B Informatics

Crossing Minimization in
One-Sided Time-Interval
Storylines with a Protagonist

BACHELORARBEIT

zur Erlangung des akademischen Grades
Bachelor of Science
im Rahmen des Studiums
Wirtschaftsinformatik
eingereicht von

Felix Kainz
Matrikelnummer 11808817

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Univ.Prof. Dipl.-Inform. Dr.rer.nat. Martin Néllenburg
Mitwirkung: Projektass. Dipl.-Ing. Alexander Dobler

Wien, 31. Oktober 2025 FQ—J//K/

Felix Kainz Martin Néllenburg

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

B Informatics

Crossing Minimization in
One-Sided Time-Interval
Storylines with a Protagonist

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Business Informatics
by

Felix Kainz
Registration Number 11808817

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Inform. Dr.rer.nat. Martin Néllenburg
Assistance: Projektass. Dipl.-Ing. Alexander Dobler

T~ :
Vienna, October 31, 2025 L‘\) /’4 /

Felix Kainz Martin Néllenburg

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Felix Kainz

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

— .
Wien, 31. Oktober 2025 '!k/ /K/ﬁ

Felix Kainz

Danksagung

Mein besonderer Dank gilt meinem Betreuer und Mentor Martin Néllenburg, der mich
nicht nur wéhrend dieser Bachelorarbeit begleitet hat, sondern mir auch dariiber hinaus
den Zugang zur geometrischen Algorithmik eréffnet und mich stets motiviert hat. Ebenfalls
danken mdochte ich meinem Co-Betreuer Alexander Dobler, der mich durch die gesamte
Arbeit unterstiitzt und mit vielen hilfreichen Anregungen vorangebracht hat. Fir die
regelméBigen Treffen, die konstruktiven Diskussionen und den kontinuierlichen Fortschritt
bin ich beiden sehr dankbar.

Ein weiterer Dank gilt meinem Bruder Simon Seelig, der mir mit ausfiihrlichem inhaltli-
chem und formalem Feedback geduldig zur Seite stand. Auflerdem mé&chte ich Franziska
Seigner dafiir danken, dass sie mir mit sprachlicher Prézision und einem guten Auge fiir
fliissige Formulierungen geholfen hat.

Zuletzt mochte ich meiner Familie und meinen Freund*innen danken, die mich wéahrend
der Arbeit und des gesamten Studiums unterstiitzt und motiviert haben.

vii

Acknowledgements

I would like to express my sincere gratitude to my supervisor and mentor Martin Néllen-
burg, who not only supported me throughout this Bachelor’s thesis, but also introduced
me to geometric algorithms and continuously encouraged my academic development. I
am also very grateful to my co-supervisor Alexander Dobler, whose guidance and many
helpful suggestions significantly contributed to the progress of this work. I thank both
for the regular meetings, the constructive discussions, and the steady advancement they
enabled.

My thanks further go to my brother Simon Seelig, who provided patient and extensive
feedback on both content and structure. I would also like to thank Franziska Seigner for
helping me improve the fluency and clarity of my English writing.

Lastly, I want to thank my family and my friends, who have supported and motivated
me throughout this thesis and my entire studies.

ix

Kurzfassung

Storyline-Visualisierungen stellen Interaktionen zwischen Charakteren iiber die Zeit
hinweg dar, wobei x-monotone Kurven die Charaktere reprasentieren, die bei Interaktio-
nen zusammenlaufen. Allerdings beeintrachtigt eine grofie Zahl sich kreuzender Linien
schnell die Lesbarkeit. Diese Arbeit untersucht das One-Sided Crossing Minimization
in Time Interval Storylines with a Protagonist (1-SCM-TI-P), eine Variante, bei der
ein zentraler Charakter fixiert ist und Interaktionen innerhalb desselben Zeitintervalls
ohne vorgegebene Reihenfolge umgeordnet werden diirfen. Wir entwickeln eine exakte
ILP-Formulierung zur Kreuzungsminimierung sowie eine untere Schranke und entwer-
fen ein skalierbares heuristisches Verfahren, das eine TSP-basierte Initialisierung mit
Simulated Annealing und strukturierten Nachbarschaften kombiniert. Experimente auf
Basis von Kollaborationsnetzwerken aus DBLP zeigen, dass die Heuristiken in Millisekun-
den nahezu optimale Losungen erreichen, wahrend das ILP auf kleine oder nicht stark
miteinander verbundene Instanzen beschrankt bleibt. Unsere Ergebnisse zeigen, dass
hochwertige protagonistenzentrierte Storylines auch fiir grofle Instanzen effizient erzeugt
werden konnen.

X1

Abstract

Storyline visualizations encode interactions between characters over time, with x-monotone
curves representing characters that converge when they interact. However, excessive
line crossings quickly reduce readability. This thesis investigates the One-Sided Crossing
Minimization in Time Interval Storylines with a Protagonist (1-SCM-TI-P), a variant
where one main character remains fixed while interactions within the same temporal
group may be reordered freely, as their order is not predetermined. We introduce an
exact ILP formulation for crossing minimization together with a fast lower bound and
develop a scalable heuristic framework combining a TSP-based initialization with Simu-
lated Annealing using structured neighborhood operations. Experiments on real-world
research collaboration networks derived from DBLP show that the heuristics achieve
near-optimal solutions within milliseconds while the ILP is limited to small or sparse
instances. The results demonstrate that high-quality layouts are feasible even for large
instances, supporting efficient and readable protagonist-centered storylines in practical
applications.

xiii

Kurzfassung
Abstract
Contents
1 Introduction
2 Related Work
3__Preliminaries
3.1 Integer Linear Programming/.
3.2 The Traveling Salesperson Problem|.
3.3 Simulated Annealing
4 Problem Setting
4.1 Input Representation|.
4.2 Formal Problem Definition/.
4.3 Crossing Definition|
5 Exact Approaches
5.1 Base ILP Formulationl
5.2 Extension: Active Character Ranges
5.3 Algorithmic Lower Bound
6 Heuristics
6.1 TSP-Based Initial Solution Generation
6.2 Simulated Annealing Framework and Neighborhoods .
7 Experiment Framework and Evaluation

7.1
7.2
7.3
7.4

Setupl e
Exact Approaches: ILP and Lower Bound Evaluation

Heuristic Approaches: TSP-Based Initialization|
Heuristic Approaches: Simulated Annealing Evaluation

Contents

xi

xiii

Xv

co o 3

©

10
10

13
13
15
16

19
19
23

31
31
34
35
37

XV

7.5 Case Study: A Signature Professor|
7.6 Summary of Findings

8 Discussion
8.1 Trade-offs Between Exact and Heuristic Methods
8.2 Structure and Scalability|. 0000
8.3 _Limitations e e e

9 Conclusion and Outlook

Appendix: SPARQL Queries for Dataset Generation
Overview of Generative Al Tools Used

List of Figures

List of Tables

Bibliography

41
43

47
47
48
49

51

53

57

59

61

63

CHAPTER

Introduction

Stories often revolve around characters whose paths intertwine over time. When visualiz-
ing such narratives, a straightforward approach is to draw each character as a curve that
moves through time from left to right. Whenever characters appear together in the story,
their curves are drawn vertically next to each other, making their interactions easy to
spot in the visualization.

This style of drawing, now referred to as a storyline visualization, became recognized
through Randall Munroe’s xked comic in 2009 [Mun09], which depicts the events of
Tolkien’s The Lord of the Rings as a single visual timeline (Figure 1.1).

Figure 1.1: Storyline visualization of the events in The Lord of the Rings, illustrated by
Munroe [Mun09].

Storyline visualizations provide an intuitive and visually appealing way to explore
temporal relationships. However, as the number of characters and interactions grows,
the drawing can quickly become cluttered and hard to read. In particular, each time two
curves cross, the viewer must visually track which line continues where. Minimizing such
crossings is therefore essential for preserving readability and supporting the narrative
flow of the visualization.

1.

INTRODUCTION

While the idea is visually simple, constructing high-quality storyline layouts is computa-
tionally challenging. Each interaction imposes a local constraint on the vertical ordering
of character curves at the corresponding point in time, and every swap of adjacent
characters can introduce an additional crossing. As a result, finding a layout with as few
curve crossings as possible becomes a challenging combinatorial optimization problem.

The core concept, first explored for software evolution visualization [OM10] was formally
addressed by Tanahashi and Ma [TM12], who defined the aesthetic goal of minimizing
line crossings. This has motivated several studies on crossing minimization in storyline
drawings, connecting the problem to established concepts from graph drawing and layered
layouts |Gro+16]. These works show that even simplified versions of storyline layouts are
computationally hard, demonstrating the need for efficient heuristics when dealing with
real-world data.

In many real-world scenarios, the visualization is not designed to treat all characters
equally. A single central actor often drives the narrative, while others appear only for
specific events. This is especially true in the academic collaboration setting considered
in this thesis, where one researcher (the protagonist) is visualized together with their
coauthors across years of publications. In such cases, the viewer’s attention naturally
follows the protagonist, and their position in the layout should remain consistent over
time. This perspective leads to layouts in which the protagonist’s vertical position is
fixed, while the remaining characters may change position when they appear or disappear.
Restricting the protagonist to appear on the top of the drawing, the One-Sided Storyline
Crossing Minimization with a Protagonist (1-SCM-P) has recently been introduced and
investigated by Hegemann and Wolff [HW24].

11 f Protagonist to

_J >

Figure 1.2: Exemplary, non-optimized storyline instance with 6 crossings. The black
line on top is the protagonist. Interactions are marked with gray boxes. The order of
interactions within a timestamp (separated by red dashed lines) and the vertical order of
non-protagonist characters is subject to optimization.

Character Curve Interaction

We extend this one-sided protagonist storyline model by allowing partial orderings on

the time axis. Collaboration events are grouped into discrete timestamps, representing
publication years in our researcher setting. Within each timestamp, several interactions
may occur independently, and the exact left-to-right ordering of these events is not
predetermined. This freedom allows us to reorder interactions within a timestamp
in order to reduce both local crossings and crossings with interactions in neighboring
timestamps. Partial-order formulations of storyline layouts have recently been investigated
by Dobler et al. [Dob+23] for the non-protagonist general case.

We combine both settings, investigating the One-Sided Crossing Minimization in Time
Interval Storylines with a Protagonist (1-SCM-TI-P). An example of a problem instance
is shown in Figure |1.2l

While the general storyline crossing minimization problem was shown to be NP-hard
by Kostitsyna et al. [Kos+15| even without partial-order formulations, 1-SCM-P is
efficiently solvable. To evaluate the effect of partially changing the order of interactions
in 1-SCM-TI-P instances, we build on the 1-SCM-P algorithm proposed by Hegemann
and Wolff [HW24]. This algorithm efficiently computes a minimal pairwise crossing
configuration given a total ordering of interactions in O(k?n) time, where k is the number
of characters and n is the number of interactions. For our purposes, we treat the 1-SCM-P
algorithm as a black box throughout the thesis.

It is an open problem whether 1-SCM-TI-P is NP-hard or efficiently solvable. The aim
of this thesis is to investigate this problem from different, applied viewpoints. Chapter |2
goes more into detail on how this problem fits into surrounding research, and Chapter |3
introduces the concepts used for our approaches. Chapter |4 formally defines 1-SCM-TI-P,
followed by exact approaches towards a solution in Chapter 5. In Chapter 6, we present
a heuristic framework that aims to find near-optimal solutions. Chapter 7| evaluates the
different approaches on real-world instances. We discuss our findings in Chapter [§ before
concluding our work and giving an outlook on future work in Chapter 9.

CHAPTER

Related Work

Storyline visualizations encode entities as time-monotone curves and depict interactions
by bringing curves into proximity, with readability primarily enhanced by minimizing
crossings and supported by secondary criteria such as bends and whitespace, see Tanahashi
and Ma [TM12]. The connection to layered drawing makes vertical permutations the
central degrees of freedom for clarity and transforms storyline layouts to ordering problems
in graph drawing, as formalized by Gronemann et al. [Gro+16].

From a computational viewpoint, several storyline variants are hard, which motivates
restricted models and specific formulations, shown by Kostitsyna et al. [Kos+15]. To
remain scalable, some approaches limit the interaction model or exploit domain structures,
while others, such as Gronemann et al. |[Gro+16|, separate ordering from geometric fine-
tuning.

Instead of focusing on pairwise crossings, an alternative objective counts block crossings,
which are intersections between bundled groups of curves. The idea is to enhance
readability by grouping similar crossings at once. Minimizing block crossings is NP-hard
even under restricted interaction sizes, with tractable results only under additional
parameters such as bounded bundle size or constrained interactions, documented by
van Dijk et al. [Dij+16].

Time-interval storylines formalize the common situation where multiple events fall into
the same time grouping (e.g., a publication year), permitting permutations within each
interval to reduce crossings, as demonstrated by Dobler et al. [Dob+23]. This framework
is especially well suited for data that lacks a precise, total ordering.

Another approach takes a protagonist- or ego-centric perspective to focus on one actor and
their changing neighborhood over time, introduced by Muelder et al. [Mue+13|. Extending
this idea with broader, application-driven design choices, SpreadLine presents a storyline-
based framework for egocentric dynamic influence with case studies in epidemiology,
social platforms, and academic careers, presented by Kuo et al. [KLM25|. These systems

5

2.

RELATED WORK

highlight analytical value and visual stability for a single actor, providing a motivation
for one-sided models that keep the protagonist visually consistent.

On the optimization side of protagonist layouts, Storylines with a Protagonist formalize
one-sided models and provide efficient algorithms when the interaction order is fixed,
distinguishing pairwise from block crossings and demonstrating practical performance
on publication data, shown by Hegemann and Wolff [HW24]. They also consider the
two-sided variant, in which the protagonist remains fixed while other characters may
appear either above or below, but efficient procedures apply only when a crossing-free
arrangement exists.

To conclude, looking beyond narrative settings, storyline concepts have been adapted to
evolving networks where ordering and alignment choices reduce clutter while preserving
temporal coherence. This line of work further underscores that discrete-time ordering is
the main lever for readability in long sequences, highlighted by Arendt and Blaha |[AB14].

CHAPTER

Preliminaries

Before formally defining the main problem investigated in this thesis, we provide a
short overview of the fundamental optimization concepts used throughout this work,
namely Integer Linear Programming, the Traveling Salesperson Problem, and Simulated
Annealing. The goal is not to introduce these methods in full detail, but to summarize
their functionality and notation as used in later chapters.

3.1 Integer Linear Programming

An Integer Linear Program (ILP) is an optimization model where both the objective
function and the constraints are linear, but all decision variables are required to take
integer values. Formally, we seek

minc¢'z s.t. Az < b,
TEL™

where x € Z™ denotes the vector of decision variables, ¢ € R™ the objective coefficients,
and A € R™*" b e R™ define the linear constraints.

Restricting the decision variables to integer values turns linear programming (polynomial-
time solvable) into an NP-hard problem. Consequently, no polynomial-time algorithm is
known, and solving such models may require exponential time in the worst case [NW88|.

ILPs are often used on small and medium-sized instances, providing exact benchmarks for
heuristics and approximation algorithms. On larger instances, solvers may find feasible
solutions but fail to prove optimality within time limits. The quality of the current
solution can be inferred from the optimality gap, i.e., the relative difference between the
best known feasible objective (upper bound) and the best known lower bound from the
relaxation and the search tree.

After defining the problem formally in Chapter 4, we will extensively discuss the applica-
tion of integer linear programming to our problem in Chapter [5, and the heuristic results

7

3.

PRELIMINARIES

for our small and medium-sized instances in Chapter 7| will be compared against our ILP
results.

3.2 The Traveling Salesperson Problem

A classical combinatorial optimization problem structurally related to our storyline
optimization approach is the Traveling Salesperson Problem (TSP). Given a set of nodes
V ={1,...,n} and a cost matrix C' = (c¢;j) representing the cost of traveling from node
17 to node j, the TSP seeks a minimum-cost route that visits each node exactly once and
returns to the starting node. In the symmetric case, ¢;; = ¢j;. In the asymmetric case,
travel costs depend on direction.

The TSP is NP-hard in the optimization sense and NP-complete in its decision vari-
ant [Law95]. Nevertheless, exact solvers such as Concorde exploit branch-and-cut
techniques and polyhedral properties to optimally solve instances with thousands of
nodes [Tri0g].

Approximating our problem as a TSP instance will be the starting point for our heuristic
approaches shown in Chapter 6. We will then evaluate how closely the resulting T'SP-
based solutions approximate the true optimum in Chapter |7, where we also discuss
different options to transform our problem into a valid TSP formulation.

3.3 Simulated Annealing

Once a valid solution has been found, different strategies can be used to iteratively
improve it. Simulated Annealing (SA) is a metaheuristic that explores the solution
space by occasionally accepting worsening moves, allowing the search to escape local
minima [KGV83]. Alternative candidate solutions are generated by applying small
modifications to the current one, which together define its neighborhood. Chapter 6
introduces several such neighborhood operators, which are then compared with each
other in Chapter [7.

A proposed neighbor with cost difference A relative to the current solution is accepted
with probability
1, A <0,

P t| =
tlaceept] {exp(—A/T), A >0,

where T" > 0 is the temperature parameter. The higher the remaining temperature, the
greater the chance of accepting a worse solution. Following standard practice, we use
geometric cooling Ty11 = aT}, where the cooling factor a € (0,1) directly controls the
rate at which this probability decreases over time.

CHAPTER

Problem Setting

We formally define the One-Sided Crossing Minimization in Time Interval Storylines
with a Protagonist (1-SCM-TI-P). In our storyline visualization, a designated protagonist
character appears in every interaction and is always placed at the top of the drawing.
The objective is to order the interactions and characters such that the total number of
crossings between non-protagonist character curves is minimized.

4.1 Input Representation

An instance is given by a triple

S=(C,Z,T),

where

o C={cp,ci,...,cq} is the set of characters, where cp denotes the fixed protagonist
and n the number of non-protagonists.

o T ={t1,...,t,} is a totally ordered set of p timestamps
o T =A{I,...,I,} is a set of m interactions, each of the form
I = (Cj,t)),

where C; C C is the subset of characters participating in interaction I;, and t; € T
is the associated timestamp.

By definition, the protagonist participates in every interaction, i.e., cp € Cj for all I; € 7.

The visualization is organized into vertical columns, one for each interaction, which are
then placed in a left-to-right order according to their timestamp in 7. All interactions

9

4.

PROBLEM SETTING

10

with the same timestamp are grouped together, but their internal order is not fixed
and must be determined as part of the solution. Within each column, the protagonist
cp is placed at the top, and all participants of the corresponding interaction I; appear
consecutively below cp. Characters not participating in a given interaction may appear
in arbitrary order below the participants. Formally, let A = (Ay,..., A;,) denote the
ordered sequence of all columns, obtained by arranging interactions according to the
chosen timestamp and within-timestamp order.

4.2 Formal Problem Definition

The task is to compute

1. a total ordering of interactions within each timestamp ¢ € 7, and

2. a wertical ordering of all characters in each column A € A

such that the total number of crossings among non-protagonist character curves is
minimized.

Each column A; corresponds to a vertical slice of the storyline and is associated with
an interaction I; = (Cj,t;). The vertical ordering m; : C — {1,...,|C|} assigns each
character a position.

To ensure interaction continuity, all participants of an interaction I; must occupy con-
tiguous positions in each column associated with timestamp ¢;, i.e.,

g:leaé mi(cr) — cfggj mi(cr) =|Cj| —1 for all A; of t;.

Given two adjacent columns A; and As (either consecutive within a timestamp or the
last column of ¢ and the first column of ¢t + 1), a crossing between two non-protagonist
characters ¢;,c; € C\ {cp} occurs if their relative vertical order differs in A; and As.
The overall crossing count is obtained by summing over all adjacent column pairs.

4.3 Crossing Definition

Let m(A;) and 7(Asz) denote the vertical orderings m; induced by columns A; and As,
respectively. We measure the number of crossings between two adjacent columns A; and
A using the Kendall-tau distance

d(Ay, Ag) := K (n(A1), m(As)),

which counts the number of pairwise order disagreements between m(A;) and m(Az2) on
the fixed ground set C \ {cp}. Equivalently, a crossing between ¢; and ¢; occurs if ¢; is
above ¢; in A; but below ¢; in Ay, or vice versa. Summing d(A;, A2) over all adjacent
column pairs yields the total number of crossings.

4.3. Crossing Definition

Objective. The goal of 1-SCM-TI-P is to find an interaction ordering and character
orderings minimizing

Total Crossings = Z d(Aq, As).
adjacent (A1,A2)

Since the protagonist cp is always at the top and participates in every interaction, no
other curve can cross cp, and all crossings involve only non-protagonist pairs.

While the routing and displaying of individual curves can be handled separately, the
number of pairwise crossings is fully determined by the vertical orderings chosen at each
timestamp. In this work, we therefore focus exclusively on optimizing these orderings,
while the final curve drawing is delegated to the SCMP algorithm by Hegemann and
Wolff [HW24].

11

CHAPTER

Exact Approaches

Before moving towards efficient, but heuristic implementations, we describe several exact
approaches for solving or bounding 1-SCM-TI-P. The main contribution is an integer
linear program (ILP) that calculates optimal solutions for small- and medium-sized
instances and serves as a benchmark for the heuristic methods discussed in Chapter 7. In
addition, we include an extended ILP variant with active character ranges, which allows
characters to join the storyline at their first appearance, and lets them leave as soon as
their last interaction has occurred. Finally, we describe a simple algorithmic lower bound
that provides fast benchmarks against which heuristic solutions can be compared.

5.1 Base ILP Formulation

The following ILP formulation extends the model (ILP1) proposed by Dobler et al. [Dob+23],
which minimizes crossings for instances without a protagonist under a fixed timestamp
order, but optimizes the interaction order within each timestamp. Our formulation relies
on three types of binary variables to model the problem:

1. Assignment variables y;, 1 to encode the placement of each interaction I at a
particular column p of timestamp t;

2. Ordering variables Tt peic; b0 encode the vertical order of characters within each
column;

3. Crossing variables zip ., ., to indicate crossings between adjacent columns.

Interaction Assignment. For each timestamp t € T, let Zy C Z be the set of
interactions occurring at . We introduce binary variables y;, for p = 1,...,|Z,
indicating whether interaction I is assigned to column p at timestamp ¢.

13

d.

ExAcT APPROACHES

14

Each interaction must be assigned to exactly one column, and each column must host
exactly one interaction:

|Z¢|

Y1 = 1, VteT,I €1, (5.1)
p=1
Zyt,p,le, VieT,p=1,...,|T4. (5.2)
I1€Ty

Character Ordering. For each column (¢,p) and each ordered pair of distinct charac-
ters ¢;, ¢; € C with ¢ < j, we introduce binary variables Tt pcic indicating whether ¢; is
placed above ¢; in column (¢,p). To ensure that the ordering in each column is a total
order, we set up transitivity constraints:

0< Tt,p,cicj + Ttp,cjer, — Ttp,ci,en <1, VCi,Cj,Ch € Ca'L <j< h. (53)

Without loss of generality, we index the protagonist cp as the smallest character (i.e.,
index cp = ¢1). The protagonist is always placed at the top of every column:

Tipepe=1, YteT,p=1,...,|L,Ve e C\{cp}. (5.4)

Finally, participants of the current interaction must appear above all non-participating
characters, ensuring contiguity:

Ttpeirc; Zyt,pJv VtGT,pZ1,...,‘175‘,[61.15,62' GC[,C]' ¢C],’i<j, (5.5)
1_$t,p,ci,cj Zy,;pJ, VtGT,p:1,...,‘115‘,]6.’[15,02' %C[,Cj GC],i<j. (5.6)

Crossings. The key ingredient of the formulation is the linearization of curve crossings
between pairs of characters in adjacent columns. Since the protagonist will never switch
positions, we define C’' := C \ {c¢p}. For each ordered pair of characters ¢;, ¢; € C’' with
1 < j and each pair of adjacent columns, we introduce a binary variable

1 if the relative order of ¢; and c; is reversed between the two columns,
t,p,cicj; —

0 otherwise.

The crossing constraints distinguish between adjacent columns within the same timestamp
and columns between two consecutive timestamps.

For two adjacent columns (¢, p) and (¢,p + 1) within the same timestamp ¢, crossings are
enforced by

Zt,p,ci,c]- > xt,p,ci,cj- - xt,p—i—Lci,ij vt € 7—7 p= 17 AR ‘It‘ - 17 Ciy Cj € Clai < ja (57)
Ztpeie; = Ttptleie; — Lipepe;, TEET,p=1,..|T| —1,¢,¢€Ci<j (58)

5.2. Extension: Active Character Ranges

For the boundary between two consecutive timestamps ¢ and ¢ + 1, in other words the
last column of ¢ and the first column of ¢ + 1, we add

/- .
2| e civcy > Tt | Ty ei,c; — Lt41,1,¢i,¢55 vteT,ci, ¢ € Chi<jt< |T|7 (59)

/- .
2Ty ene; = Tkl Lene; — Tt Tyl cieys VEE Tocic; €CL1 < g, t <|TI. (5.10)
Together with the minimization objective, these four constraints ensure that, in an

optimal solution, 2ty ., = 1 if and only if the relative vertical order of ¢; and c; differs
between the two columns, which exactly matches the definition of a crossing.

Objective. The objective function minimizes the total number of crossings by summing
over all of the crossing variables:

1Ze| -1 IT1-1
minimize Z Z Z Ztp.cic; T Z Z EE A (5.11)
teT p=1 Ci,CjECI t=1 Ci,CjGC/
i<j i<j

This is equivalent to minimizing the total number of pairwise order disagreements between
consecutive columns, i.e. the total crossing count in the visualization.

5.2 Extension: Active Character Ranges

While the remaining thesis deals with storylines where all character curves are apparent
throughout all interactions, it is interesting to also investigate the variant where character
curves are only drawn over the time span in which they appear. We will now provide a
modified variant of the ILP that supports this modification. Intuitively, each character
¢ becomes active at its first appearance and remains active until its last appearance;
outside this range the character does not participate in crossings. We adapt our previously
introduced constraints to model this new behavior. The added constraints are inspired by
the active variant (ILP2) of the same work [Dob+23|, adapted here to our protagonist-
based setting.

Activation Variables. For each character ¢ € C and each column (¢, p), we introduce
a binary variable a.;, indicating whether c is active in column (¢, p). If interaction I is
assigned to column (¢,p) and ¢ € C7, then ¢ must be active:

aqt,pzyt%[, VtGT,p:1,...,‘It’,VI€It,VC€C]. (5.12)
Contiguous Activity. We linearly order columns lexicographically by timestamp and
in-timestamp index:
(t,p) < (t',p)) < (t<t)or(t=1"and p <p').
For any triple of columns (¢,p) < (/,p') < (¢",p”), we enforce that activity is contiguous:

ac,t’,p’ —+ 1 Z ac,t,p -+ ac,t”,p”; Ye (= C (513)

15

d.

ExAcT APPROACHES

16

Crossings with Activity. Crossings are counted only when both characters are active
in the two columns that define the adjacency. Compared to the base formulation, we add
an offset that activates the constraints if and only if all four activity indicators are 1.
These constraints replace constraints (5.7) to (5.10) from the base formulation.

For adjacent columns within the same timestamp ¢ (columns p and p + 1):

2t,p,cisCj > Ttp,cic; — Ttp+leie; — 4+ Qcgtp + Qe tp1 + Qcj t,p + Qcjt,p+1,

VtET,pZI,...,|It|—1,i<j, (5.14)
2t,p,¢i,¢5 2 Ttp+1,ci,c; — Ltp,cic; — 4+ eyt + ey tp+l + Qcjt,p + Qe t,p+15
VieT,p=1,...,|5] — 1,i < j. (5.15)

For the boundary between timestamps ¢ and ¢ + 1 (last column of ¢, first of ¢ 4 1):

Zt,\Ithi,c]- > :Et,\It\,ci,c]- = Tt+1,1,¢5,¢5 — 4+ acz-,t,|It\ + e, t41,1 + ac]-,t,|It| + Qcj t+1,1,

Vte T,t<|T|,i<j, (5.16)
2Ty cie; 2 TthlLene; — Tt Tilcie; — 4 Qe T T Qeit1,1 + Qej g7, F Gej 4115
Vte T, t<|Tl|i<j. (5.17)

The objective remains to minimize the sum of z-variables as in the base formulation
(5.11)). The introduced activity terms only control whether a crossing can contribute.

5.3 Algorithmic Lower Bound

As ILPs are not suitable for solving large instances, we alternatively describe an algorith-
mic approach that efficiently computes a weak lower bound by counting crossings that
are unavoidable when reducing the storyline problem to pairs of interacting characters.

The idea is to run a dynamic program (DP) on each unordered pair of (non-protagonist)
characters (a, b) independently. For each pair and each timestamp ¢, we construct a small
2 x 2 matrix costIntra; that captures the minimal number of flips (required crossings)
between the start and end state of the pair at this timestamp. The two possible states
correspond to the relative vertical order of characters a and b: state 0 indicates a is above
b, state 1 indicates b is above a. Rows correspond to the start state, columns to the end
state.

Depending on whether only a participates at timestamp ¢, only b, both, or neither,
costIntra; takes one of the four fixed forms shown in Figure 5.1l

For each pair (a,b), we then run a simple dynamic program over the sequence of
timestamps. The optimal initial state is chosen by the DP itself. The DP maintains, for
each possible end state at timestamp ¢, the minimal number of required crossings up to t.
At each step, the DP transitions between start and end states using the corresponding
costIntra; matrix. The final value is the minimum over the two possible end states after

5.3. Algorithmic Lower Bound

the last timestamp. Summing these pairwise minima over all unordered character pairs
yields a mandatory minimum on the total number of crossings.

The DP runs independently for each unordered pair of non-protagonists and scans all
interactions across timestamps. Its overall complexity is

() 5)

While this approach is very time-efficient, it is rather limited in its application. As we
ignore the (sometimes necessarily large) distances between a pair of characters, we are
severely undercounting mandatory crossings in instances. We will discuss the gravity of
the so-induced quality loss in Chapter |7.

01 0 1
0|0 1 0|0 o
111 0 111
(a) Neither (b) Ounly a ex-
exclusive clusive
0 1 01
0|loco 1 02 1
1loo O 111 2
(c) Only bex- (d) Both ex-
clusive clusive

Figure 5.1: Intra-cost matrices for the four possible participation patterns of a pair (a,b)
at timestamp ¢. Rows indicate the start state (0: a above b, 1: b above a), columns the
end state.

17

CHAPTER

Heuristics

In the previous chapter, we introduced an exact but slow solving procedure and a fast
yet weak lower-bound dynamic program. Both are unsuitable for practical applications
involving larger instances. We now turn to heuristic approaches. First, we generate an
initial solution using an efficient Traveling Salesperson Problem (TSP) solver. Building
on that, we investigate optimization methods based on a generic Simulated Annealing
(SA) framework, with particular focus on the definition and generation of solution
neighborhoods. Finally, we present a postprocessing step that further reduces crossings
wherever possible.

6.1 TSP-Based Initial Solution Generation

As already discussed in Chapter |1, once the order in which interactions are visualized is
fixed, 1-SCM-TI-P with a protagonist can be solved efficiently using the SCMP algorithm
proposed by Hegemann and Wolff [HW24]. Consequently, our task reduces to determining
an effective total ordering of all interactions within each timestamp.

The Traveling Salesperson Problem (TSP) provides a natural model for this task. Each
interaction corresponds to a city that must be visited exactly once, and the goal is
to minimize the total traversal cost, which here reflects expected crossings between
consecutive interactions. There are, however, two key restrictions:

1. All interactions within a timestamp must be visited before moving on to the
interactions of the next timestamp, and

2. the TSP instance is asymmetric: timestamps must be processed in increasing order,
and a reversal of the chosen route is prohibited.

19

6.

HEURISTICS

20

6.1.1 The Asymmetric Model

To construct a valid TSP instance, we represent each interaction as an interaction node.
Additionally, for every timestamp we introduce a single helper node that acts as a reset
point, ensuring that the tour visits all interactions of a timestamp before moving to the
next.

The edges between interaction nodes are weighted according to a chosen weight metric,
which estimates the number of crossings that would occur if one interaction were placed
before another within the same timestamp. We provide two such metrics:

e The Crossing Distance counts the unavoidable crossings that occur when moving
from one interaction I; to the next I. It counts how many characters leave after Iy
and how many new characters join at I, and multiplies these two numbers. The
product reflects the number of pairwise crossings that would necessarily occur when
I and I3 are visualized sequentially.

e The Hamming Distance measures the dissimilarity between the sets of participating
characters of two interactions. It counts how many characters change their partici-
pation status between I; and Iy, regardless of whether they join or leave between
the interactions.

Table 6.1 shows two examples of interactions I1, Io and their respective weights. Note
that within a timestamp, the TSP is symmetric, as the crossings induced by moving from
I to I3 match the crossings induced by moving from I, to I;.

I participants Iy participants |L| |R| CD HD

{A,B,C} (A.ccDy 1 1 1 2
{A,B,C,D} (B, F} 4 2 8 6

Table 6.1: Examples of interaction pairs (11, I3) with their respective sets of participants.
|L| and |R| denote the number of characters leaving and joining between I; and Iy,
respectively. CD indicates the Crossing Distance (|L| - |R|), and HD the Hamming
Distance (number of participation changes). In the first example, CD < HD, while in
the second, HD < CD.

Each interaction node is connected to all other interaction nodes within the same
timestamp. Furthermore, each interaction node has a one-way (asymmetric) edge to the
helper node of the corresponding timestamp at cost 0. That helper node then again has
outgoing edges at cost 0 to all interaction nodes of the next timestamp. Helper nodes
are never connected with other helper nodes. The helper node of the last timestamp
connects to the interaction nodes of the first timestamp, ensuring that a cyclic route
exists. Figure 6.1 shows an exemplary asymmetric TSP (ATSP) instance.

Last, we formally define the cost matrix C for the ATSP. Assigning costs for allowed
moves by the procedure described above, we assign a large integer U to each invalid move.

6.1. TSP-Based Initial Solution Generation

Moves from a node to itself are assigned cost 0, though using such an edge is impossible
in the current setting. The cost matrix for Figure 6.1/ is shown in Table |6.2.

tq to

Hy, H,

2

Figure 6.1: Each interaction is represented as a node. Within each timestamp ¢, directed
black edges connect interactions and are weighted by the chosen metric. Gray edges
indicate zero-cost transitions: interactions connect to their helper node H; (exit), and
each H; connects to all interactions of the next timestamp t+1 (entry). Additional edges
from Hy_,, to the first timestamp ¢; close the tour.

H

~
i
hen

Is H, I

&

to
L 0 3 2 0 U U U
I 3 0 5 0 U U U
I3 2 5 0 0 U U U
H,|U U U 0 0 0 U
1y u U U U 0 7 0
I5 u U U U 7 0 0
H, |0 0 0 U U U 0

Table 6.2: ATSP cost matrix C for the example in Fig. 6.1, U marks forbidden transitions.

6.1.2 Symmetric Transformation

While the asymmetric model described above accurately represents the ordering con-
straints of our problem, it cannot be solved directly using a standard TSP solver such
as Concorde [Tri08], which only accepts symmetric TSP instances. Therefore, we trans-
form our asymmetric cost matrix into an equivalent symmetric one that preserves the
optimal tour. We do so by applying a transformation approach presented by Jonker and
Volgenant |[JV83], which we briefly describe here.

Let n be the number of asymmetric nodes and let C' denote the (nonnegative) ATSP
cost matrix defined above. We derive C by introducing a large constant M, and assign

5. — cij + M for i # j
“ 0 fori=j

21

6.

HEURISTICS

22

We now build a symmetric 2n x 2n matrix S over the duplicated node set {1,...,n,n+
1,...,2n} as follows:
=T
s-(v ¢
cC U

The upper-left and lower-right blocks U forbid transitions within the same half, while the
off-diagonal blocks C' and ¢ encode the directed costs in symmetric form. The intuition
behind this construction is that we force any optimal solution to perform alternate moves
between C and €' (which are at cost 0 due to the definition of ¢;;). Therefore, the
solution takes on the form

i1—=> (l1+n)— =iy — (in+n) >0

or its reversed equivalent. Determining the correct solution of the initial ATSP is then
done by simply ignoring the (i + n) entries and performing a quick validation check if
the final sequence is reversed, re-reversing if necessary.

The only thing left to do is to find appropriate values for U and M. To support large
instances, we aim to keep these constants as small as possible while ensuring that no
optimal solution can include an illegal move or violate the alternating principle described
above.

We first define M. Since M is applied on every legal move that is not a jump from a
node ¢ to its corresponding duplicate ¢ 4+ n, we need to ensure that moving to a node
without coming from the corresponding duplicate (or, respectively, without moving to
the corresponding duplicate afterwards) is never a valid choice. We achieve this effect by
defining

M = (Cmax - Cmin) 2n+1,

where ¢pin and cpax correspond to the minimal (resp. maximal) edge cost in the original
ATSP matrix. Since the total variation between the smallest and largest possible legal
edge costs across the 2n transitions of a tour is bounded by (¢max — Cmin) - 2n (that is,
the worst-case difference between two legal tours), choosing M slightly above this range
guarantees that no illegal shortcut can ever become competitive with a valid alternating
sequence. In other words, the offset M ensures that any deviation from the intended
pattern (such as skipping a duplicate node) would increase the total cost by more than
any possible gain from lower edge weights, effectively enforcing the alternating structure
of the symmetric instance.

Last, we choose U in a way that just using a single illegal edge assigned with this weight
exceeds the largest possible cost of a valid tour. As such a tour needs to use n edges of
maximum weight M + cpax and another n transitions to duplicated nodes at cost 0, we
can safely upper-bound the maximum route cost by

U=(n+1) (M + cmax) + 1.

Having defined parameters M and U, we successfully transformed the original ATSP
formulation into an equivalent symmetric TSP formulation using only nonnegative
weights.

6.2. Simulated Annealing Framework and Neighborhoods

6.2 Simulated Annealing Framework and Neighborhoods

With the TSP model set up, we can now generate initial total orderings, and consequently
initial solutions effectively. However, since the quality of the solver depends on the
heuristic weight metrics used, it is worthwhile to explore strategies that improve the
initial ordering. By modifying the total order, we aim to further reduce crossings efficiently.
In this section, we first outline the generic Simulated Annealing (SA) framework and
describe its adaptation to 1-SCM-TI-P. We then explore three different neighborhood
definitions of increasing complexity.

6.2.1 Simulated Annealing Framework

In our context, a solution state is a total ordering of interactions within each timestamp.
The energy of a state is the total number of crossings in the resulting drawing, as defined
in Section 4.3l Building on the SA Framework introduced in Chapter |3, we make two
specific adaptions:

1. we calibrate the initial temperature Ty and the cooling schedule from the instance
itself, and

2. we evaluate a batch of candidate neighbors per iteration and either pick the best
candidate or a random one from the batch before applying the acceptance test.

Temperature Calibration. We estimate the scale of uphill moves directly from the
initial solution received by the TSP. Let A™ denote positive deltas (worse moves). We
sample s random neighbors of the initial solution and compute

— 1
AT=_—— 3 A
{A>0)] &

Note that this approach does not directly relate to the initial sample size s, as we only
average on positive deltas. This is because for the initial SA phase, we want to encourage
the acceptance of worsening moves, and want to avoid starting with a too restrictive
temperature in case the initial TSP-based solution is already close to a local optimum.

We then choose two target acceptance probabilities pg and penq and set
AT AT
B In Po ’ end = In Pend .

To =
With a geometric schedule Ty = oI}, over [iterations, we obtain
(Tcnd)l/f
a=|— .
To

Empirical values for s, pg and peng will be determined experimentally and discussed in
Chapter 7.

23

6.

HEURISTICS

24

Neighborhood evaluation. In each iteration we ask the neighborhood generator
for a batch of candidates. We compute their crossing counts and select either the best
candidate or one at random from the batch. Importantly, even with picking the best
candidate, we still apply the standard SA rule to decide whether to move:

1, A<O
accept with probability

exp(—A/T), A>0
Here, A is the candidate’s cost minus the current cost. With this modification, we
purposely bias the candidate selection without turning SA into a pure greedy algorithm,
creating a mixed approach.

6.2.2 Neighborhood Generation

Having the generic SA Framework set up, we now prepare several concrete approaches
on how to modify the total interaction ordering. In metaheuristic optimization, the
definition of a neighborhood function determines how the search space is explored and thus
directly affects convergence and solution quality. In the following, we investigate three
conceptually distinct neighborhood definitions: a naive Random Swap, a Weight-based
Swap focusing on single, high-crossing interactions, and a Group-based Swap that jointly
moves related interactions. While they are introduced in this section, their comparison
in terms of runtime and result quality will be discussed in Chapter |7

In our implementation, neighborhoods are generated by reordering interactions within
their respective timestamps. As explained in Chapter |1, once a total order has been
fixed, the corresponding optimal vertical placement of characters can be computed using
the SCMP algorithm. Accordingly, for every neighborhood candidate we first apply the
SCMP algorithm to determine the resulting layout and then compute the total number
of crossings via an inversion-based counting procedure (O(nlogn) per interaction). Since
the SCMP algorithm itself is treated as a black box in this thesis, we denote the combined
cost of running SCMP and evaluating crossings by a single unit Teyai-

Random Swap

The most straightforward approach to generate neighbors is to randomly select two
interactions within a randomly chosen timestamp and swap their positions. This is
exactly the approach how the Random Swap generator operates. It performs no weighting
or structural evaluation: first, a timestamp is selected uniformly at random, then
two interactions within it are changed (regardless of their local fit), and the resulting
configuration is returned to the SA framework as a new candidate.

Unlike other neighborhood generators, the Random Swap generator produces only a
single neighbor per iteration rather than a full batch of candidates. This keeps the
computational overhead negligible and results in an extremely fast search process. As
only one neighbor is evaluated at a time, this variant effectively represents a pure form

6.2. Simulated Annealing Framework and Neighborhoods

of Simulated Annealing, relying entirely on probabilistic acceptance rather than the
localized search bias presented in the prior section.

Assuming that the size of each timestamp is known, each iteration requires only one
full evaluation of the resulting configuration. The overall time per iteration is therefore
O(Teval)-

Weight-Based Swap

The Weight-Based Swap generator directs the search toward timestamps and interaction
pairs that currently contribute most to the total number of crossings. The procedure
operates as follows.

First, each timestamp is assigned a weight proportional to the total number of crossings
between all adjacent interaction pairs within that timestamp. One timestamp is then
selected by weighted random sampling, giving preference to timestamps with higher local
complexity.

Within the chosen timestamp, all adjacent interaction pairs are evaluated, and one pair
is again selected proportionally to its number of crossings. This defines a local region
of interest around which new solutions are generated. If the timestamp is small (i.e., it
contains no more than a given threshold of interactions), all possible swaps within the
timestamp are enumerated. Otherwise, a fixed number of random swaps are created by
moving one of the two highly crossing interactions to a new position within the timestamp,
supplemented by a few purely random swaps. Each of these modified configurations
forms a candidate neighbor for the SA framework.

This generator therefore balances focus (by prioritizing high-crossing regions) and diversity
(through random selections). While the computational cost is significantly increased
in comparison to the random swapping, the generated neighbors are typically more
meaningful.

Let |Z| denote the total number of interactions, |7| the number of timestamps, and B
the batch size. Timestamp weighting requires a single pass over all adjacent column pairs,
costing O((|Z| —|T]) - nlogn) via the crossing count. Within the chosen timestamp of
size £, building pair weights adds O((¢ — 1) - nlogn). Candidate evaluation dominates:

2

. (Z) Toval, £ < smallTimestampThreshold,
cost =
B - Tiya, otherwise.

Hence, one call costs

(g) Teval,

O(([Z| = |T|+6) - nlogn) + {B o

25

6.

HEURISTICS

26

Group-Based Swap

The Group-Based Swap generator moves not just a single interaction but a contiguous
block of interactions within one timestamp. As before, timestamps are sampled with
probability proportional to their current crossing contribution. Within the chosen
timestamp, each pair of adjacent interactions is assigned a weight according to the
chosen weight metric of the TSP solver (e.g., Crossing or Hamming Distance). Two
boundaries between adjacent interactions are sampled according to their edge weights;
the interactions enclosed between these two boundaries define the movable block.

This block is removed and reinserted at a new position within the same timestamp. The
insertion boundary is chosen probabilistically, favoring positions that minimize the metric
cost between the block and its new left and right neighbors. Repeating this process
produces a batch of diverse candidate solutions.

By moving groups of closely related interactions together, this generator enables larger,
more structured changes in the solution space while preserving local coherence within
blocks. Compared to single-swap neighborhoods, it facilitates stronger diversification and
helps escape local minima, at the expense of increased computational effort per iteration.

Let |Z| denote the total number of interactions, |7| the number of timestamps, ¢ the size
of the selected timestamp, and B the batch size. Timestamp selection again requires
O((|Z] = |T]) - nlogn) time for computing timestamp weights via the crossing count.
Within the chosen timestamp, edge weights between adjacent interactions are now
determined by the same distance metric used in the TSP construction (see Section 6.1.1).
Each such metric evaluation compares the participating character sets of two interactions
to estimate their dissimilarity, rather than computing (exact) crossings. This incurs
O((¢ — 1) -n?) time in the worst case, as every weight may compare two sets of size O(n)
(practically, interaction sets will be much smaller). Sampling the two cuts and reinsertion
position is constant-time once these weights are known. Candidate evaluation again
dominates with B generated solutions, resulting in a total complexity of

O((|Z] = |T|) - nlogn + (¢ — 1)n2) + B Toyal.

In conclusion, Figure 6.2 visualizes the three different strategies of neighbor generation,
which are increasing in both their complexity and their computational effort.

6.2.3 Postprocessing

The methods presented so far all involved heuristics and probabilistic analysis. We now
extend these methods with an exact refinement step that eliminates redundant crossings
while preserving all timestamp constraints. The procedure relies on a simple yet effective
Postprocessing Rule, which we describe and justify below. It can be applied repeatedly
until no further improvement is possible. It can also be used on the neighborhood
generators presented above to optimize the batch candidates before evaluating them
using the SA Framework.

6.2. Simulated Annealing Framework and Neighborhoods

t }tg
|
1
TSP I I Iy L || I Is
|
|
|
|
|
1
|
|
1
(a) 7y I Is L || I Is
|
|
: \/‘
|
1
|
|
:
(b) I I Iy g L || I Is
|
|
\/’ |
|
|
1
|
|
: 1
(c) L L Is g L || I Is
- |
N |
|
|
|

Figure 6.2: Illustration of the three neighborhood generators.

(a) Random Swap: two interactions are chosen uniformly at random and exchanged.
(b) Weight-Based Swap: a high-crossing adjacent pair is identified (red). One of the
two interactions is moved to a ’good’ new position (yellow) within the timestamp.

(c) Group-Based Swap: a contiguous block is selected (green) and reinserted at a

different position while preserving internal order. The dotted line indicates the insertion
boundary.

Postprocessing Rule. Fix a timestamp ¢ € T and consider a consecutive block of
interactions

o P51, Se, .. Sk X,N,... (k>1)

with all S; and X belonging to timestamp ¢, and with P preceding X. Let 7w(A) denote
the total order of non-protagonists beneath the protagonist cp in column A. Let r := |Cx|

27

6.

HEURISTICS

28

and define
H := {the first r characters beneath cp in 7(P)} C C\ {cp}.

Assume H = Cx. Then construct a new interaction X* by copying the parent order,
m(X*) := 7(P), and move X* immediately after P within the same timestamp:

...,P,Sl,...,Sk,X,N,-'- —>...,P,X*,Sl,...,Sk,N,...

Since C'x = H occupies the first r positions beneath cp in 7(X*), this operation preserves
validity.

Lemma 1. Each application of the Postprocessing Rule preserves or improves the global
crossing count.

Proof. Let crossings between adjacent columns A, B be measured by the Kendall-tau
distance

d(A,B) == K(n(A),n(B)), and let Cost := Z d(A, B).
adjacent (A,B)

Performing the described reordering changes the total crossing cost by
A =d(P,X*)+d(X*,51) +d(Sk, N) —d(P,S1) — d(Sk, X) — d(X, N).

Because m(X*) = 7(P), we have d(P, X*) = 0 and d(X*, S1) = d(P, S1). By the triangle
inequality of Kendall-tau distance on a fixed ground set,

d(Sk,N) < d(Sk,X> —l—d(X, N)

Combining these, we obtain A < 0, showing that the total number of crossings cannot
increase. Hence, each application of the Postprocessing Rule preserves or improves the
global crossing count.]

Runtime. Let |Z| be the number of interactions, |7| the number of timestamps, and
¢; the number of interactions in timestamp ¢ (>°, ¢; = |Z|). Each timestamp requires
examining all ordered pairs (P, X) with P preceding X, i.e., O(¢?) comparisons. For each
pair we test Cx C Cp and verify that C'x matches the prefix beneath c¢p in 7(P), both
O(n) with n = |C|. If the rule applies, rebuilding and repositioning X costs O(n? + ¢;)
in the worst case, including the bubble-swap movement, where the relocated column
is iteratively exchanged with its left neighbor until it reaches the target position. As
relocations trigger re-evaluation of affected pairs, the total number of scans can increase
proportionally to the number of relocations R. Writing ¢;,.x = max; £, the overall cost
until no further relocations occur is

O((R+ 1) (n)_6) + R(n? Mm)) .

teT

6.2. Simulated Annealing Framework and Neighborhoods

In practice, most pairs fail early and R is small, but the quadratic timestamp scan
dominates on large timestamps.

This rule forms the final refinement stage of the heuristic pipeline. Each application
performs a local, guaranteed non-worsening adjustment. However, as it relies on repeated
pairwise comparisons of interactions, the procedure is comparatively time-consuming. Its
practical efficiency will be evaluated in the next chapter.

29

CHAPTER

Experiment Framework and
Evaluation

Having introduced several exact and heuristic approaches for 1-SCM-TI-P, we now
evaluate their practical performance. This chapter first outlines the experimental setup,
including datasets, parameters, and measurement criteria. We then examine the feasibility
of the ILP formulation and compare its results against the algorithmic lower bound
introduced in Chapter [5. Afterwards, we evaluate the heuristic methods from Chapter [6,
beginning with the TSP-based initial solutions and ending with a detailed comparison of
the three Simulated Annealing neighborhood generators in terms of solution quality and
runtime.

7.1 Setup

Before presenting the experimental results, we briefly describe the hardware environment,
the datasets used for evaluation, and the metrics applied to compare the different methods.
All experiments were performed under reproducible conditions to ensure consistency
across the exact and heuristic approaches.

7.1.1 Benchmark Environment

All experiments were executed on a desktop workstation equipped with an Intel Core i9-
9900K processor (8 cores, 3.60 GHz) and 32 GB of RAM. Gurobi was allowed to utilize up
to 16 threads, whereas the heuristic methods were executed single-threaded. Consequently,
runtime comparisons should be interpreted qualitatively rather than quantitatively. The
heuristic implementations were executed in a Java 21 environment under Windows 11 (64-
bit), built and managed using Maven 4.0. The Concorde TSP Solver (v03.12.19) was

31

7. EXPERIMENT FRAMEWORK AND EVALUATION

32

executed via the Windows Subsystem for Linux (Ubuntu 22.04), since the solver is
natively compiled for Linux.

Integer Linear Programs were solved using Gurobi 12.0.1' with default presolve and
cutting-plane settings. The TSP instances were solved using the Concorde TSP Solver?
compiled with non-PIE flags and linked against QSopt?® for linear programming. Concorde
does not support explicit random seed inputs. For the Simulated Annealing optimization,
each run was initialized with a distinct fixed random seed.

7.1.2 Testsets

All storyline instances used in this thesis are derived from the DBLP bibliographic
database®, which provides a structured record of computer science publications and their
coauthor relations. Because we are more interested in dense publication years rather than
a large range of different (sparse) years, we restrict all datasets to publications between
2010 and 2025. We also only consider records of type article (journal publications) or
inproceedings (conference publications). From this base, we construct five thematic
testsets representing different patterns of academic collaboration.

The first two sets model individual researcher profiles of varying scale. Junior Researchers
(abbreviated Juniors) comprise protagonists with between 10 and 30 publications, repre-
senting small to medium-sized collaboration networks. Senior Professors (abbreviated
Seniors) contain prolific authors with more than 100 publications, where only coauthors
sharing at least three joint papers with the protagonist are included, in order to reduce
the number of rarely contributing non-protagonists. The third category, High-Frequency
Collaborations, focuses on protagonists with 20 to 50 publications but restricted to their
five most frequent collaborators, resulting in densely connected interaction structures.
Since the first three categories have a lot of eligible protagonists, we randomly order
them and select exactly 50 protagonists from the results. The remaining two sets are
community-based: one for the IEEE VIS conference series and one for the Graph Draw-
ing (GD) community. For both, we selected all authors with at least 15 publications in
the respective venue and limited each instance to the fifteen most frequent coauthors to
preserve readability while maintaining representative interaction patterns. Due to the
imposed criteria, all eligible protagonists are taken into consideration. Thus, the VIS
conference series includes 46 protagonists, the GD community 33.

All protagonist lists were generated automatically using parameterized SPARQL queries
executed against the public DBLP endpoint®. Each query defines a distinct filter
configuration corresponding to one of the five testset types. The full SPARQL queries
used for dataset generation are listed in the Appendix to ensure reproducibility. The

"nttps://www.gurobi.com
2http://www.math.uwaterloo.ca/tsp/concorde.html
3https://www.math.uwaterloo.ca/~bico/gsopt/
4https://dblp.org

Shttps://dblp.org/sparqgl/

https://www.gurobi.com
http://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/~bico/qsopt/
https://dblp.org
https://dblp.org/sparql/

7.1

Setup

resulting author lists served as input to a data generation tool developed in the context of a
related thesis project. This tool accepts a protagonist identifier and a configuration profile,
retrieves the relevant coauthor relations from DBLP and outputs a complete storyline
instance together with auxiliary metadata such as publication counts and interaction
timestamps. It supports batch processing and enforces all constraints defined by the
corresponding testset specification (e.g., minimum coauthor frequency, top-k coauthor
cap, or publication-type filters). Each generated instance is stored as a master file used
as direct input for the algorithms evaluated in this work, while accompanying index files
summarize key statistics such as the number of characters, interactions, and timestamps.

Table|7.1 summarizes the five testsets, indicating their characteristic ranges of publications
and collaborators. Overall, the datasets cover a wide spectrum of structural complexity,
from small individual networks to large and highly interconnected collaboration graphs,
thereby providing a diverse benchmark for evaluating the proposed methods.

Testset Pubs Coauthor Rule Size Med. Pubs Med. Chars
Junior Researchers 10-30 all coauthors 50 14.5 30
Senior Professors >100 >3 joint papers 50 123 49.5
High-Frequency 20-50 top 5 coauthors 50 28.5 5

VIS Conf. >15 top 15 coauthors 46 17 15

GD Conf. >15 top 15 coauthors 33 22 15

Table 7.1: Overview of the five DBLP testsets. Columns show publication range, coauthor
selection rule, testset size (number of instances), and median numbers of publications
and characters per protagonist.

7.1.3 Parameter Configuration and Tuning

All algorithms were executed with standardized parameter settings to ensure comparability.
For the ILP formulation, we imposed a time limit of 30 minutes per instance. For the
heuristic evaluation, we always re-ran instances 5 times to reduce randomness. For
the same reason, unless stated otherwise, we always use the median for comparability,
emphasizing robustness and minimizing the influence of outlier runs.

With the exception of the TSP evaluation, all subsequent experiments use the Crossing
Distance for both the TSP calibration and the Group Swap Neighborhood as presented
in Chapter [6.

More calibration was necessary for the SA Framework. In order to find suitable parameters,
a Pilotset has been created by randomly picking 2 instances from each testset. This
subset provided representative variation in size and density while keeping calibration
effort low.

Based on preliminary runs, the total number of iterations was fixed to 250, which allowed
even the larger Senior Professor instances to approach a convergence plateau. The

33

7. EXPERIMENT FRAMEWORK AND EVALUATION

34

acceptance probabilities were set to pg = 80% and penq = 1% as standard values. For
initial temperature calibration, 25 samples were used to estimate the acceptance range.
Reducing this number to 10 produced high variance between runs, while increasing to 50
yielded no measurable improvement.

Three neighborhood types were evaluated: Random, Weighted, and Group.

e The Random neighborhood required no parametrization.

o For Weighted, the enumerated depth was limited to five timestamps and sampling
to 40 candidates, balancing runtime and progress speed.

e For Group, a group size of 40 candidates proved to be an effective trade-off between
local diversity and computational cost, additionally offering good comparability to
the Timestamp setup.

Neighborhood sizes were deliberately constrained to preserve the stochastic nature of the
search and allow non-optimal candidates to remain competitive. With the exception of
the Random neighborhood, the best candidate in each neighborhood was selected, as
described in Section [6.2.1. The postprocessing method was applied to each candidate in
both Weighted and Group modes for local optimization.

7.2 Exact Approaches: ILP and Lower Bound Evaluation

Before turning to the heuristic methods, we briefly assess the practical feasibility of
the exact Integer Linear Programming (ILP) formulation introduced in Chapter 5 and
compare it with the algorithmic lower bound.

7.2.1 ILP Feasibility

The ILP formulation from Chapter 5| was eval-
uated on all testsets to establish reference op- 50 ILP status
tima. As shown in Figure [7.1, the solver per-

formed well for most categories but revealed 407
clear scalability limits on larger instances. 304
For Juniors, 37 of 50 instances (74%) were £ 20

instances

solved to optimality, while one instance was
infeasible and the remaining unsolved cases
formed a geometric-mean final gap of 59.6%. 0-
The High-Frequency Collaborations set was
fully solved, confirming the formulation’s abil- Figure 7.1: Fraction of instances solved
ity to handle compact, dense structures. The {4 optimality within the 30-minute time

two community-based sets performed similarly 1imit per testset. The bars are colored
well: for the VIS instances, 43 of 46 (93%) oreen if an optimum was found, orange

Junior Senior HF VIS GD

if at least any valid solution was found,
and gray if no feasible solution has been
found.

7.3. Heuristic Approaches: TSP-Based Initialization

were solved optimally, with the few remain-

ing instances showing a geometric mean gap of

22.6%. For the GD set, 25 of 33 (76%) reached

optimality, and the remaining eight closed with

a geometric-mean gap of 12.4%. Only the Se-

nior Professor testset remained out of reach, with no instance solved to optimality
and a geometric-mean reported gap (on the 18% where a solution was found) of 74.2%.
These results indicate that the ILP formulation scales well for small and medium-sized
networks but becomes intractable once the number of interactions exceeds a few hundred.
Nevertheless, the obtained optima form a solid benchmark for assessing the heuristic
methods in the following sections.

7.2.2 Algorithmic Lower Bound

The algorithmic lower bound introduced in Section 5.3| was evaluated only on instances
for which an ILP optimum was available, as the comparison otherwise lacks reference.
While the lower bound can be computed in negligible time, its quality proved consistently
weak across all testsets. The geometric mean ratios relative to the ILP optima were 14.7%
for Juniors, 45.9% for High-Frequency Collaborations, 22.5% for VIS, and 22.9% for GD.
These values confirm that the current formulation provides little informative value as
a tightness guarantee, despite its speed. Consequently, we rely on the ILP optima as
reference values in all subsequent evaluations.

7.3 Heuristic Approaches: TSP-Based Initialization

We now investigate the heuristic methods introduced in Chapter 6. As a first step,
we examine the quality of TSP-based initializations and analyze the influence of the
underlying distance metric before comparing their results to exact ILP optima, where
available.

7.3.1 Distance Metric Comparison

To evaluate the effect of the chosen distance metric on the TSP-based initialization, both
the Hamming and the Crossing Distance formulations were applied to every instance.
Each instance was solved five times per metric using Concorde, and the resulting orderings
were evaluated with respect to their induced number of crossings. Figure [7.2a) summarizes
the relative difference between both variants, measured as the percentage deviation of
the Crossing Distance from the Hamming Distance result for each testset.

Across all datasets, the median difference remains close to zero, indicating that both
distance definitions lead to nearly identical (initial) orderings. Slight negative shifts in
most testsets suggest a marginal but consistent advantage for the Crossing Distance,
while the spread for the High-Frequency set reflects its higher sensitivity to small changes
in local interaction patterns. Since the Crossing Distance directly models the objective

35

7. EXPERIMENT FRAMEWORK AND EVALUATION

36

TSP-based initialization quality vs. ILP optimum

TSP weighting comparison: Crossing - Hamming
30 Testset °
@ Junior e
o 4
2000 A HF R
_, 207 ° e VIS ol
5 e GD e
£ — [4
a 2 ,
S 101 £ 1500 e
° g 7 s
=]

g 5 id
[# 4
s ° l_—;r_l 5 1000 ".
e]
S 2 7 400 5
3 o o > o’ i

_10 B
5 o o ﬂ y./ &q
3 500
g 200

—20 1

4
0 -
-30 T T T r r , , , , ,
Junior Senior HF VIS GD 0 500 1000 1500 2000

ILP optimum [# crossings]

(a) Relative median differences between Crossing (b) Relation between TSP-based initialization
and Hamming Distance formulations across all (Crossing Distance) and ILP optima.
testsets.

Figure 7.2: Evaluation of the TSP-based initialization strategies. (a) Comparison of
Hamming and Crossing Distance formulations, showing only marginal differences across
testsets. (b) Quality of the Crossing Distance initialization relative to ILP optima,
including a zoomed-in region for smaller instances.

function of the storyline problem, we adopt it as the default metric for all subsequent
heuristic evaluations.

7.3.2 Comparison to ILP Optima

After establishing the Crossing Distance as the default metric, we now assess the quality
of the corresponding TSP-based initializations by comparing them against the ILP optima.
Figure [7.2b| visualizes this relation across all testsets for which optimal ILP solutions
were available. Each point represents a single instance, plotting the number of crossings
of the TSP initialization against its optimal counterpart. To improve visibility in the
low-crossing region, a zoomed-in view of all instances with fewer than 400 crossings is
included.

Across all datasets, the TSP initialization correlates closely with the optimal results. De-
spite their larger instance sizes, the Junior cases show the smallest median deviation from
the optimum (below 4%), while the VIS and GD sets deviate slightly more (around 9%
and 7%, respectively). In both VIS and GD, the deviation increases moderately with
instance size, whereas no such trend is observed for Junior, indicating structural dif-
ferences between the datasets. For High-Frequency, absolute differences remain small
(median A < 2 crossings) but appear large in percentage terms due to very low optima.

7.4. Heuristic Approaches: Simulated Annealing Evaluation

Testset Neighborhood GM (SA/ILP) Win % Median Cross. Median RT [ms] N

GD Random 1.006 72.0 154 83 25
Weighted 1.001 92.0 154 205 25
Group 1.029 24.0 157 985 25
HF Random 1.055 68.0 20 99 50
Weighted 1.012 92.0 20 282 50
Group 1.034 68.0 20 694 50
Junior Random 1.000 100.0 342 70 37
Weighted 1.000 100.0 342 170 37
Group 1.010 51.4 342 826 37
VIS Random 1.003 81.4 131 71 43
Weighted 1.001 93.0 131 138 43
Group 1.002 72.1 132 625 43

Table 7.2: Overall Simulated Annealing quality on instances with optimal ILP references
(Senior excluded). All values are based on the median run (by crossing) per instance.
GM (SA/ILP) is the geometric mean of the ratio between the SA and ILP crossing counts
(values ~ 1 indicate equivalence with the ILP optimum). Win % is the percentage of
instances where the median SA solution equals the ILP optimum. Med. Cross. and
Med. RT denote the median crossing number and median runtime in milliseconds. N
gives the number of accounted instances per testset.

Results should therefore be interpreted in absolute terms. Not taking this testset into
account, across ILP-solvable instances, the TSP initialization remains within 10% above
the ILP optimum. In addition to its strong solution quality, the TSP initialization also
proved extremely fast. Across all testsets except the Seniors, Concorde required between
33 and 134 ms per instance, with median runtimes below 75ms. Even for the largest
Senior instances, the solver completed on average after only 453 ms, confirming that
the initialization step introduces virtually no computational bottleneck for the overall
heuristic pipeline.

7.4 Heuristic Approaches: Simulated Annealing
Evaluation

Building upon the TSP-based initializations, we now turn to the Simulated Annealing
(SA) framework presented in Chapter 6. This section evaluates the three neighborhood
generators (Random, Weighted and Group) in terms of convergence behavior, runtime,
and final solution quality. Where available, results are compared against the ILP optima.
We first start with another ILP comparison, consequently excluding the Senior testset
for now.

37

7. EXPERIMENT FRAMEWORK AND EVALUATION

38

Neighborhood Median TSP Median SA A A% Median RT [ms] N

Random 2744 2740 -4 -0.2 782 50
Weighted 2821 2390 -472 -13.7 21478 50
Group 2747 2368 -437 -14.1 20311 50

Table 7.3: Senior testset: Simulated Annealing (SA) compared to the TSP initialization
(Crossing Distance metric). All values are medians over instances’ median runs. A =
SA — Init (negative values indicate improvement).

7.4.1 Overall SA Quality

Table 7.2 shows that across all ILP-solvable sets, SA reliably reaches near-optimal quality.
Weighted dominates overall: it achieves the best geometric-mean ratio in every testset
(GD 1.001, HF 1.012, Junior 1.000, VIS 1.001) while keeping runtime modest (median
138-282 ms), and it wins on 92-100% of instances. Random is surprisingly competitive
on small and regular instances, reflecting the strength of the TSP-based initialization. It
leads in the runtime comparison by far, being about 2-3 times faster than the weighted
approach, and 7-12 times faster than the group approach. Group is consistently slower
(median 625-985ms) and does not translate its higher per-iteration effort into better
medians on these mid-sized sets. Taken together, Weighted offers the most attractive
quality-runtime trade-off for the instance scales where ILP is available.

Having verified that SA achieves near-optimal results on ILP-solvable instances, we now
turn to the larger and more complex Senior testset, where no exact reference is available.
In this case, the comparison focuses on relative quality among neighborhoods and on
runtime behavior, using the TSP-based initialization as the baseline.

Across the large Senior instances, both the
Weighted and Group neighborhoods achieve sub-
stantial improvements over the TSP initialization,
reducing the median number of crossings by roughly

¢ lterations to 80% by testset
14%. Interestingly, the runtime gap observed on Heuristic
smaller instances disappears: Group achieves com- 2801 Zoo"
parable improvements at only slightly lower compu- g Y B
tational cost (median 20s vs. 21s for Weighted). In &
contrast, the Random neighborhood stagnates near _E 407
the initialization quality, indicating that random S 20+ | ‘
local perturbations alone are insufficient to escape E oLl I I' 1 I
= Junior Senior HF VIS GD

the large plateaus typical for dense collaboration
structures.

Figure 7.3: Median iteration index
at which each neighborhood reaches
80% of its total improvement in
crossing reduction. On the Senior
testset, Random appears faster only
due to its minimal total improve-
ment (see Table |7.3).

Overall, these results demonstrate that the more
structured neighborhoods are effective even on large-
scale, high-density instances, confirming scalability
of the more sophisticated neighborhood generators.

7.4. Heuristic Approaches: Simulated Annealing Evaluation

GD: Median relative improvement vs iterations GD: Median relative improvement vs time

Heuristic
—— group
weighted
—— random

o
o
o

Heuristic
—— group

weighted
0.081 — random

=3
o
o

o
o
®

4

o

3
o
o
=3

—'—’_’_f—’_

o

o

B
o
o
=

o
o
N

Relative improvement [% of initial]
o
°
S

Relative improvement [% of initial]

0.00

o
o
5]

0 50 100 150 200 250 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Iteration Time [s]
(a) GD - crossing count over iterations. (b) GD - crossing count over runtime.
Senior: Median relative improvement vs iterations Senior: Median relative improvement vs time

Heuristic
0.144 — group

weighted
—— random

Heuristic
—— group
weighted
—— random

0.14

0.12

0.10

0.08

Relative improvement [% of initial]

Relative improvement [% of initial]

0 50 100 150 200 250 0 5 10 15 20
Iteration Time [s]

(¢c) Senior - crossing count over iterations. (d) Senior - crossing count over runtime.

Figure 7.4: Convergence trajectories of Simulated Annealing across neighborhoods. The
shaded regions represent the interquartile range (25th - 75th percentile) of relative
improvements across all runs for each heuristic. Top: mid-sized GD instances. Bottom:
large-scale Senior instances. The structured neighborhoods (Weighted and Group) achieve
steep early improvements and maintain steady improvement. Random runs through all
250 iterations quickly, but fails to show significant improvements in large instances. Note
that for the runtime plot, the x-axis is truncated at the 75th percentile of runtime for
readability.

However, on small instances, the simplest and quick-
est neighborhood generator offers solutions without
significant quality loss. To further understand these
quality differences, we next investigate the conver-
gence behavior and runtime progression of the three neighborhood strategies.

7.4.2 Convergence and Runtime Behavior

Looking beyond the final solution quality, it is of interest to examine the convergence
dynamics of the three Simulated Annealing variants. This analysis (shown in Figure 7.3)
provides insight into how quickly each neighborhood generator progresses toward a stable
configuration and how efficiently it utilizes its computational budget. To that end, we

39

7. EXPERIMENT FRAMEWORK AND EVALUATION

40

GD: SA improvement by size class and heuristic Senior: SA improvement by size class and heuristic
Heuristic
B group

[weighted
B random

-
~

-
o

-

1=}
i
IS

-
[N)

©
-
=)

IS
o

IS

N
N]

Median relative improvement [% of initial]
o

Median relative improvement [% of initial]
=]

o
o

Small Medium Large Small Medium Large

(a) GD testset (n = 33): median relative im- (b) Senior testset (n = 50): median relative
provement by size quantile. improvement by size quantile.

Figure 7.5: Median relative improvement of each neighborhood over the TSP initialization,
grouped by instance-size percentiles (33rd and 66th percentile cutoffs). Improvement
decreases consistently with increasing instance size, especially for the Random neighbor-
hood, which fails to provide any meaningful progress on the largest Senior instances. In
contrast, the Group neighborhood performs poorly on small instances but gains relative
strength as instance complexity increases.

track both the crossing-count trajectories over the 250 iterations and their corresponding
runtime progress.

Across all datasets, the Weighted and Group neighborhoods exhibit steep early improve-
ments, typically reaching 80% of their final quality within the first 10-15 iterations. Before
investigating Random, we recall that this neighborhood does not pick the best candidate
from a batch, but instead generates a singleton candidate per iteration. In contrast to
the other generators, Random requires substantially more iterations (30-90) to reach the
same relative threshold. The only exception is the Senior testset, where Random reaches
the 80% mark after just 22 iterations. However, this is a consequence of its very small
overall improvement. By contrast, Weighted and Group continue to refine the layout for
much longer and finish at markedly lower crossing counts (compare Table 7.3)).

We now investigate two testsets in more detail. Given their higher complexity and density,
we focus on the GD and Senior testsets. In both cases, the iteration trajectories in
Figure 7.4 reveal the differing convergence behavior of the three neighborhoods. The
Weighted heuristic consistently exhibits steep early improvements, achieving a balance
between runtime and quality. By contrast, the Random generator runs through all 250
iterations quickly, yet fails to reach a stable plateau, indicating a limited ability to
refine layouts in complex instances. Finally, in the large Senior instances, the Group
neighborhood continues to improve even in later iterations, surpassing the Weighted
generator and demonstrating its advantage in navigating dense collaboration structures.
The runtime trajectories mirror these findings, with Random completing all iterations
early and the structured neighborhoods maintaining gradual but consistent refinement.

7.5. Case Study: A Signature Professor

While the convergence trajectories illustrate temporal dynamics, it is also helpful to
analyze how the achievable improvement varies with instance size. To illustrate this,
each testset was partitioned into three equally sized instance-size groups using percentile
cutoffs at the 33rd and 66th percentiles, and the median relative improvement of each
neighborhood was computed within these groups. Figure [7.5| shows the results for the
GD and Senior testsets.

The figure confirms that, for the Senior testset, the obtainable relative improvement
decreases with instance size, reflecting the increasing difficulty of escaping local minima
in dense collaboration structures. The Random neighborhood’s performance deteriorates
sharply for the largest instances, where it often terminates with no significant improvement
at all. Conversely, Group shows the opposite pattern. It is less effective on small, simple
cases but increasingly competitive as instance complexity rises. These observations
highlight that structured neighborhood operations scale more robustly with instance size,
whereas simple random perturbations fail to adapt to growing combinatorial complexity.

Overall, the convergence analysis confirms the earlier quantitative trends: structured
neighborhoods achieve rapid and sustained improvement, whereas purely random moves
yield quick but shallow gains once instances get large. These results further emphasize
that the additional computational cost of Weighted and Group directly translates into
better solution quality, particularly for large, high-density instances. While both struc-
tured neighborhoods scale well, Weighted performs slightly better on small and medium
instances, whereas Group gains a relative edge once interaction density becomes very
high.

Last, we briefly examine the runtime composition of these methods, highlighting the
share of time consumed by postprocessing. To clarify where the Simulated Annealing
budget is spent, we decomposed total runtime into search time, neighborhood generation,
and (within neighborhood generation) postprocessing. For Weighted and Group, the
search phase accounts for the vast majority of total time (typically 85 — 95%), and
within search, neighborhood generation contributes about 90%. Postprocessing then
constitutes roughly 40 — 55% of neighborhood time on small and mid-sized sets (Junior,
VIS, GD) and rises to nearly 56% on the largest Senior instances, corresponding to
about 31 — 49% of the overall runtime depending on dataset scale. By contrast, Random
performs no postprocessing and spends a smaller share in search overall, consistent with
its single-candidate iterations. These measurements confirm that the local postprocessing
step (introduced in Section 6.2.3) forms the principal cost driver for the structured
neighborhoods.

7.5 Case Study: A Signature Professor

To complement the analysis presented so far, we now take a closer look at a single,
representative instance. This “signature” example illustrates how the proposed methods
behave on a concrete storyline and provides an intuitive understanding of the optimization
dynamics beyond statistical averages. For this purpose, we select Stephen G. Kobourov,

41

7. EXPERIMENT FRAMEWORK AND EVALUATION

42

Best-so-far convergence per iteration (Random) SA Trajectory (Random, Run 4)
190 —— Current
\\ —— Best
180 il 200 -=-= ILP (OPTIMAL)
5170 ! 2y
k= £ 180
7 \ @
e 160 B e \‘\ﬂ_gl:
o i —— o
150 Run 1 Run 4 160
Run 2 Run 5
140 Run3 ILP 140
0 50 100 150 200 250 0 50 100 150 200 250
Iteration Iteration
(a) Random: best-so-far trajectories across five (b) Random: current vs. best in run 4.
runs.
Best-so-far convergence per iteration (Weighted) Best-so-far convergence per iteration (Group)
1804 —— Runl —— Run4 180 —— Runl —— Run4
Run 2 Run 5 170 Run 2 Run 5
w170 Run3 ILP 0 Run3 ILP
g g
‘% 160 i 160
(%) %)
o o
O 150 O 150
140 140
L | W
0 50 100 150 200 250 0 50 100 150 200 250
Iteration Iteration

(c) Weighted: best-so-far trajectories across five (d) Group: best-so-far trajectories across five
runs. runs.

Figure 7.6: Convergence curves across five Simulated Annealing runs for each neigh-
borhood on the signature instance (Stephen G. Kobourov). The top-left plot shows
the Random neighborhood’s best-so-far trajectories, while the top-right panel visualizes
a single run’s current vs. best trace, highlighting classical SA behavior. The bottom
row compares the structured Weighted and Group neighborhoods, which converge more
tightly around the ILP optimum (134).

a long-standing contributor to the VIS and GD communities, thus fitting perfectly into
our presented evaluation structure.

Restricting the data to the years 2020 to 2025 and including only coauthors with at least
five joint publications yields an instance of 39 publications and 10 recurring collaborators,
with an average set-strength of 7.95 shared papers per coauthor. This configuration
represents a quite dense structure and serves as a challenging test case for the Simulated
Annealing heuristics.

An ILP result is available for this instance, though its computation took a total of 179
minutes. As a remarkable side-note, the ILP found the optimal heuristic solution after
just 9.25 minutes; the remaining time was spent on matching the lower bound with this
(optimal) solution.

7.6. Summary of Findings

The ILP optimum of 134 crossings serves as a clear performance reference for all heuristics.
Across the five Simulated Annealing runs per neighborhood, the Group and Weighted
variants consistently approach this value within one to two crossings, while Random
remains roughly 20% above optimum in the median case. The convergence curves in
Figure 7.6/ demonstrate this visually: all structured variants show steep early progress
and quickly stabilize around the optimum, whereas the unstructured Random variant
oscillates for longer and plateaus prematurely.

Together, these results reinforce the findings from the broader benchmark: the TSP-based
initialization already provides a strong baseline, but meaningful additional improvements
require structured neighborhoods that exploit the problem’s temporal and interaction-
based structure. Even on a dense, real-world instance such as the Kobourov dataset, the
Weighted and Group heuristics achieve results indistinguishable from the ILP optimum at
a fraction of the computational cost. The resulting layouts are visualized in Figures [7.7
and |7.8, illustrating the progression from the TSP-based initialization to the final heuristic
solutions.

This single-case analysis thus complements the statistical evaluation by offering an
intuitive confirmation of stability and solution behavior on a dense real-world instance.
It also highlights how the heuristic framework balances speed and quality, reaching
near-optimal layouts within seconds, while the ILP demands several hours. The observed
convergence patterns conclude the experimental evaluation, which has shown that the
developed heuristic framework produces solutions of consistently high quality across a
broad spectrum of instance scales.

7.6 Summary of Findings

The experimental evaluation has demonstrated that the proposed framework reliably
delivers high-quality solutions across all instance scales. The ILP formulation establishes
solid reference optima for small and medium-sized storylines, while the heuristic pipeline
(rooted in the TSP-based initialization and refined through Simulated Annealing) extends
this performance to much larger and denser instances. Among the evaluated neighbor-
hoods, Weighted consistently offers the best balance between runtime and quality, with
Group providing additional gains on large and more interconnected structures. The
detailed case study confirms that these heuristics closely match ILP-level quality at a
fraction of the computational cost. Overall, the results underline both the scalability and
robustness of the developed heuristic approach, forming a strong empirical foundation
for the upcoming discussion.

43

7. EXPERIMENT FRAMEWORK AND EVALUATION

2020 2021 2022 2023 2024 2025

SGK

HF

MN

FDS

S8
3
Kr?

N~

VH a
™

(a) ILP optimum: 134 crossings.

2020 2021 2022 2023 2024 2025

SGK

i

\

|
. N

(b) TSP-based initial layout: 184 crossings.

Figure 7.7: Optimal and initial layouts for the signature instance (Stephen G. Kobourov).
The ILP optimum represents the best achievable configuration with 134 crossings, while
the TSP-based initialization serves as a strong but visibly less organized starting point
with 184 crossings.

44

7.6. Summary of Findings

2020 2021 2022 2023 2024 2025

SGK

HF

MN

ARA

FDS

RS

KH

GL

SH

\

. \

™

(a) Group heuristic (median run): 134 crossings.

2020 2021 2022 2023 2024 2025

7

\ A\

(b) Random heuristic (median run): 160 crossings.

Figure 7.8: Heuristic layouts (median runs) for the same instance. The Group neighbor-
hood reaches the ILP optimum with 134 crossings, though its layout differs visually from
the ILP configuration. The unstructured Random variant remains at 160 crossings, re-
sulting in noticeably more visual clutter. The omitted Weighted neighborhood performed
comparably to Group (142 crossings).

45

CHAPTER

Discussion

In this chapter, the experimental findings are interpreted to explain why the methods
behave as they do and when each approach is preferable. The discussion contrasts exact
and heuristic strategies, relates their performance to structural properties of the datasets,
and reflects on scalability, limitations, and generalization. The aim is to connect the
empirical evidence from Chapter 7| with the problem structure defined in Chapter |4/ and
the algorithmic designs presented in Chapters 5| and 6.

8.1 Trade-offs Between Exact and Heuristic Methods

TSP and ILP. The previous results show that even without the Simulated Annealing
framework, the TSP-based initialization alone yields solutions close to the optimal layouts,
particularly in less complex instances. As the primary goal of storyline visualizations is
to produce clear and readable narratives rather than exact optima, a small deviation in
crossing count is an acceptable trade-off for the drastic runtime reduction. Consequently,
the TSP initialization alone represents a valid option when rapid, visually coherent results
are desired.

The ILP formulation achieved satisfactory results even on medium-complex instances
within reasonable time. Interestingly, its performance did not correlate directly with
instance size: large but sparsely connected networks were often solved efficiently, while
smaller yet denser instances caused the solver to stagnate. This suggests that the practical
difficulty of the ILP is driven less by the number of characters or interactions and more
by structural density and interconnection, which increase the number of conflicting
constraints and hinder convergence.

Simulated Annealing. For small and moderately sized instances without strong
structural density, the Random neighborhood frequently reaches the ILP optimum. In

47

8.

DiscussioN

48

such cases, the simplicity and minimal runtime of this generator make it the most efficient
choice for quick visualizations where further refinement would yield only marginal gains.

Once instance complexity increases, a more structured search strategy becomes necessary.
Both the Weighted and Group neighborhoods outperform the Random generator under
such conditions. Conversely, for simple instances, the Group generator often fails to reach
the optimum, as it primarily targets timestamps with multiple interactions. Similarly, the
Weighted approach may overlook small timestamps with few crossings, since its weighted
selection favors timestamps with higher crossing counts. These patterns highlight that
both structured generators are tuned for dense, complex configurations rather than for
simple or sparse ones.

Given the short runtime of the Random generator, the described problems could be
addressed using a combined approach: if the given instance is large, it first is pre-solved
using the Weighted or Group generator. Afterwards, the random generator tries to enhance
an already almost perfect layout, though when doing so, temperatures for Simulated
Annealing must be chosen carefully so as not to irreversibly escape the local optima
found by the first generator run. Another idea for easily gaining broader diversity is to
populate the neighborhood of the more sophisticated generators with some purely random
solutions in each generation, making use of the greedy behavior of the neighborhood.
This concept is already partially implemented in the well-performing Weighted approach,
which mixes random and weighted swaps within its selected timestamp. Extending this
approach to include other timestamps as well might already allow solutions to constantly
be on par with the Random generator.

Last, considering the large runtime of the structured neighborhood generators, the
exhaustive usage of the postprocessing procedure may need to be revisited. As it
consumes the large majority of the neighborhood runtime (30 — 50%, depending on the
testset scale), an easy runtime decrease is gained by not individually performing the
procedure on all neighborhood candidates before evaluation, but instead first choosing
an evaluation candidate, then postprocessing only that winning candidate alone. The
so-gained increase in randomness and potential slight worsening of candidate solutions
can be countered by adjusting the temperature of the SA accordingly.

8.2 Structure and Scalability

As implied by the ILP results, the main driver of complexity is not the overall number
of interactions. Even without cross-timestamp interactions, optimizing within a single
timestamp already imposes its own challenge. On the other hand, the stricter the partial
order becomes, the less work remains for our algorithms, especially since once the total
order is fixed, the problem is essentially solved. For the ILP, this effect can be seen
directly in the constraints: for each interaction, we need as many assignment variables
as there are other interactions, quickly and drastically increasing the total number of
required variables. Sparsity, on the other hand, allows nearly independent local orders.
When protagonists rarely collaborate with the same co-authors or attend overlapping

8.3. Limitations

venues, optimization becomes much easier, as the independence between timestamps
increases.

This pattern appears both in the signature instance and across the large testsets. Once
collaborations between the protagonist and other characters increase, the Group strategy
becomes particularly effective in moving sets of bundled interactions without destroying
their internal structure. The Weighted strategy, in contrast, excels when crossings are
concentrated in multiple, separate timestamps. Given these observations, structural
awareness and informed decisions on which heuristic to choose may provide a stronger
improvement than simply increasing the number of iterations.

Finally, we have seen that even large instances can be solved within seconds by our
heuristic approaches. However, while the true optima of these large instances remain

unknown, the TSP becomes significantly less sufficient as instance complexity grows.

From the initial TSP solution, our heuristics achieved further improvements of about
10-15%, showing that the initialization alone no longer captures the structural depth of
complex cases. Still, layouts with several thousand crossings can be optimized by the
proposed methods without major adaptions, making the framework suitable for most
applications where the result is intended for visual presentation. Nevertheless, the hidden

structural properties of the observed patterns limit the generalization of such a statement.

8.3 Limitations

With all the insights given so far, it is important to clarify the limits of their interpretation.

First, the presented parameter settings were derived from a pilot set through manual
calibration rather than formal tuning. While they proved stable across datasets, this

informal process leaves open the question of optimality for other instance families.

Additionally, some parameters could be analyzed even further. This is especially true for
the postprocessing procedure, whose practical effect was not clearly separated from the
performance of the pure heuristics.

Second, the Lower Bound Algorithm presented in Section [5.3| provides little practical

value for assessing absolute solution quality, even for instances with few total characters.

Quality loss further increases with more characters involved, making the presented
algorithm insufficient for its primary goal, which was to provide an estimate when the
ILP becomes intractable. The main source of this limitation is that the algorithm neglects
necessary relations between characters, resulting in a vast underestimation for practical
applications. Stronger theoretical bounds or problem relaxations could lead to more
usable lower bounds for the investigated problem.

Another limitation lies in the missing formal structural characterization of instances. The
current framework does not yet identify the metrics that best describe interaction density
or temporal overlap, making the choice of heuristic largely empirical. Establishing such
indicators would allow future work to predict suitable strategies without extensive trial
runs and could also allow further claims across different dataset families.

49

8. DISCUSSION

This thesis treated the adapted SCMP algorithm by Hegemann et al. [HW24] as a black
box and did not investigate potential efficiency gains from reusing intermediate results
between successive Simulated Annealing generations. Such reuse could reduce redundant
computations, especially in the structured neighborhoods, and might further improve
runtime without affecting solution quality.

Finally, while the observed behavior suggests combinatorial complexity, the theoretical
status of the 1-SCM-TI-P remains unresolved, as it is currently unknown whether the
problem is NP-hard.

Despite these limitations, the experiments provide a robust empirical foundation, showing
that the 1-SCM-TI-P admits efficient and high-quality solutions even for large problem
instances.

50

CHAPTER

Conclusion and Outlook

This thesis introduced and evaluated a complete optimization framework for 1-SCM-TI-P.
We started by formulating the problem mathematically, constructing an ILP baseline
for exact comparisons. We also proposed a computationally lightweight but loose lower
bound algorithm, which systematically underestimates crossings that must occur in any
feasible layout.

We then investigated heuristic approaches, starting with an already very effective TSP-
solution that within short time produces satisfying solutions for small- to medium-complex
instances. To iteratively improve upon these initial solutions, we introduced three
neighborhood generators in combination with a Simulated Annealing framework, which
greatly differed in complexity and runtime. While all three neighborhoods performed well
on instances up to medium complexity, reaching near-optimum solutions in milliseconds,
on large instances the more structured generators had the advantage against a naive,
pure Simulated Annealing approach.

During evaluation, we showed that the problem structure cannot simply be measured by
the total number of interactions. Evidence suggests that a combination of interactions
per timestamp and the recurrence of collaborations drive instance complexity, though
more formal analysis is required to confirm this.

Future work should thus focus on predictive heuristic selection and on extending the
framework to more general storyline variants. In addition, formal parameter calibration
may reveal unused potential in the current setup.

Last, it is still an open problem whether 1-SCM-TI-P is NP-hard. While it is known
that for a fixed total ordering, efficient solutions are available, the question if the current
relaxation already makes the problem intractable remains.

51

Appendix: SPARQL Queries for
Dataset Generation

Each query below defines one of the five dataset testsets described in Chapter 7. The
queries can be run on the DBLP SPARQL webpage at https://spargl.dblp.org.

Junior Researchers

1 PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema #>
2 PREFIX dblp: <https://dblp.org/rdf/schema#>

w

4 SELECT (STRAFTER(str (?author), "/pid/") AS ?pid)
5 WHERE ({

6 VALUES ?type { dblp:Article dblp:Inproceedings }
7 ?pub a ?type ;

8 dblp:authoredBy ?author ;

9 dblp:yearOfPublication ?y
10 ?author a dblp:Person
11

12 FILTER (?y >= "2010"""xsd:gYear && ?y <= "2025"""xsd:gYear)
13 FILTER NOT EXISTS { ?pub dblp:isVersionOf ?vr . }

15 FILTER EXISTS ({

16 ?pub dblp:authoredBy ?co
17 FILTER (?co != ?2author)
18 }

19 1}

20 GROUP BY 2author

21 HAVING (COUNT (DISTINCT ?pub) >= 10 && COUNT (DISTINCT ?pub) <= 30)
22 ORDER BY RAND ()

23 LIMIT 50

23

https://sparql.dblp.org

9. CONCLUSION AND OUTLOOK

Senior Researchers

0O Ui Wi =

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX dblp: <https://dblp.org/rdf/schema#>

SELECT (STRAFTER(str (?author), "/pid/") AS ?pid)
WHERE {
VALUES ?type { dblp:Article dblp:Inproceedings }

{ SELECT ?pub WHERE { ?pub dblp:authoredBy 7?a }
GROUP BY ?pub HAVING (COUNT (DISTINCT 2a) >= 2) }

?pub a ?type ;
dblp:authoredBy ?2author ;
dblp:yearOfPublication ?y
?author a dblp:Person

FILTER (?y >= "2010"""xsd:gYear && ?y <= "2025"""xsd:gY¥Year)
FILTER NOT EXISTS { ?pub dblp:isVersionOf ?vr }

}

GROUP BY author

HAVING (COUNT (DISTINCT <?pub) >= 100)

ORDER BY RAND ()

LIMIT 50

High Frequency Collaborators

1
2
3

0 3 O Uk

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX dblp: <https://dblp.org/rdf/schema#>

SELECT (STRAFTER(str (?author), "/pid/") AS ?pid)
WHERE {
VALUES ?type { dblp:Article dblp:Inproceedings }

{ SELECT 7?pub WHERE { ?pub dblp:authoredBy ?a }
GROUP BY ?pub HAVING (COUNT (DISTINCT ?a) >= 2) }

?pub a ?type ;
dblp:authoredBy 7?author ;
dblp:yearOfPublication ?y
?7author a dblp:Person

FILTER (?y >= "2010"""xsd:gYear && ?y <= "2025"*"xsd:gYear)
FILTER NOT EXISTS { ?pub dblp:isVersionOf ?vr }

}
GROUP BY ?author

HAVING (COUNT (DISTINCT ?pub) >= 20 && COUNT (DISTINCT ?pub) <= 50)

ORDER BY RAND ()
LIMIT 50

54

VIS Community

1 PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

2 PREFIX dblp: <https://dblp.org/rdf/schema#>

3

4 SELECT (STRAFTER (str (?author), "/pid/") AS ?pid)

5 WHERE ({

6 VALUES ?stream { <https://dblp.org/streams/conf/visualization> }
7

8 { SELECT ?pub WHERE { ?pub dblp:authoredBy ?a }

9 GROUP BY ?pub HAVING (COUNT (DISTINCT 2a) >= 2) }
10

11 ?pub dblp:publishedInStream ?stream ;

12 dblp:authoredBy ?author ;

13 dblp:yearOfPublication ?y

14 ?author a dblp:Person

15

16 FILTER (?y >= "2010"""xsd:gYear && ?y <= "2025"""xsd:gYear)
17 FILTER NOT EXISTS { ?pub dblp:isVersionOf ?vr }

18 '}

19 GROUP BY ?author

20 HAVING (COUNT (DISTINCT ?pub) >= 15)

21 ORDER BY RAND ()

22 LIMIT 50

Graph Drawing Community

1 PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
2 PREFIX dblp: <https://dblp.org/rdf/schema#>

3

4 SELECT (STRAFTER(str (?author), "/pid/") AS ?pid)

5 WHERE ({

6 VALUES ?gdStream { <https://dblp.org/streams/conf/gd> }
7

8 { SELECT ?pub WHERE { ?pub dblp:authoredBy ?a }

9 GROUP BY ?pub HAVING (COUNT (DISTINCT 2a) >= 2) }
10

11 ?pub dblp:publishedInStream ?gdStream ;

12 dblp:authoredBy ?Zauthor ;

13 dblp:yearOfPublication ?y

14 ?author a dblp:Person

15

16 FILTER (?y >= "2010"""xsd:gYear && ?y <= "2025"""xsd:gYear)
17 FILTER NOT EXISTS { ?pub dblp:isVersionOf ?vr }

18 }

19 GROUP BY ?author

20 HAVING (COUNT (DISTINCT ?pub) >= 15)

21 ORDER BY RAND ()

22 LIMIT 50

55

Overview of Generative Al Tools
Used

GitHub Copilot was used during software development for code completion suggestions
only. Additionally, a language model was consulted to support plotting tasks (e.g., axis
calibration and visual adjustments) and to provide non-textual feedback on clarity and
consistency during proofreading. All conceptual work, implementation decisions, and the
final written content are my own.

o7

1.1
1.2

0.1

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

List of Figures

Storyline visualization of The Lord of the Rings 1
Exemplary Storyline instance| o oo 2
Intra-Cost matrices for the different states of the Dynamic Program| . . . 17
Asymmetric TSP instance| oo 21
Comparison of the neighborhood generators| 27
ILP solution coverage per testset| 34
TSP-based initialization evaluation' 36
Iterations to 80% of total improvement|. 38
SA convergence trajectories for GD and Senior testsets 39
SA improvement by size class for GD and Senior testsets| 40
Convergence curves and example trajectory (signature instance) 42
ILP and TSP layouts for the signature instance/ 44
Heuristic layouts for the signature instance| 45

29

6.1
6.2

7.1
7.2
7.3

List of Tables

Comparison of Weight Metrics for the TSP Formulation
Exemplary cost matrix for the ATSP Model

Testset Overview|

Benchmark of SA results vs ILP optimal

Senior Testset Quality Evaluation

20
21

33
37
38

61

[AB14]

[Dij+16]

[Dob+23]

[Gro+16]

[HW24]

[JV83]

[KGV83]

[Kos+15]

[KLM?25]

Bibliography

Dustin Lockhart Arendt and Leslie M. Blaha. “SVEN: Informative Visual
Representation of Complex Dynamic Structure”. In: CoRR abs/1412.6706
(2014). po1:[10.48550/arXiv.1412.6706!

Thomas C. van Dijk et al. “Block Crossings in Storyline Visualizations”.
In: Proc. 24th International Symposium on Graph Drawing and Network
Visualization (GD). Ed. by Yifan Hu and Martin Néllenburg. Vol. 9801. LNCS.
Springer, 2016, pp. 382-398. DOI1: [10.1007/978-3-319-50106-2.

Alexander Dobler et al. “Crossing Minimization in Time Interval Storylines”.
In: CoRR abs/2302.14213 (2023). pOI: |10.48550/ARXIV.2302.14213.

Martin Gronemann et al. “Crossing Minimization in Storyline Visualization”.
In: Proc. 24th International Symposium on Graph Drawing and Network
Visualization (GD). Ed. by Yifan Hu and Martin Néllenburg. Vol. 9801. LNCS.
Springer, 2016, pp. 367-381. DOI:[10.1007/978-3-319-50106-2.

Tim Hegemann and Alexander Wolff. “Storylines with a Protagonist”. In:
Proc. 32nd International Symposium on Graph Drawing and Network Visu-
alization (GD). Ed. by Stefan Felsner and Karsten Klein. Vol. 320. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024, 26:1-26:22. DOTI:
10.4230/LIPICS.GD.2024.26.

Roy Jonker and Ton Volgenant. “Transforming asymmetric into symmetric
traveling salesman problems”. In: Operations Research Letters 2.4 (1983),
pp. 161-163. 18SN: 0167-6377. DO1: [10.1016/0167-6377 (83) 90048-2.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220.4598 (1983), pp. 671-680. DOI: 10 . 1126 /
science.220.4598.671l

Irina Kostitsyna et al. “On Minimizing Crossings in Storyline Visualizations”.
In: Proc. 23rd International Symposium on Graph Drawing and Network
Visualization (GD). Ed. by Emilio Di Giacomo and Anna Lubiw. Vol. 9411.
LNCS. Springer, 2015, pp. 192-198. pO1: 1 10.1007/978-3-319-27261-0.

Yun-Hsin Kuo, Dongyu Liu, and Kwan-Liu Ma. “SpreadLine: Visualizing
Egocentric Dynamic Influence”. In: IEEE Trans. Vis. Comput. Graph. 31.1
(2025), pp. 1050-1060. pO1: 10.1109/TVCG.2024.3456373.

63

https://doi.org/10.48550/arXiv.1412.6706
https://doi.org/10.1007/978-3-319-50106-2
https://doi.org/10.48550/ARXIV.2302.14213
https://doi.org/10.1007/978-3-319-50106-2
https://doi.org/10.4230/LIPICS.GD.2024.26
https://doi.org/10.1016/0167-6377(83)90048-2
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-319-27261-0
https://doi.org/10.1109/TVCG.2024.3456373

[Law95]

[Mue+13]

[Mun09]

[NWS8S]

[OM10]

[TM12]

[Tri0g]

64

Eugene L Lawler. The traveling salesman problem : a guided tour of combina-
torial optimization. eng. Reprint. Wiley-Interscience series in discrete mathe-
matics and optimization. Chichester [u.a.]: Wiley, 1995. 1SBN: 0471904139.

Chris Muelder et al. “Egocentric storylines for visual analysis of large dynamic
graphs”. In: Proc. IEEFE International Conference on Big Data (BigData
2013). Ed. by Xiaohua Hu et al. IEEE Computer Society, 2013, pp. 56—62.
DOI:|[10.1109/BIGDATA.2013.6691715.

Randall Munroe. Movie Narrative Charts. https://xkcd.com/657/.
Accessed: 2025-10-28. 2009.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Op-
timization. Wiley interscience series in discrete mathematics and optimization.
Wiley, 1988. 1SBN: 978-0-471-82819-8. DO1: 10.1002/9781118627372.

Michael Ogawa and Kwan-Liu Ma. “Software evolution storylines”. In: Proc.
ACM Symposium on Software Visualization (SOFTVIS 2010). Ed. by Alexan-
dru C. Telea, Carsten Gorg, and Steven P. Reiss. ACM, 2010, pp. 35-42. DOI:
10.1145/1879211.1879219.

Yuzuru Tanahashi and Kwan-Liu Ma. “Design Considerations for Optimizing
Storyline Visualizations”. In: IEEE Trans. Vis. Comput. Graph. 18.12 (2012),
pp. 2679-2688. DOI:[10.1109/TVCG.2012.212,

Michael A. Trick. “David L. Applegate, Robert E. Bixby, Vasek Chvatal ,
William J. Cook. The Traveling Salesman Problem: A Computational Study,
Princeton University Press, Princeton, 2007, ISBN-13: 978-0-691-12993-8,
606 pp”. In: Oper. Res. Lett. 36.2 (2008), pp. 276-277. DOI: 10.1016/J.
ORL.2007.06.002.

https://doi.org/10.1109/BIGDATA.2013.6691715
https://xkcd.com/657/
https://doi.org/10.1002/9781118627372
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1016/J.ORL.2007.06.002
https://doi.org/10.1016/J.ORL.2007.06.002

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Preliminaries
	Integer Linear Programming
	The Traveling Salesperson Problem
	Simulated Annealing

	Problem Setting
	Input Representation
	Formal Problem Definition
	Crossing Definition

	Exact Approaches
	Base ILP Formulation
	Extension: Active Character Ranges
	Algorithmic Lower Bound

	Heuristics
	TSP-Based Initial Solution Generation
	Simulated Annealing Framework and Neighborhoods

	Experiment Framework and Evaluation
	Setup
	Exact Approaches: ILP and Lower Bound Evaluation
	Heuristic Approaches: TSP-Based Initialization
	Heuristic Approaches: Simulated Annealing Evaluation
	Case Study: A Signature Professor
	Summary of Findings

	Discussion
	Trade-offs Between Exact and Heuristic Methods
	Structure and Scalability
	Limitations

	Conclusion and Outlook
	Appendix: SPARQL Queries for Dataset Generation
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Bibliography

