherwise we add the (|W ∩Ai|+ 1)th candidate supported by her.

Finally, we have that:

|S| · |W
′ \AS |+ |W ∩AS |+ 1

`
− |S0| − (n− |S0|) 6 0.

|S|
n

6
`

|W ′ \AS |+ |W ∩AS |+ 1
. (9)

Consider now set T obtained in the following way: (1) �rst, we set T = W ′, (2) second, we remove
from T all the candidates from W ′ ∩AS and some arbitrary additional `− 1− |W ∩AS | candidates.

We will prove that S cannot propose a subsetX ⊆ AS of size ` such that T ∪X ∈ F. Indeed, otherwise
from the (EP) applied to sets W ′ and T ∪X we would have that there exists a candidate c ∈ X \W ′
such that W ′ ∪ {c} ∈ F. We distinguish two cases. Either W = W ′, but then W ∪ {c} is a set of
greater score than W , a contradiction. Or W \W ′ 6= ∅, but then from Lemma 9 applied to W , W \W ′
and c, we get that there exists a candidate c′ ∈ W \W ′ such that W \ {c′} ∪ {c} ∈ F. But from the
de�nition of set W ′, there needs to hold that c′ ∈W ′, a contradiction.

Since we have proved that group S cannot propose any committee X ⊆ AS of size ` such that
T ∪X ∈ F, it needs to hold:

|S|
n
>

`

|T |+ `
.

From the construction of set T , we know that:

|T | = |W ′| − |W ′ ∩AS | − (`− 1− |W ∩AS |) = |W ′ \AS |+ |W ∩AS | − `+ 1.
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Therefore:
|S|
n
>

`

|W ′ \AS |+ |W ∩AS |+ 1
. (10)

Joining (10) and (9) we obtain a contradiction, which completes the �rst part of the proof.

Now we prove that if the feasibility constraints are not a matroid, then PAV violates Base EJR. Suppose
that for given constraints, there exist sets X,Y ∈ F such that |X| < |Y | and X ∪ {c} /∈ F for all
c ∈ Y \ X . Denoted such a pair X,Y as witness. First, observe that for a witness the following is
true: X 6= ∅, X * Y , and |Y \X| > 2. All the statements follow from the fact that F is closed under
inclusion. Now, among all such witnesses, consider one that �rst minimizes |X| and second minimizes
|Y \X|. Denote by ` = |X| > 1.

Consider now the following construction. Let n be a multiple of 3 · (`+ 1) and n > 3`+ 7. We have a
group S1 of /̀`+1 · n+ 1 voters approving exactly X and a group S2 of the remaining n/`+1− 1 voters
approving exactly Y \X .

Let us �rst show that S1 deserves ` candidates. Indeed, for T = ∅ this group can propose the feasible
set X of size ` they jointly approve. On the other hand, if |T | > 1, then we have:

|S1|
n

=
`

`+ 1
+

1

n
>

`

`+ 1
>

`

`+ |T |
.

Since S1 deserves ` candidates, Base EJR may be satis�ed only if all the candidates from X are elected.
Then, directly from our assumptions, no candidate from Y \X can be elected.

Now consider set X with one candidate c′ ∈ X removed. Then there exists c1 ∈ Y \ X such that
(X \ {c′}) ∪ {c1} ∈ F, since otherwise (X \ {c′}, Y ) would be a smaller witness. Similarly, we
conclude that there exists also c2 ∈ Y \X , c2 6= c1 such that (X \{c′})∪{c1, c2} ∈ F, since otherwise
((X\{c′})∪{c1}, Y \{c1}) would be a smaller witness (indeed, we have |(X\{c′})∪{c1}| < |Y \{c1}|
as |X| < |Y |+ 1).

Note that all the candidates outside of X ∪ Y contribute 0 PAV points to the �nal score, hence if Base
EJR is satis�ed, the PAV score of the winning outcome cannot be higher than the score of outcome X .
However, the score of outcome (X \ {c′}) ∪ {c1, c2} is higher—compared to X , group S1 loses one `th
candidate (namely c′), but group S2 gains two representatives instead. Hence:

scorePAV((X \ {c′}) ∪ {c1, c2})− scorePAV(X)

> (1 +
1

2
) · |S2| −

|S1|
`

=
3

2
· n

`+ 1
− 3

2
− n

`+ 1
− 1

`
=

1

2
· n

`+ 1
− 3

2
− 1

`
> 0.

The last inequality comes from the assumption that n > 3 · `+ 7. Hence, X is not elected by PAV and
Base EJR is violated. This completes the second part of the proof.

Theorem 7 (♠). Phragmén’s Sequential Method satis�es PJR for elections with matroid constraints. For
each non-matroid feasibility constraints, there is an election where the method fails Base PJR.

Proof. We start by proving the �rst part of the theorem statement. Towards a contradiction assume
there is a group S weakly deviating in an outcome returned by Phragmén’s Sequential Method, WPhr.
Let ` = |(

⋃
i∈S Ai) ∩WPhr|+ 1. Consider the �rst moment, t, when all the candidates from

⋂
i∈S Ai

are either elected or removed. Note that t 6 /̀|S|. Indeed, if t > /̀|S|, then at time /̀|S| the group S
would collect in total ` dollars, and would buy at least ` candidates from

⋃
i∈S Ai (the possibility of

buying such candidates comes from the fact that there would always be a candidate from
⋂
i∈S Ai

available for purchase).

Let W ⊆ WPhr denote an outcome purchased at time t. The voters from N \ S could spend at most
(n− |S|) · /̀|S| = n· /̀|S|− ` dollars on candidates from set T = W \

⋃
i∈S Ai. In particular, as the price
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for all the candidates is 1, it means that:

|T | 6 n · `
|S|
− `.

Now we need to consider two cases. First, suppose that there is no set X ⊆
⋂
i∈S Ai of size ` such that

T ∪X ∈ F. Then, as S is weakly deviating, the following inequality holds:

|S|
n
>

`

|T |+ `
>

`
n· /̀|S|− `+ `

=
|S|
n
,

a contradiction. Hence, there exists set X ⊆
⋂
i∈S Ai of size ` such that T ∪X ∈ F.

Since we assumed that |W ∩
⋃
i∈S Ai| < `, we infer that W has strictly smaller size than T ∪X . Now

we can apply the exchange property (EP) to sets W and T ∪X to obtain that there exists a candidate
c ∈ X \W such that W ∪ {c} ∈ F. But then we have that c ∈

⋂
i∈S Ai and c was neither elected

(since c /∈W ) nor removed (since W ∪ {c} ∈ F). We obtain a contradiction.

Now we prove that if the feasibility constraints are not matroid constraints, then Phragmén’s Sequential
Method violates Base PJR. Suppose that for given constraints, there exist nonempty sets X,Y ∈ F such
that |X| < |Y | and X ∪ {c} /∈ F for all c ∈ Y \X . Then it holds that X * Y and so |Y \X| > 2.
Denote by ` = |Y |.

Consider the following construction. All the voters approve candidates from X . Additionally, we have
a group S of /̀`+1 · n+ 1 voters, each of whom additionally approves Y .

Let us �rst show that S deserves ` candidates. Indeed, for T = ∅ this group can propose the feasible set
Y of size ` they jointly approve. Otherwise, if |T | > 1:

|S|
n

=
`

`+ 1
+

1

n
>

`

`+ 1
>

`

`+ |T |
.

Note that Phragmén’s Sequential Method �rst elects all the unanimous candidates, namely X . However,
after that, no candidates from Y \ X can be elected. Hence, S would get only at most |X| < `
representatives, which completes the proof.

Theorem 8 (♠). LetW be the outcome returned by Phragmén’s Sequential Method for an election with
matroid constraints. For each group of voters S that deserves ` candidates inW we have:

1

|S|
∑
i∈S
|Ai ∩W | >

`− 1

2
. (8)

Proof. Consider a group of voters S ⊆ N deserving ` candidates. Towards a contradiction assume that
Inequality (8) does not hold. We �rst de�ne the time t as follows:

t =
`

|S|
+

∆− 1

n
,

where ∆ is the smallest non-negative value such that at t the voters from S have at most ∆ unspent
dollars (if such ∆ does not exist, then we simply set ∆ = 0). There are two possibilities:

1. Either at t there was a purchase γ such that before the purchase the voters from S had at least ∆
unspent dollars, and after the purchase, they had at most ∆ unspent dollars, or

2. at t the voters from S had at least ∆ unspent dollars.
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The analysis in both cases is the same, thus without loss of generality let us assume that we are in the
�rst case. We will �rst prove that at t, before the purchase γ there was a candidate from

⋂
i∈S Ai that

was neither elected nor removed.

At t the voters collected in total tn dollars, and they have spent at most tn − ∆. Hence, they have
bought the set W of at most tn−∆ candidates. From W we remove in total `− 1 candidates, and let
us call the remaining set T ; if W contained fewer than `− 1 candidates, then we simply set T = ∅. We
can remove these `− 1 candidates in such a way that T ∩

⋂
i∈S Ai = ∅ (this follows from the fact that

the Inequality (8) is not satis�ed, and so there are fewer than `− 1 candidates in W ∩
⋂
i∈S Ai).

If there exists X ⊆
⋂
i∈S Ai such that X ∪ T ∈ F, then by the exchange property (EP) applied to

X ∪ T and W we infer that there must exist a candidate c ∈
⋂
i∈S Ai such that W ∪ {c} ∈ F (which is

exactly what we wanted to prove). Otherwise, since S deserves ` candidates we get that:

|S|
n
>

`

|T |+ `
.

In particular, this means that T 6= ∅ and so T = |W | − `+ 1. Consequently, we get that:

|S|
n
>

`

|W |+ 1
.

From that, we get that

|W | > n ·
(
`

|S|
− 1

n

)
= nt−∆.

This leads to a contradiction.

Thus, at time t there is a candidate from
⋂
i∈S Ai available for purchase. We can now use exactly the

same reasoning as the one provided in the work of Skowron [38]. There, using an argument involving
potential functions, it was implicitly proved that at each time moment, as long as some candidate from⋂
i∈S Ai can be purchased, the voters from S pay on average at most 2/|S| per approved candidate. Thus,

the average payment per approved candidate until time t was no greater than 2/|S|.

At time t the voters from S spent at least t|S| −∆ dollars in total. Let us assess this value:

t|S| −∆ =

(
`

|S|
+

∆− 1

n

)
|S| −∆ = `+

|S|
n
· (∆− 1)−∆ > `− 1.

The last inequality follows from the fact that ∆ 6 1 (otherwise, the money held by S would be used
earlier to buy a candidate

⋂
i∈S Ai).

Consequently, the voters from S approve on average at least the following number of candidates:

1

|S|
· `− 1

2
|S|

=
`− 1

2
.

This completes the proof.

B Core in the General Model with Constraints

Now we mention yet another particularly pertinent line of research. One of the strongest notions
of group-fairness considered in the social-choice literature is the core [3]. Since for some types of
elections, the core might be empty, certain relaxations of the core are often considered, for example,
its approximate variants [19, 30, 15, 24, 31]. Our approach also allows us to extend other concepts of
fairness to the model with constraints. Here we explain how to extend the concept of core. We propose
both variants of the core to study. First, we de�ne base variant of the core.
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De�nition 10 (Base Core). Given an election E = (C,N,F,A) we say that a group of voters S ⊆ N
is (α, β)-cohesive, α ∈ N, β : S → R+, if for each feasible set T ∈ F either there exists X ⊆ C such
that |X| = α, T ∪X ∈ F, and ui(X) > β(i) for each i ∈ S, or

|S|
n
>

α

|T |+ α
.

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) is in the base core if for each
α ∈ N, β : S → R+, and each (α, β)-cohesive group of voters S ⊆ N there exists a voter i ∈ S such
that ui(W ) > β(i). y

Analogously we de�ne the concept of core.

De�nition 11 (Core). Given an election E = (C,N,F,A) and a feasible outcome W we say that a
group of voters S ⊆ N is (α, β)-cohesive in W , α ∈ N, β : S → R+, if for each subset T ⊆W either
there exists X ⊆ C such that |X| = α, T ∪X ∈ F, and ui(X) > β(i) for each i ∈ S, or

|S|
n
>

α

|T |+ α
.

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) is in the core if for each α ∈ N,
β : S → R+, and each group of voters S ⊆ N that is (α, β)-cohesive in W there exists a voter i ∈ S
such that ui(W ) > β(i). y

Our de�nition of the core clearly implies the de�nition of FJR and corresponds to the de�nition of the
core for committee election rules.

C Computational Social Choice Models and Matroids

Below we give a few examples of election models with non-matroid constraints that �t our general
framework.

Ranking candidates. Assume the goal is to rank the candidates [17, 41] instead of simply picking a
subset. The ranking should re�ect the preferences of the voters expressed over the individual
candidates. This setting can be represented in our general model as follows. For each pair of
candidates, c1 and c2, we introduce an auxiliary candidate c1,2. Intuitively, selecting c1,2 would
correspond to putting c1 before c2 in the returned ranking. The feasibility constraints would
ensure that the selected auxiliary candidates correspond to a transitive, asymmetric, and complete
relation on the original candidates.7 The model also applies to collective scheduling [33]—the
candidates would correspond to jobs to be scheduled, and the constraints allow us to incorporate
additional dependencies between the jobs.

Committee elections with negative votes. Consider a model where the voters are allowed to ex-
press negative feelings towards candidates [5, 42]. This can be modelled by introducing auxiliary
candidates and adding appropriate constraints. For each candidate c we add a virtual candidate c̄
corresponding to not-selecting c. A voter approves c̄ if she voted against c in the original election.
The feasibility constraints ensure that we never select c and c̄ together.

7It remains to specify the voters’ preferences over the auxiliary candidates. The most natural way is to construct an
approval-based preference pro�le, and to assume that a voter approves c1,2 if she prefers candidate c1 over c2 in the original
preference pro�le. This approach would be compatible with preference pro�les consisting of weak partial orders.
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Judgment Aggregation. Here the goal is to �nd a valuation of propositional variables that satis�es a
given set of propositional formulas [29, 18]. The valuation should take into account the opinions
of the voters with respect to which of the variables should be set true, and which of them should
be set false. We can represent this setting by adding, for each propositional variable x, two
candidates, cx,T and cx,F, corresponding to setting the variable to true and to false, respectively.
The propositional formulas can be incorporated as feasibility constraints.

We will now prove that the examples of matroid feasibility constraints provided in Section 2 satisfy
(EP), and the examples of non-matroid feasibility constraints violate it.

Committee elections. Consider two feasible sets X,Y such that |X| < |Y |. It is clear that |Y | 6 k
and for each c ∈ Y \X we have that |X ∪ {c}| 6 k, hence by the de�nition of F, X ∪ {c} ∈ F,
which shows that F satis�es condition (EP).

Public decisions. Consider two feasible sets X,Y such that |X| < |Y |. Then for at least one binary
issue Cr (r ∈ [z]), we have that X ∩ Cr = ∅ and Y ∩ Cr 6= ∅ (hence, |Y ∩ Cr| = 1). Then after
adding the candidate from Y ∩Cr to X , X is still feasible, which shows that F satis�es condition
(EP).

Committee elections with disjoint attributes. Consider two feasible sets X,Y such that |X| <
|Y |. If for some attribute r we have that |X ∩Cr| < q⊥r and (Y \X)∩Cr 6= ∅, then after adding
any candidate from the latter set to X , X is still feasible. Suppose now that it is not the case, i.e.,
(∗) (Y \X) ∩ Cr = ∅ for each r such that |X ∩ Cr| < q⊥r . Naturally, from the construction of
F, we have also that |X ∩ Cr| = |Y ∩ Cr| for each r such that |X ∩ Cr| = q>r . Therefore, since
|X| < |Y |, there need to exist attribute r such that q⊥r 6 |X ∩ Cr| < |Y ∩ Cr| < q>r . Consider
now any candidate c ∈ (Y \X) ∩ Cr . The set X ∪ {c} does not violate any upper quotas and is
still possible to be completed to a k-sized set so that all lower quotas are satis�ed (because Y is
possible to be completed in such a way, X ∪ {c} has at most the same size as Y , and from (∗)
the number of seats required to satisfy all the lower quotas is no greater in X ∪ {c} than in Y ),
hence it is feasible and (EP) is satis�ed.

Ranking candidates. Suppose that we need to elect a ranking among 3 candidates c1, c2, c3. Consider
set X = {c1,2, c2,3} and set Y = {c3,2, c2,1, c3,1}. Then it is clear that no candidate from Y can
be added to X so that X still represents a valid ranking, hence (EP) is violated.

Committee elections with negative votes. Consider set X containing some k real candidates
c1, c2, . . . , ck and a (k + 1)-sized set Y = {c̄1, c2, c3, . . . , ck, ck+1}. Now Y \X = {c̄1, ck+1}.
None of them can be added to X without breaking feasibility constraints—adding c̄1 would mean
that c1 is both elected and unelected, and adding ck+1 would mean that more than k candidates
are elected. Hence, (EP) is violated.

Judgement aggregation. Consider two variables x and y. As described in Section 2, we introduce
four candidates cx,T , cx,F , cy,T , cy,F . Now suppose that we require that the following formula
holds: x =⇒ ¬y. Consider set X = {cx,T } and set Y = {cx,F , cy,T }. Then it is clear that no
candidate from Y can be added to X so that X is still feasible, hence (EP) is violated.

D Stable-priceable Outcomes

In this section, we adapt the concept to the setting with general constraints. It requires introducing a
few additional elements that relate to candidate prices and feasibility constraints.

Let us recall the de�nition of stable-priceability [35]. Let πc denote the price of a candidate c and
πW =

∑
c∈W πc. Given a voter i ∈ N the payment function pi : C → R speci�es how much the voter
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pays for the particular candidates. We require that pi(c) > 0 for each c ∈ C and that
∑

c∈C pi(c) = 1;
intuitively, this means each voter has the total budget of one unit. We say that an outcome W is
stable-priceable if there exists a collection of candidate prices {πc}c∈C and payment functions {pi}i∈N
such that the following conditions hold:

(SP1) The voters pay only for the selected candidates, i.e., pi(c) = 0 for each i ∈ N and c /∈W .

(SP2) The total payment for each selected candidate c ∈W must equal its price,
∑

i∈N pi(c) = πc.

(SP3) For each not-selected candidate c /∈W we have:∑
i∈N(c)

max(ri,max
c′∈W

pi(c
′)) 6 πc where ri = 1−

∑
c′∈W

pi(c
′).

This condition can be intuitively explained as follows. Each voter is primarily interested in buying
as many approved candidates as possible. Secondarily, the voter is interested in spending as little
money as possible. Thus, each voter is willing to pay for c either her all remaining money ri or
to stop paying for some already selected candidate c′ and to pay the same or a lower amount for
c instead. If the supporters of candidate c can pay its price this way, then the payment functions
are not stable.

(SP4) The outcome W maximizes the total price:

W ∈ argmax
W ′∈F

∑
c∈W ′

πc.

The last condition is new to this paper, and it corresponds to the concept of producer-stability from the
economic literature on markets with public goods [22]. In the original de�nition in [35] the prices for all
the candidates were required to be equal and hence, instead of the last condition, only exhaustiveness
was required. In Appendix E.2 we show that some of our results also hold if we replace condition (SP4)
with the condition of exhaustiveness.

(SP4∗) The outcome W is exhaustive, i.e., for each c /∈W we have W ∪ {c} /∈ F.

Stable-priceable outcomes might not exist, but if they do, they have very good fairness-related properties.

Theorem 10. For elections with matroid constraints, all stable-priceable outcomes satisfy EJR. For elections
with general constraints each stable-priceable outcome such that all candidates c have a common price
πc = π satis�es EJR.

Proof. Let W be a stable-priceable outcome. Towards a contradiction assume that there is a group
of voters S that deviates in W . Let ` = maxi∈S ui(W ) + 1. We will �rst prove that there exists a
not-selected candidate a ∈

⋂
i∈S Ai \W , the price of which satis�es the following inequality:

πa <
|S|
`

.

Let us start with the case of matroid constraints. We �rst consider the set W ′ of candidates from W
that can be feasibly-exchanged with the candidates from

⋂
i∈S Ai \W , that is:

W ′ =

{
c ∈W : there exists c′ ∈

⋂
i∈S

Ai \W such that W \ {c} ∪ {c′} ∈ F

}
.

Since the feasibility constraints have a matroid structure, from Lemma 9 we know that for each
c′ ∈

⋂
i∈S Ai \W it holds that W ′ ∪{c′} /∈ F. Next, from W ′ we remove all the candidates in

⋂
i∈S Ai.
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Clearly, we removed at most `− 1 candidates; if we removed strictly less than (`− 1) candidates, then
we additionally remove some arbitrary candidates so that we removed in total (`− 1) candidates. Let us
denote the resulting set as T . Note that for each X ⊆

⋂
i∈S Ai with |X| = ` it holds that T ∪X /∈ F.

This follows directly from the exchange property (EP) applied to X ∪ T and W ′. Since S deviates in W ,
we get that:

|S|
n
>

`

|T |+ `
=

`

|W ′|+ 1
=⇒ |W ′| > n · `

|S|
− 1.

Let a be the cheapest candidate in
⋂
i∈S Ai \W . Condition (SP4) in the de�nition of stable-priceability

implies that for each candidate c ∈W ′ we have πc > πa. Consequently:∑
c∈W ′

πc > πa ·
(
n · `
|S|
− 1

)
.

Since
∑

c∈W ′ πc 6 n−
∑

i∈S ri (this follows from condition (SP2)) we get that:

n−
∑
i∈S

ri > πa ·
(
n · `
|S|
− 1

)
.

By condition (SP3) we also get that
∑

i∈S ri 6 πa. By combining this with the above inequality:

n > πan ·
`

|S|
=⇒ πa <

|S|
`

.

Now, consider the case where the feasibility constraints are arbitrary, but all the prices are the same,
that is for all candidates c we have πc = π. Now, we proceed as follows. From W we remove all the
candidates from

⋂
i∈S Ai and some arbitrary additional candidates so that in total we removed `− 1

candidates. Let us denote the resulting set by T .

Condition (SP4∗) in the de�nition of stable-priceability implies that for any set X ⊆
⋂
i∈S Ai with

|X| = `, T ∪X /∈ F. Since S deviates in W we get that:

|S|
n
>

`

|T |+ `
=

`

|W |+ 1
=⇒ |W | > n · `

|S|
− 1.

Since πW 6 n−
∑

i∈S ri (this follows from condition (SP2)) we get that:

n−
∑
i∈S

ri > πn · `
|S|
− π.

The remaining part of the proof follows exactly the same way as in the case of matroid constraints.
Thus, in either case, we get that there is a candidate a ∈

⋂
i∈S Ai \W such that πa < |S|

` .

Since each voter from i ∈ S approves strictly fewer candidates than ` in W we infer that:

max(ri,max
c∈W

pi(c)) >
1

`
.

Thus, from condition (SP3) of stable-priceability we get for each a /∈W that 1
` · |S| 6 πa. This gives a

contradiction and completes the proof.

The condition for stable-priceability can be easily written as an Integer Linear Program with the number
of integer variables bounded by the number of candidates. Further, the ILP can be naturally relaxed
so that it �nds outcomes that are “closest to” stable-priceable. This makes the approach applicable to
elections of moderate size.
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E Extensions of the Model

In this section, we consider two extensions of our model. We �rst discuss the case where the preferences
of the voters are expressed as general monotone set functions. Second, we discuss certain limitations of
our concepts in the case when the candidates carry di�erent weights in the feasibility constraints; we
explain how to adapt our concepts to this case.

E.1 General Monotone Utility Functions

In this section, we formulate a stronger version of De�nition 2 that still is satis�able. This de�nition
applies much beyond approval ballots. Here, we assume that for each voter i we have a utility function
ui : 2C → R that for each subset of candidates returns a real value. Intuitively, ui(W ) quanti�es the
level of satisfaction of voter i provided W is selected. We only assume that ui is monotone, that is for
all X ⊆ Y ⊆ C it holds that ui(Y ) > ui(X).

Now, we can formulate the axiom of fully justi�ed representation, which generalizes the respective
axiom from the literature on committee elections [36].

De�nition 12 (Base Fully Justi�ed Representation (BFJR)). Given an election E = (C,N,F,A) we
say that a group of voters S ⊆ N is (α, β)-cohesive, α, β > 0, if for each feasible set T ∈ F either
there exists X ⊆ C with |X| = α and with ui(X) > β for each i ∈ S such that T ∪X ∈ F8, or the
following condition is satis�ed:

|S|
n
>

α

|T |+ α
.

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es base fully justi�ed
representation (BFJR) if for each α, β ∈ R and each (α, β)-cohesive group of voters S ⊆ N there exists
a voter i ∈ S such that ui(W ) > β. A selection ruleR satis�es BFJR if for each election E it returns
outcomes satisfying BFJR. y

De�nition 12 is strictly stronger than De�nition 2: indeed we obtain the de�nition of BEJR if we
additionally require that α = β. Intuitively, in the de�nition of BFJR a group of voters S deserves the
utility of β if for each T they can �nd a set X of (not too large) size α on which they agree that it has
the value of at least β. In the de�nition of BEJR, the voters from S must have a stronger agreement;
they all must unanimously support every candidate from X . This de�nition is still satis�able.

Theorem 11. For each election with monotone utilities, there exists an outcome satisfying base fully
justi�ed representation.

Proof. Given an election E = (C,N,F,A) we �rst de�ne the procedure of partitioning voters. In
each round r we search for the largest value βr > 0 for which there exists an (αr, βr)-cohesive group,
αr > 0; if there are ties, we �rst prefer a cohesive group with a smaller value of αr . We pick one such a
group, call it Sr , and remove the voters from Sr from further consideration. We repeat the procedure
until all the voters are removed (note that every non-empty group of voters is (0, 0)-cohesive, and so
the procedure will stop). Thus, we partitioned the set of voters into disjoint sets S1, S2, . . . , Sp−1, Sp.

We will show now that for each group of voters Sr, r ∈ [p], we can select a set of candidates Wr

with |Wr| 6 αr such that (1) each set Wr gives the voters from Sr the utility of at least βr (that is
ui(Wr) > βr for each i ∈ Sr), and (2) the set W1 ∪W2 ∪ . . . ∪Wp is feasible.

8Note that if α = 0 then T ∪∅ ∈ F and in that case we do not need to consider the or condition where we could potentially
divide by 0 when T = ∅.
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We �rst �x the number of voters n. We will show the above statement by the induction on the number
of active voters; the voter is active if it assigns a positive utility to some subset of candidates. Clearly, if
all the voters are inactive then the inductive hypothesis holds, which is witnessed by an empty subset
of candidates. Now, assume that the hypothesis holds if the number of active voters is strictly lower
than n′. We will show that it holds also for n′.

Consider any set Sr ∈ {S1, . . . , Sp} and consider a modi�ed election E′ in which we replace each voter
from Sr with an inactive voter. Note that except for Sr the partitioning algorithm would return the
same groups S1, S2, . . . , Sr−1, Sr+1, . . . , Sp as for E. From our inductive assumption, there exists sets
W ′ = W1 ∪W2 ∪ . . . ∪Wr−1 ∪Wr+1 ∪ . . . ∪Wp such that all voters from Si get at least the utility of
βi from Wi for i ∈ [p] \ {r}.

For T = W ′, since Sr is (αr, βr)-cohesive, we know that there exists X ∈ F with |X| = αr that gives
Sr the utility of βr such that X ∪ T ∈ F or

|Sr|
n

>
αr

|T |+ αr
.

If X ∪ T ∈ F then we set Wr = X ; we additionally give empty sets to inactive voters, and we are done.
Otherwise, we have that:

|Sr|
n

>
αr

|T |+ αr
>

αr
α1 + . . .+ αp

.

We repeat this reasoning for each r ∈ [p], and get that unless we are done:

1 =
|S1|+ . . .+ |Sp|

n
>
α1 + . . .+ αp
α1 + . . .+ αp

= 1,

a contradiction. Hence, there exists a sequence W1 ∪ . . . ∪Wp that satis�es our condition.

Now, consider an election E = (C,N,F,A), and let W1,W2, . . . ,Wp be constructed as above. We
take W = W1 ∪W2 ∪ . . .∪Wp. It remains to prove that W satis�es BFJR. For the sake of contradiction,
assume that there exists an (α, β)-cohesive group S such that for each voter i ∈ S we have ui(W ) < β.
Consider the �rst step in the process of partitioning the voters, when some voter i ∈ S was deleted. It
was deleted as a part of some (αr, βr)-cohesive group Sr . Since during the partitioning, we always pick
the group with the highest βr �rst, we know that βr > β. From the construction of W we know that
ui(W ) > ui(Wr) > βr > β. This proves a contradiction and completes the proof.

Now let us investigate the relation between BFJR and stable-priceability. In the committee setting,
stable-priceability implies the core [35] which is a stronger axiom than BFJR. However, Proposition 12
shows that it is no longer the case in our general model, even if we assume matroid constraints.

Proposition 12. Stable-priceability with di�erent prices does not imply BFJR for approval committee
elections with disjoint attributes even if we assume matroid constraints.

Proof. Consider an instance of approval committee elections with disjoint attributes, E = (C,N,F,A)
such that C = C1 t C2 (candidates are split into two separate groups) and |C1| > 41, |C2| > 50.
Feasible sets contain at most 40 candidates from the �rst group and at most 40 from the second group.
There are three disjoint groups of voters: group V1 of 3n/5 approving all the candidates from C1, group
V2 of n/3 of voters approving all the candidates from C2, and group S of n/15 (assume n/15 is an even
integer) voters approving some 5 candidates A = {a1, . . . , a5} from C1. Besides, half of the voters
from S approve some 5 candidates B = {b1, . . . , b5} from C2 and the other half of the voters approve
di�erent 5 candidates E = {e1, . . . , e5} from C2.

Consider now an outcomeW containing 4 candidates fromA\{a5}, 36 other candidates fromC1\{a5},
and 40 candidates from C2 \B \ E. We will �rst show that this outcome is stable-priceable. Let the
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price for the candidates from C1 be π1 = n/60 and the price for the candidates from C2 be π2 = n/120.
It is clear that with such prices, outcome W (and every other outcome with 40 candidates from C1 and
40 candidates from C2) satis�es (SP4).

Voters from S spend all their money on candidates from A \ {a5} (indeed: 4 · n/60 = n/15 = |S|, the
remaining voters spend their money on their approved candidates from W in any way so that each
elected candidate is paid her price (it is possible, since 36 ·n/60 = 3n/5 = |V1| and 40 ·n/120 = n/3 = |V2|).
Now we can see that W is stable: indeed, voters from neither V1 nor V2 have no possibility to improve
their satisfaction from the committee. Voters from S do not have enough money to buy the �fth
candidate from A. Besides, even after resigning from paying for A \ {a5}, they do not have enough
money to improve their satisfaction by buying candidates from B ∪ E.

We will now show that in any committee satisfying BFJR, some member of group S should get at least
5 representatives.

Consider any committee T ∈ F. If T contains less than 36 candidates from C1 then clearly group S
can propose a committee X = A satisfying X ∪ T ∈ F. If T contains some 35 + x candidates from C1

for x ∈ [5] but less than 41− 2x candidates from C2 then voters from S can propose a committee X
containing 5−x candidates fromA, x candidates fromB and x candidates fromE satisfyingX∪T ∈ F.
Consider now a committee T containing some 35 + x candidates from C1 (for x ∈ [5]) and at least
41− 2x candidates from C2 (hence |T | > 76− x > 71). Now consider X = A. We have that:

|X|
|T |+ |X|

· n 6
5

71 + 5
· n < n

15
= |S|,

which shows that S indeed should get 5 representatives in any committee satisfying BFJR which
completes the proof.

E.2 Weighted Candidates

It is worth noting that our de�nitions and the analysis so far implicitly assumed that all the candidates are
treated equally, irrespectively of their impact on the feasibility constraints. Speci�cally, in Inequality (1)
in De�nition 2 we were only concerned with the number of candidates in the set T ; however, some of
these candidates can restrict the feasible solutions much more than the others. The classic model where
this is the case is the one of participatory budgeting (PB) [36]—there, the candidates have weights, and
there is a single constraint specifying that the total weight of the selected candidates is lower than
or equal to the given budget value. In such cases it might be justi�ed to include the weights of the
candidates in the de�nitions of the axioms, as it is done in the work of Peters, Pierczyński, and Skowron
[36].

In this section, we are considering the following addition to the original model. For each candidate
c ∈ C assume we are given a weight w(c) ∈ R+; for a subset of candidates W ⊆ C we let w(W ) =∑

c∈W w(c). Intuitively, the weights of the candidates should in some way correspond to the feasibility
constraints, however, this is not formally required. In this case, we write the de�nition of Base Extended
Justi�ed Representation as follows.
De�nition 13 (Weighted Base Extended Justi�ed Representation (w-BEJR)). Given an election E =
(C,N,F,A) we say that a group of voters S ⊆ N is (α, β)-strongly cohesive, α > 0, β > 0, if for each
feasible set T ∈ F either there exists X ⊆

⋂
i∈S Ai with w(X) 6 α and |X| > β such that T ∪X ∈ F,

or the following condition is satis�ed:
|S|
n
>

α

w(T ) + α
.

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es weighted base extended
justi�ed representation (w-BEJR) if for each α > 0, β > 0 and each (α, β)-strongly cohesive group of
voters S ⊆ N there exists a voter i ∈ S such that |W ∩Ai| > β.
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If we additionally restrain T to be a subset of W , then we say that S is (α, β)-strongly cohesive in W .
Analogously, we extend the de�nition of EJR to the case of weighted candidates. The easiest formulation
is obtained by modifying De�nition 13 so that we consider strongly cohesive groups in W . Below we
also provide an alternative equivalent formulation.

De�nition 14 (Weighted Extended Justi�ed Representation (w-EJR)). Given an election E =
(C,N,F,A) and a real α > 0, we say that a group of voters S ⊆ N α-deviates in some W ∈ F
if for ` = maxi∈S ui(W ) + 1 and for each set T ⊆W either there existsX ⊆

⋂
i∈S Ai with w(X) 6 α

and |X| > ` such that T ∪X ∈ F, or the following inequality holds:

|S|
n
>

α

w(T ) + α
. (11)

We say that a feasible outcome W ∈ F of an election E = (C,N,F,A) satis�es weighted extended
justi�ed representation (w-EJR) if no group of voters S ⊆ N α-deviates in W for any α > 0. y

We analogously extend the de�nitions of fully justi�ed representation (FJR) and proportional justi�ed
representation (PJR) to the case of weighted candidates. We will also say that a group of voters S
strongly deserves β candidates (in W ) if this group is (α, β)-strongly cohesive (in W ) for some α > 0.

It is known that in the model with weights, Proportional Approval Voting (PAV) fails EJR and PJR, even
in approximation [36]. The approach based on priceability, on the other hand, provides more positive
results. For Phragmén’s Sequential Method, it su�ces to assume that the costs of the candidates that
need to be paid by the voters are equal to their weights. We will show that while, such a de�ned rule
fails all our axioms (PJR, and consequently EJR, and FJR), it provides certain approximate guarantees.
The method provides particularly strong guarantees to small cohesive groups. For instance, a cohesive
group of the size of 10% of the population is guaranteed roughly 0.9 of PJR. It is worth noting that
the approximation result works also for non-matroid constraints. The following theorem gives the
guarantee already for the w-BEJR.

Theorem 13. For weighted candidates Phragmén’s Sequential Method selects an outcomeW such that for
each a group of voters S ⊆ N strongly deserving β candidates inW we have:∣∣∣∣∣W ∩

(⋃
i∈S

Ai

)∣∣∣∣∣ >
⌊
β · n− |S|

n

⌋
.

Proof. Consider an (α, β)-strongly cohesive group of voters S ⊆ N . Towards a contradiction, assume
that Phragmén’s Sequential Method selects fewer than

⌊
β · n−|S|n

⌋
candidates from

⋃
i∈S Ai. Note that

during the execution of the Phragmén’s method, when a candidate c ∈
⋂
i∈S Ai is not removed nor

selected, then the voters from S will pay no more than w(c) in total for any candidate (as otherwise
they would prefer to buy c). Let t be the �rst moment when at least one candidate has been removed
from each subset A ⊆

⋂
i∈S Ai with |A| > β and w(A) 6 α. Note that t 6 n−|S|/n · α/|S|. Indeed,

if t > n−|S|/n · α/|S|, then at time n−|S|/n · α/|S| the group S would collect in total α · n−|S|/n dollars.
Further, at this time moment, there would be a set A ⊆

⋂
i∈S Ai with |A| > β and w(A) 6 α such that

all candidates from A would be either bought, or available for being bought. Thus, the voters from S

would buy at least
⌊
β · n−|S|n

⌋
candidates.

Let W denote an outcome purchased at time t. Since the voters could spend at most nt dollars on
candidates from W , we get that:

w(W ) 6 n · α
|S|
· n− |S|

n
.
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Since S is (α, β)-strongly cohesive, and as the existence of X such that X ⊆
⋂
i∈S Ai with |X| > β,

w(X) 6 α, and W ∪X ∈ F is not possible at time moment t, the following inequality holds:

|S|
n
>

α

w(W ) + α
>

α

n · α|S| ·
n−|S|
n + α

=
|S|
n
,

a contradiction. This completes the proof.

Proposition 14. For weighted candidates Phragmén’s Sequential Method may fail w-BPJR.

Proof. Consider the following election. The candidates are divided into 100 disjoint groups,
C1, C2, . . . , C100. In each group Ci there are four candidates: ai with the cost equal to 2 + ε for
ε > 0 and bi, ci, di with the costs equal to 1, each. The feasibility constraints are the following: for each
group Ci the total cost of the candidates selected from Ci cannot exceed 3. Thus, from each group Ci
we can select either ai or bi, ci, and di. Let A,B,C,D be a set of all ai, bi, ci, di candidates, respectively.

Consider a group S consisting of (50 − ε)% voters. The voters from S all approve B ∪ C ∪ D.
Additionally, all the voters (including those from S) approve A. It is straightforward to check that
Phragmén’s Sequential Method will select A only; in total 100 candidates. However, we will show that
the group S is (120, 120)-strongly cohesive.

Indeed, if T contains possible candidates (either ai or all of bi, ci, di) for at most 60 i ∈ [100], then
the group S can easily point 120 candidates that together with T make a feasible set. Otherwise,
w(T ) > 122, and so for su�ciently small ε it holds that:

|S|
n
>

120

w(T ) + 120
=

120

122 + 120
.

Thus, the group S should approve in total at least 120 candidates. Hence, base PJR is failed.

For stable-priceability (Appendix D) a few more adaptations need to be made:

1. The assumption that the prices of the candidates are all equal would now correspond to the
assumption that the prices are proportional to the candidates’ costs.

πc
w(c)

=
πc′

w(c′)
. (12)

2. Further, condition (SP4) might be too restrictive (especially if the prices of the candidates are
�xed). Indeed, such a condition could itself imply a unique outcome, independently of the voters’
preferences. Thus, we propose to replace it with the condition of exhaustiveness (SP4∗).

Theorem 15. Let W be a stable-priceable outcome for weighted candidates, assuming prices are pro-
portional to the candidates’ costs and the exhaustiveness ofW . Then, for each a group of voters S ⊆ N
deserving β candidates there exists a voter i ∈ S with:

|W ∩Ai| >
⌊
β · n− |S|

n

⌋
.

Proof. Let W be a stable-priceable outcome. Consider an (α, β)-strongly cohesive group of voters
S ⊆ N , and towards a contradiction, assume that each voter from S approves fewer than

⌊
β · n−|S|n

⌋
candidates from W . If β = 0 or S = N then the statement is trivially true, so we can assume that
β > 1 and S ⊂ N .
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Since W is exhaustive, and since S is (α, β)-strongly cohesive for some α > 0, β > 0, we get that:

|S|
n
>

α

w(W ) + α
.

After reformulating, we get that:

w(W ) > α · n− |S|
|S|

.

For each c ∈ C by (12) we have:

w(c)

πc
>

w(W )

πW
.

Thus, we get that:

w(c)

πc
>

α

πW
· n− |S|
|S|

>
α

n
· n− |S|
|S|

.

Further, since there exists X ⊆
⋂
i∈S Ai with |X| > β, w(X) 6 α, we get that:

α >
∑
c∈X

w(c) >
∑
c∈X

πc ·
α

n
· n− |S|
|S|

= πX ·
α

n
· n− |S|
|S|

.

This is equivalent to:

πX <
n|S|
n− |S|

. (13)

Let z = |X ∩W | and let πz denote the total price of the candidates from X ∩W paid by the voters
from S. Let ζi denote the amount of money that voter i ∈ S has excluding the amount of money that
the voter paid for the candidates from X ∩W . We have:∑

i∈S
ζi = |S| − πz

By our assumption, each voter from S approves strictly fewer than β · n−|S|n candidates. In particular,
each such a voter approves at most β · n−|S|n − z − 1 candidates from W \ X . This means that for
each i ∈ S, there exists a candidate c′ ∈W \X for which pi(c′) > ζi

β·n−|S|
n
−z

or ri > ζi

β·n−|S|
n
−z

. Thus,

from condition (SP3) in the de�nition of stable-priceability we get that for each c ∈ X \W

πc >
|S| − πz

β · n−|S|n − z
. (14)

As there is c′ ∈ X ∩W such that πc′ > πz
z , using (SP3), we get that for each c ∈ X \W it holds that:

πc >
πz
z

. (15)

Now, let us consider two cases. First, assume that βπzz > n|S|
n−|S| . In this case, we use (15) and get that:∑

c∈X
πc =

∑
c∈X\W

πc + πz > (β − z) · πz
z

+ πz

=
βπz − zπz + zπz

z
=
βπz
z

>
n|S|
n− |S|

.
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This gives a contradiction with (13). Now assume the opposite case, that is: βπzz < n|S|
n−|S| . Here we use

(14), and get:∑
c∈X

πc =
∑

c∈X\W

πc + πz > (β − z) |S| − πz
β · n−|S|n − z

+ πz

=
β|S| − |S|z − βπz + zπz + βπz − βπz · |S|n − zπz

β · n−|S|n − z

=
β|S| − |S|z − βπz · |S|n

β · n−|S|n − z
>
β|S| − |S|z − z · n|S|

n−|S| ·
|S|
n

β · n−|S|n − z

= |S| ·
β − z − z|S|

n−|S|

β · n−|S|n − z
= |S| · βn− β|S| − zn+ z|S| − z|S|

n− |S|
· n

βn− β|S| − zn

=
n|S|
n− |S|

.

This again gives a contradiction with (13) and completes the proof.

F Restrained EJR and Pareto Optimality

In this section, we provide the proofs of theorems that concern the satis�ability of Restrained EJR. We
highlighted and discussed these results in Section 3.2, and below we provide all the technical details.

F.1 Proof of Theorem 3

Theorem 3. For each election, there exists an outcome satisfying Restrained EJR.

Proof. Consider an election E = (C,N,F,A). Let k be the maximum size of feasible outcomes,
k = maxW∈F |W |, and let n denote the original number of voters—in the course of the proof we will
be removing some voters yet the value of n will not change.

Let us construct a feasible outcome through the following greedy procedure. We look for the largest
integer value ` > 0 such that there exists a group of not-yet removed voters S with |S| > ` · n/k who
approves a feasible set T ⊆

⋂
i∈S Ai, |T | = `. We select the candidates from T , remove the voters from

S, and construct a new family of feasible sets:

F′ = {W ⊆ C : W ∪ T ∈ F} .

We repeat the procedure recursively, for the election E′ = (C,N \ S,F′,A). We �nish, when we
removed all the voters. Note that since after each update, we have that ∅ ∈ F, all the voters will be
removed at some point.

Let us call the �nal outcome W . We will show that W satis�es Restrained EJR. Towards a contradiction
assume that this is not the case, and let S be a blocking coalition. Let y = maxi∈S ui(W ) + 1 and let
k′ =

⌊
|S|
n k
⌋

. In particular, we have that:

k′ 6
|S|
n
k hence |S| > k′n

k
.

By applying the de�nition of Restrained EJR for Ŵ = ∅ we infer that y 6 k′. Consider the �rst round
r when some voter from S was removed. Note that until round r we selected at most the following
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number of candidates:

(n− |S|) · k/n 6
(
n− k′n

k

)
· k/n = k − k′.

Now we de�ne Ŵ as a subset of k − k′ candidates from W containing all candidates selected before
round r. Since S is a blocking coalition we get that there exists W ′ with |W ′| 6 k′ such that: T =
Ŵ ∪W ′ ∈ F, and

∣∣⋂
i∈S Ai ∩ T

∣∣ > y. But this means that T must be also feasible in round r. Moreover,
S > k′n

k > y · nk . Thus, in round r the value of ` is at least equal to y. Thus, the removed voter
must have approved at least y candidates in the set selected in round r, which contradicts the fact that
y = maxi∈S ui(W ) + 1. This completes the proof.

F.2 Proof of Theorem 4

De�nition 15 (Pareto optimality). We say that a feasible outcome W is Pareto dominated by a feasible
outcome W ′ if for each voter i ∈ N it holds that ui(W ′) > ui(W ) and for at least one voter i ∈ N the
inequality is strict, i.e, ui(W ′) > ui(W ). An outcome W is Pareto optimal if it is not Pareto dominated
by any feasible outcome.

Theorem 4. There exist systems of feasible sets and instances such that no outcome satis�es Restrained
EJR and Pareto optimality.

Let u be a utility vector that speci�es for each voter i ∈ N the number of candidates u(i) the voter
approves in the selected outcome. We say that W ⊆ C induces the utility vector u if for each i ∈ N
we have |Ai ∩ W | = u(i). Given a utility vector u we de�ne the total utility among S ⊆ N as
utot(S) =

∑
i∈S u(i) and the average utility as uav = utot(N)

n . We may shortcut utot = utot(N).

Before giving formal proof, we provide a short sketch. We take all possible utility vectors that have
average utility p—we call such utility vectors normal. We associate with each such a utility vector u
a pairwise disjoint feasible committee Wu. In the next step, for each Wu, we design many feasible
committees that together witness that Wu violates EJR. Each such violation of EJR is certi�ed by a set of
voters S ⊆ N . Next, we need to prove that the outcomes towards which S deviated also either fail EJR
or are Pareto dominated. There are two possible cases depending on the size of S. Either |S| is small, in
which case we prove that such an outcome is Pareto dominated by a solution induced by some normal
utility vector. Otherwise, the total utility of a corresponding committee might be higher compared to
the total utility of a normal vector. In that case, we perform another transformation that creates a new
utility vector that dominates the former one by a slight increase in the utility of a single voter only.
However, this allows us to design a new feasible committee using new candidates, but where we limit
the total utility of the voters from N \ S. We repeat both transformations again on a new carefully
chosen set S′ ⊆ N \ S, even more decreasing the total utility of the voters from N \ (S ∪ S′). This is
very helpful, as we can eventually show that there must be many voters with relatively small utility in
N \ (S ∪ S′). Finally, we perform a few more transformations on those voters, which decrease the total
utility of the committee below the threshold set by the total utility of a normal utility vector. Hence,
we conclude the proof as, in each case, we were able to �nd sequences of EJR violations and Pareto
dominations (these sequences can be viewed as a tree, where utility vectors correspond to nodes, and
the transformations to the edges), where the last committee in each sequence (a leaf in a tree) is again
Pareto dominated by a committee associated with a normal vector.

Proof of Theorem 4. Let us �x p = 100 (p can be any su�ciently large number). We �x the number of
voters n, and the size of the committee k:

n = k =
p2

2
+

5p

2
.
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First, we describe a collection of utility vectors Np, denoted as normal. The collection Np consists of
all possible utility vectors such that u(i) 6 k for all i and such that uav = p. In other words, the total
utility is utot = np = kp. For each u ∈ Np we are going to create one feasible committee Wu that
induces u such that for each u, v ∈ Np, Wu and Wv are disjoint.

Construction ofWu. Given a utility vector u and� an order onN , we constructWu ∈ F as follows.
We often say that voters are consecutive if they are consecutive with respect to order �. We introduce a
set Wu ⊆ C of k new candidates that were not part of any feasible committee constructed until this
point. We assign the candidates to the voters via round-robin—we put an arbitrary cyclic order on Wu

(the �rst candidate in Wu follows after the last one). We process the voters according to the order �. At
each step, we add one candidate to the approval set of voter i at hand and move to the next candidate
according to the cyclic order. When the voter i already approves u(i) candidates, we move to the next
voter according to �.

This construction ensures an important property that will be used later on:

Property A: For a group S of consecutive voters (wrt. �) such that utot(S) = x, each candidate is
approved by at most dx/ke and at least bx/kc voters from S.

Also, note that each candidate is approved roughly the same number of times. In particular, for a normal
utility vector, this means that each candidate is approved by exactly p voters.

Using the consturction, we create Wu for each u ∈ Np where � is de�ned as an order on u(i) (where
ties are broken arbitrarily). In other words, we process the voters starting from those with the highest
expected utility until the ones with the lowest value of u(i).

For each utility vector u ∈ Np (and associated Wu ∈ F ), we construct a set of feasible committees
that ensure that for Wu there is a group of voters that deviates in Wu and therefore EJR is violated.
Assume that there exists a group of x > 0 voters S such that each of them has the utility lower than x.
For any utility vector u and S ⊆ N , we describe an x-transformation as follows. We add x brand new
candidates that we set to be jointly approved by S. This set of x candidates, call it X , together with any
subset of k − x candidates from Wu are added to F . Thus, Wu does not satisfy EJR, since the group S
deviates. Indeed, for any T ⊆Wu of |T | 6 k − x there is a feasible committee W T

u = T ∪X , which
gives each voter i ∈ S strictly higher utility than u(i).

Having u, �, Wu, a consecutive set S ⊆ N , and T ⊆ Wu (where |T | = k − x), as de�ned above, we
describe another transformation applied on W T

u . We call it a PD-transformation. Let uT be the utility
vector that W T

u induces. We create a new utility vector u+ by increasing the utility of a least satis�ed
voter v /∈ S by one. Then we create a feasible committee Wu+ on brand new candidates using the
construction, where �′ is an order in which we �rst put the voters from S, followed by the voters
i ∈ N \ S ordered according to u+(i) (where ties are broken arbitrarily). This transformation clearly
ensures that W T

u is Pareto dominated by Wu+ .

Now, we split the proof into two cases. In the �rst case, u ∈ Np is such that there is a group S of x voters,
for x < p, such that each voter from S approves less than x candidates. We perform x-transformation
of u, and we obtain several new feasible sets W T

u for all T ⊂Wu where |T | = k − x. However, each
such W T

u (and a utility vector uT it induces) is Pareto dominated by some normal utility vector:

uTtot = np− x · p︸︷︷︸
removing x candidates

+ x · x︸︷︷︸
adding x candidates

< np.

Now, consider the other case, that is, when there is no such group S. We claim that there must be a
group of (p+ 1) consecutive voters such that each of them approves p− 1 or p candidates. Indeed, if
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this were not the case, then the total utility would be at least:

utot > 1 + 2 + · · ·+ (p− 1)︸ ︷︷ ︸
no group deviating for x < p

+ (p− 1) · (p− 1)︸ ︷︷ ︸
at most p voters with the utility of p− 1

+(n− 2p+ 2) · (p+ 1)

=
p(p− 1)

2
+ p2 − 2p+ 1 + np+ n− 2p2 − 2p+ 2p+ 2

=
p(p− 1)

2
+ np+ n− p2 − 2p+ 3

= np+ n− p2

2
− 5p

2
+ 3 > np,

a contradiction.

We let S be a set of p+ 1 consecutive voters such that each of them approves p− 1 or p candidates.
We do a (p+ 1)-transformation of S, and for each resulting committee, we do a PD-transformation.
Therefore, we obtain utility vector u′ that has the following structure:

1. The total utility equals:

u′tot = np− (p+ 1)p︸ ︷︷ ︸
removing p+ 1 candidates

+ (p+ 1)(p+ 1)︸ ︷︷ ︸
adding p+ 1 candidates

+ 1︸︷︷︸
PD-transformation

= np+ p+ 2. (16)

2. From Property A it follows that the total utility within the group S is at least:

u′tot(S) > |S|(p− 1)︸ ︷︷ ︸
utility before transformation

− (p+ 1)

⌈
|S|p
k

⌉
︸ ︷︷ ︸

Property A

+ |S|(p+ 1)︸ ︷︷ ︸
candidates added through the transformation

= 2|S|p− (p+ 1)

⌈
(p+ 1)p
p2

2 + 5p
2

⌉
> 2(p+ 1)p− 2(p+ 1) = 2(p+ 1)(p− 1) = 2p2 − 2. (17)

3. The total utility among S is at most:

u′tot(S) 6 |S|p︸︷︷︸
utility before transformation

+ |S|(p+ 1)︸ ︷︷ ︸
candidates added through the transformation

= 2p2 + 3p+ 1. (18)

This means that the voters from N \ S have the total utility at most:

z′tot = np+ p+ 2− 2p2 + 2 = np− 2p2 + p+ 4.

To �nish the proof, we need to make sure that each such resulting utility vector will be Pareto dominated
by a normal utility vector after few transformations.

Consider such a utility vector denoted as u′. If there exists a group S′ of size x, 2 6 x 6 p− 2, where
each voter approves fewer than x candidates, then we do an x-transformation on S′. The total utility
after such a transformation is at most:

u′tot = np+ p+ 2− xp+ x2 < np.

For the last inequality, note that the expression −xp + x2 takes its minimum at x = p/2, and so it
su�ces to check the value in the extreme points, x = 2 and x = p− 2. Thus, in this case, each utility
vector being the result of such an x-transformation is Pareto dominated by some normal vector.
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Hence, we can assume there is no such a group. Then we claim there must exist a group S′ of p
consecutive voters such that each voter from S′ approves p− 2 or p− 1 candidates and S ∩ S′ = ∅.
Indeed, if this were not the case, then the total utility among N \ S would be at least:

u′tot(N \ S) > 0 + 2 + 3 + · · ·+ (p− 2)︸ ︷︷ ︸
no group deviating for x

+(p− 2)(p− 2) + (n− (p+ 1)︸ ︷︷ ︸
|N\S|

−(p− 2)− (p− 2))p

=
(p− 2)(p− 1)

2
− 1 + p2 − 4p+ 4 + (n− 3p+ 3)p

=
(p− 2)(p− 1)

2
+ np− 2p2 − p+ 3 > np− 2p2 + p+ 4 = z′tot.

The last inequality holds for each su�ciently large p, so we get a contradiction.

Thus, we may assume that such S′ exists and we perform a p-transformation on it and then a PD-
transformation on each outcome (there �′′ order is de�ned as follows: we �rst put the voters from S,
next we put the voters from S′, followed by the voters i ∈ N \ (S ∪ S′) ordered by u′(i)). After such
transformations, there will be 2p+ 1 voters (those from S and S′) that will have at least the following
total utility. Note that as S is consecutive in u′, we can use Property A on S. Let u′′ be the resulting
utility vector.

u′′tot(S ∪ S′) > |S′|(p− 2)︸ ︷︷ ︸
utility before transformation

− p
⌈
|S′|(p− 1)

k

⌉
︸ ︷︷ ︸

Property A on S′

+ |S′|p︸︷︷︸
candidates added

+ 2p2 − 2︸ ︷︷ ︸
utility of S (17)

− p
⌈

2p2 + 3p+ 1

k

⌉
︸ ︷︷ ︸
Property A on S + (18)

> p2 − 2p− 2p+ p2 + 2p2 − 2− 4p

= 4p2 − 8p− 2.

It is easy to check that after such a transformation, the total number of approvals will increase by at
most one:

u′′tot 6 np+ p+ 2︸ ︷︷ ︸
utility of u′ (16)

− p
⌊
np+ p+ 2

k

⌋
︸ ︷︷ ︸
removing p candidates

+ p2︸︷︷︸
adding p candidates

+ 1︸︷︷︸
PD-transformation

6 np+ p+ 3. (19)

Consequently, the total number of approvals among the voters from N \ (S ∪ S′) is at most:

z′′tot = np+ p+ 3− 4p2 + 8p+ 2 = np− 4p2 + 9p+ 5.

Now, we repeat the reasoning once again on the resulting utility vectors. If there exists a group S∗ of size
x, 2 6 x 6 p− 2, where each voter approves fewer than x candidates, then we do an x-transformation
and obtain utility vectors that are Pareto dominated by normal vectors. Otherwise, we will show that
there exist at least two disjoint groups S1, S2 ⊆ N \ (S ∪ S′) of size p − 1 and p, respectively, that
have fewer than p− 1 representatives. Indeed, if this were not the case, then the total utility among
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N \ (S ∪ S′) would need to be at least:

0 + 2 + 3 + · · ·+ (p− 2)︸ ︷︷ ︸
no group deviating for x

+p(p− 2) + (n− (p+ 1)− p︸ ︷︷ ︸
|N\(S∪S′)|

−(p− 2)− p)(p− 1)

=
(p− 2)(p− 1)

2
− 1 + p2 − 2p+ 2 + (n− 4p+ 1)(p− 1)

=
(p− 2)(p− 1)

2
+ np− 3p2 − p+ 1− n+ 4p− 1

=
(p− 2)(p− 1)

2
+ np− 3p2 + 3p− p2

2
− 5p

2
> np− 4p2 + 9p+ 5 = z′′tot.

The last inequality holds for su�ciently large values of p (one can compare only the coe�cients for
p2). We get a contradiction, and so we have the two aforementioned groups S1 and S2. We perform
(p− 1)-transformation on S1 and, on the results, a PD-transformation (with � set arbitrarily). Either
the total utility after such transformations is already lower than np (and so it is Pareto dominated
by a normal vector) or each candidate appears in at least p approval sets. Moreover, observe that
the total utility of S2 only decreased (except possibly for one voter v). Hence, we perform the last
(p − 1)-transformation on S2 \ {v}. Therefore, the total utility of a utility vector u∗ induced by a
committee created after all such transformations is at most:

u∗tot 6 np+ p+ 3︸ ︷︷ ︸
u′′tot(19)

− 2(p− 1)p︸ ︷︷ ︸
>decrease for both (p− 1)-transf.

+ 2(p− 1)(p− 1)︸ ︷︷ ︸
6 increase for both (p− 1)-transf.

+ 1︸︷︷︸
PD-transformation

= np+ p+ 4− 2p2 + 2p+ 2p2 − 4p+ 2 = np− p+ 6 < np.

Thus, at the end, all the utility vectors are Pareto dominated by some normal vectors. This completes
the proof.
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