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Kurzfassung

Die Platzierung von Beschriftungen auf Karten ist ein bekanntes Problem in der Karto-
grafie und kann in drei Hauptkategorien eingeteilt werden: Punkt-, Linien- und Flächenbe-
schriftung. Während die automatisierte Platzierung von Beschriftungen für Punkten und
Linien ausgiebig untersucht wurde und es bereits formale Modelle gibt, ist die Forschung
zur automatisierten Flächenbeschriftung aufgrund der erhöhten Mess-Komplexität der
Beschriftungsqualität noch begrenzt.

Deshalb stellen wir in dieser Arbeit verschiedene Methoden aus der aktuellen Litera-
tur vor und vergleichen diese. Wir konzentrieren uns insbesondere auf Modelle, die
Beschriftungen entlang von Kreisbögen platzieren und darauf abzielen, einen hohen
Grad an Konformität zu erreichen, das heißt eine hohe Ähnlichkeit einer Beschriftung
mit der Fläche, in der sie platziert werden. Im Rahmen dieser Arbeit stellen wir die
HeightConstrainedLabeling-Problemvariante sowie eine darauf basierende, in C++
implementierte Pipeline zur Flächenbeschriftung vor. Diese Pipeline zielt darauf ab, einige
der Einschränkungen der aktuellen Literatur zu beheben. Im Detail erweitern wir eine
etablierte Qualitätsfunktion, indem wir zusätzliche Metriken einbeziehen, und verbessern
anschließend die Pipeline durch Clustering und lokale Suche. Zudem werden wir auch die
Ergebnisse dieser Implementierung vorstellen, Einschränkungen aufzeigen und mögliche
Verbesserungen diskutieren.
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Abstract

Label placement on maps is a well-known problem in cartography and can be categorized
into three major categories: point-, line-, and area labeling. While automated point- and
line labeling have been extensively studied and have established formal models, research
on automated area labeling remains limited due to the increased complexity in measuring
labeling quality.

To address this, we present and compare in this thesis, different state of the art approaches.
We specifically focus on models that place labels along circular arcs within the boundary
polygon and aim to achieve a high degree of conformity, i.e., high similarity of a label
with the area it is placed in. As part of this thesis, we propose the HeightConstrained-
Labeling problem variant, along with an area labeling pipeline implemented in C++.
This pipeline aims to address some of the limitations found in the current literature. In
detail, we enhance an established quality function by incorporating additional metrics,
then further improve the pipeline through clustering and local search mechanisms. We
will also present the results of the implemented pipeline, identify its limitations and
discuss potential improvements.
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CHAPTER 1
Introduction

Cartographic maps are more important and information-rich than ever and serve as
essential tools for everything from navigating public transit to finding restaurants or cafés.
As their complexity increases, effective label placement is crucial to preserve readability
and clarity. This is achieved through the process known as map labeling, a key aspect of
map design. Labeling by hand is a labor-intensive task and solutions for automated map
labeling have therefore become increasingly important.

Figure 1.1: Example of a curved text label from Google Maps. A possible circular arcs is
drawn in red.

Map labeling can be divided into three major categories: point-, line-, and area labels.
Especially the labeling of areas, such as administrative regions (countries, states, ...),
lakes, etc., poses unique challenges. While formal models for labeling point and line
features are well-established, labeling areas is inherently more challenging. This is
because measuring quality in area labeling is more complex, as the criteria involved are
not straightforward. One important measure of quality is conformity, which involves
placing labels that accurately represent the area while effectively utilizing the available
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1. Introduction

space. To enhance conformity, rather than placing labels on horizontal lines, this thesis
explores polygon label placement along curves, primarily circular arcs, as can be seen in
Figure 1.1.

Previous work by Barrault [Bar01] and Krumpe [Kru20a] introduced methods for the
labeling of polygons along circular arcs. In this thesis, we will present, compare and
discuss their approaches in detail. We will also highlight their weaknesses and propose
solutions in the HeightConstrainedLabeling variant we implemented in C++. Unlike
Barrault or Krumpe, the variant allows specifying a label height h that must be respected
when placing the label.

1.1 Overview and Structure
First, to get a better understanding of the current literature, we will take a look at the
relevant related work in Chapter 2. Then, in Chapter 3, we will present the important area
labeling metrics and introduce the HeightConstrainedLabeling variant. Additionally,
the necessary labeling background will be discussed.

Our approach to solve the problem follows a pipeline structure that consists of two
primary phases:

1. The Position Generation phase, discussed in Chapter 4, where we generate a set
of viable candidate positions based on the straight skeleton of a polygon.

2. The Position Selection phase, discussed in Chapter 5, where we identify suited
candidates by applying quality metrics. This phase also includes pre- and post-
processing steps to refine the selection process.

In Chapter 6, we will present and discuss the findings from our C++ implementation
of the HeightConstrainedLabeling variant. Finally, we will give a conclusion in
Chapter 7.
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CHAPTER 2
Related Work

Automatic cartographic label placement has been a widely studied area for a while now.
Although the first map labeling metrics were already proposed by Imhof in the 60s
(republished in English [Imh75]) and Yoeli [Yoe72], they laid the groundwork for future
work and are still widely used today.

In the following years, several attempts to automate label placement have been made.
However, the complexity of the problem was still largely unexplored. Marks and
Shieber [MS91] were, to be best of our knowledge, the first to show that cartographic
label placement for point-features is NP-complete. This was realized using a reduction
from the PLANAR 3-SAT problem.

Ahn and Freeman [FA87] proposed the labeling system AUTONAP which also included
area-feature labeling. They placed labels along the straight skeleton of the polygon
boundary. Doerschler and Freeman [DF92] developed a rule-based algorithm for placing
labels on point-, line-, and area-features, also utilizing the straight skeleton. Pinto and
Freeman [PF96] proposed a different approach, that does not consider conflicts with other
labels. They argued that the placement of area-labels should be carried out first, since it
is such a demanding task and the degree of freedom for area-features is greater than for
point- or line-features. Edmondson et al. [ECMS96] presented a labeling algorithm for
point-, line-, and area-features. Their algorithm also considers the overlap of labels with
important map features and not just overlap with other labels. However, the placement
of area-features labels was solely based on the centroid of the boundary polygon.

Barrault [Bar01] attempted to place area labels along circular arcs and introduced a new
quality measure for area-feature label placement, perceived coverage. Perceived coverage
refers to an area within the boundary that varies based on label length and the distance
from the label to the boundary. Intuitively, the more a label is centered and the further
it is from the boundary, the greater the perceived coverage. His model considered labels
with a fixed font-size but variable letter- and word-spacing. The presented algorithm first
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2. Related Work

generates candidate arcs along the straight skeleton of the polygon. Using the perceived
coverage metric, the best arc is then selected for placement.

Krumpe’s [Kru20a] work is closely related and builds on Barrault’s work but aimed
to maximize the font-size while maintaining a constant letter- and word-spacing. This
approach also accommodated holes within polygons. The algorithm first approximated
the straight skeleton and then computed the clearance for each edge, defined as the
shortest distance to the polygon boundary. The introduced algorithm RALF generated
arcs along the edges with the highest clearance to the boundary. They argued that this
approach overcomes Barrault’s issue of generating many similar arcs while also improving
runtime associated with calculation of the perceived coverage.

Van Dijk et al. [DKSW02] classified important label placement rules and introduces
a new quality function that includes the aesthetics, the visibility and the label-feature
association metrics. Dörschlag et al. [DPP03] presented an algorithm for area label
placement, that allows for placement of not only text, but also for example diagrams.
Their approach does not stretch text to cover most of a polygon. They rather try to
find an exact coordinate that well-represents the bounding polygon but do not account
for polygon holes. Similarly, Wu et al. [WDZL16] used a grid approach to assign parcel
numbers within areas.

Lu et al. [LDLD19] introduced a novel quality-function and labeling algorithm for labeling
of point-, line- and area-features, that uses a hybrid approach consisting of differential
evolution and genetic algorithms. For area-features, they first find a reference line using
the straight skeleton. For the final placement, they use their methodology for line-feature
labeling.

In a recent paper, Oucheikh and Harrie [OH24] explored the use of deep learning in
automatic label placement. They concluded that deep networks can supply good label
placement according to readability metrics, but there are still improvements possible in
terms of readability and association.
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CHAPTER 3
Preliminaries

In the following sections, we will present the important metrics used in area labeling
and introduce the HeightConstrainedLabeling problem variant, we will implement.
Additionally, we will discuss the necessary background for the labeling pipeline, which
we will cover in the next chapters.

3.1 Defining Important Metrics
In the 60s and 70s, Imhof [Imh75] and Yoeli [Yoe72] introduced label-placement rules
that are still widely used today. These rules state for example that an area must only be
labeled once, labels should be placed on circular arcs or horizontal lines and should not
touch the boundaries but be spread across the area to cover most of the feature.

Additionally, Barrault [Bar01] defined six criteria that are likely to influence label quality
(for examples see Figure 3.1):

Longitudinal extent The longitudinal extent is defined as the extent along the circular
arc (left and right), which should be maximized.

Longitudinal center The label should be centered in the polygon in the longitudinal
dimension.

Latitudinal center The label should be centered in the polygon in the latitudinal/vertical
dimension

Conformity The shape of the label should have maximal similarity with the area. By
looking at the labeled area, it should be clear that the label belongs to the labeled
area.

Orientation To improve readability, horizontal labels are generally preferred.
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3. Preliminaries

Curvature Circular arcs with larger radii are generally preferred in map labeling, since
they offer greater readability.

(a) Low longitudinal extent. (b) Bad longitudinal center.

(c) Bad latitudinal center. (d) Low conformity.

(e) Unfitting orientation. (f) Too large curvature.

(g) Adequate placement.

Figure 3.1: Label placement examples.

3.2 Model

In the general formulation of the area labeling problem, we are given an area to be labeled,
along with a text string. The objective is to determine an optimal label placement that
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3.3. (Straight) Skeleton and Medial Axis

can be contained entirely within the area’s boundary.

In this thesis, we will consider the HeightConstrainedLabeling problem variant, we
will define in the following.

The input consists of a non-self-intersecting polygon P ⊂ R2 and a label height, i.e.,
font-size h. The output is a placement of a box bent around a circular arc, represented
as the tuple (x, y, Rl, Ru, β, ∆β) that is visible in Figure 3.2.

We will denote (x, y) as the center of the circular arc with Rl as the lower radius and Ru

as the upper radius of the box, we aim to place. If h = 0, it follows Rl = Ru. Additionally,
the placement is characterized by the starting angle β ∈ [0, 2π] relative to the positive
x-axis and angular extent ∆β ∈ (0, 2π].

Rl Ru

(x, y)

β
∆β

h

P

Figure 3.2: HeightConstrainedLabeling model.

3.3 (Straight) Skeleton and Medial Axis
The medial axis or skeleton is a line representation of a polygon and is particularly useful,
as it provides a reference for the identification of centered segments within the polygon.
In contrast to other representations, such as the centroid, the skeleton aims to preserve
the shape of the polygon and offers a greater perception of available space. Thus, it can
be used to indicate where a label of high conformity could be placed.

The concept was introduced first by Blum [H67] and Lee [Lee82]. Lee defines the medial
axis M(P ) of a polygon P as the set of all points q ∈ P such that at least two points
on the polygon’s boundary are equidistant and closest to q. An intuitive approach to
understanding this structure is by propagating the polygon lines equally inward, parallel
to themselves. The points at which the lines intersect create the structure of the medial
axis.

The straight skeleton limits this representation to only straight lines and is therefore
better suited for computer representation. It can be approximated using the Delaunay
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3. Preliminaries

triangulation, which we will cover next. Examples for the straight skeleton are given in
Figure 3.3.

(a) Straight skeleton of a rectangle.

(b) Straight (pruned) skeleton of Lower Austria.

Figure 3.3: Examples for the straight skeleton.

3.4 Delaunay Triangulation and Voronoi Diagram

The Delaunay triangulation is a triangulation of a set of points into triangles, with the
points representing triangle vertices. More formally, let S be a set of n points in R2.
Now, the Delaunay triangulation is formed by connecting with a line segment any two
points p, q ∈ S for which a circle C exists that passes through p and q and does not
contain any other point of S in its interior [DBCVKO08]. The elementary property of

Figure 3.4: Delaunay triangulation of 5 points (black), with the Voronoi diagram and
straight skeleton shown in red.

this structure is that the circumcircles of the calculated triangles do not contain any other
points from the point set. The centers of the triangle circumcircles form the dual of the
Delaunay triangulation, known as the Voronoi diagram from which the straight skeleton
can be approximated. Given n points, the Delaunay triangulation can be computed in
O(n log n) time. An example of a Delaunay triangulation of a point-set (black) is given
in Figure 3.4. The circumcircle centers, shown in red, form the Voronoi diagram. To

8



3.5. Clearance

approximate the straight skeleton from the triangulation, the circumcircle centers of
adjacent triangles, i.e., triangles that share an edge, are connected. Any edges that are
not completely contained within the convex hull of P are discarded. The result is the
approximated (pruned) straight skeleton.

3.5 Clearance
Krumpe [Kru20a] defines (edge-)clearance for the straight skeleton as the approximated
lowest distance of a skeleton edge to the polygon’s boundary. The clearance allows us
to identify segments within the straight skeleton that best represent the polygon, i.e.,
offer a high degree of conformity. These segments can then be used as a guide for label
placement.

In the previous Section 3.4, we have established that an edge in the straight skeleton
is formed by connecting the centers of adjacent triangle circumcircles in the Delaunay
triangulation. The shared edge of adjacent triangles is called the Delaunay edge, which is
not part of the skeleton. Using the properties of the Delaunay triangulation, we can now
approximate the clearance using Krumpe’s method:

For any given skeleton edge, there are two cases (an example is given in Figure 3.5).

The circumcircle centers are on different sides of the Delaunay edge: In this
case, the clearance is defined as half the length of the Delaunay edge.

The circumcircle centers are on the same side of the Delaunay edge: For this
case, the clearance is defined as the minimum of the radii of the two corresponding
circumcircles.

Figure 3.5: The clearance of a skeleton edge if the centers are on different sides of the
Delaunay edge (left) or on the same side (right) of the Delaunay edge. The shown

graphic is adapted from Krumpe [Kru20a].
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CHAPTER 4
Position Generation

The generation of a rich and diverse candidate set is essential for the placement of
suitable labels. Some approaches in the literature focus on singular points, e.g., the
centroid of the polygon [DPP03, WDZL16] to derive placements. While these methods
are effective for labels that do not aim to cover the polygon, they are less suitable for
conformity-based approaches. The straight skeleton, discussed in Section 3.3, has shown
to be a more effective approach for identifying placements with high conformity. In the
following sections, we are going to discuss Barrault’s [Bar01] and Krumpe’s [Kru20a]
position generation strategies, both of which utilize the straight skeleton. Furthermore,
we will extend the presented position generation methods in Section 4.4, to also include
height constraints.

4.1 Barrault’s Path Generation

Recall that Barrault’s [Bar01] methodology is based on the placement of labels with a
fixed label height but a variable letter- and word spacing. Barrault aims to maximize
label length when generating the candidate set, but does not directly consider the label
height in the position generation.

As a first step in the generation process, morphological erosion is applied to the polygon
to remove excessive detail. Morphological erosion is an operator that simplifies complex
shapes while preserving essential polygon characteristics necessary for accurate labeling.
Next, the algorithm approximates the straight skeleton using the Delaunay triangulation,
recall Section 3.4. Within the skeleton, Barrault uses Dijkstra’s algorithm for each leaf
node to retain the k = 50 longest simple paths1. Given a skeleton with |E| edges and
|V | vertices, we can compute the set of paths in O(|V | · |E| log |V |) time. Using the

1A simple path is a path, that does not have any repeated vertices.
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4. Position Generation

method we will describe in Section 4.3.1, we fit circular arcs along these paths to yield
the candidate positions.

4.2 Krumpe’s Path Generation

(a) Pruned straight skeleton of the area of
Salzburg.

(b) Resulting sub-graph by filtering with
the initial clearance.

(c) Extraction of the longest simple path
within the sub-graph

(d) Re-filtering with reduced clearance
value.

(e) Extraction of the longest simple path within the new sub-graph.

Figure 4.1: Krumpe’s clearance filtering algorithm for the straight skeleton.

Contrary to Barrault [Bar01], Krumpe [Kru20a] sets a fixed aspect ratio a for the label
and then maximizes its scale. While Krumpe also uses the straight skeleton for the
generation of the candidate set, he follows a more elaborate approach that aims to remedy

12



4.3. Path Approximation

the shortcomings of Barrault’s method we will discuss in Chapter 6. Rather than solely
focusing on the longest simple paths within the skeleton, his methodology aims to find
skeleton paths with a high clearance, i.e., the lowest distance of a skeleton edge to the
polygon’s boundary. Intuitively, the objective is to find paths that allow for a great use
of the vertical space. For a more detailed explanation of the clearance value and its
calculation, the reader is referred to Section 3.5.

A visualization of Krumpe’s algorithm is presented in Figure 4.1. In detail, in the first
step, a large clearance value c is selected, e.g., the maximum clearance value within the
skeleton. The skeleton is then filtered and edges with a lower clearance value are removed.
The result is a sub-graph of the straight skeleton. The longest simple paths for each
connected component in the sub-graph are then calculated using Dijkstra’s algorithm.
We define the minimal length of a pathh as lmin = 2·c

a . If the length of the path is equal
or greater than lmin, the path is retained. The clearance c is then reduced by

√
2. The

reason behind this is that if the potential height of the label is reduced by
√

2, then its
area is halved. This procedure is repeated until k = 30 paths are found.

For a skeleton graph with |E| edges and |V | vertices, the filtering can be performed on
O(|E|) time. Then need to perform Dijkstra’s algorithm on each connected component
g ∈ G. The total computational cost across all connected components can be bounded
by: ∑︂

g∈G

(|Eg| log |Vg|) ≤ |E| log |V |

where |Eg| and |Vg| denote the number of edges and vertices in each connected component.
Thus, the overall time complexity becomes O(i·|E| log |V |), where i represents the number
of iterations needed. Since not every path is retained, we might need more than k filtering
steps. A reasonable upper bound for i is log√

2( cmax
cmin

), as the clearance decreases by a
factor of

√
2 in each iteration. Here, cmax and cmin denote the maximum and minimum

clearance value within the skeleton, respectively.

Similarly to Barrault, Krumpe approximates circles along these paths using the method
we will describe in Section 4.3.1 to yield the candidate positions.

4.3 Path Approximation

The algorithms presented in the previous Sections 4.1 and 4.2 only give us simple paths
within the straight skeleton (effectively polylines). However, our goal is to place labels
on a curve. Imhof [Imh75] recommends the use of a single circular arc and to avoid more
complex curves due to readability and map simplicity concerns. He makes an exception
however, for long labels, allowing the use of doubly curved lines and states that they can
have a very elegant effect. Barrault [Bar01] and Krumpe [Kru20a] limit their approach to
the use of a single circular arc. In addition to enhancing readability and map simplicity,
this choice significantly simplifies the selection process we will discuss in the next chapter.
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4. Position Generation

In the following sections, we will discuss a path approximation method based on circles,
but will also consider a different approach using Bézier curves.

4.3.1 Circle Approximation

Given a sequence of path coordinates (x1, y1), . . . , (xi, yi), . . . , (xn, yn), the objective is
to approximate it via a circle with radius R and center (x, y). For this, we use an
approach from Thomas [TC89] that generates a circle such that the following error term
is minimized.

In detail, the error term is defined as the difference between the constant area R2π and
the circle at (x, y) with radius

√︁
(xi − x)2 + (yi − y)2. Summing up the squares of errors

we have
e(R, x, y) =

n∑︂
i=1

[πR2 − π{(xi − x)2 + (yi − y)2}]2.

We then differentiate with respect to x, y and R. By using a trick and solving for x and
y respectively, we can rewrite the results in matrix form.(︄

a1 b1
a2 b2

)︄(︄
x
y

)︄
=
(︄

c1
c2

)︄

Using the notation

∑︁
y =

∑︂
i

yi,
∑︁

x2 =
∑︂

i

x2
i ,

∑︁
y2 =

∑︂
i

y2
i

∑︁
xy =

∑︂
i

xiyi,
∑︁

x3 =
∑︂

i

x3
i ,

∑︁
y3 =

∑︂
i

y3
i

∑︁
x2y =

∑︂
i

x2
i yi,

∑︁
xy2 =

∑︂
i

xiy
2
i ,

we get

a1 = 2(
∑︁2

x−n
∑︁

x2), b1 = 2(
∑︁

x

∑︁
y −n

∑︁
xy)

a2 = 2(
∑︁

x

∑︁
y −n

∑︁
xy) = b1, b2 = 2(

∑︁2
y −n

∑︁
y2)

c1 = (
∑︁

x2
∑︁

x−n
∑︁

x3 +
∑︁

x

∑︁
y2 −n

∑︁
xy2)

c2 = (
∑︁

x2
∑︁

y −n
∑︁

y3 +
∑︁

y

∑︁
y2 −n

∑︁
x2y).

We will use the values to find the center (x, y) of the approximated circle.

x = c1b2 − c2b1
a1b2 − a2b1

y = a1c2 − a2c1
a1b2 − a2b1
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4.3. Path Approximation

We then calculate the approximated radius

R2 = 1
n

(
∑︁

x2 −2
∑︁

x xc + nx2
c

∑︁
y2 −2

∑︁
y yc + ny2

c ).

To extract a valid circular arc from the circle, we first calculate the intersection points of
the circle with the polygon boundary. From the intersection points, we determine the
angles θj relative to the circle’s positive x-axis, with j = 1, 2, . . . , k. This allows us to
define angle intervals (θj , θj+1) for j = 1, 2, . . . , k− 1, along with the interval (θk, θ1) that
connects the last to the first intersection point. From the intervals that lie within the
polygon, we retain the one with the largest angular extent as our candidate position and
will denote it by the starting angle β and angular extent ∆β.

4.3.2 Bézier Curve Approximation

Imhof [Imh75] advises against the use of arbitrary curves to keep maps more simple and
readable. However, due to the nature of Bézier curves, they can follow more complex paths
if compared to simple circular arcs. This is especially helpful since the generated skeleton
paths can have multiple directional changes that circles cannot represent accurately.
Since, in this thesis, the primary focus lies on achieving a high degree of conformity
the raised concerns will be set aside momentarily to explore how conformity might be
improved through the use of Bézier curves for path approximation.

A Bézier curve is an approximating curve, i.e., control points do not have to lie on the
curve itself. A curve of degree d has d + 1 control points. We are going to use the cubic
Bézier curve since it allows for a maximum of one inflection point and for us provides
the best trade-off between approximation accuracy and simplicity/readability.

The cubic Bézier curve is formed by the four control points P0, P1, P2, P3 (see Figure 4.2).
The first control-point P0 and last control-point P3 lie directly on the curve, while P1
and P2 do not necessarily.

P0
P1

P2

P3

Figure 4.2: Bézier curve example.

Now for a simple approximation of a sequence of path coordinates

(x1, y1), (xi, yi), . . . , (xn, yn)
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4. Position Generation

with a Bézier curve, let
P0 = (x1, y1), P3 = (xn, yn),

P1 be the point at 1
3 and P2 be the point at 2

3 of the Euclidean length of the path such
that all Pi are equally spaced on the path.

4.4 Height Constraints
In this thesis, we aim to solve the HeightConstrainedLabeling problem, but we
have not yet directly considered label height in the generation process. Currently, we
cannot guarantee that a candidate position, when assigned a height, can be completely
contained within the polygon boundary. In this section, we therefore extend the position
generation step to include a label height h, such that labels do not extend outside the
boundary.

Barrault [Bar01] and Krumpe [Kru20a] base their position generation on a singular circle
with radius R. To keep labels from extending beyond the boundary, we are going to use
the circle with radius R as a guide only. According to our model, recall Section 3.2, we
are going to use two circles instead: one circle that represents the top boundary of the
label with radius Ru = R + h

2 and one that represents the lower boundary with radius
Rl = R− h

2 .

To extract viable arcs on the circles with Ru and Rl, we first calculate the intersection
points of the two circles with the polygon boundary. Next, for each circle, we determine
the set of angle intervals that lie within the polygon, similar to Section 4.3.1. However,
here, we additionally have to calculate the interval intersections of both circles. We will
retain the interval intersection with the largest angular extent as the candidate position
and denote by starting angle β and angular extent ∆β.
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CHAPTER 5
Position Selection

In the second part of the pipeline, the selection process, we evaluate and compare
candidate arcs according to certain quality metrics. The most suitable is then selected
for label placement. Identifying high-quality paths is crucial since their quality can vary
significantly.

First, in Section 5.1, we will look at Barrault’s selection process based on the perceived
coverage metric. While Krumpe’s approach is also very interesting, it is not suited for
the HeightConstrainedLabeling variant, since it follows the goal of maximizing the
font-size, which is not our goal. Next, in Section 5.2, we will extend the perceived coverage
metric by incorporating metrics for curvature and orientation. Finally, in Section 5.3, we
will introduce pre- and post-processing steps to refine the selection process.

5.1 Barrault’s Selection Process
Out of the metrics mentioned in Section 3.1, conformity has the most loose definition
and is therefore arguably the most difficult to measure. An interesting approach in the
literature focusing on conformity is Barrault [Bar01]. He introduced the quality measure
known as perceived coverage (PC).

The intuition behind this quality measure is presented in Figure 5.1. Consider a circular
arc with a height h = 0 (Figure 5.1a). We then gradually increase the height equally
at the top and bottom, individually for each point on the arc, until either the lower or
upper part of the arc touches the boundary. The resulting (shaded) area in Figure 5.1b
is the perceived coverage of the circular arc.

However, contrary to HeightConstrainedLabeling, Barrault does not directly con-
sider label height and defines a label placement as the following (a visualization of the
terms defined next is given in Figure 5.2). A label placement is characterized by a support
line SL and a baseline B. The support line SL(xc, yc, R, α, ∆α) represents a circular arc
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5. Position Selection

(a) Initial circular arc with height h = 0. (b) Perceived coverage area of the circular
arc.

Figure 5.1: Perceived coverage intuition. Graphic adapted from Barrault [Bar01].

Figure 5.2: Perceived coverage notation.

within P . SL has a radius R and center (xc, yc). The support line spans from boundary
to boundary within P and is characterized by the starting angle α ∈ [0, 2π] relative to
the positive x-axis and angular extent ∆α ∈ (0, 2π]. The baseline represents the final
placement of the label, defined along the support line. It is defined as B(SL, β, ∆β),
with a starting angle β ∈ [α, α + ∆α] and angular extent ∆β ∈ (0, 2π], such that
β + ∆β ≤ α + ∆α.

We denote ld(s)/lu(s) as the lower/upper distance of a point s on the baseline B to the
closest lower/upper point of the boundary in the direction described by the vector from
the center (xc, yc) of the circle to the point s.

Now, for a baseline B, the perceived coverage is the continuous sum of the minimal
distances along it (multiplied by 2):

PC(B) = 2
∫︂ β+∆β

β
pc(s)ds = 2

∫︂ β+∆β

β
min(ld(s), lu(s))ds

This is approximately the shaded area in Figure 5.1. With this measure, we can identify
baselines that offer good centering and space in the latitudinal, i.e, “vertical” dimension.
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5.2. Extending Barrault’s Quality Function

However, for an adequate placement, we need to consider label position and extent in
the longitudinal, i.e., “horizontal” dimension as well. Therefore, Barrault extends the
metric by considering the longitudinal extent and longitudinal centering of the baseline,
recall Section 3.1.

For this, Barrault uses a rule from Cuenin [Cue72] that states that the longitudinal
extent e of the baseline should be 2

3 the length of the support line it is placed on.
Additionally, to favor longitudinal centering, a penalty is induced relative to the degree
of violation.

PCSL(B) =
∫︂ min(α+∆α,β+∆β+∆β·(1−e)/2)

max(α,β−∆β·(1−e)/2)
pc(s)ds (5.1)

−
∫︂ α−min(0,α−β−∆β·(1−e)/2)

α
pc(s)ds (5.2)

−
∫︂ α+∆α

α+∆α+min(0,α+∆α−(β+∆β+∆β·(1−e)/2))
pc(s)ds (5.3)

In detail, in Equation (5.1), the perceived coverage for a baseline B along a support line SL
is calculated. However, we extend the interval of B on both sides such that the residual
extent (1− e = 1

3) is shared equally on both sides. Additionally, we do not compute the
area beyond the endpoints α and α + ∆α. In Equations (5.2) and (5.3) we penalize arcs
being too close to the left and right boundary by removing the area corresponding to the
degree of violation.

For the complete metric, we define Qcov on [0, 1], that measures the coverage relative to
the polygon area. We denote by S the area of the polygon. To increase the variation
between the best candidates, we take the square root of P CSL(B)

S .

Thus, the PC for a baseline B can be calculated with the following formula.

Qcov =

√︄
PCSL(B)

S

5.2 Extending Barrault’s Quality Function
Barrault’s approach focuses solely on coverage while ignoring metrics like curvature and
orientation. He argues that these metrics should only intervene in the final selection and
are dependent on the cartographer’s preference.

In the following, we will extend Barrault’s PC metric and define such a quality function
that focuses on conformity but also takes curvature and orientation into account.

5.2.1 Curvature

In area labeling, placements on circular arcs with smaller radii are usually avoided, since
they are harder to read. Additionally, in terms of conformity, we can often observe that
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5. Position Selection

arcs with larger radii are more effective in representing the more significant parts of a
polygon. Therefore, we require a metric to favor arcs with larger radii to ensure that the
most suitable arcs are selected.

Similarly to Qcov, we construct the metric

Qcur =
√︄

R

Rmax

to quantify the relative size of a candidate’s radius R compared to the largest radius
Rmax in the candidate set.

5.2.2 Orientation

Vertical text is often hard to read, especially in dense labelings. Therefore, a function
is required that favors horizontal placements, while also not completely excluding more
vertical options. For this, we aim to find a simple approach using the label placement’s
center-angle (β + ∆β

2 ) as a guide.

The function takes the angle as input and should output values in the interval [0, 1]
representing the label’s orientation quality. The maximum should be at π

2 (north) and
3π
2 (south), while the minimum should be 0 (east) and π (west), relative to the positive

x-axis. This behavior can be achieved using the simple trigonometric function

Qori = cos2(π

2 + (β + ∆β

2 )).

5.2.3 Putting it all together

Extending Barrault’s proposed PC metric into a more complete quality function yields

Q = wcov ·Qcov

+ wcur ·Qcur

+ wori ·Qori

Where wcov, wcur and wori denote the weights of the corresponding metrics and can be
chosen individually. With conformity being of greater concern to us than readability, we
can confidently say that coverage should be prioritized and given more weight. Curvature
plays a smaller, secondary role, while still having some effect on conformity. Orientation
is of relevant primarily for readability, rather than conformity and should therefore be
given less weight.

5.3 Enhancements
In the following, we will present ways to enhance the position selection step.
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Clustering. In map labeling, it is important to consider potential overlap with other
features or labels on the map. The problem of finding label placements with the least
overlaps was even shown to be NP-complete [MS91]. A diverse set of paths is advantageous
since obstructions can be more easily avoided. Initial experiments revealed a high degree
of similarity among the candidate paths. To address this, clustering can be applied
to group similar paths, ensuring that positions from different clusters are included in
the final results. Therefore, as a preprocessing step, we will employ an agglomerative
clustering algorithm.

The first step is to define a function that determines the similarity of a pair of paths. An
intuitive approach is to measure the ratio of overlap between two paths. A high overlap
ratio suggests that a significant portion of the paths coincide, indicating that the paths
are indeed similar.

More formally, we introduce a similarity metric for two paths S and T , as:

Sim(S, T ) = d(S ∩ T )
d(S ∪ T ) ,

where d(S ∩ T ) denotes the Euclidean length of the intersecting segments of S and T ,
while d(S ∪ T ) denotes the Euclidean length of the union of their segments.

Now, for the algorithm, each path is initially assigned to its distinct cluster. The next step
involves identifying the pair of clusters that demonstrates the highest average similarity.
For clusters C1 and C2, the average similarity is computed as:

1
|C1||C2|

∑︂
S∈C1

∑︂
T ∈C2

Sim(S, T )

We then merge the pair of clusters with the highest average similarity. Finally, we
recalculate the average similarity for all remaining clusters to identify and merge the
next pair with the highest average similarity. This process is repeated until the amount
of clusters is reduced to m.

Local Search. In the following, we will introduce a local search approach that we can
use as a post-processing step in order to find local maxima to improve the quality of
promising arcs even further.

Let a0 be an initial arc with center (x, y), radius R, starting angle β and angular extent
∆β. Now, our goal is to find neighboring successor arcs that are of higher quality. In detail,
we alter the position of the arc by a translation along the vector formed by the center
of the circle (x, y) and the mid-point on the arc itself (see Figure 5.3). We can position
the neighboring arcs either above, below, or directly on the initial arc and also increase
the radius. (Concrete values will be given in Section 6.2.) Thus, the neighborhood N is
defined as the set of arcs generated through this combination of translation and scaling
operations. From this neighborhood, the arc with the highest quality is selected, and
its neighborhood is subsequently explored. As described in Algorithm 5.1, this iterative
process continues until a local maximum or k iterations is reached.
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5. Position Selection

R

(x, y)

(x′, y′)

R

Figure 5.3: Circular arc translation for local search.

Algorithm 5.1: Local search to improve the quality of an arc
Data: Initial arc a0
Result: Locally optimal arc a∗

1 a∗ ← a0;
2 generate neighborhood N (a∗);
3 while ∃a ∈ N (a∗) such that Q(a) > Q(a∗) and less than k iterations do
4 best← arg maxa∈N (a∗) Q(a);
5 update neighborhood N (a∗);
6 end
7 return a* ;
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CHAPTER 6
Results and Discussion

We implemented the HeightConstrainedLabeling pipeline in C++ utilizing the
Computational Geometry Algorithms Library (CGAL) [CGA24]. This implementation
builds upon Krumpe’s open-source project [Kru20b], which among other functionalities
includes the skeleton calculation and position generation.

Our implementation follows the introduced pipeline structure and offers a high degree
of flexibility. We can specify a polygon P including holes, a label height h and the
number of candidates. These parameters will be used for the generation step, where
either Barrault’s or Krumpe’s approach can be selected. Next, in the position selection
step, we detect the top placements with our introduced quality function Q where we can
freely adjust the weights for perceived coverage, curvature and orientation. Additionally,
we can enable or disable the enhancement methods of clustering and local search as
needed.

To visualize the results, we utilized Python along with the Matplotlib library. The areal
data of Austrian federal states used in our analysis was based on the data from Statistik
Austria’s Open.data platform [Ope24].

Experiments were carried out on an off-the-shelf laptop with 8 GB of RAM and an
older-generation Intel Core 7200U CPU.

The next sections will cover the implementation results of the generation process, followed
by the selection process, including its enhancements. Finally, we will briefly look at the
runtime we can expect from the algorithm.

6.1 Position Generation
Barrault vs. Krumpe. In Sections 4.1 and 4.2, we present Barrault’s and Krumpe’s
methods for position generation. For comparison, we present implementation results in
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6. Results and Discussion

(a) Barrault’s position generation (b) Krumpe’s position generation

Figure 6.1: Position generation Barrault and Krumpe, Salzburg, k = 30 candidates

(a) Barrault’s position generation (b) Krumpe’s position generation

Figure 6.2: Position generation Barrault and Krumpe, Lower Austria, k = 30 candidates

Figures 6.1 and 6.2. Comparing Barrault’s and Krumpe’s methods makes the shortcomings
of Barrault’s approach evident. In Figure 6.1, with Barrault’s method, all arcs lie
in the same visual cluster, leaving the lower-right third of the polygon completely
unaddressed. This clustering is typical for Barrault’s approach, which often produces
one to three clusters of arcs and also persists when the number of skeleton vertices is
varied. Furthermore, his approach fails to detect horizontal positions at the bottom of
the polygon, which are well-suited for label placement. Barrault acknowledged the lack of
diversity in his paper, noting that the longest simple paths in the straight skeleton tend
to be highly similar. In contrast, Krumpe’s method produces a more diverse candidate set
and distributes the arcs more evenly across the polygon. In Figure 6.2, Barrault’s method
can find more adequate placements. However, his candidate set still lacks diversity when
compared to Krumpe’s.

Krumpe [Kru20a] also critiques that Barrault’s method is often unable to generate arcs
with larger radii and smaller curvature. He specifically references a legibility metric
by Imhof [Imh75], which suggests a minimal angular extent of π

3 . In summary, when
compared to Barrault, Krumpe’s approach produces a more diverse candidate set, not
only in arc location but also in radius size.
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6.1. Position Generation

(a) Position generation of labels with explicit height,
Lower Austria, 30 candidates

(b) Intersection issue with explicit
height labels.

Figure 6.3: Labels with explicit height.

Height Constraints. In Section 4.4, we introduced an algorithm that, given a generated
circle and label height, aims to calculate a label position that is completely contained
within the polygon. Results are displayed in Figure 6.3a.

There are small flaws with our approach, however. Intersections with the boundary on
either end of the arc may not be detected correctly. An example is visible in Figure 6.3b.
The reason for this are thin peaks in the boundary that lie exactly between the upper and
lower boundary of the label. However, in most real-world areas, this is not a significant
concern since the peaks are usually small and we are not going to utilize the full label
length in the position selection step. Still, this issue could be remedied in the future by
identifying the polygon edges that intersect with the upper and lower label boundary.
We would then traverse the edges between the two intersection points and adjust the
angular range of the label accordingly. Furthermore, the current method fails to detect
sufficiently small holes that are entirely contained within the label. To correct this, we
would have to iterate over all the holes within the polygon and verify whether they are
contained within the label.

Path Approximation. In Section 4.3, we discussed methods to approximate paths
using circles and Bézier curves. We compared the approximation methods directly in
Figure 6.4 to make their differences visible. For paths with minimal change in direction,
the Bézier approximation appears to be more accurate than for circles and aligns more
closely with the skeleton edges. On the other hand, for paths that have larger changes
in direction and appear particularly curved, seemingly the opposite is true. The Bézier
curves cannot follow the path as well as the circles, and can often not even be contained
within the polygon.

Cuenin [Cue72] states that a label should not cover the entire width of the polygon.
Instead, the horizontal extent of a label should be 2

3 of the width of the area. Similarly
to Barrault in Section 5.1, we apply this rule and will only use 2

3 of the length of the
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6. Results and Discussion

(a) Circular arc approximation. (b) Bézier approximation, full skeleton path
length.

(c) Bézier approximation, 2
3 length of skeleton path.

Figure 6.4: Approximation of skeleton paths using circular arcs and Bézier curves,
Salzburg, with 30 candidates.

actual path with even spacing on both sides. Now, horizontal curves at the bottom of
the polygon yield favorable placements, while the more vertical options still mostly fall
short. Even if they are completely contained within the polygon, they still are very close
to the boundary and have an uneven curvature.

The reason for this lies in the choice of control points P1 and P2. Placing them exactly
on the path will not provide optimal results for accurately following a path. By using
local search on P1 and P2, to minimize the area between the skeleton path and the
Bézier curve, the curves could be further improved. This approach does come with its
limitations, however. Fitting the curve more closely to the skeleton path will result in a
more uneven curvature overall.

In summary, when path direction changes are minimal, Bézier curves can enhance
conformity by closely aligning with the skeleton. However, in the general case, the
application of Bézier curves as used here does not substantially improve conformity and
is often less effective than using circles. While there exist methods that could achieve
closer alignment with the skeleton, they would likely compromise readability due to the
uneven curvature.
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6.2. Position Selection Results

6.2 Position Selection Results

In this section, we will cover the implementation results of the selection process, while
relying on Krumpe’s position generation algorithm as a starting point, since it can provide
a more diverse candidate set.

(a) Position selection based on perceived
coverage only.

(b) Position selection based on quality
function Q with

wcov = 1.0, wcur = 0.25, wori = 0.1.

Figure 6.5: Position selection comparison, Lower Austria, top 5 positions.

(a) Position selection based on perceived
coverage only.

(b) Position selection based on quality
function Q with

wcov = 1.0, wcur = 0.25, wori = 0.1.

Figure 6.6: Position selection comparison, Salzburg, top 5 positions.

Quality Function Analysis. In Section 5.2.3, we introduced the quality function Q
that includes the label’s perceived coverage, curvature and orientation. Comparing Q
with a selection based solely on perceived coverage reveals significant differences (see
Figures 6.5 and 6.6). When position selection is based only on perceived coverage, more
vertical arcs with smaller radii are often selected. However, for the best readabilty
and aesthetics we want relatively horizontal arcs with larger radii. To address this, we
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introduced the quality function Q, which incorporates metrics for both orientation and
curvature. This allows Q to identify placements with higher readability and aesthetics in
the same candidate set, while still maintaining a strong focus on conformity.

Clustering. We introduced clustering as a post-processing step to achieve more diversity
among the top paths. The results of this procedure are shown in Figure 6.7. When
comparing Figures 6.7a and 6.7b, we can observe that selecting only 5 clusters is insufficient
for this area. For instance, the green and the red cluster could be ideally split into two.
Subdividing into 10 clusters, as seen in Figure 6.7b, addresses these issues to some extent.
However, in certain cases, it clustered too finely. For example, the cyan and brown
clusters could be combined, as could the gray and yellow clusters. Overall, when using
k ≈ 30 candidates, we recommend choosing between 5 and 10 clusters for most areas.

(a) Clustering with m = 5 clusters. (b) Clustering with m = 10 clusters.

Figure 6.7: Clustering results, Lower Austria.

Selection results with clustering are displayed in Figures 6.8 and 6.9. In Figure 6.8,
clustering shows clear improvements in diversity. When clustering is not applied, the
selected paths tend to be very similar, leading to a significant redundancy (only arcs at
the bottom of the area were selected). This redundancy is significantly reduced after
implementing clustering and a set is chosen where all the arcs lie in different parts of the
area. However, in the case of Lower Austria in Figure 6.9, there a no clear improvements
visible due to the poorer clustering discussed previously. Thus, while clustering is effective,
selecting the optimal number of clusters can significantly enhance the results.

Local Search. In Section 5.3, as a post-processing step, we introduced a local search
algorithm to improve the quality of promising arcs further. Results are visible in
Figures 6.10 and 6.11 using a maximum of 10 iterations. The neighborhood for this
search consisted of six arcs, generated by combining two radius increases (5% and 10%)
with three translation shifts (-5%, 0% and 5%). For the example in Figure 6.10, we could
measure an increase in the quality function Q of around 5%.

A notable drawback of this enhancement is the computational cost, as it requires
recalculating the perceived coverage for each arc in the neighborhood in every iteration.
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(a) Salzburg without clustering. (b) Salzburg, with agglomerative clustering.

Figure 6.8: Lower Austria clustering comparison with selection based on Q with
wcov = 1.0, wcur = 0.25, wori = 0.1.

(a) Lower Austria, without clustering. (b) Lower Austria, with agglomerative
clustering.

Figure 6.9: Lower Austria clustering comparison with selection based on Q with
wcov = 1.0, wcur = 0.25, wori = 0.1.

As a result, the runtime of the algorithm increases substantially (see the next section).
Therefore, this step is recommended for refining only a small number of arcs.

6.3 Runtime

Although runtime was not a primary focus of this thesis, we present some results here
along with potential improvements that could enhance the performance. In Figure 6.12,
we can observe the runtime results based states of on the Austrian dataset. For polygons
with fewer than 500 vertices, label placements could be achieved in 1–2 seconds, while
polygons with higher vertex counts required more time. Thus, the algorithm is well suited
for guiding cartographers in the placement of labels, but may not be completely sufficient
for an interactive setting on areas with very high vertex counts. However, for maps with
multiple areas, the labeling could be easily parallelized, since the label placement can
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(a) Top 3 positions before the local search has
been applied.

(b) Top 3 positions after the local search has
been applied.

Figure 6.10: Post-processing using local search with a maximum of 10 iterations, Lower
Austria, top 3 positions, label height = 0

(a) Top 3 positions before the local search has
been applied.

(b) Top 3 positions after the local search has
been applied.

Figure 6.11: Post-processing using local search with a maximum of 10 iterations,
Salzburg, top 3 positions, label height = 0

be carried out independently for each area. By performing a local search on the top 5
candidates, the runtime additionally increased by approximately 50% to 200%, to 4–16
seconds.

The primary bottleneck of the implementation lies in the intersection calculations, which
consume a significant portion of the runtime; more than 80% depending on the vertex
count. The intersection calculations are done in two areas. First, during the position
generation step, where we calculate the intersections of the generated circle with the
polygon. And secondly, during the perceived coverage calculation for the pc(s) values,
recall Section 5.1.

A possible issue lies in the use of a simple array of segments to compute the intersections,
which requires calculating intersections for each polygon segment individually. A solution
for this would be to use a tree-like data structure that is better suited for intersections,
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6.3. Runtime

Figure 6.12: HeightConstrainedLabeling algorithm runtime on 30 generated paths,
averaged over 30 runs.

since it reduces the amount of intersection-checks significantly. Additionally, we could
apply morphological erosion in order to simplify the polygon while keeping the character-
istics that are necessary for labeling. This would also substantially reduce processing
times.
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CHAPTER 7
Conclusion

In this thesis, we explored the area labeling problem, focusing specifically on methods for
placing labels along circular arcs while ensuring conformity. To this end, we presented
and compared the approaches of Barrault [Bar01] and Krumpe [Kru20a]. Both of which
follow a pipeline structure consisting of position generation and position selection steps.
After discussing the methods and identifying their weaknesses, we additionally proposed
the HeightConstrainedLabeling problem variant as well as a labeling pipeline
implemented in C++.

In labeling, it is essential to consider potential overlaps with other labels and map features.
To minimize conflicts, a diverse set of label candidates is necessary. Through experiments,
we could confirm that Krumpe’s position generation is superior to Barrault’s, since it can
generate a more diverse candidate set. Additionally, Barrault’s generation method does
not consider label height. Therefore, to ensure that labels of a specific height remain
within the boundary, HeightConstrainedLabeling introduces a height parameter.

In the position selection step, we presented Barrault’s approach, which is based on his
perceived coverage metric. However, as noted by Barrault himself, this metric does not
account for readability criteria like label curvature and orientation. To address this, we
introduced a quality function that integrates these additional metrics, which we believe
significantly improves the overall placement quality. To increase diversity among the top
paths, we incorporated clustering in the position selection step. As a post-processing
step, we added local search to further improve the top paths.

We also implemented the proposed enhancements in C++ and visualized the results using
Matplotlib. Our implementation addresses some of the weaknesses in Barrault’s and
Krumpe’s approaches, but it also has its own limitations. Firstly, similarly to Barrault’s
method, our implementation may result in generated labels overlapping holes within the
polygon if those holes are sufficiently small for the labels to completely enclose them.
Additionally, when using clustering, the cluster amount should be approached with some
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consideration, since it has a significant impact on the clustering quality. While runtime
was not a primary focus of this thesis, it could be further improved in the future to make
the implementation more suitable for interactive use on larger maps.

As the amount of information presented on maps continues to grow, high-quality labeling
will become even more important to warrant further research. It would be interesting to
integrate methods that ensure aesthetic continuity between multiple labels on a map. This
could improve the visual coherence and make maps more visually appealing. Additionally,
by implementing a more advanced clustering method, we could achieve an even more
diverse suited label candidates.
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Overview of Generative AI Tools
Used

I used Grammarly and ChatGPT to check grammar, rephrase individual sentences and
find synonyms.
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