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Abstract. In this paper we show that extended Q-resolution is optimal
among all QBF proof systems that allow strategy extraction modulo an
NP oracle. In other words, for any QBF refutation system f where cir-
cuits witnessing the Herbrand functions can be extracted in polynomial
time from f -refutations, f can be simulated by extended Q-resolution
augmented with an NP oracle as described by Beyersdorff et al. We argue
that using NP oracles and strategy extraction gives a natural framework
to study QBF systems as they have relations to SAT calls and game
instances, respectively, in QBF solving.

A weaker version of QBF extension variables also put forward by Jus-
sila et al. does not have this optimality result, and we show that under
an NP oracle there is no improvement of weak extended Q-Resolution
compared to ordinary Q-Resolution.

Keywords: QBF · Proof complexity · Simulation · Resolution ·
Extended Frege · NP oracles · Optimal proof systems · Strategy
extraction

1 Introduction

Quantified Boolean formulas (QBF) are an extension of propositional logic and
extend the SAT problem from NP-complete to PSPACE-complete [31]. In the
last decade the SAT community has developed a strong interest in QBF solv-
ing as a successor to SAT and the number of QBF solvers, benchmarks and
proof systems has multiplied considerably. QBF solving employs a variety of
new reasoning techniques not found in SAT in order to deal with quantification.
However, universally verifying the results of these different solvers over incom-
parable techniques remains a difficult problem. Proof systems such as extended
Q-Res [22] or the even stronger QRAT [18] have been put forward as candidates
for universal checking formats but have not yet been put to significant use.

We show that extended Q-Res has theoretical properties that make it a good
candidate for a QBF checking format under a reasonable set of assumptions, and
through these results, we can conjecture that it can simulate the proof systems
that underpin the most commonly used QBF solving techniques.
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Hardness and Optimality in QBF Proof Systems Modulo NP 99

Just as in the SAT case, proof complexity is the main theoretical framework
for analysing the relative strengths of QBF solvers. To use proof complexity,
solvers are classified by their underlying proof systems, which express the lim-
its of that solver. Because there are a variety of QBF solving methods, there
are also many different QBF proof systems. Expansion-based solvers such as
RAReQS [19] use the definition of QBF and expand into potentially exponential
size propositional formulas. Expansion solvers are captured by proof systems
such as ∀Exp+Res [20]. Conflict-driven clause-learning (CDCL), from SAT solv-
ing, is another technique that can be adapted for a QBF setting. This deals
with quantification via a reduction rule. Combining existential resolution and
universal reduction in proof theory gives the refutationally complete system Q-
resolution (Q-Res) [26]. More general CDCL solvers that can perform stronger
unit propagations are better described by so-called long-distance Q-Resolution
(LD-Q-Res), an exponentially more powerful system[2]. An example of a QBF
solver using CDCL is Dep-QBF [29]. The “Dep” part of Dep-QBF actually
indicates another quantification technique which uses the awareness of spuri-
ous dependencies in the ordered quantifier prefix. The theory of dependency is
also hugely important for QBF solving and theory [9,28,32] and has given rise
to other stronger variants of Q-Res that utilise the dependency schemes, such as
the reflexive resolution scheme [32].

Solvers can be modified to output certificates that are used to verify their
results. It is natural for these certificates to be valid proofs for the corresponding
proof systems. As well as being able to output proofs of truth or falsity, solvers
are often asked to provide the strategies that witness how each variable must be
set. In some applications, the strategy is the whole point of using a QBF solver. In
Feldman et al. [13], circuit design algorithms explicitly used the strategy circuits
output by QBF solvers rather than the true/false results. If these strategies
are circuits that are easy to compute from the proofs, that proof system is
said to have strategy extraction, an often desirable property for proof systems
corresponding to solvers. All proof systems in the previous paragraph have this
property.

While the above proof systems are meant to correspond to particular solvers,
there is no agreed upon universal checking format for certification for every
known type of QBF solver. One approach is to incorporate as many techniques
as possible into the proof system. The proof system IRM-calc [6] combines the
main concepts from the expansion-based ∀Exp+Res and the CDCL-based LD-
Q-Res into one sound system. While this is interesting in understanding how
expansion and CDCL systems can interact, IRM-calc is somewhat ad hoc, and a
new technique could easily emerge which IRM-calc is not designed to deal with.
For example, IRM-calc can not deal with the resolution of universal variables [6].

Another approach is to pick one strong system and prove that each solving
technique can be simulated. This approach can be seen in the QRAT system,
where it was first shown that a number of QBF preprocessing techniques were
simulated by it [18]. Later it was shown to simulate LD-Q-Res [23] and ∀Exp+Res
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100 L. Chew

[24]. From these results, one could estimate that QRAT is indeed strong, but we
would prefer a stronger theoretical reason for this.

If we want a QBF proof system suitable for universal certification, then the
absolute ideal situation would be that it simulates every other QBF proof system.
This is probably too ambitious as the existence of a theoretical optimal proof
system remains a contested and open problem in propositional proof complexity,
and it is an even stronger claim to suggest one exists for QBF. However, we
can restrict our search to just proof systems with strategy extraction, and the
problem becomes more manageable.

We find that with some extra help, extended Q-resolution is optimal among
the proof systems with strategy extraction. Firstly we show in Theorem 1 that
extended QU-Resolution (the ‘U’ in QU allows resolution on universal variables)
is equivalent to the system eFrege + ∀red.

Theorem 1. Extended QU-Res and eFrege + ∀red are p-equivalent.

eFrege + ∀red has an important result where it can only have a lower bound
if eFrege has a lower bound or PSPACE /∈ P/poly [5]. While this does not give us
a simulation of another QBF proof system, it already indicates the strength of
the system. With additional propositional power we show the next theorem.

Theorem 2. For every refutational QBF Proof System S that has P/poly-
strategy extraction, there is a set of polynomial-time verifiable propositional tau-
tologies ‖Ψ‖ such that eFrege + ∀red +‖Ψ‖ simulates S.

For reasons that we discuss in Sect. 3, the extra propositional tautologies
will not play a large role. Our main conjecture is that for the most interesting
systems, the simulation requires no additional help.

Conjecture 1. ∀Exp+Res, IR-calc, LD-Q-Res, IRM-calc, QRAT(UR) and Q(Drrs)-
Res are all simulated by eFrege + ∀red.

We saw that extra help needed for simulations can come in the form of
propositional tautologies, but there is a second setting which achieves the same
result- the use of NP oracles in a proof system.

This idea was first proposed by Chen [10] and refined by Beyersdorff, Hinde
and Pich [8]. The Beyersdorff et al. NP derivation rule roughly allows one to
make any propositional derivation in addition to the normal rules of whatever
system we are adding the rule to. The motivation was to provide a theoretical
framework that differentiated out genuine QBF hardness for QBF proof systems.

NP oracles model what happens in practice, as QBF solving algorithms often
make black-box calls to SAT solvers. This usually does not affect strategy extrac-
tion as we see in Theorem 3.

Theorem 3. The following strategy extraction theorems hold:

– QU-Res NP has depth-1 circuit decision list strategy extraction.
– For circuit class C, C-Frege + ∀red NP has C-decision list strategy extraction.
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Hardness and Optimality in QBF Proof Systems Modulo NP 101

NP oracles remove the need for the families of propositional tautologies, and
we can express our simulation results in terms of optimality.

Theorem 4. Extended Q-ResNP is optimal among all QBF proof systems with
strategy extraction.

The final three theorems examine a weaker form of extension in Q-Res and
QU-Res under the lens of NP oracles.

Theorem 5. Weak extended QU-Res NP does not simulate extended Q-Res.

Theorem 6. Weak extended Q-Res does not simulate QU-Res.

Theorem 7. Q-Res ≡NP QU-Res ≡NP Weak Ext.Q-Res ≡NP Weak Ext.QU-Res.

1.1 Organisation

In Sect. 2 we recap some essential definitions on QBF. In Sect. 3 we show The-
orem 1 and 2 and discuss why this leads to Conjecture 1. Section 4 begins an
analysis of proof systems under NP oracles with Theorems 3 and 4. This is
finished in Sect. 5 where we prove Theorems 5, 6 and 7.

2 Preliminaries

2.1 Proof Complexity

Formally, a proof system [12] for a language L over alphabet Γ is a polynomial-
time computable partial function f : Γ� ⇁ Γ� with rng(f) = L, where rng
denotes the range. A proof system maps proofs to theorems. A refutation is a
proof system where the language L is of contradictions. The partial function
f gives a proof checking function. Soundness and completeness are given by
rng(f) ⊆ L and rng(f) ⊇ L, respectively. The polynomial-time computability is
an indication of feasibility.

Proof size is given by the number of characters appearing in a proof. Proof
systems are compared by simulations. We say that a proof system f simulates g
(g ≤ f) if there exists a polynomial p such that for every g-proof πg there is an
f -proof πf with f(πf ) = g(πg) and |πf | ≤ p(|πg|). If πf can even be constructed
from πg in polynomial-time, then we say that f p-simulates g (g ≤p f). Two
proof systems f and g are (p-)equivalent (g ≡(p) f) if they mutually (p-)simulate
each other.

Definition 1 (Messner, Toran [30]). A proof system in language L is (p-
)optimal if and only if it can (p-)simulate all other proof systems for L.
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102 L. Chew

A1 . . . An (r)
B

Here A = {A1 . . . An} and r(A,B) holds.

Fig. 1. Example of rule r in a line-based proof system

Line-Based Proofs. A proof system is line-based if every proof consists of
a sequence L1 . . . Ln of lines Li. The data types of lines are dependent on the
proof systems. A line-based system is verified by a set of rules R. Each rule is
a relation between a set of lines, which are known as the premises, and a single
conclusion line. Correct proofs have that for each line Li, there is some rule r in
R and a subset A of {Lj |0 ≤ j < i} such that r(A,Li) holds (see Fig. 1).

Given a line based proof system P with a set of rules RP and a rule r, we
can write P + r to mean the proof system that consists of the rules of RP ∪ {r}
under the lines acceptable in P . If S is a set of propositional formulas, the proof
system P + S is the system P + r, where r is a rule that allows a conclusion s
(with empty premises) if and only if s ∈ S. Note that rules and sets of lines have
to be polynomial-time verifiable in order for the resulting system to be a proof
system. While adding a rule r to a complete system P preserves completeness,
soundness is not guaranteed and has to be reasoned for separately.

2.2 Propositional Logic

Propositional logic involves Boolean variables under operations ¬,∧,∨, 0, 1. A
literal is a variable or its negation, a clause is a disjunction of literals and a
conjunctive normal form (CNF) is a conjunction of clauses. A formula is satisfi-
able if there is a 0, 1 assignment to variables so that the formula evaluates to 1.
Deciding whether a propositional formula is satisfiable is NP-complete.

Propositional Proof Systems. Resolution (Res) is a propositional refutation
system that works on formulas in conjunctive normal form. Resolution is line-
based, where every line is a clause. The axiom rule allows us to download any
clause in our original CNF. The inference rule takes two premise clauses C ∨ x
and D ∨ ¬x and outputs conclusion C ∨ D.

Extended resolution (Ext. Res) for propositional logic [33], enables adding
clauses expressing the equality v ⇔ (¬x ∨ ¬y), for a fresh variable v. As NAND
gates can be defined by new variables, subsequent new variables can represent
more complicated functions.

Frege systems are line-based systems that work on propositional formulas.
Frege systems consist of an implicationally complete finite set of sound rules,
each of which is represented by a single example, which can be generalised by
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Hardness and Optimality in QBF Proof Systems Modulo NP 103

substitution. All Frege systems are known to be p-equivalent. While the lines
of Frege systems are required to be formulas, a generalised version of Frege,
denoted here by C-Frege, allows/restricts the lines to belong in circuit class C.
For example, AC0-Frege [3] is the Frege system where the lines are circuits with
unbounded fan-in but have bounded-depth. NC 1-Frege is the Frege system where
the lines have bounded fan-in and logarithmic depth, this is equivalent to the
original Frege system [12] where lines are formulas. P/poly-Frege (defined as
Circuit Frege by Jeřábek [21]) is the Frege system where general circuits have
unbounded fan-in and depth. Extended Frege is known to be p-equivalent to
P/poly-Frege, so we often use the notation eFrege to denote P/poly-Frege.

2.3 Quantified Boolean Formulas

Quantified Boolean Formulas extend propositional logic with quantifiers ∀,∃ that
work on propositional variables [25]. For formula (or circuit) A, we define A[x/y]
so that we replace all instances of y in A with x. The standard QBF semantics
are that ∀xΨ is satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x], and
∃x Ψ is satisfied by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

A prenex QBF is a QBF where all quantification is done outside of the
propositional connectives. A prenex QBF Ψ therefore consists of a propositional
part φ called the matrix and a prefix of quantifiers Π and can be written as
Ψ = Πφ. Starting from left to right we give each bound variable a numerical level
(lv) starting from 1 and increasing by one each time the quantifier changes (it
stays the same whenever the quantifier is not changed). When the propositional
matrix of a prenex QBF is a CNF, then we have a PCNF. We can feasibly
transform any QBF into prenex form. A prenex QBF without any variables in
the prefix is just a propositional formula.

A closed QBF is a QBF where all variables are bound in quantifiers. A
closed QBF must be either true or false, since if we semantically expand all the
quantifiers we have a Boolean connective structure on 0, 1. TQBF and FQBF
are used to denote the languages of true and false closed QBF, respectively.

QBF Game Semantics. Often it is useful to think of a closed prenex QBF
Q1X1 . . . QkXk. φ, where Xi are blocks of variables, as a game between ∀ and ∃.
In the i-th step of the game, the player Qi assigns values to all the variables Xi.
The existential player wins the game if and only if the matrix φ evaluates to 1
under the assignment constructed in the game. The universal player wins if and
only if the matrix φ evaluates to 0. Given a universal variable u with index i, a
strategy for u is a function, which maps the variables of lower index than u to
{0, 1} (the intended response for u). A strategy for the universal player for QBF
Πφ is a set which contains exactly one strategy for each universal variable in Π. A
QBF is false if and only if there exists a winning strategy for the universal player,
i.e. if the universal player has a strategy for all universal variables that wins any
possible game [15][1, Sec. 4.2.2][31, Chap. 19]. Note that we differentiate between
a universal strategy and what is known in the literature as a Herbrand function.
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104 L. Chew

Strategies are allowed to depend on previous universal variables, whereas the
input to Herbrand functions must be purely existential (this allows us to get
Theorem 3 to work). Since strategies for each universal variable are Boolean
functions, they can be expressed as circuits. In many QBF solvers, as well as
evaluating the truth of a QBF, solvers output circuits expressing the strategies
for each universal (existential) variable whenever the QBF is false (true).

QBF Proof Systems. QBFs extend propositional formulas, therefore it is
natural that many QBF proof systems use rules from propositional inference. In
addition, QBF systems have to include rules that keep quantification in mind.

Q-resolution (Q-Res) by Kleine Büning, Karpinski, and Flögel [26] is a QBF
resolution system. It uses the propositional resolution rule on existential vari-
ables. In addition, Q-resolution has a universal reduction rule to locally assign
universal variables in clauses (for Fig. 2 recall that ¬¬z = z for literals). QU-
resolution (QU-Res) [34] removes the restriction from Q-Res that the resolved
variable must be existential and also allows resolution of universal variables.

(Ax)
C

C ∨ x D ∨ ¬x (Res)
C ∨ D

Ax : C is a clause in the propositional matrix.
Res: variable x is existential.

C ∨ l (∀-Red)
C

literal l has variable u, which is universal and all other existential variables x ∈ C
are left of u in the quantifier prefix. Literal ¬l does not appear in C.

Fig. 2. The rules of Q-Res [26]

Extended resolution for propositional resolution, enables adding clauses
expressing the equality v ⇔ (¬x ∨ ¬y), for a fresh variable v. We follow this
idea in the context of Q-resolution. Here, we need to decide the position of the
fresh variable in the prefix. Two versions are considered; a weak one and a general
one. Both versions require extension variables to be existential. However, they
differ in their placement of the existential quantifier. Weak extended Q-resolution
[22] is the calculus of Q-Res enhanced with the extension rule in its weak form.
Every extension variable appears at the end (innermost) of the prefix.

Extended Q-resolution is the calculus of Q-Res enhanced with the extension
rule in general form (ext. Q-Res). Each extension variable is quantified after the
variables it is defined from. Just as QU-Resolution introduces universal resolu-
tion to Q-Res, we can also get extended QU-resolution (ext. QU-Res) which adds
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Hardness and Optimality in QBF Proof Systems Modulo NP 105

universal resolution to extended Q-Res, the same can be done for weak extended
QU-resolution.

C-Frege + ∀red uses circuit lines from the class C. It combines rules from
Frege systems that operate on the circuit class C, with the reduction rule (See
Fig. 3). While Frege systems are inferential, because we are using reduction,
which is mainly used for refutation, C-Frege + ∀red is a refutational system.

(Ax)
D

C1, . . . Ck (C-Frege)
D

Ax : D is a circuit in the propositional matrix.
C-Frege: deriving circuit D from circuits C1, . . . Ck is compliant with an axiom or
rule in the C-Frege proof system.

B is a C circuit in variables left of u.
D (∀-Red)

D[B/u]

Variable u is universal and all other variables x ∈ D are left of u in the prefix.

Fig. 3. The rules of C-Frege + ∀red [5]

In practice, we concentrate on a few special cases of C, particularly when C
is AC0 (bounded-depth), AC0[p] (bounded depth with mod p gates), NC 1 (the
standard Frege systems) or P/poly (circuit Frege, equivalent to eFrege).

Definition 2 (Strategy Extraction). A refutational proof system P has (cir-
cuit) strategy extraction if there is a polynomial-time algorithm that takes P
refutations π of QBF Ψ and outputs a circuit Du for each universal variable u
in prenex QBF Ψ , where the input variables of Du are quantified to the left of
u in Ψ and playing every u according to the output of Du constitutes a winning
strategy for the universal player.

We look at the strategy extraction lower-bound technique, using the circuit
extracted from the proof. The technique depends on the proof systems having a
strategy extraction property- that a circuit giving the winning strategy for the
universal player can be efficiently extracted from the proof. If that circuit is large
then the proof must also be large. For specific circuit class C, C-strategy extrac-
tion for a particular proof system P is the property that there is a polynomial-
time way to extract from a P -proof of a false QBF, a winning universal strategy
in circuit class C for the relevant false QBF. For example, the QBF proof sys-
tem AC0[p]-Frege+ ∀red has AC0[p]-strategy extraction [5]. Circuit lower bounds
for AC0[p] can then be exploited to prove AC0[p]-Frege + ∀red proof-size lower
bounds.
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106 L. Chew

One circuit model that is very useful when dealing with strategy extraction
is the decision list. Below we define the C-decision list for circuit class C.

Definition 3 (C-decision list). A C-decision list is a program of the following
form

if C1(x) then u ← B1(x);
else if C2(x) then u ← B2(x);

...

else if C�−1(x) then u ← B�−1(x);
else u ← B�(x),

where C1, . . . , C�−1 and B1, . . . , B� are circuits in the class C. Hence a decision
list as above computes a Boolean function u = g(x).

This comes from the original decision list where Ci is a term (conjunction of
literals) and Bi is a Boolean constant. QU-Res has strategy extraction in these
original depth-1 circuit decision lists, while other QBF systems have strategy
extraction in C-decision lists where C depends on the system. Extended Q-Res
and extended QU-Res have strategy extraction [7] in P/poly since they use the
bounded-depth strategy extraction of Q-Res and QU-Res, but the extension
variables disguise arbitrary circuits.

NP Oracles. In the above QBF proof systems, we take a propositional proof
system and augment it with some rules in order for it to deal with genuine
QBFs. This approach is mostly unavoidable as every QBF proof system also is a
propositional system. The drawback is that when observing lower bounds every
propositional lower bound is inherited for QBFs. We would like to separate lower
bounds from propositional logic from “genuine” QBF hardness.

Recent work [8,10] has started to factor out the component of propositional
hardness in QBF. Most work has been done on the QU-Res systems but generalise
to other systems as well.

Definition 4 (NP Oracle derivations[8]). For QBF proof system S, a SNP

proof of a QBF Ψ is a derivation of the empty clause by any of the S rules or
the NP-derivation rule.

C1, . . . Cl
(NP-derivation)

D

For any l, where there is some Σb
1-relaxation Π ′ of the prefix Π such that

Π ′ ∧l
i=1 Ci � Π ′ ∧l

i=1 Ci ∧ D. D and Ci have to be lines permitted in S (e.g.
clauses, formulas).

We will not here define a Σb
k-relaxation for every k we will just define for

k = 1. We replace all universal quantifiers with existential ones. In other words,
we can infer ΠD ∧ ∧l

i=1 Ci from Π
∧l

i=1 Ci whenever
∧l

i=1 Ci � D holds. When
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Hardness and Optimality in QBF Proof Systems Modulo NP 107

we do add D we do not change the prefix Π. Hence PNP augments QBF proof
system P with all propositional inference.

Notice that PNP is not a proof system unless we can check the NP-derivation
in polynomial-time. This cannot be done unless P = NP. However, it gives us
a framework for analysing QBF proof systems ignoring propositional hardness,
which would otherwise be pervasive in QBF proof complexity. A similar approach
was made previously by Chen [10].

Definition 5. Let P,Q be QBF proof systems, then we write P ≡NP Q whenever
QNP and PNP mutually p-simulate each other.

3 Simulations with Extension Variables

In this section, we study the proof complexity of Ext QU-Resolution without
NP oracles. NP oracles will be used in the next section. One may notice that
in the definition of Beyersdorff et al. [5] eFrege + ∀red is actually P/poly-Frege
+ ∀red, and despite its name, it does not use extension variables in its definition.
The fact that P/poly-Frege and Frege with extension variables are equivalent
propositionally requires the proof of Jeřábek [21], and this has to be proven
again for QBF versions. In fact, we prove an even stronger equivalence by using
only resolution instead of Frege.

Theorem 1. Extended QU-Res (with general extension variables) and P/poly-
Frege + ∀red are p-equivalent.

Proof. First, we show P/poly-Frege+ ∀red p-simulates extended QU-Res. We take
a proof π in extended QU-Res and convert it to a proof in P/poly-Frege + ∀red
with the same structure. In order to do this we must convert the clausal lines in
π to circuits without extension variables.

We replace every extension variable with the circuit it is describing (using
the full circuit when an extension variable is based on others). The circuits
introduced are only as large as π because they have to be defined using extension
clauses. Hence the new proof is polynomial.

The resolution rule can be easily copied by P/poly-Frege steps. The exten-
sion rules are now tautologies that can be easily inferred (or taken as axioms).
The reduction rule can be copied, but we have to verify that the new reduction
instances are valid. The new clauses now have circuits in place of extension vari-
ables. Fortunately, the variables of the circuits are left of the extension variables,
by definition. A clause C ∨ u in π where the variables in C are quantified before
u is transformed into a circuit D ∨ u where the circuit D is in variables that are
quantified before u. Hence reduction is valid.

We now show the converse- that extended QU-Res p-simulates P/poly-Frege
+ ∀red. Let π be a refutation in eFrege + ∀red of Πφ. Π is a prefix where every
universal is yi for some 1 ≤ i ≤ n and lv(yi) ≤ lv(yi+1). We can (in polynomial
time) change π into a normal form P/poly-Frege + ∀red proof π′, which consists
of two parts [5]. The first part contains a P/poly-Frege proof of

∨n
i=1(yi �= σyi

),
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108 L. Chew

where σyi
are the extracted strategies from π. The second part is the QBF

refutation of
∨n

i=1(yi �= σyi
) where reduction rules are used.

Consider a CNF version of
∨n

i=1(yi �= σyi
) with extension variables involved:

n∧

i=1

Def (si = σyi
)∧ tn ∧¬t0 ∧

n∧

i=1

(¬ti ∨ yi ∨ si ∨ ti−1)∧
n∧

i=1

(¬ti ∨¬yi ∨¬si ∨ ti−1)

si are extensions variables that are defined as σyi
in Def (si = σyi

), possibly
using more extension variables for the logic gates used in the circuits of σyi

. ti
are extra variables that allow us to split our large disjunction up, for j ≥ 0, tj
is an extension variable defining

∨j
i=1(yi �= si). Since the gate variables in σyi

the si and ti−1 variables only depend on variables to the left of yi we can place
them in the quantifier prefix before yi. As the CNF is a straightforward logical
consequence from

∨n
i=1(yi �= σyi

) it also has a short proof.

Induction Hypothesis: We can find short proofs of tn−k using extended
QU-Res with weakening (adding an extra literal to a clause) on Πφ.

Base Case: The singleton clause (tn) is a simple restatement of
∨n

i=1(yi �= σyi
).

We can derive (tn) in extended resolution with weakening (adding an extra
literal), as extended resolution with weakening simulates P/poly-Frege in propo-
sitional logic. Note that when we incorporate this into QBF, we have to use
Ext. QU-Res, not Ext. Q-Res as Ext. Res. does not distinguish between ∃ and ∀.
(Whether Ext. QU-Res and Ext. Q-Res are equivalent is still an open problem.)

Inductive Step: Suppose we have clause (ti) with i = n − k, we can resolve it
with both (¬ti ∨ yi ∨ si ∨ ti−1) and (¬ti ∨ ¬yi ∨ ¬si ∨ ti−1) to get (yi ∨ si ∨ ti−1)
and (¬yi ∨ ¬si ∨ ti−1). Since si and ti−1 variables occur before yi in the prefix
we can reduce yi in both cases to get (si ∨ ti−1) and (¬si ∨ ti−1) which we can
resolve to get clause (ti−1).

Once we derive t0, we get a contradiction. In order to derive (tn), we added
extra literals to the clauses with weakening. These literals are not needed in a
refutation. Therefore, we remove all of these clause weakening steps and end up
with an extended QU-Res refutation. ��

Theorem 1 gives us that our next results will hold for both extended QU-Res
and P/poly-Frege which we will now refer to as eFrege + ∀red.

But the proof itself also tells us something important- it uses strategy extrac-
tion for simulation. Contrast this with how strategy extraction has been used
previously for QBF lower bounds [5,6]. This idea has the potential to be used
for other proof systems or even solvers. Say we have proof system f that has
P/poly strategy extraction. If we have an f refutation of QBF Πφ, we can use
strategy extraction to gain circuits σyi

for each of the universal variables yi and
substitute each yi for σyi

in φ, giving us a propositional contradiction. If we can
confirm this contradiction in eFrege, we would be able to prove

∨n
i=1(yi �= σyi

),
and we can continue an eFrege + ∀red proof to get a refutation. This is almost
a simulation of f by eFrege + ∀red. The thing that could go wrong is there is
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no guarantee that the substituted propositional matrix has a short eFrege proof.
Nonetheless, eFrege is powerful enough for this problem not to occur very often.
Theorems 2 and 4 give two different ways of clarifying what is meant by almost
a simulation, but we need some technical lemmas on eFrege proofs.

Lemma 1. For propositional circuits A,B and φ(X) any propositional tautology
of the form (A ↔ B) → (φ(A) ↔ φ(B)) has a polynomial-size proof in eFrege.

Lemma 2. Let Π be a QBF prefix where each ∀ variable is given as yi for
1 ≤ i ≤ n. Let φ and σyi

for 1 ≤ i ≤ n be propositional circuits. Now define
φσ,Π to be the propositional circuit that replaces all occurrences of yi with σyi

.
The tautology φ∧¬φσ,Π → ∨n

i=1(yi �= σyi
) has polynomial-size proofs in eFrege,

(in the sizes of φ and σyi
).

We can now talk about simulation by eFrege + ∀red. In the next theo-
rem, we have the additional condition that we may need an infinite family of
polynomially-recognisable tautologies added to eFrege+ ∀red. Bear in mind these
are only propositional tautologies, not QBF.

Theorem 2. For every refutational QBF Proof System S that has P/poly-
strategy extraction, there is a set of polynomial-time verifiable propositional tau-
tologies ‖Ψ‖ such that eFrege + ∀red +‖Ψ‖ simulates S.

It is known [27] that any propositional proof system P is simulated by eFrege
+‖refl(P )‖ where ‖refl(P )‖ is a set of propositional tautologies that code arith-
metic statements of P ’s correctness (the name “reflection principle” comes from
the challenge of a system proving its own soundness). The idea is to use these
propositional tautologies in a QBF setting, but we also need reduction and essen-
tially strategy extraction.

Proof. Let S be our FQBF proof system which allows polynomial-time strategy
extraction in circuits. Let Πφ be a closed QBF where Π is a quantifier prefix and
φ is purely propositional. The strategy extraction means that from a refutation
π of QBF Πφ we can extract in polynomial-time circuits σy that are strategies
for each universal variable y. Let φσ,Π be the propositional formula that results
from replacing every universal variable y with σy in φ. Since the strategy is
correct, φσ,Π must be a propositional contradiction.

We can use this observation to design a propositional proof system Strat(S).
The idea is that this proof system verifies the proposition (¬φ)σ,Π instead of
refuting the QBF Πφ. Using the Cook-Reckhow definition of a proof system as
a checking function (see Sect. 2.1) we define it as follows:

Strat(S)(π) =

⎧
⎪⎨
⎪⎩

¬φσ,Π , π is an S refutation of Πφ

and σ is the strategy extracted from it,

eFrege(π), otherwise.

Using information from [27] we know Strat(S) is simulated by eFrege +
‖refl(Strat(S))‖, where ‖refl(Strat(S))‖ is a polynomial-time recognisable set of
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propositions that encode an arithmetic statement of the correctness of Strat(S).
We will show that eFrege + ∀red +‖refl(Strat(S))‖ simulates S, so we let π be a
proof of Πφ in S with strategy extracted σ. Note that π is also a Strat(S) proof.

We let π′
1 be the eFrege +‖refl(Strat(S))‖ proof that simulates π in Strat(S).

We know this is of polynomial-size in π. Likewise as we know the σy are
polynomial-size, this means that by using Lemma 2 the circuit φ ∧ ¬φσ,Π →∨n

i=1(yi �= σyi
) has a polynomial-size eFrege proof π′

2, where yi are the universal
variables in Π in order (yn being the innermost universal variable).

We show that eFrege+ ∀red +‖refl(Strat(S))‖ can refute Πφ in a short proof.

φ ¬φσ,Π

φ ∧ ¬φσ,Π φ ∧ ¬φσ,Π → ∨n
i=1(yi �= σyi

)
∨n

i=1(yi �= σyi
)

Similarly to Theorem 1, we show an inductive proof of
∨n−k

i=1 (yi �= σyi
) for

increasing k eventually leaving us with the empty clause. This essentially is where
we use the ∀-Red rule. Since we already have

∨n
i=1(yi �= σyi

) we have the base
case and we only need to show the inductive step.

We derive from
∨n+1−k

i=1 (yi �= σyi
) both (0 �= σyn+1−k

) ∨ ∨n−k
i=1 (yi �= σyi

) and

(1 �= σyn+1−k
) ∨ ∨n−k

i=1 (yi �= σyi
) from reduction. We can resolve both with the

easily proved tautology (0 = σyn+1−k
) ∨ (1 = σyn+1−k

) which allows us to derive∨n−k
i=1 (yi �= σyi

). We continue this until we reach the empty disjunction. ��

Conjecture 1. ∀Exp+Res, IR-calc, LD-Q-Res, IRM-calc, QRAT(UR) and Q(Drrs)-
Res are all simulated by eFrege + ∀red.

Let us take one example, e.g. ∀Exp+Res and suppose it is not true. Then
‖refl(Strat(∀Exp+Res))‖ would have to be an eFrege lower bound, an answer to
a major open problem. Put another way, Strat(∀Exp+Res) would be a proposi-
tional proof system more powerful than eFrege on certain families. This would
seem very unlikely. More likely would be that the steps of an ∀Exp+Res refuta-
tion of Πφ combined with formalised knowledge about the strategy extraction
for ∀Exp+Res could help guide a short refutation of φσ,Π using extension vari-
ables and Frege. If so then we would get a simulation.

4 Extended Q-Res Modulo NP

We now analyse QBF proof systems with the NP oracle included. As it allows
new derivations to occur immediately, this can change a system considerably. It
is necessary to prove, where applicable, when strategy extraction remains.

Theorem 3. The following strategy extraction theorems hold:

– QU-Res NP has depth-1 circuit decision list strategy extraction.
– For circuit class C, C-Frege + ∀red NP has C-decision list strategy extraction.
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Proof. The proof follows the line-based strategy extraction used by Balabanov et
al. [2] and later generalised byBeyersdorff et al. [5]. Purely propositional rulesmake
no changes to the extraction, and NP-derivations are purely propositional. ��

This is not an automatic result for any QBF proof system with strategy
extraction; recent results [11] on strategy extraction indicate that expansion
based systems may lose strategy extraction when equipped with NP oracles.
It is also unclear whether variants of (Ext) Q(U)-Resolution that allow long-
distance resolution steps have strategy extraction when NP oracles are allowed.
Extended Q-ResNP and extended QU-ResNP are among the systems with strategy
extraction. NP oracles allow us to remove ‖refl(Strat(S))‖ used in Theorem 2,
but also collapses Q-Res and QU-Res into the same system.

Theorem 4. Extended Q-ResNP is optimal among all QBF proof systems with
strategy extraction.

By “optimal among all QBF proof systems with strategy extraction” we
mean that it simulates all QBF proof systems with (circuit-)strategy extraction
and has strategy extraction itself. The caveat is that neither extended Q-Res NP

nor extended QU-Res NP are proof systems due to the NP oracle.

Proof. Ext. Q-Res NP simulates ext. QU-Res NP since universal resolution is sub-
sumed by the NP-derivation rule. We know that ext. QU-Res NP has strategy
extraction by the equivalence of extended QU-Res and P/Poly-Frege + ∀red,
which when augmented with an NP-derivation rule has strategy extraction by
Theorem 3.

Suppose we have QBF proof system S that has strategy extraction. We know
from Theorem 2 we can simulate this by system eFrege+ ∀red +‖refl(Strat(S))‖,
we can simulate this by ext. QU-Res NP, because ‖refl(Strat(S))‖ can be derived
directly from the NP derivation and eFrege + ∀red rules can be simulated by
extended QU-Res rules. Note that it does not matter here if S uses an NP deriva-
tion rule as this can be simulated by the NP derivation rule. ��

5 Weaker QBF Systems

So far we have only studied extended QU-Res and Q-Res with general exten-
sions. There remains four weaker systems, extended QU-Res and Q-Res with
weak extensions and standard QU-Res and Q-Res. We will analyse these four for
the remainder of this paper, both with and without the NP oracle.

Theorem 5. Weak extended QU-ResolutionNP does not simulate extended Q-
Resolution.

Proof. We take the QParity formulas [6] which are known to have short proofs
in general extended Q-Res [7]. We will show that these are hard for weak extended
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QU ResolutionNP. In fact, because of Theorem 7, we will only need to show these
are hard for Q-ResNP.

Let xor(o1, o2, o) be the CNF (¬o1 ∨ ¬o2 ∨ ¬o) ∧ (o1 ∨ o2 ∨ ¬o) ∧ (¬o1 ∨ o2 ∨
o) ∧ (o1 ∨ ¬o2 ∨ o), which defines o to be equal to o1 ⊕ o2. Define QParityn as

∃x1 . . . xn ∀z∃t2 . . . tn xor(x1, x2, t2) ∧
N∧

i=3

xor(ti−1, xi, ti) ∧ (z ∨ tn) ∧ (¬z ∨ ¬tn).

While QParity is false, the only winning strategy of the universal player on
the QParity formulas is to actually compute the Parity function. However,
Parity is the classic example of a function hard for bounded-depth circuits
and AC0-decision lists [14,17]. Q-ResNP has strategy extraction in AC0-decision
lists, but these must be exponential size, which means the proofs themselves are
required to be of exponential size. ��

The separation between Q-Res and QU-Res comes from the formulas from
Kleine Büning, Karpinski and Flögel [26,34]. QU-Res cannot simulate weak
extended Q-Res due to propositional lower bounds like the pigeonhole princi-
ple [16]. We are only left to show one more separation, and we get the complete
picture. Adapting the cost-capacity technique from [4], we can show that the
KBKF formulas are also hard for weak ext. Q-Res, giving Theorem 6.

Theorem 6. Weak extended Q-Res does not simulate QU-Res.

Once we have that final lower bound, we prove the following complete simu-
lation structure in Fig. 4. We then show in Theorem 7, that the opposite is true
when using NP derivations.

Fig. 4. The simulation structure of four variants of Q-Res, all pairwise simulations are
given and are strictly one-way, and other pairs do not yield a simulation.

Theorem 7. Q-Res ≡NP QU-Res ≡NP Weak Ext.Q-Res ≡NP Weak Ext.QU-Res.

Proof. Q-Res ≡NP QU-Res and Weak Ext.Q-Res ≡NP Weak Ext.QU-Res because
NP derivations can be used to simulate universal resolution steps directly. We
are left to show Q-Res ≡NP Weak Ext.Q-Res.

The first observation is that every universal reduction step in Weak Ext.
Q-Res has no extension variables, since these would always be quantified to the
right of every universal variable (and thus block their reduction). This means
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the first lines we perform universal reduction on are just propositional implica-
tions of axioms. Likewise, any later lines we perform universal reduction on are
propositional implications of the axioms plus the clauses that result from uni-
versal reduction (which are not inferred propositionally). So what we can do in
Q-ResNP to simulate Weak Ext. Q-ResNP proofs is to use NP derivations to get to
the lines that need universal reduction and then ∀red these clauses and continue
to alternate between NP derivations steps and universal reduction steps. ��

6 Conclusion

We have shown that extended QU-Res and eFrege+ ∀red are equivalent as long as
the extension variables are defined generally. eFrege+ ∀red has an important place
among QBF proof systems, particularly among those with strategy extraction.
This can be qualified with or without an NP oracle. This position allows us to
conjecture that eFrege+ ∀red will simulate the known QBF systems with strategy
extraction and will be able to certify solvers that have strategy extraction.

These properties do not hold for weak extension variables even with the
NP oracles. In fact, under the NP oracle, weak extended QU-Res has no more
strength than regular Q-Res.
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